
Fully Dynamic k-Center Clustering∗

T-H. Hubert Chan†
University of Hong Kong

Hong Kong
hubert@cs.hku.hk

Arnaud Guerquin
LTCI, Télécom ParisTech University

Paris, France
arnaud.guerquin@ens-paris-saclay.fr

Mauro Sozio‡
LTCI, Télécom ParisTech University

Paris, France
sozio@telecom-paristech.fr

ABSTRACT
Static and dynamic clustering algorithms are a fundamental tool
in any machine learning library. Most of the e�orts in developing
dynamic machine learning and data mining algorithms have been
focusing on the sliding window model (where at any given point in
time only the most recent data items are retained) or more simplistic
models. However, in many real-world applications one might need
to deal with arbitrary deletions and insertions. For example, one
might need to remove data items that are not necessarily the oldest
ones, because they have been� agged as containing inappropriate
content or due to privacy concerns. Clustering trajectory data might
also require to deal with more general update operations.

We develop a (2 + �)-approximation algorithm for the k-center
clustering problem with “small” amortized cost under the fully
dynamic adversarial model. In such a model, points can be added
or removed arbitrarily, provided that the adversary does not have
access to the random choices of our algorithm. The amortized cost
of our algorithm is poly-logarithmic when the ratio between the
maximum and minimum distance between any two points in input
is bounded by a polynomial, while k and � are constant. Our theo-
retical results are complemented with an extensive experimental
evaluation on dynamic data from Twitter, Flickr, as well as trajec-
tory data, demonstrating the e�ectiveness of our approach.
ACM Reference Format:
T-H. Hubert Chan, Arnaud Guerquin, and Mauro Sozio. 2018. Fully Dynamic
k-Center Clustering. In WWW 2018: The 2018 Web Conference, April 23–27,
2018, Lyon, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3178876.3186124

1 INTRODUCTION
With over 6000 tweets per second being posted on Twitter, Google
processing over 40000 queries every second, and more than 400
hours worth of youtube videos uploaded every minute, there is an
urgent need to develop dynamic machine learning and data mining
∗This research was partially supported by a grant from the PROCORE France-Hong
Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong
and the Consulate General of France in Hong Kong under the project F-HKU702/16.
†This research was partially supported by the Hong Kong RGC under the grants
17217716.
‡This research was partially supported by French National Agency (ANR) under
project FIELDS (ANR-15-CE23- 0006).

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186124

algorithms. Most of the e�orts in this direction have been focusing
on the sliding window model of computation [6, 7], where at any
given point in time only the most recent data items are retained, or
more simplistic models.

However, in many real-world applications one might need to
deal with arbitrary deletions and insertions. For example, one might
need to remove data items that are not necessarily the oldest ones,
because they have been� agged as containing inappropriate content
or due to privacy concerns. The latter case has increasingly become
commonplace, due to the ‘right to be forgotten’ principle. Clustering
trajectory data might also require to deal with more general update
operations than those modeled by the sliding window model.

Clustering algorithms provide a fundamental tool in anymachine
learning library. There have been increasing e�orts in recent years
to study clustering problems from both a theoretical and practical
point of view [6, 8, 11, 12].

In our work, we consider a fully dynamic adversarial model,
where points can be added or removed arbitrarily, provided that
the adversary does not have access to the random choices of our
algorithm. Moreover, our algorithm does not know the update op-
erations in advance. We focus on the k-center clustering problem
with a long-term goal of studying other machine learning and data
mining problems in a fully dynamic environment. We develop a
(2 + �)-approximation algorithm for the k-center clustering prob-
lem, which requires “small” expected amortized cost under the fully
dynamic adversarial model. In particular, the expected amortized
cost is poly-logarithmic when the ratio between the maximum and
minimum distance between any two points in input is bounded by a
polynomial, while k and � are constant. We also prove that the run-
ning time of our algorithm is concentrated around its expectation
with high probability.

Our theoretical results are complemented with an extensive ex-
perimental evaluation on dynamic data from Twitter, Flickr, as well
as trajectory data, demonstrating the e�ectiveness of our approach.
We also evaluate our algorithm against the approach proposed
in [6] for the same problem, under the sliding window model. Our
experimental evaluation shows that our algorithm delivers clus-
tering solutions with lower maximum radius than [6], although
this comes at the price of a slightly worse average running time
and more space. Another advantage of our algorithm is that it is
e�cient under a fully adversarial model, in contrast with [6] which
works under the sliding window model.

The rest of the paper is organized as follows. We discuss the
related work in Section 2, while Section 3 introduce the neces-
sary de�nitions and notations. In Section 4 we present our main
algorithm, while its theoretical analysis is provided in Section 5.
Section 6 contains an experimental evaluation of our algorithm

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

579

https://doi.org/10.1145/3178876.3186124
https://doi.org/10.1145/3178876.3186124
https://doi.org/10.1145/3178876.3186124

against the state-of-the-art approaches on real-world data. Finally,
Section 7 contains our conclusion and future work.

2 RELATEDWORK
There have been increasingly more e�orts in studying clustering
algorithms from both a practical and theoretical point of view, in
recent years [1–3, 6, 8, 11–13]. One of the� rst dynamic clustering
algorithms has been presented in [4], where the authors developed
an 8-approximation algorithm for the case with only insertions.
A (2 + �)-approximation algorithm was later developed by [14]
building on the results of [4]. In the same work, the authors also
studied the case with outliers (where a limited number of points
can be deleted from the input) for which they developed a (4 + �)-
approximation algorithm.

