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Abstract

In the past few decades, there has been an influx in the number of internet of thing
devices being used worldwide, and the amount of data which they are producing is
estimated to be 100s of trillion gigabytes per year [1]. This tremendous reliance on
IoT devices, generates a situation where we have to find efficient ways to collect data
from them as well as charge them, specifically in the case of tiny IoT devices like an
RFID or Bluetooth. Using a traditional method like battery is not a viable option for
miniscule size IoT devices. On the other hand, charging cables are not suitable, as it is
not only expensive to purchase them in abundance considering each device, but also
not practical in inaccessible areas. Henceforth, this project proposes the deployment of
an unmanned ground vehicle in designated areas to wirelessly charge [2] and collect
data from clusters of tiny IoT devices.

The objective of this report is to explore different methods like MINLP, Reinforcement
Learning, Deep Reinforcement Learning and if time permits, Multi-armed Bandit
Optimisation, in order to plan the path of the UGV so that it can charge the devices,
meanwhile optimising the energy consumed by it and the total path taken. Results
from MINLP and Reinforcement Learning have been included and compared. As a next
major step, findings from methods like Deep Reinforcement Learning and Multi-armed
Bandit Optimisation will be added in this report and then they will be subsequently
compared. All of the above methods are compared extensively on the basis of their
efficiency and speed, and ultimately the one which gives the best result in a real world
environment is chosen.

This report demonstrates that if the performance of the chosen method is promising,
then such a vehicle can actually be deployed and can help in charging and gathering
data in real life, for example from packages kept in a warehouse and marked by an
RFID. Moreover, it leads to reduction in charging cable usage which can help the
environment.
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Abbreviations

Here are some abbreviations used in this report:

Table 1.

IoT
UGv
MINLP
RFID
MTC
UWB

Internet of Things

Unmanned ground vehicle or robot
Mixed Integer Non-Linear Programming
Radio Frequency Identification
Machine-Type Communications
Ultra-Wide Band
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1. Introduction

This section embarks with a detailed description on the general project background,
followed by a problem statement and objective. In addition, this section also provides
with an outline for the remaining sections of the report.

1.1. Project Background

In the last years, IoT has taken the centre stage in the technology world by creating
one of the fastest growing markets and it has been predicted by Forbes that more than
30% of the companies in manufacture, Internet of Vehicle as well as retail, have already
adopted IoT devices in 2015. Notably, IoT devices will soon be worth 1700 billion U.S.
dollars, as they are expected to outnumber 20 billions in 2020 [3]. In addition to that,
IoT is already estimated to be generating 100s of trillion gigabytes of data per year
and this figure is only increasing [1]. In the next decade, almost every device will be
connected to the internet, ranging from sensors, vehicles, wearable electronics to other
embedded systems like refrigerators [1].

To prepare for the future, design engineers are working on finding efficient solutions,
specifically in order to power as well as to communicate with billions of tiny IoT
devices, since providing sufficient energy to them particularly, is quite a difficult task.
Relying on traditional resources like batteries cannot meet the requirement due to the
miniscule size of such a device. Additionally, using charging cables can suffice the
requirements but the downfall here is that they must be bought in abundance and then,
repaired and disposed sustainably. Moreover, maintenance of such a cable becomes a
challenge, when IoT devices work in inaccessible areas.

To solve this problem, a UGV is used to wirelessly charge [4] (and communicate
with) a cluster of small scaled IoT devices like RFIDs, Bluetooth and UWB as they
not only require short distance MTC (distance < 10m) but also do not need enough
power for charging (typically 1uW ~1mW )[3]. As a result, cables will become an
obsolete solution for powering the IoT devices and this techniques will also resolve the
difficulties involved in purchasing and maintenance. Therefore, rather than buying say
100 different cables for 100 different IoT devices, there will now be just one UGV to
power all of the devices and also collect data from them, if required.
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1.2. Objective

From a Computer Science prospective, this problem can be abstracted to be a path
planning problem in a graph. The UGV will be capable of interacting with the devices
and charging the devices present at different locations in a graph, one by one. To achieve
this, the given report will present different approaches such as MINLP, Reinforcement
Learning, Deep Reinforcement Learning and if time permits, Multi-armed Bandit
Optimisation. After individually receiving the results for the optimum paths from the
various approaches mentioned above, the report will depict a systematic comparison of
their performances to conclude which has a promising solution theoretically and if it is
practically viable to apply any of the approaches in a real world environment.

