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Highlights

• An effective end-to-end method of automated quantitative spinal curva-

ture estimation for comprehensive AIS assessment

• A brand-new convolutional layer for effective multi-view feature learning

• A novel objective function and training algorithm for efficient multi-task

learning
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Abstract

Automated quantitative estimation of spinal curvature is an important task

for the ongoing evaluation and treatment planning of Adolescent Idiopathic

Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb an-

gle measurement (time-consuming and unreliable) which is currently the gold

standard for AIS assessment. Attempts have been made to improve the reli-

ability of automated Cobb angle estimation. However, it is very challenging

to achieve accurate and robust estimation of Cobb angles due to the need for

correctly identifying all the required vertebrae in both Anterior-posterior (AP)

and Lateral (LAT) view x-rays. The challenge is especially evident in LAT

x-ray where occlusion of vertebrae by the ribcage occurs. We therefore pro-

pose a novel Multi-View Correlation Network (MVC-Net) architecture that can

provide a fully automated end-to-end framework for spinal curvature estima-

tion in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses

our newly designed multi-view convolution layers to incorporate joint features

of multi-view x-rays, which allows the network to mitigate the occlusion prob-

lem by utilizing the structural dependencies of the two views. The MVC-Net

consists of three closely-linked components: (1) a series of X-modules for joint

representation of spinal structure (2) a Spinal Landmark Estimator network for

robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for
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accurate Cobb Angles estimation. By utilizing an iterative multi-task training

algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in

tandem, the MVC-Net leverages the multi-task relationship between landmark

and angle estimation to reliably detect all the required vertebrae for accurate

Cobb angles estimation. Experimental results on 526 x-ray images from 154

patients show an impressive 4.04◦ Circular Mean Absolute Error (CMAE) in

AP Cobb angle and 4.07◦ CMAE in LAT Cobb angle estimation, which demon-

strates the MVC-Net’s capability of robust and accurate estimation of Cobb

angles in multi-view x-rays. Our method therefore provides clinicians with a

framework for efficient, accurate, and reliable estimation of spinal curvature for

comprehensive AIS assessment.

Keywords: CNN,ConvNet,AIS,Scoliosis,Spinal

Curvature,Multi-View,X-ray,Multi-Task Learning

1. Introduction

Adolescent Idiopathic Scoliosis (AIS) is the most common type of spinal

deformity that occurs in children at the onset of puberty (Weinstein et al.,

2008). Large cross-continental studies have shown that the prevalence of AIS

can be as high as 5.2% and progression of large spinal deformities leads to poor

quality of life and complications from injury to the heart and lungs (Asher and

Burton, 2006). Clinicians currently make treatment decisions by assessing the

degree of spinal deformity. It is therefore essential to have a reliable way of

measuring spinal deformations.

However, spinal curvature assessment in clinical practice is both time-consuming

and unreliable. The current gold standard for assessing spinal deformities is the

manual measurement of Cobb angles (Cobb, 1948) based on anterior-posterior

(AP) and lateral (LAT) x-ray images, which relates to the extent of lateral and

saggital curvature of the spine. This procedure shown in Fig. 1 relies on clini-

cians to identify the most tilted vertebrae endplates on the x-ray images(Vrtovec

et al., 2009) and then measuring the Cobb angles between those vertebrae. The

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

low image contrast of x-ray along with occlusion of vertebrae makes it difficult

to reliably measure Cobb angles. Therefore, the current clinical workflow will

benefit with a more robust automated method of assessing spinal curvature.

Existing efforts in automatically evaluating spinal curvature have been limited

to the AP view, which measures the lateral curvature of the spine and is the

easiest angles to measure. Sagittal spinal curvature (also known as kyphosis and

lordosis) in LAT x-rays has been neglected by the literature due to the extreme

difficulty in locating the thoracic vertebra occluded by the ribcage (Fig. 1b).

We therefore propose a Multi-view Correlation Network (MVC-Net) for

Cobb angle estimation in both AP and LAT view x-rays, which provides a fully

automated and reliable solution for comprehensive spinal curvature assessment

in the clinical workflow. The proposed MVC-Net is designed to accomplish two

tasks: (1) learn robust multi-view convolutional features which alleviates the

problem of vertebral occlusion, and (2) exploit the correlation between vertebral

landmarks and spinal curvature for robust automated end-to-end assessment of

AIS. Fig. 2 shows our proposed MVC-Net architecture for fully automated com-

prehensive AIS assessment.

1.1. Previous Work

Existing work for computer aided quantitative assessment of spinal curvature

fall in two categories: (1) Segmentation and (2) Direct Estimation.