The literature for clustering in the streaming model is rich. We
mention the work in [10], where the authors give the� rst single-
pass constant approximation algorithm for k-median which has
been improved later on in [5].

The work that is most relevant to ours is [6], where the authors
studied the k-center clustering problem under the sliding window
model. They developed a (6+�)-approximation algorithm requiring
O(k · log ��) time per update (on average), where � is an upper bound
on the ratio between the maximum and minimum distance between
any two points in input. The algorithm requires O(k · log ��) space.
They studied their algorithm mainly from a theoretical point of
view. One of the contributions of our work is an experimental
evaluation of the algorithm in [6] on real-world data.

Observe that our algorithm requires O(N · log(�)�) space where
N is an upper bound on the maximum number of points occurring
at any point in time, while the algorithm proposed [6] requires
O(k · log(�)�) space. However, in our case cluster membership can be
tested in O(1) time, while all points in a same cluster C of a given
point can be produced in timeO(|C |). This is an appealing property
when monitoring sensor data or trajectories evolving over time.
Another advantage of our algorithm is its approximation guarantee
which is a factor of 2 + � . Observe that any approximation ratio
less than 2 would imply P = NP [9]. Moreover, as proved in [6]
any algorithm with an approximation ratio of less than 4 requires
�(N 1

3) space. Table 1 summarizes the two algorithms in terms of
approximation guarantee, average running time, space requirement
and query time.

3 NOTATION AND DEFINITIONS
We study the k-center clustering problem, which is formally de�ned
as follows.

De�nition 3.1 (k-Center Clustering). We are given a set S of points
equipped with some metric d and an integer k > 0. We wish to�nd
a set C = {c1, . . . , ck } of k points (centers) so as to minimize the
quantity maxx 2S d(x ,C), where d(x ,C) = minc 2C d(x , c).

Observe that a set of centers de�nes a partition of S (cluster-
ing) into k sets. We consider the following adversarial model of
computation.

AdversarialModel.We assume the adversary� rst� xes a (possibly
countably in�nite) sequenceO of operations, where for each t 2 N,
the operation ot 2 X ⇥ { �,+} consists of a point xt 2 X in the
metric space and a� ag to indicate whether it is an insertion (+) or
deletion (�). By naturally extending the metric space to X ⇥ N, we
can assume without loss of generality that at most one copy of a
point is inserted in the sequence. We also assume that any point to
be removed has been inserted earlier on. The algorithm does not
know the sequence O in advance. However, we assume that any
randomness used by the algorithm is generated after the adversary
�xes the sequence. We refer to this adversarial model as the fully
dynamic model.

4 ALGORITHM
To illustrate the main ideas of our algorithm, we start describing a
simple (2+�)-approximation for k-center, � > 0. Let � be a guess for
the value of an optimum solution. We pick one point c1 arbitrarily
fromX and we create a clusterC1 containing c1 as well as all points
in X1 being within distance 2� from c1. The ith cluster, 1 < i  k
is built as follows. If X \ [i�1j=1Cj is empty we let Ci be the empty
set and we stop. Otherwise, we pick one point xi from X \ [i�1j=1Cj ,
arbitrarily. We then create a new cluster Ci with xi as center and
containing all the points in X \ [t�1i=1Cj within distance 2� from xi .

It can be shown that if � is equal to the value of an optimum
solution, then such an algorithm gives a 2-approximation. This
follows from the fact that if k clusters have been formed and X \
[kj=1Cj is not empty, then there are k + 1 points whose pairwise
distance is greater than 2� , which implies that k clusters with radius
at most � cannot be formed. This would contradict our assumption
on � . If the value of an optimum solution is not known, we would
run the previous algorithm for any � in � = {(1 + �)i : dmin 
(1 + �)i  (1 + �) · dmax, i 2 N}, where dmax and dmin denote the
max and min distance between any two points in X , respectively.
Observe that if � is too small, we might not be able to cluster all
points, which might result in a set of unclustered points U . The
smallest � which allows to partition all points inX (i.e. [kj=1Cj = X)
gives a (2 + �)-approximation.

A simple (but ine�cient) incremental algorithm can be derived
from the previous algorithm as follows. At any point in time, for
each � in �, we maintain the following invariant. We either main-
tain k + 1 points (k of which are centers) whose pairwise distance
is greater than 2� or a clustering of all the points with maximum
radius 2� . The former property guarantees that there cannot be
any clustering with maximum radius � . For each � in �, we wish
to maintain the same set of clusters that would be computed using
the algorithm discussed above. Whenever a new point x is inserted,
we proceed as follows. Let � in � and letC1, . . . ,Ck ,U be the corre-
sponding clusters with centers c1, . . . , ck , respectively. We insert x
in clusterCi if it is within distance 2� from ci . Otherwise, if there is
no such a center, we insert x inU . This is repeated for each � in �,
which ensures that the invariant is maintained. Such an algorithm
gives a (2+�)-approximation with amortized costO(k · 1� · log

dmax
dmin

)
and O(|X | · 1

� · log dmax
dmin

) space.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

580

approximation avg. run. time space model x 2 C? list all � s.t. x ,� 2 C
FD 2(1 + �) k2 · log(�)� N · log(�)� Fully Dynamic O(1) |C |
SW 6(1 + �) k · log(�)� k · log(�)� Sliding Window O(k) k · N

Table 1: Summary of our algorithm (FD) and the one proposed in [6] (SW).