1.3. Outline

The remainder of this report will proceed as follows. First, there is a detailed description
about the prior work which is done in the field of robot wireless charging. Next, the
report explores different methodologies in detail on how to plan the path of the UGV.
Here, the relevance of each method, technical side and step by step procedure involved
in execution of each algorithm is explained in depth. Next, the report discusses
the result and covers the main difficulties encountered till now. Adding on to this,
conclusion as well as the future planning of the project is discussed wherein the project
schedule is presented.




2. Previous Work

Through this project, Reinforcement Learning is being implemented for the first time
in order to plan the path of a UGV (also referred to as robot) so that it can charge IoT
devices. Nevertheless, there has been extensive research done on various robot wireless
charging approaches which are explained below.

A traditional scheme for the robot wireless charging is to deploy multiple static
transmitters. However, this is cost expensive and not adaptive to network changes.
Additionally, there are two other references which can help in robot wireless charging.

1. Wirelessly powered two way communication with non-linear energy harvesting
model: Rate regions under fixed and mobile relay [5].

2. Near-Optimal Velocity Control for Mobile Charging in Wireless Rechargeable
Sensor Networks [6].

Recently, the above two references use mobile robot for charging, but they adopted
tixed paths and assumed complete knowledge of user channels [5][6]. This can lead to
excessive energy usage. To this end, path planning with or without channel knowledge
is needed, as in real life situations it’s not practical to know the complete picture of
where each IoT device is located.

Therefore, this project advocates the use of Reinforcement Learning so that the robot
can learn from the environment and can explore where each IoT device is located. At
the same time the robot is also charging the devices and aiming to minimise energy
consumption. This is quite cost effective as only the robot is required for learning and
charging without any additional hardware. Moreover, while planning the path, the
robot can also have the ability to communicate with IoT devices.




3. Methodology

This section includes description of model of the environment as well as the different
phases involved in the development of the project.

Charging Region Model

loT-Device

|
|

GOAL
| 1

Figure 3.1.: Charging Region Model

The abstraction of the robot path planning problem gives the following model:

There is a set of IoT devices D = {dy,...,d;} which are positioned on the vertices
V ={vy,...,om} of an equal-distance-grid-shaped-graph representing the operation
area. The UGV is located on one of the vertex vy; and the goal is present at another




3. Methodology

vertex vg. In each time-step, the UGV can move one step along the grid. The UGV
has to interact (i.e. provide power or communicate) with the devices by entering the
charging region [appendix A.1] of each device one by one and ultimately reach the
goal. A certain amount of energy is required by UGV in moving and that is the energy
which is reduced through path planning.

3.1. Phase I

The first phase to obtain the solution for the path planning problem, involved the
use of MINLP which uses branch and bound approach for solving problems.[7] It
is used to solve convex or non-convex optimisation problems with discrete variables
and non-linear functions which can be placed as either an objective function or as a
constraint.[7]

These properties of MINLP made it particularly useful in deciphering the robot path
planning problem because of two reasons. First, the constraint on path planning, which
is sub-tour elimination, is of non-linear nature and second, the location of each IoT
device on the grid satisfies the requirement for the presence of a discrete variable.[7]

Subsequently, a CVX optimisation solver Mosek was used to handle combinatorial
difficulty of optimising over discrete variable sets together with the issue of handling a
non-linear function in order to solved MINLP.

This table presents the parameters used in the MINLP problem.

