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1 Introduction and Background

The final year project FAST2VECproposed is an efficient, scalable and effective information network embed-
ding toolkit. In this introduction section, key concepts related to the project, current works and initiatives
of the project will be introduced.

1.1 Information Network

Information Network is a ubiquitous abstraction for large scale graph datasets in the forms of social media
networks, scholarship networks, knowledge-base graph, protein-to-protein networks, etc[9] [2] [26] [7]. Ac-
cording to the number of types of edges and vertices in the network, research community further categorize
them as Heterogeneous Information Networks and Homogeneous Information Networks. Scales of networks
rise from hundreds to billions vertices [21] [22] and numbers of edges range from thousands to tens of billion
as well. In addition, a information network may also carry auxiliary label and context information as shown
in Figure 1.1.

Figure 1: Example of Information Network shown in Changping’s Paper[14]
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With blossom of social network, growth of computing power and development on machine learning
algorithms, analysis on information network has drawn great attention. However, usual machine learning
algorithms relies on numeric input, such as real number, vector or matrix while network data are of higher
dimension and different type of information. Therefore the challenge of application of machine learning
algorithms on network data lies on mapping information network to its numerical representation that fits
those algorithms and such a mapping is also called Network Representation Learning

1.2 Network Representation Learning

As introduced previously, Network Representation Learning(NLR), which is also called embedding, is a
mapping from complex network data to easy-to-use, lower dimensional real matrix which can be used for
downstream machine learning algorithms. To define an embeddingprocess, people first design an objective
function evaluating information loss, the gap between real data and its matrix representation, through
the conversion and then embeddingbecomes training a model, which is essentially a real-value matrix,
that minimizes the selected objective function. After training the model, developers can leverage it to a



collection of algorithms. Taking friend recommendation as an example, after embedding a social network,
say Facebook, developers will have a real-value vector for each user and collectively a real-value matrix U
will be generated for all the user. To decide whether or not to recommend user A to user B, developers can
simply train a logistic-classifier based on the matrix U. Additionally, example work flow for Deep Walk is
also shown below

Figure 2: Example of embedding work flow taking from Deep Walk[17] paper. First it generates random
walks from information network. Second, it learns vector representation of vertices based on random walks.
Last, it decodes information using softmaz function
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(a) Random walk generation. (b) Representation mapping. (c) Hierarchical Softmax.

As shown in the example above, embedding provides a general framework for complex handling network
data and its downstream applications are sensitive to embedding quality. Therefore, scholars spend great
effort designing effective and efficient algorithms which will be discussed in subsequent sub-section.

1.3 Current Works

Current focus on embedding is to encapsulate structural information of network data. By saying structural
information, people emphasize how are vertices in the network connected rather than what a single vertex
contains. Taking Google Scholar data as an example, most embedding techniques leverage the fact that who
published which paper, which paper was published in which venue and which paper contains certain topics
instead of content of a paper, etc.. Inspired by word2vec[15], a state-of-art word embedding algorithm, lots
of random-walks-based NLRalgorithms have been proposed.

In the reset of this sub-section, general framework of random-walks-based NLRalgorithm will be first
presented and then details of specific algorithms so as their pros and cons will be discussed.

1.3.1 Random-Walk-Based Network Representation Learning

word2vec algorithm [15] has been commonly adopted in NLRalgorithms so it is critical to understand
it before advancing to NLRalgorithms. Similar to NLR, word embedding aims for finding a real value
representation for each word. Insight of word2vec is that co-occurrence of two words within a sentence
is an evidence of semantic similarity between them and lack of co-occurrence between two word implies
semantic differences. For example, (Father, Mother) appear more often than (Father, Ocean) and therefore
it is more convincing to conclude that Father is more similar to Mother than Ocean semantically. More
formally, by defining co-occurrence probability by softmax function which takes two vectors as input, the
objective of word2vec becomes find a representation that maximizes softmax function for co-occurred words
and minimizes for non-co-occurred words.

Inspired by skip-gram and word2vec algorithm[15], lots of graph embedding algorithms leverage random
walk to serve as analogy of sentence in word2vec and then train model against a collection of random walks
while word2vec trains against a corpora. However, drawing random walk from information network is more
difficult then tokenizing a document to generate sentences as:

e Vertices can be of different types and carrying different attributes[25]. Therefore we should decide
whether to treat vertices of different types equally when draw a random walk.



e Sentences is a solid data source while random walk generation is algorithm specific and involves lots
of design decision.

Consequently, we can categorize current embedding technologies into two sub-categories:

e Homogeneous Random Walk: When draw a random walke, it won’t take vertex type nor value into
account.

e Heterogeneous Random Walk: Unlike homogeneous, it will consider vertex type and value and assign
probability accordingly. These leverage additional information in heterogeneous information network
and hence called heterogeneous random walk.