Now, suppose that points are deleted uniformly at random. If
none of the k centers are deleted, the invariant is not violated.
Otherwise, we might have to re-cluster all the points in order to
maintain the invariant. However, the probability to remove any
such a point is k

n while the cost of reclustering is at most k ·n, where
n is number of points. Therefore, the expected amortized cost of
such a randomized algorithm is O(k2 · 1

� · log dmax
dmin

). Unfortunately,
such an algorithmmight not be e�cient if deletions are not random.

To overcome this problem we equip the algorithm with some
randomness, so that it would be e�cient even in the case with
adversarial deletions. For each � in �, we create and maintain a
set of clusters C1, . . . ,Ck as follows. Let X be the current set of
points. The� rst center c1 is chosen uniformly at random from
X and a cluster C1 is built, as in the previous algorithm. For 1 <
i  k , ci is chosen uniformly at random from X \ [i�1j=1Cj . When a
center ci is deleted, we re-cluster only the points in A = [kj=iCj [
U , which requires at most k · |A| operations. Observe that the
probability that ci is selected as center is at most 1

|A | , as each of
the points in A were possible candidates when ci was selected. In
other words, the probability of selecting ci as center is inversely
proportional to the cost of handling the deletion of ci (times k).
Let o1, . . . ,om be a set of update operations which are� xed by the
adversary before the execution of the algorithm, where oi = (x ,+)
if x is added at step i or oi = (x ,�) if x is removed. Consider
the operation oi = (x ,�). The algorithm maintains the following
invariant: the probability of x being a center, when oi is executed,
is inversely proportional to the cost of handling the deletion of
ci . This suggests that the expected amortized cost is somehow
limited. The analysis of the expected amortized cost of the algorithm
is non-trivial, in that, deletions and insertions might intertwine
arbitrarily. More e�orts are needed to show that the amortized cost
is concentrated around its expected value. A theoretical analysis
of the algorithm is presented in Section 5. A formal description of
the algorithm together with its pseudocode is given in Sections 4.1-
4.4. In particular, Algorithms1 and 2 show the pseudocode of the
procedures handling deletions.

Observe that the variant where we re-cluster all the points when-
ever a center is deleted might not be e�cient. In particular, the
adversary might be able to force a given point to become center and
then repeatedly remove and insert back such a point. Each such an
update operation would then incur in a total cost of k · n, where n
is the current number of points.

4.1 Data Structure for Dynamic Clustering
We shall denote with dmin and dmax the minimum and maximum
distance between any two points that are ever inserted, respectively.
We allow the set of update operations to be countably in�nite,
however, we assume that dmin and dmax always provide a lower or

upper bound on the minimum and maximum distance between any
two points, respectively.

We start describing the algorithm assuming that dmin and dmax
are known in advance, while discussing the more general case in
Section 4.4. Let � := {(1 + �)i : dmin  (1 + �)i  dmax, i 2 N}, and
denote � := |� | = O(1� · log dmax

dmin
). For each � 2 �, with respect

to the current set X of points, we maintain a data structure L�
consisting of the following components and invariants:

• A list S� = {c1, c2, . . . , c� } of �  k centers such that for all
x , � 2 S� , d(x ,�) > 2� .

• A collection C� = {C1,C2, . . . ,C� } of disjoint clusters such
that for all i 2 [�], for all x 2 Ci , d(x , ci)  2� .

• A set U� = X \ ([i 2[�]Ci) of unclustered points such that
for all i 2 [�], for all x 2 U� , d(ci ,x) > 2� . Moreover, we
require thatU , ; implies that � = k .

Observe that we can store the data structure L� using O(|X |)
space such that for any x 2 X , it takes O(1) time to return the
cluster containing x and decide whether x is one of the centers in
S� .

4.2 Arbitrary Insertions
Inserting a new point x is straightforward. For each � 2 � consider
the data structure L� = (S� ,C� ,U�), where � = |S� | = |C� |. First
check whether there is ci 2 S� such that d(x , ci)  2� . If this is the
case insert x into the cluster Ci . If no such ci is found and � < k ,
then set c�+1 := x and C�+1 := {x}. Otherwise, if there is no such
ci and � = k insert x intoU� .

4.3 Arbitrary Deletions
Maintaining L� to support deletion of some point x is slightly
trickier. The easy case is when x < S� is not one of the centers, and
so the point x can simply be removed from its cluster in O(1) time.
However, when x = ci for some i , then we need to rebuild the data
structure for the remaining points in ([j�iCj) [U� .

4.4 All Pieces Together and Practical Aspects
The� rst step of the algorithm consists of initializing the L� ’s, for
each � in �, so that S� = C� = U� ;. Then, the algorithm
waits for an update operation o. If o = (x ,+) then the insertion
procedure is executed, otherwise the deletion procedure depicted
in Algorithm 1 and Algorithm 2 are executed. Observe, that the
invariants discussed in Section 4.1 are always maintained. There-
fore, a (2 + �)-approximation for the k-center clustering problem is
given by the clustering C� with � 2 � being smallest such that U�
is the empty set.

For ease of presentation, we made the assumption that dmin and
dmax are known in advance. In practice, this might not always be
the case. If they are not known, one could compute dmin and dmax

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

581

Algorithm 1 Point Deletion
1: procedure Delete(L� = (S� ,C� ,U�),x) . Removes x and

modi�es L� accordingly.
2: if x < S� then
3: Remove x from the cluster in C� orU� .
4: return
5: � |S� |
6: Let {c1, c2, . . . , c� } S� .
7: Let {C1,C2, . . . ,C� } C� .
8: Let i 2 [�] such that x = ci .
9: bX ([j�iCj } [U�
10: (bS, bC, bU) R���R������(bX , �,k � i + 1)
11: S� {c1, c2, . . . , ci�1} � bS . � does list concatenation
12: C� {C1,C2, . . . ,Ci�1} � bC
13: U� bU
14: return

Algorithm 2 Random Re-clustering
1: procedure R���R������(X ,� ,k) . Produces
 k centers (picked randomly) with pairwise distance > 2� ,
the corresponding clusters with radius  2� , and a set U of
unclustered points.