Table 3.1.
Visit a point in the grid or not (Boolean)
Link between two points in the grid or not (Boolean)
a1, Toning parameter: pioneer’s 3DX robot experiment result at MIT(constant)
Velocity of UGV (constant)
Distance between two point in the grid or not (Boolean)
Summation of X values
length & width of the grid
Total number of IoT devices

> <

NZEO®

The mathematical description of objective function (represents the total moving
energy of UGV) and constraints involved in MINLP is as follows:

. X1 T
— Tr(D'W
V)I(,n{IAI}n} ( a —HXZ) r )




3. Methodology

st. vy =ovym =1, (select starting and end points) (3.1)
om €{0,1}, V2 <m < M —1, (selection is binary) (3.2)
Z om >1, Vi=1,---,K, (charge all 10T users) (3.3)

méecC;

Wi, € {0,1}, Vm,j, Wym =0, Vm, (flow selection is binary) (3.4)

M M

Y Wi;=1, ) Wi =0, (flow from starting point) (3.5)
=1 j=1

M M

Y Wnj=0, Y Winm =1, (flow to end point) (3.6)
=1 =1

M

Y Wi = Z Wi = 0w, Ym=2,---, M, (3.7)

j=1 j=1

(flow passing selected points;no flow passing abandoned points)

m— A +<Z vl—1> Wm,j+<§vl—3>w

M-1
<Y u-24]2-vu—0vj), V2<mj<M—1, m+#j, (3.8)
=1

M-1
O < Ay < (Z vl—1> O, Ym > 2. (3.9)
=

(guarantee flow connected)

In Phase I when there is complete knowledge about the environment, then MINLP
gives the most optimal solution and when there is incomplete knowledge then it helps
by giving the lower bound.

3.2. Phase I1

Thereafter, the model is put in a Reinforcement Learning setting and Q learning is
applied on it. The goal of Q-learning is to learn from the environment, wand tell
an agent what action to take under what state. It does not require a model of the
environment and can handle problems with stochastic transitions and rewards.

Here the state space, the actions and the rewards are proposed to be defined in the
following way:

State S = {(x,y)|x,y € [M]} (location of each point on the grid)
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Action A = {"move left UGV",”move up UGV"”, "move down UGV”,"move right UGV"}

10+ (5*x) if (x;,y;) = vg, x = no. of IoT devices charged
f(xi,yi) = ¢ 10 if (x;,y;) in charging region of a particular IoT for the first time

-1 otherwise.

Location of UGV
Action = {up, down, left, right}

( JOX J maze
Charging region of \. /

first IoT device
(harvested power at
each loT)
if visited for the first
time:
Reward = 10
else:
Reward = -1

Location of each point is state
Reward = -1

!

Location of goal
Reward = 10 + 5% (x is the number of loT
devices charged)

Environment

Figure 3.2.: Q Learning Environment

3.3. Phase III

Next, in this project Deep Reinforcement Learning will be used along with policy
gradient method to approach the problem. Deep Reinforcement learning involves
applying the standard Reinforcement Learning state-action model as describe in Phase
II, along with neural network. Neural networks are a computing system and they
consist of a collection of connected nodes. They are used to work together and process
complex data inputs and therefore will be able to take in a model with a very large
state space.




4. Results

This section presents the results from different methods, and comparisons between the
methods.

4.1. Phase I

In this section, all the results and inferences obtained after the application of MINLP
are discussed. Implementation is carried out in MATLAB using CVX solver Mosek.

In fig. 4.1 we do not consider the charging case (section 3.1) which means that UGV
will not consider charging IoT devices as a constraint while planning its path.

10 T T . . T T
O Starting point
(O Terminal
Vertices
5t Charging region 1 4

Charging region 2
Charging region 3
Shortest path

CE- + + + + + + E

OO0+ C

: + + +
5t
g + + + + +
+ + + + +
10+ + + + +
+ + + +
! ! 1 L ! L N
0 2 4 6 8 10 12 14

Figure 4.1.: Shortest Path by MINLP

Next fig. 4.2 shows the path taken by the UGV where sub-tour eliminations (sec-

10



4. Results

tion 3.1) is not involved as one of the constraints[8]. Therefore, there will be vari-
ous small tours in the grid apart from the path between UGV’s initial position and
goal(terminal), which are highly undesirable.