In general, both types of algorithms will consist three components as shown below [9]

e Random Walker: a walker w generate a collection of random walks from a information network. It
will determine whether a NLRalgorithm is homogeneous or heterogeneous.

e Encoder: a mapping function between vertex in information network and its real-value vector repre-
sentation.

e Decoder: a decoder takes two real-value vectors which are representation of corresponding pair of
vertices as input and outputs a real value. Normally, it serves as the objective function of the algorithm
and developers want to maximize output for co-occurred vertices and minimize for non-co-occurred
vertices.

In the rest of sub-section both types of random-walk-based NLRalgorithms will be discussed

1.3.2 DeepWalk

Deep Walk[17] is the first paper introducing word2vec[15] to NLR. By regarding each random-walk as a
sentence, Deep Walk generates vector representation for every vertex in random walk. Formally speaking,
its Random Walker generate fixed number of random walks with fixed length for all vertices and it use
softmazx as its Decoder function.

The drawback of this algorithm is that users and developers have limited control on drawing random
walks from dataset.

1.3.3 Node2Vec

Node2Vec improves Deep Walk by adding customizable random walker. It has two parameter p and ¢ inter-
polate between BFS-like and DFS-like random walk. A BFS-like random walk tend to explore neighbors
around a vertex while DFS-like random walk will try to explore vertices far away from the source vertex.
To better explain the process, an example has been shown below Figure 1.3.3

Figure 3: Example of random walks generation for Node2Vec. The walk just transited from ¢ to v and « is
the weight factor for computing next transition probability.

However, both methods above fail to leverage heterogeneous information network as their random walkers
don’t take vertices types and edges types into account.



1.3.4 Metapath2Vec and Metapath2Vec++

Metapath2Vec leverages heterogeneity of certain information network with an improved random walker. It
first asks user to provide a meta-path, which is essentially a subset of schema of the information network, and
then when generate random walk according to meta-path. Taking Google Scholar as an example again, first
user sets meta-path to be Author-Paper-Author and then Metapath2Vec will generate a collection random
walks that are instances of the selected meta-path, such as author; — papers — authors — papery — .. ..
Similar to algorithms above, it will use softmaz as its decoder.

[metapath2vec figure]

However, experiments have shown that meta-path is task-driven and may not cover all vertices. In the
example above, Author-Paper-Author meta-path cannot cover Venue and Topic vertices.

1.4 Initiatives

Network Representation Learning is an emerging field of study with exciting applications. But current trend
is more on the effectiveness of NLR, people may thereafter find below drawbacks

e Lack of efficient studies and implementation. Current open source codes for NLR are more for
elaboration purpose and cannot handle large scale data efficiently. To boost computation, people may
find better integration of NLRwith real life applications.

e Lack of standard dataset format and collections. Researchers have their own preferences on dataset
selection and the way to process it. Consequently, it is difficult to compare result in different papers
and develop new algorithms. It is desirable to have a standard collection of data.

Therefore, FAST2VEC has been proposed and it will serve as an extensive and efficient collection of several
NLR algorithms and developers may also use it to investigate more NLR algorithms.

2 Objectives

FAST2VEC will consist of four components: an efficient efficient NLR framework, a standard collection
of dataset, a pipeline for common applications and benchmark report for current NLR algorithm under
FAST2VEC. In this section, all these components will be presented.

2.1 Efficient NLR Framework

As stated in introduction section, performance and scalability is bottleneck for existing NLR tools. FAST2VEC
will optimize for parallel computing and also leverage existing high performance computing library.

The framework will have both data processing module and training module. Data processing module
will be responsible for prepare training data. It will draw various random walks for information network
according to the selected algorithm. Training module will take in a collection of random walks and output
trained model.

As stated in previous section, most NLR algorithms will share same training module and random walker
can also be derived from other. Therefore, developers will not only enjoy an efficient implementation of
existing NLR algorithms but also be able to fast prototype their on algorithms.

2.2 Collection of Datasets with Unified Format

Companies are providing increasing amount of open datasets which are of different format to best describe
itself. Within NLR research community, their have been recognized dataset such as Flickr, DBLP and
BlogCatalog but a standard format is still in absent. Researchers have processed and pruned data differently
to fit their usage in papers which brings difficulties in comparing result from different papers.

To address this un-unified issue, FAST2VEC will also unify dataset format for NLR research. It will
automatically download recognized data from public website and unify them to the proposed format. This
makes result from FAST2VEC comparable which allows easy comparison and benchmark.



2.3 Pipeline for Common Application

As stated before, NLR has a broad range of applications and FAST2VEC will demonstrate two of them
under its framework. The general workflow will be:

1. Download and pre-prossess data from the standard collection as described above.
2. Generate random walks according to the selected algorithms.
3. Train the model against generated random walks.