2: U X
3: � 0
4: whileU , ; and � < k do
5: � � + 1
6: Pick c� fromU , uniformly at random.
7: C� {x 2 U : d(x , c�)  2�}
8: U U \C�
9: return (S {c1, c2, . . . , c� },C {C1,C2, . . . ,C� },U) .

IfU , ;, then the optimal cluster radius is larger than � .

for the�rst k inserted points, while updating them throughout the
execution of the algorithm. Observe that whenever dmin or dmax
change, one would need to compute S� , C� , andU� for each � in
� that is missing. Removing such an assumption makes the algo-
rithm more e�cient in practice, without a�ecting the theoretical
guarantees on the expected amortized cost.

We shall refer to our algorithm as F����D��C����. In the next
section, we shall prove strong theoretical guarantees on the ex-
pected amortized cost of our algorithm, while showing that its
amortized cost is close to its expected value with high probability.

5 AMORTIZED ANALYSIS
We analyze the expected amortized cost of the deletion operation for
the data structureL� . In Section 5.1, we perform awarmup analysis
for the case in which a deletion operation removes a random point
uniformly at random. In Section 5.2, we extend the analysis to the
case of arbitrary insertions and deletions.

5.1 Warmup: Random Deletions
Observe that a deletion is costly only when one of at most k centers
is removed. Hence, we readily have the following lemma.

L����5.1. For the removal of a uniformly random point, the
Delete operation in Algorithm 1 has expected cost O(k2).

P����. Observe that the cost is O(nk) when a center in S� is
removed, where n = |X | is the number of current points stored in
the data structure; otherwise, the cost is O(1). Since the probability
that a center is removed is at most k

n , it follows that the expected
cost is O(k2). ⇤

5.2 Arbitrary Insertions and Deletions
For t 2 N, we use the superscript t to indicate the state of the
data structure at the end of the t-th step. For instance, we use X t

to denote the set of points that are currently stored in the data
structure L� after step t , and we let nt := |X t |.

Intuition of Charging Scheme. Each Insert operation on the data
structure L� has cost O(k) for every � in �. However, in order to
pay for the cost of the Delete operations, we shall charge an extra
cost of k2 for each Insert operation that will be stored as a credit
for future Delete operations. When a Delete operation is called, its
cost will be paid for with (i) some of the credits stored (denoted
by F t), and (ii) possibly some extra cost (denoted by Z t). Observe
that a Delete operation is expensive only if one of the centers in
S� is removed. The following formal description de�nes F t and Z t

explicitly.

FormalDescription ofCharging Scheme.Wedescribe our charg-
ing scheme in details as follows. Suppose at step t , we have either
of the following operations:

(1) Insert(L� ,x). A credit of k2 is stored at the point x that is
inserted. In this case, de�ne Z t = F t := 0.

(2) Delete(L� ,x). If the point x to be deleted is not one of the
centers, then the cost is O(1), and we set Z t = F t := 0.
Otherwise, suppose the point x to be deleted is the center ci
out of the current � centers. Then, in this case, the rebuild
cost is O(k · |bX |), where bX := (([j�iCj) [U�) \ {x} are the
points that need to be reclustered. Our charging scheme pays
a cost of k for each point u 2 bX . Speci�cally, we decompose
the reclustering cost k · |bX | = F t + Z t in the following way,
and we will analyze F t and Z t separately.
(a) Denote Xnew := {u 2 bX : when ci was chosen as the
center, the point u is not yet inserted}. De�ne F t := k ·
|Xnew |. In this case, for eachu 2 Xnew, we will use k of the
credits stored at u to pay for the cost; hence, this cost will
not contribute towards Z t . We shall prove in Lemma 5.2
that we will always have enough credits stored at the
points in Xnew to pay this way.

(b) Denote Xold := {u 2 bX : when ci was chosen as the
center, the point u is already inserted}. De�ne Z t := k ·
|Xold |. Hence, for each such point u 2 Xold, we will incur
a cost k that contributes towards Z t .
Observe that such a pointu can be reclustered many times
after its insertion. Apart from the initial times that can be
paid in case 2(a), for each subsequent reclustering in some
step � , its reclustering cost will be counted towards the
corresponding Z� .

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

582

L���� 5.2 (C������ ���R �����������N �� P�����). Fix t 2 N.
Suppose at is the number of insertions from the beginning up to (and
including) step t . Then, with probability 1, we have

Õt
�=1 F

�  at ·k2.

P����. Observe that at ·k2 is the total number of credits received
by the points inserted up to step t . In order to show the required
inequality, it su�ces to show that the k2 credits stored at each
inserted point u will be enough to pay for its reclustering cost
under case 2(a) in the charging scheme.

Suppose at the moment when u was inserted, the centers were
{c 01, c 02, . . . , c 0k } and the clusters were {C 01, . . . ,C 0k } together with
the unclustered set U 0. Suppose r 2 [k] is the largest index such
that u 2([j�rC 0j) [U 0.