10 T T T T T T

(O starting point

(O Terminal

+ Vertices

5+| [ Charging region 1 -

[] Charging region 2

[] Charging region 3
No tour elimination

(]S— + + + + + + e

+ + + + + +
] . : 5] + + +
5} -
| " . E2 ; . y
+ + + + +
10+ (1] + + + + 4
#] + + + +
} ' } | } ' N
0 2 4 6 8 10 12 14

Figure 4.2.: No Sub-tour Elimination for MINLP

Finally, we have the optimal solution after considering all the constraints from
section 3.1. Here, the energy value obtained is 241 Joule by taking the path shown in
tig. 4.3.

11
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10 T T T T T T
O Starting point
(O Terminal
+ Vertices
5| | [J Charging region 1 _
(] Charging region 2
(] Charging region 3
MINLP
GE + + + g
+ + + + +
E + + 1] + + +
5t _
— % e 1 + + *
+ + + +
10T [+ + + + .
4
! ! ! ! ! ! N
0 2 4 6 8 10 12 14

Figure 4.3.: Optimal Solution by MINLP

4.2. Phase I1I

In this section, all the results and inferences obtained after the application of Q-Learning
are discussed. Implementation is carried out in python.

The fig. 4.4 shows that when a high reward is given to the UGV (say 100 + 5*each
device charged) when it reaches the goal, then the UGV has a very low tendency to
charge all IoT devices and therefore we will not get the desired path.

12



4. Results

map_100.pdf

2 ® Q

Figure 4.4.: High Reward for Goal

Finally after implementing all the reward values from section 3.2, we get the result
by Q Learning in fig. 4.5. The lowest energy value consumed is 252 Joule after training
for 100 epochs.

13



4. Results

final.pdf

2 ® Q

Figure 4.5.: Solution by Q Learning

4.3. Comparison of Results

This section compares results obtained from MINLP and Q-Learning.

In fig. 4.6 a graph is plotted between energy consumption by UGV in moving and
number of epochs. Here as the UGV gets trained for more epochs, the energy consumed
by it in moving decreases drastically. The Blue line shows the energy consumption for
Q-Learning and the red line serves as a lower bound and shows the energy consumption
for MINLP( energy is calculated in section 3.1). This comparison is not fair as it is
not certain that every path obtained by Q-Learning after a certain number of epochs,
involves all the IoT devices to be charged.

14
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8000 +

7000 +

6000

5000 +

4000

3000 +

Moving Energy of UGV

2000 +

] /‘A\Nm
5 ._n-‘\AM AI"‘-\._

T T
0 20 40 60 80 100
Number of Epochs

Figure 4.6.: Moving Energy Comparison: MINLP and Q-Learning

Therefore, we only take those energy values from Q-Learning where path involves
charging all the IoT devices. The final result obtained is shown in fig. 4.7

15
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6000
5000 ~
4000 ~
3000 ~

2000 ~

Moving Energy of UGV

T T T
0 20 40 60 80 100
Number of Epochs

Figure 4.7.: Moving Energy Comparison: MINLP and Q-Learning(all devices charged)

16



5. Difficulties Encountered

The main difficulties encountered in the development of this project are explained as
follows:

1.

Formulating the model for the project initially appeared as a difficult task, since
there was no prior work available in this area. Therefore, different action sets
and reward functions were considered before choosing the most suitable one for
Phase I modelling.

Understanding the electrical engineering concepts involved in robot wireless
charging was a challenging work as it required quite high level knowledge in that
field.

Limited experience in TensorFlow and MATLAB was one of the biggest hurdle in
project development as all the implementation is carried out with these software.

Most importantly all the main methods like Reinforcement Learning, Deep Re-
inforcement Learning and Multi-armed Bandit Optimisation are quite new for
me, therefore considerable amount of time was spent to get a basic foundation in
order to understand the mechanism of each of them.

