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Motivation: Charging tiny loT devices via UGV Conclusion * (Q-learning should be used when operation area is small as it finds the optimal path
faster 1n that case. Dyna-Q should be incorporated with 1t in scenarios where no

information about the model 1s present.
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devices charged) “* Moving energy for deep Q-learning 1s lower for

v1 = oM = 1, (select starting and end points) larger epochs as 1t approximates to a stable optimal

om € {0,1}, V2 <m < M—1, (selection is binary) Incorporate Dyna-QQ when not enough information about Q-function due to experienced replay which

m;a om 21, Vi=1,--- K, (charge all IoT users) the model 1s present as 1t uses simulated environment for eliminates correlation between present and next state

Wi € {0,1}, Vm,j, Wy =0, Vm, (flow selection is binary) model learning before Q-learning application.
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Variable power given by robot to an IoT device
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Visit a point in the grid or not (Boolean variable) 0 accordmg to how far away 1t 1s from an IoT device
Link between two points in the grid or not (Boolean matrix)

Toning parameters (0.29, 0.41): pioneer’s 3DX robot experiment result at MIT(constant) | Limited CHCIgy P re.sent in UGV . .
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