Then, the credits stored at u will be consumed only when the
points inW := {c 01, . . . , c 0r } are removed in some subsequent steps.
Since there are at most k such centers in W , and k credits are
consumed from u whenever such a center inW is removed, we
can conclude that the k2 credits stored at u will be enough. This
completes the proof of the lemma. ⇤

For each t 2 N, we also write Z t :=
Õk
i=1 Z

t
i , where Z

t
i is the

extra cost incurred when the center ci is deleted (at the beginning
of step t). Observe that for a� xed t , there is at most one i 2 [k]
such that Z t

i is non-zero.

L���� 5.3 (B�������E ����������). For each t 2 N, E[Z t] 
k2.

P����. Recall that Z t :=
Õk
i=1 Z

t
i , where Z

t
i is the extra cost

incurred when center ci is deleted. Hence, it su�ces to prove that
E[Z t

i]  k . Observe that ci is a random object.
Observe that the center ci was chosen in line 6 of some invocation

of Algorithm 2.We useUi to denote the setU in line 6 at themoment
when ci was chosen. Again, observe thatUi is a random object.

We next analyze E[Z t
i |Ui] using the randomness used in line 6.

Observe that when the point to be deleted is ci only points in Ui
contribute towardsZ t

i . However, some points inUi could have been
deleted by time t . Let bU ✓ Ui denote the points that still remain at
the beginning of step t .

Therefore, Z t
i is non-zero only if the point xt 2 bU to be deleted

at step t was chosen as the center in line 6, which happens with
probability at most 1

|bU | (conditioning onUi).

Therefore, it follows that E[Z t
i |Ui] 

1
|bU | · k · |bU | = k .

At this point, we would like to remind the reader that Z t only
accounts for the reclustering cost in case 2(b) of the description.
For points that are inserted after ci was chosen as the center, their
reclustering costs are paid using the credits stored in themselves as
in case 2(a) of the formal description of the charging scheme.

Taking expectation of the randomvariableE[Z t
i |Ui] givesE[Z t

i] 
k , as required. ⇤

T������5.4. For any � > 0, for any sequence of T 2 N in-
sert/delete operations, the F����D��C���� algorithm maintains a
(2+ �)-approximation solution for the k-center problem, while requir-
ing O(log �� · k2T) expected time and O(log �� · |N |) space under the

fully dynamic model, where N := maxt 2[T] |X t |. Clustering member-
ship can be tested in O(1) time, while producing in output all points
in the cluster C of a given point requires O(k + |C |) time.

P����. The algorithm always maintains all the invariants dis-
cussed in Section 4.1. Therefore, the clusteringC� where � is small-
est such thatU� is the empty set, gives a (2+�)-approximation. For
any given � in �, the total cost due to deletion operations in L� isÕT
t=1O(F t + X t). Lemmas 5.2 and 5.3 imply that its expectation is

at most O(k2T). We conclude the proof by recalling that there are
|� | = O(log ��) values of � . ⇤

High Probability Statements. Lemma 5.3 implies that any se-
quence of T insert/delete operations on a data structure has ex-
pected cost O(k2T). We next show that with high probability, the
cost is alsoO(k2T). As seen in the proof of Lemma 5.3, our analysis
is based on the randomness used in line 6 of Algorithm 2.

Suppose N is an upper bound on the number of points stored
by the data structure at any time. For n  N , consider the random
variable �n that takes value n with probability 1

n and value 0 with
probability 1� 1

n . As in the proof of the well-known Cherno� bound,
we analyze the moment generating function of �n to prove measure
concentration results.

L���� 5.5 (M�����G ���������F ������� �� �). For n  N

and 0  �  1
N , E[e��n]  e�+

3
4 ·� 2N .

P����. For 0  �  1
N , we have

E[e��n] = (1 � 1
n
) + 1

n
· e�n (1)

 exp(e
�n � 1
n

) (2)

 e�+
3
4 ·� 2n (3)

 e�+
3
4 ·� 2N , (4)

where (2) comes from 1+x  ex , and (3) comes from the inequality
ex  1 + x + 3

4 · x2 for 0  x  1. ⇤

L����5.6. Suppose N is an upper bound on the number of points
stored by the data structure L� at any time, and� x any i 2 [k].
For any 0  �  1

kN and T 2 N, we have E[e�
Õ
t2[T] Z t

i] 
eT (�k+

3
4 ·� 2k2N).

P����. We prove the statement by induction on T . The base
case T = 0 holds trivially. We next consider step T + 1. Let F be
the sigma-algebra generated by the random variables (Z t

i : t 2 [T])
together with the indicator variables (I tj : j 2 [k], t 2 [T]), where
I tj = 1 i� a new center c j is picked in step t .

We next de�ne a random object UT+1. At the beginning of
step T + 1, consider the center ci and the moment when it was
picked in some previous step. Observe that ci was picked in line 6
of some invocation of Algorithm 2. De�neUT+1 to be the setU in
line 6 at that moment. Observe that some points inUT+1 could be
deleted from the time ci was picked as the center to the beginning
of step T + 1. Denote bU ✓ UT+1 as the points that still remain at
the beginning of step T + 1.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

583

Similar to the proof of Lemma 5.3, we show that conditioning
on the history (F andUT+1), the random variable ZT+1i is stochas-
tically dominated1 by k · � |bU | ; note that this trivially holds if the
(T + 1)-st operation is an insertion, because ZT+1i equals 0 in this
case.