Segmentation. Segmentation-based methods aim to quantify spinal curva-

ture by first segmenting the required anatomical structures and then comput-

ing the relevant measurements based on the segmentation. Previous attempts

at automated spinal curvature assessment used active contouring (Anitha and

Prabhu, 2012), filtering (Anitha et al., 2014), and physics models (Sardjono

et al., 2013) in order to locate the required vertebrae for Cobb angle measure-

ment. While these methods are successfully applied to spinal curvature quantifi-

cation (mainly Cobb angle measurements), the main disadvantages with these

methods are the reliance on dedicated feature engineering and user bias. Feature

engineering includes the application of filtering techniques such as hough trans-
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(a) AP x-ray (b) LAT x-ray

Figure 1: Assessment of AIS using Cobb Angles. (a) Proximal-Thoracic (PT), Main Thoracic

(MT), Thoracic-Lumbar (TL) angles are measured to assess the extent of spinal curvature.

(b) Angle measurement in LAT view is unreliable due to vertebral occlusion by the ribcage as

indicated by the red box.

formations (Anitha and Prabhu, 2012; Anitha et al., 2014; Zhang et al., 2009)

and morphological constraints such as active contours (Anitha and Prabhu,

2012). User bias occurs while selecting the region of interest (Zhang et al., 2010)

when applying filtering and determining the relevant vertebra based on endplate

angle (Zhang et al., 2009). Suboptimally engineered features and strong user

bias may prevent segmentation-based methods from robust and efficient spinal

curvature assessment.
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Figure 2: End-to-end framework for comprehensive AIS spinal curvature assessment using our

MVC-Net. The MVC-Net is the first method to automatically estimate Cobb angles in both

AP and LAT X-rays.

Direct Estimation. Direct estimation methods aim to capture the rela-

tionship between medical images and clinical measurements without the need

for segmentation. These methods have recently gained huge success in quantita-

tive estimation such as cardiac volume and spinal curvature in single view data

(Xue et al., 2017b,a; Sun et al., 2017; Wu et al., 2017; Zhen et al., 2015), and

have historically benefited from multi-task and machine learning for capturing

the image feature-clinical measurement relationship. Xue et al. (2017b) used a

Recurrent Neural Network in conjunction with a Convolutional Neural Network

(ConvNet) to encode both temporal and spatial information for cardiac volume

estimation. Sun et al. (2017) aimed to improve robustness of spinal curvature as-

sessment by consolidating the tasks of vertebral landmark detection with Cobb

angle estimation by exploiting the dependency between the two tasks. Wu et al.

(2017) achieves robust spinal landmark estimation by automatically removing

deleterious outlier features.

Despite their effectiveness in single view estimations, these methods are in-

adequate for the task of spinal curvature assessment in multi-view x-rays since

the features learned do not explicitly capture the 3D spatial correlation be-

tween the AP and LAT views. Since these methods do not take into account

the underlying relationship between AP and LAT x-rays, they are incapable of

alleviating the problem of vertebrae occlusion. Therefore, accurate automated

quantitative estimation in multi-view (e.g. AP and LAT for 2D, axial and sagit-
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tal for 3D) data is still an outstanding clinical challenge that warrants further

investigation.

1.2. Overview of MVC-Net Architecture

Our proposed MVC-Net architecture achieves fully automated comprehen-

sive scoliosis assessment through joint multi-view feature learning and explicit

reinforcement of output correlations through multi-task learning. The MVC-

Net architecture is designed to creatively leverage the correlation between AP

and LAT x-rays in order to capture latent multi-view representation of the

spinal x-ray while utilizing the task-related features of spinal landmarks for ac-

curate spinal curvature estimation. The MVC-Net architecture consists of three

closely-linked components: (1) a series of cross-linked convolution layers for ex-

plicitly modeling joint multi-view representation of the spinal structure, (2) a

Spinal Landmark Estimator (SLE) network that leverages the joint features for

robust spinal landmark detection, and (3) a Cobb Angle Estimator (CAE) net-

work that leverages the correlation between AP/LAT x-ray features and spinal

landmarks for accurate Cobb angle estimation.

The inclusion of spinal landmarks in spinal curvature estimation provides

three clear advantages: (1) Allows the network to utilize the dependency be-

tween Cobb angles and spinal landmarks (angles can be computed from land-

marks) for positively reinforcing their reciprocal relationship during training,

(2) allows clinicians to visually assess the accuracy of the estimation, and (3)

opens up the option for clinicians to measure other spinal quantities such as

height of spinal disc for osteoporosis assessment.

1.3. Contributions

We summarize our contributions as follows:

• For the first time, our proposed automated end-to-end framework provides

an efficient and reliable method of quantitative spinal curvature estimation

for AIS assessment in multiple views.
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• We proposed a novel multi-view convolution layer that takes advantage of

multi-view inputs in order to learn a more comprehensive representation

of the latent spinal structure.

• We proposed a novel objective function and multi-task training algorithm

that effectively optimizes the estimation of Cobb angles and spinal land-

marks by exploiting the reciprocal relationship between the two tasks.