4. Feed downstream applications with trained model.

2.3.1 Multi-class Classification

It is a common requirement to categorize users within a social network to different user groups and re-
searchers have further generalize this application to multi-class classification. For example, people may
want to find a professor’s research interest based on his or her publication records. Common classification
algorithms like multi-class logistic regression ask for vector input so people can feed them with NLR result.
To train the classifier, user will use both NLR result and vertex label file. With a trained model, if a user
want to categorize a scholar then he or she will first index scholar’s vector representation and then put it
into classifier.

2.3.2 Link Prediction

It is another common requirement to make recommendation for a user and it can be regarded as a binary
problem that between two vertices whether certain link should exist or not. Similar to the procedure above,
pipe line for link prediction is as shown below

1. Train an NLR model.

2. Prepare training data for the binary classifier, entry of which is a pair of vertices share certain link.
Prepare test data of same format too.

3. Train binary classifier with NLR model and pairs of vertices prepared above.

4. Test result against test data

2.4 Extensive Benchmark

Both effectiveness and efficiency will be benchmarked under FAST2VEC framework. First, performance
comparison between FAST2VEC and other implementations will be conducted. Experiments will be car-
ried out against different number of computation nodes, various combination of parameters and different
datasets. Second, effectiveness of each algorithm will be tested on standard collection of data and applica-
tions under FAST2VEC. Objective of the second part of the experiment is to examine current state-of-art
algorithms.

To present experiments result, an extensive experiment report will be written.

3 Methodology

3.1 Parallelization

To boost NLR computation, FAST2VEC will leverage various parallel computing techniques. All these
features below will be implemented incrementally during the development.



3.1.1 Multi-Threading

Multi-threading computation on a single machine is the most approachable methods for parallel computing.
NLR computation is trivially parallelize-able but it is up to developer’s design on lock mechanism and
scheduler. Open source library such as OpenMP and Intel Thread Building Block will be used.

3.1.2 Locality

Due to the nature of NLR algorithms, lots of random access will be carried out, which is not friendly to
cache. To make use of locality, regroup of random walks and improvement of negative sampling will be
studied. The objective is to speed up training by minimizing overhead for memory access.

3.1.3 Distributed Computing

One of the most cost effective way to increase computing power is to run on a cluster of computation
nodes. However, current implementations of NLR mostly run only on a single machine. To meet perfor-
mance requirement of real life application, it is desirable to introduce distributed computing techniques into
implementation. Open source library OpenMPI will be used for message passing between different nodes.

3.1.4 GPU Computing

Profiling on existing implementations have shown that matrix computation contributes most of the work
load and can be boosted by GPU. Open source library CUDA will be used.

3.2 Integration of Static Language and Scripting Language

Static languages like C++ are of better performance at a price of flexibility and simplicity while vice versa
for scripting languages. FAST2VEC will be implemented in various programming languages. The decision
philosophy is to write performance critical code in static languages and write data processor and helper
functions in scripting language. If time allowed, wrapper for performance critical code will be provided for
calling from easy-to-use scripting language.

3.3 Data Driven Evaluation

FAST2VEC is not just about implementation, it is also a framework for benchmarking NLR algorithms.
Therefore, it is exciting to use FAST2VEC to evaluate current methods. Both performance and effectiveness
metric will be reported against collections of dataset and applications for each of the algorithms. Common
metric like macro-F1, NMI, micro-F1 will be recorded.

4 Schedule and Milestones

Schedule below is independent of standard final year project timetable and will leave a month of buffer
time.

4.1 Single Machine Multi-Threaded Prototype

This is the proof-of-concept (POC) and prototype phase of the project. Objective of this phase is to verify
implementations of random-walk-based NLR in depth and explore the bottleneck of current implementation.
Deliverables of this phase includes

e Trivially parallelized Deep Walk and Node2Vec implementation
e Pipeline for both multi-class classification and link prediction
e Data Collection for DBLP and ACM

This phase should be completed on or before October 14th, 2018.



4.2 Locality Optimization

Deliverables of this phase is an improvement of FAST2VEC for locality and random access and should be
completed on or before November 4th, 2018.

4.3 GPU Accelerated Computation Support

Deliverables of this phase is an improvement of FAST2VEC to accelerate computation with GPU and
random access and should be completed on or before December 2nd, 2018.

4.4 Distributed Computing Support

Deliverables of this phase is an improvement of FAST2VEC to allow distributed training on cluster and
should be completed on or before January 27th, 2019.

4.5 Data Collection

After implementation of FAST2VEC, more dataset will be on boarded and more experiments will be carried
out and it should be completed on or before February 10th, 2019.

4.6 Evaluation and Report

Experiments will be conducted throughout all the phases of implementation and all the result will be
recorded. A report of current NLR algorithms together with benchmark of FAST2VEC against current
implementation will be written and this should be completed on or before March 10th, 2019.
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