We next argue why this is also true when the (T +1)-st operation
is a deletion. Observe that conditioning on the history F andUT+1,
we know exactly in which step the current center ci was picked,
namely, the largest i  t such that I ti = 1. Therefore, conditioning
on F andUT+1, the current center ci is a uniformly random point inbU . Therefore, it follows that the center ci is deleted in stepT +1 with
probability at most 1bU , which incurs a cost of k · |bU | when this event
happens. Hence, conditioning on F and UT+1, ZT+1i is stochasti-
cally dominated by k · � |bU | , as required. Hence, from Lemma 5.5,

we have for 0  �  1
N , E[e�ZT+1i |F ,UT+1]  e�k+

3
4 ·� 2k2N .

Finally, the inductive step is completed by considering the fol-
lowing conditional expectation:

E[e�
Õ
t2[T+1] Z t

i |F ,UT+1] = e�
Õ
t2[T] Z t

i · E[e�ZT+1i |F ,UT+1]
 e�

Õ
t2[T] Z t

i · e�k+ 3
4 ·� 2k2N .

Then, taking expectation and using the induction hypothesis com-
pletes the induction proof. ⇤

L����5.7. Suppose N is an upper bound on the number of points
stored by the data structure L� at any time, and� x any i 2 [k]. For
any � � 2, Pr[Õt 2[T] Z t

i � �kT]  e��(
�T
N).

P����. Using the standard method of moment generating func-
tion as in the proof of the Cherno� bound, we choose � = 1

kN in
the following:

Pr[
’
t 2[T]

Z t
i � �kT] = Pr[e�

Õ
t2[T] Z t

i � e��kT] (5)

 E[e�
Õ
t2[T] Z t

i] · e���kT (6)

 e�
(�� 74)T

N , (7)

where (6) follows from Markov’s inequality and (7) follows from
Lemma 5.6 and the choice of � = 1

kN . ⇤

The following theorem follows from Theorem 5.4 and Lemma 5.7.

T������5.8. Let N be an upper bound on the number of points at
any point in time (|X t |  N , for all t). For any � > 0, for any sequence
of T 2 N insert/delete operations the F����D��C���� algorithm
maintains a (2 + �)-approximation solution for the k-center problem.

Moreover, the probability that the total time exceeds �(log �� ·�k2T)
is at most log �

� · ke��(�TN), for any � � 2, under the fully dynamic
model. The algorithm requires O(log �� · N) space.

1A random variable Z is stochastically dominated by a random variable Y if for all
real x , Pr[Z � x]  Pr[Y � x].

6 EXPERIMENTS
All our experiments have been carried on a machine equipped
with two Intel(R) Xeon(R) CPU E5-2660 v3 running at 2.60GHz
and with 250Go of DDR3 SDRAM. The Twitter dataset we used as
well as our implementation in C of our algorithm have been made
publicly available 2. Observe that for each tweet we retain only its
timestamp and its GPS coordinates, due to privacy concerns. We
evaluate the algorithms under a wide range of values for k, � and
the length of the sliding windowW . In all experiments the default
values are k = 20 and � = 0.1, unless otherwise speci�ed. For our
randomized algorithm, each result is the average among ten runs,
unless otherwise speci�ed.

6.1 Datasets
We consider some datasets that are publicly available, as well as a
dataset that we collected from Twitter.
Twitter. We collected geotagged tweets by means of the Twitter
API. We were able to collect 21M tweets between 9/09/2017 and
20/10/2017. Each tweet is associated with GPS coordinates, such as
longitude and latitude, as well as, a timestamp.
Flickr.The Yahoo Flickr Creative Commons 100Million (YFCC100m)
dataset 3 is a dataset containing the metadata of 100 Million picture
posted on Flickr under the creative common licence between 2011
and 2015. Each picture is associated with GPS coordinate and a
timestamp. We used the metadata of 47M pictures that possessed
both a valid timestamp and GPS coordinate.
Trajectories. This dataset contains trajectories performed by all
the 442 taxis running in the city of Porto, in Portugal 4. Each tra-
jectory consists of a set of two-dimensional points, each one being
associated with a timestamp.Trajectories are updated every 15 sec-
onds, with most of the trajectories consisting of at most 500 points.
The dataset contains 83M two-dimensional points, in total leading
to 83M updates.

Table 2 summarizes the statistics of the datasets considered in
our experimental evaluation.

6.2 Distance Measures
Depending on the dataset at hand, we consider di�erent distance
measures. In the case of Twitter and Flickr, we compute the great
circle distance between two GPS coordinates [15]. For the trajecto-
ries we use the symmetric Hausdor� distance [16], which is de�ned
as follows. Let P andQ be two sets of points in the Euclidean space.
H (P ,Q) := max

p2P
min
q2Q

d(p,q) where d is the Euclidean distance. The

symmetric Hausdor� distance between two trajectories P and Q
is de�ned as bH (P ,Q) = max(H (P ,Q),H (Q, P)). All the distance
measures considered in our experiments are metrics.

6.3 Dynamic Model of Computation
In the case of Twitter and Filckr, we evaluated the algorithms under
the sliding window model [6, 7]. In this case, if a point is inserted at
time t , it will be removed at time t +W , whereW is the duration of
2https://github.com/fe6Bc5R4JvLkFkSeExHM/k-center
3http://yfcc100m.appspot.com/
4https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+
Challenge,+ECML+PKDD+2015

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

584

http://yfcc100m.appspot.com/
https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge,+ECML+PKDD+2015
https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge,+ECML+PKDD+2015

Name Source Type #Updates
Twitter twitter.com 2D points 42M
Flickr yfcc100m.appspot.com 2D points 96M

Porto taxi trajectories archive.ics.uci.edu Trajectories 83M
Table 2: Dataset statistics.

the sliding window. As a result, at each point in time t , new points
might be added to the current dataset in which case any point with
timestamp t +W will be removed (if any).