Problems related to the installation of CVX software due to licensing issues,
delayed the progress of the project significantly

17



6. Conclusion

The main aim of this project is comparison of different approaches so as to choose the
most efficient path planning method for the deployment of a UGV. In order to achieve
this, this report presented results obtained from the first and second methods which are
MINLP and Q-Learning respectively. Subsequent results from methods ranging from
Deep Reinforcement Learning and Multi-armed Bandit Optimisation will be added in
the future. Comparison of outcome obtained from reinforcement learning completed
the interim stage of the project and showed that after training the UGV on Q-Learning
algorithm for sufficient number of epochs, the UGV was able to take similar path as
that of MINLP method and the energy consumption reduced significantly and became
close to that of MINLP method which serves as a lower bound in this report.

Finally, after the comparison of different methods, if the results are optimum for
real world application, then the deployment of such a UGV for wirelessly charging
(and communication with) IoT devices will be feasible. This will not only make cables
obsolete but also will play a big role in data collection and charging in various sectors
ranging from manufacturing to retail.

18



7. Future Planning

This section describes the remaining milestones as well as some of the future research
work which can be done in this project if time permits.

1. Tackling the situation when variable power is given by UGV to an IoT device
according to how far away it is from an IoT device

2. Limited energy present in UGV
3. MINLP application in Continuous charging model ( fig. 7.1)

Continuous Charging model

Low probability for Arm
nearby arms /

9

-
oT-Device = | =] )
® —@ - \) UCB algorithm to
{ \/ choose the arm.
i

If chosen get random
observation (How
many users active?)

* Change in loc of
loT V

* Disturbances

— )

:

Figure 1 Graphical abstraction of the problem

Multi-armed Bandit with correlation

Figure 7.1.: Continuous Charging Model

The table 7.1 illustrates the already achieved milestones and the tentative plan on
project development in the upcoming months. Until now deliverables 1 and 2 have

19



7. Future Planning

been finished, thorough background research has been done, creation of simulated
environment has been achieved and result from MINLP and Q-learning have been
obtained. In the future, the main focus is on acquiring results from Deep Reinforcement
Learning method and Multi-armed Bandit Optimisation.

Table 7.1.

Dates

Milestones

Status

September 30

Deliverable 1
1. Project Plan

2. Project Website

Completed

October

Working into MATLAB, Python and TensorFlow.
Reading up on MINLP, Reinforcement Learning and
Deep Reinforcement Learning.

Completed

Nov - Dec

Development of demo application. Creating simu-
lated environment for MINLP application and apply-
ing it. Applying Reinforcement Learning and compar-
ing them

Completed

Jan

Deliverable 2
1. Demo Application

2. Interim Report

Completed

Dec - Feb

Applying Deep Reinforcement Learning with Policy
gradient method.

In progress

Mar - Apr

Considering variable power given by UGV, limited
energy present in UGV as further extensions to the
problem. Comparing the results obtained from the
different approaches. If time permits then working
into Continuous charging model (Multi armed Bandit
Optimization)

Scheduled

April

Deliverable 3
1. Finalized Implementation

2. Finalized Report

Scheduled

20
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A. Appendix

A.1. Charging Model

If the transmit power at UGV is P, then the harvested power at IoT user k is Y (\ ) P) ,

where gy is the wireless channel from UGV to user k, and Y is the function representing
the energy conversion process and is given by

Y(Pn) = [ P <1+eXp(_TP°+”) —1>]+, (A1)

exp(—TtPy+v) \1+exp(—TPn +v)

where the parameter Py denotes the harvester’s sensitivity threshold and Pnax refers to
the maximum harvested power when the energy harvesting circuit is saturated. The
parameters T and v are used to capture the nonlinear dynamics of energy harvesting
circuits. For the Powercast energy harvester P2110, we have T = 274, v = 0.29, Pnax =
0.004927 W and Py = 0.000064 W.
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