We then focus on the task of maintaining a clustering of all
trajectories available up to any given point. At any point in time,
either a new point is added to one of the available trajectories at
that time or a new trajectory is created. Since trajectories might be
updated in any arbitrary order, the sliding window model turns out
to be over-simplistic in this setting. Therefore the approach in [6]
cannot be used.

6.4 Flickr and Twitter
We evaluate the algorithms under a wide range of values for k, �
and the length of the sliding windowW . In all experiments the
default values are k = 20, eps = 0.1. For Twitter, the length of the
sliding window is two hours, while for Flickr it is six hours. Both
those values result in a sliding window containing 60K points.

We start by evaluating the accuracy of the two algorithms. In
particular, we measure the ratio between the maximum radius of
the clustering produced by each algorithm and a lower bound on
the optimum radius. At any point in time, we compute such a lower
bound as follows. Let � be largest such that the setU� computed by
our algorithm is not the empty set. Our lower bound is computed
as half the minimum pairwise distance between the k + 1 points
(cluster centers) in S� . We observe that in practice it is important
to have small maximum radius, in that, this might lead to more
“meaningful” clusters.

Figure 1 (left) measures the approximation ratio as a function
of k , while Figure 1 (right) measures the approximation ratio as a
function of � in Twitter. For any given value of k and � we report
the median, the� rst and third quartiles, as well as maximum and
minimum approximation ratio obtained by the algorithm when
executed on the whole dataset. The two algorithms have been
tested for the same value of k and � , however, some additional space
between the corresponding values in the plot has been introduced
to improve the presentation.

We can observe that our algorithm (FD) consistently delivers
better approximation ratio then the algorithm presented in [6] (SW).
In particular, we can observe that while the approximation ratio of
our algorithm is always close to 2 when � = 0.1, it can be as large
as 6 for SW with its median being as large as 4.5. This is expected,
as our algorithm comes with stronger guarantees on the maximum
radius. We can also see that on average FD performs better than its
worst-case analysis suggests.

This is even more apparent in Flickr (Figure 3), where our al-
gorithm produces results being closer to an optimum solution. In
particular the median for the case when k = 100 and � = 0.1 ((Fig-
ure 3) (left)) is close to 1.5, while in a few cases a near-optimal

Figure 1: Ratio between the maximum radius and a lower
bound on the optimum radius as a function of k (left) and �
(right) on Twitter. The two algorithms have been tested for
the same value of k and � , however, some additional space
between the corresponding values in the plot has been in-
troduced to improve the presentation.

solution is computed. We can also observe that the maximum ra-
dius for SW drops as k increases, while it improves again when k
is large enough (Figure 3) (left)). This might be due to the way the
deletion of a center is handled in SW. If a center is removed, the
cluster is not reconstructed as in our case but a new point (called
orphan) might be elected as representative of the cluster. Although
this might be more e�cient in practice, it might a�ect the quality
of the results, in that, orphans might not be as good representatives
of the clusters as the original centers. As a result, points might
be added to the “wrong” clusters. As k increases, it becomes more
likely that there is at least one “bad” orphan, which explains the
drop in quality of the results. For even larger values of k , the task
of clustering becomes “easier” with the easiest case being when k
approaches the total number of points.

Figure 1 (right) and Figure 3 (right) show the approximation
ratio as a function of � for Twitter and Flickr, respectively. Those
�gures con�rm that our algorithm produces better results in prac-
tice. Moreover, we can see that the approximation ratio worsens as
� increases, which is expected.

We then move to evaluate the average running time of the two
algorithms, which is de�ned as the total running time of the al-
gorithms divided by the total number of update operations. The
expected running time of our algorithm has been studied in The-
orem 5.4. Figure 2 shows the average running time of the two
algorithms as a function of k (left) and as a function of � (right) in
Twitter, while Figure 4 shows the corresponding plots for Flickr. We
can see that SW is consistently more e�cient than our algorithm,
which is expected. However, both algorithm are very e�cient with
the average running time being at most 5 ⇤ 10�4 seconds and as
small as 2 ⇤ 10�5 seconds in some cases.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

585

Figure 2: Running time of the algorithms in second as a func-
tion of k (left) and � (right) on Twitter.

Figure 3: Ratio between the maximum radius and a lower
bound on the optimum radius as a function of k (left) and
� (right) on Flickr. The two algorithms have been tested for
the same value of k and � , however, some additional space
between the corresponding values in the plot has been in-
troduced to improve the presentation.

Figure 4: Running time of the algorithms in second as a func-
tion of k (left) and � (right) on Flickr.

6.5 Trajectory Data and Multicore Implementation
In this section, we consider the task of clustering trajectory data.
We consider the scenario where at each point in time, either a
new point is added to one of the existing trajectories or a new
trajectory consisting of one single point is created. Each update
can therefore be seen as either an insertion of a new trajectory
or a deletion of an existing trajectory followed by an insertion of
the updated trajectory. Since trajectories can be modi�ed in any
arbitrary order, the sliding window model appears to be simplistic
in this setting. Therefore, the algorithm in [6] cannot be used. The

Figure 5: Histogram of the running time of each operation
during a single run on trajectories of our algorithm

distance between any two trajectories is computed as the symmetric
Hausdor� distance (see Section 6.2), which is a metric.

Computing the distance between two trajectories requires �(r)
operations, where r is the maximum number of points in the two
trajectories. In our dataset, most trajectory contain up to 500 points
with the largest one containing nearly 4000 points. This makes
the problem of clustering trajectory data more computationally
extensive than in the case of two-dimensional euclidean space.
Therefore, in order to be able to conduct an extensive evaluation of
the algorithm, we consider a multicore implementation. Since the
clusterings C� ’s can be processed independently, a multicore im-
plementation is straightforward: the C� ’s are partitioned across the
threads, with each thread taking care of all deletions and insertions
in the clusterings associated to such a thread. All our experiments
discussed in this section use 30 threads.

We� rst evaluate the running time of our algorithm. Figure 5
shows the histogram for the running time of each update operation
(in seconds). In particular, for each running time value, the number
of update operations requiring that running time is reported. We
can see that approximately 80M operations require less than 4⇤10�3
seconds, while the maximum running time per operation is 0.38
seconds. Figure 6 shows the average running time as a function of
the number of update operations. At any point in time, the average
running time is computed as the total running time divided by the
total number of operations up to that point. The running time is
measured in seconds. We can see that the average running time
is always less than one millisecond, while it becomes stable after
approximately 18 million update operations. This is consistent with
Theorem 5.8, which roughly speaking states that the probability of
signi�cantly deviating from the expected running time becomes
very low when the number of update operations is large.

As for the approximation ratio, using the default value of k and
� , we obtain a median of 2.05, while the� rst and third quartile are
respectively equal to 2.03 and 2.13.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

586

Figure 6: Evolution of the average running time per opera-
tion during a single run

Figure 7: concentration of measure experiments

6.6 Concentration around the Expectation
Our last experiment aims to study the concentration around the
expected running time (i.e. Theorem 5.8) from an experimental
point of view. We consider 100 runs of our algorithm on the Twitter
dataset using the default values and we show the histogram of the
average running time in Figure 7. We can see that almost all runs
require 5.8 ⇤ 10�4 seconds on average, while in very few cases the
average running time is more than 12 ⇤ 10�4 seconds, which is
consistent with Theorem 5.8.

7 CONCLUSION AND FUTUREWORK
In our work, we developed a (2 + �)-approximation algorithm for
k-center clustering, under a fully dynamic adversarial model of com-
putation. In such a model, points can be inserted or deleted arbitrar-
ily, provided that the adversary does not have access to the random
choices of our algorithm. Our theoretical analysis, shows that the
expected amortized cost of our algorithm is poly-logarithmic (in
some cases of interest) while we show concentration around its
expected value. Our work is the� rst work with strong theoretical

guarantees for fully dynamic k-center clustering, to the best of our
knowledge.

We then conducted an extensive evaluation of our algorithm on
dynamic data from Twitter, Flickr, as well as trajectory data. Our
experiments show that our algorithm produces clustering solutions
with smaller maximum radius in comparison with state-of-the-
art approaches, although this comes at the price of slightly worse
average running time and more space.

For future work, we are planning to study other data mining
and machine learning algorithms under the fully dynamic model
of computation.

REFERENCES
[1] R. P. L. A. Epasto, S. Lattanzi. Ego-splitting framework: from non-overalapping

to overalapping clusters. In KDD 2017.
[2] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding.

In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages
1027–1035, 2007.

[3] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable
k-means++. PVLDB, 5(7):622–633, 2012.

[4] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 626–635. ACM, 1997.

[5] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms
for clustering problems. In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 30–39, 2003.

[6] V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler. Diameter and k-center in
sliding windows. In 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 19:1–19:12, 2016.

[7] A. Epasto, S. Lattanzi, and M. Sozio. E�cient densest subgraph computation in
evolving graphs. In Proceedings of the 24th International Conference on World
Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 300–310, 2015.

[8] S. L. F. Chierichetti, R. Kumar and S. Vassilvitskii. Fair clustering through fairlets.
In NIPS, 2017.

[9] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science, 38:293 – 306, 1985.

[10] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14
November 2000, Redondo Beach, California, USA, pages 359–366, 2000.

[11] S. Gupta, R. Kumar, K. Lu, B. Moseley, and S. Vassilvitskii. Local search methods
for k-means with outliers. PVLDB, 10(7):757–768, 2017.

[12] S. Lattanzi and S. Vassilvitskii. Consistent k-clustering. In ICML, 2017.
[13] M. D. M. H. S. L. M. Bateni, S. Behnezhad and V. Mirrokni. On distributed

hierarchical clustering. In NIPS 2017.
[14] R. Matthew Mccutchen and S. Khuller. Streaming algorithms for k-center clus-

tering with outliers and with anonymity. APPROX ’08 / RANDOM ’08, pages
165–178, 2008.

[15] H. Steinhaus. Mathematical Snapshots. 3rd ed. New York, 1999.
[16] A. A. Taha and A. Hanbury. An e�cient algorithm for calculating the exact

hausdor� distance. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2015.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

587

	Abstract
	1 Introduction
	2 Related Work
	3 Notation and Definitions
	4 Algorithm
	4.1 Data Structure for Dynamic Clustering
	4.2 Arbitrary Insertions
	4.3 Arbitrary Deletions
	4.4 All Pieces Together and Practical Aspects

	5 Amortized Analysis
	5.1 Warmup: Random Deletions
	5.2 Arbitrary Insertions and Deletions

	6 Experiments
	6.1 Datasets
	6.2 Distance Measures
	6.3 Dynamic Model of Computation
	6.4 Flickr and Twitter
	6.5 Trajectory Data and Multicore Implementation
	6.6 Concentration around the Expectation

	7 Conclusion and Future Work
	References