2. Proposed MVC-Net Architecture

The MVC-Net architecture achieves fully automated comprehensive AIS as-

sessment through joint multi-view input feature learning and explicit reinforce-

ment of reciprocal relationship between spinal landmark and Cobb angle. The

MVC-Net architecture is designed to creatively leverage the correlation between

AP and LAT views in order to acquire robust spinal landmarks for comprehen-

sive scoliosis assessment. The MVC-Net architecture, illustrated in Fig. 3, cap-

tures the full extent of spinal structure for robust Cobb angle estimation using

the X-modules, Joint Regression loss, and Iterative Landmark-Angle Training.

The implementation of this model was done in Keras (Chollet, 2015). For the

sake of brevity in this section, we will designate W as the weight

matrix and b as the bias vector of a particular layer.

2.1. Joint Feature Learning using X-modules

Since both AP and LAT x-rays contain parts of the same physical struc-

ture, learning a joint representation of the two views helps alleviate the impact

of information corruption such as occlusion. We therefore propose a series of

X-module connections specifically designed to capture the underlying physical

correlation of a structure using multi-view images. As shown in Fig. 4, the X-

module greatly improves the robustness of feature space by utilizing the joint

representation of AP and LAT image features.

Each X-module consists of three operations:

1. Weighted spatial summation of feature maps from each view.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: The MVC-Net provides accurate spinal landmarks and Cobb angles by optimizing

the Spinal Landmark Estimator and Cobb Angle Estimator networks in tandem. The MVC-

Net consists of (1) a series of X-modules shown in purple, (2) the Spinal Landmark Estimator

shown in green, and (3) the Cobb Angle Estimator shown in orange.

2. Concatenation of the resulting summation with the original feature maps

for each view (AP and LAT).

3. Spatial convolution of the concatenated feature maps for each view.

We define a spatial summation of feature maps as

FΣ
c = Qc ∗ FAPc + (1−Qc) ∗ FLATc , (1)

where Fc is the feature map of channel c, Qc is the coefficient matrix (the

same size as Fc) of the weighted spatial summation for each channel c. The ∗
denotes element-wise multiplication. This spatial summation procedure enables

the network to explicitly model the 3D spatial correlation of the two views

as a joint representation. The merged feature maps are subsequently channel-

wise concatenated with the original feature maps from each respective view

χ ∈ {AP,LAT} to allow the network to choose which features to use during
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training:

Gχc = [Fχc , F
Σ
c ]. (2)

A convolution layer is then applied to the concatenated feature maps to process

the features for the next layer.

Fχc = conv(Gχc ). (3)

We can thus formulate the joint feature learning as the composite function

Jχ = F(Xχ) where F is the series of convolution (conv) layer and X-modules

(Fχ), and Xχ is the multi-view x-ray image.

All of the spatial convolutions in our model use 4 × 4 filters downsampled

with a stride of 2 (without pooling), followed by batch normalization, Parametric

Relu (He et al., 2015) activation function, and 25% additive Gaussian dropout

regularizer (Hinton et al., 2012). We doubled the number of filter channels after

each downsample.

(a) X-module (b) Parallel (c) Siamese (d) Concatenate

Figure 4: The X-module (a) is the only type of connection that utilizes joint features for

learning discriminative representations of multi-view (AP and LAT) x-rays. Parallel (b) and

Concatenate (d) and modules do not explicitly capture joint multi-view features while Siamese

(c) module does not have dedicated convolution layer for each view and is therefore susceptible

to catastrophic interference (McCloskey and Cohen, 1989). The Σ corresponds to weighted

spatial summation of the AP/LAT features, C represents concatenation across channels, and

f denotes the number of filters.
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2.2. Landmark Regression using Spinal Landmark Estimator

The Spinal Landmark Estimator (SLE) network maps the learned joined

image features to spinal landmarks for more accurate Cobb angle estimation.

The SLE first projects the joint features of each view (AP and LAT) to a R512

hidden layer and then produces the landmark locations using a spinal structured

output layer.

We define the landmark feature projection as:

Pχlm = tanh(JχW + b), (4)

where tanh is the hyperbolic tangent function.

The spinal structured output layer contains a structural dependency matrix

that captures the dependencies of the landmark coordinates. The structural

dependency matrix S is used at the output in order to force a prior on the

detected landmarks. S is a symmetric square matrix of binary values in which

adjacent spinal landmarks are represented by 1 while distant landmarks are

represented by 0 (Eqn. 5). This structural matrix was hand-crafted based on the

ordering of physical location of the landmarks during annotation of the ground

truth and remains constant during training. Fig. 5 shows two representative

examples of landmark dependency: adjacent landmarks on the same vertebra

or vertebral disc are considered to be dependent (represented by 1 in the matrix

S).

S ∈ R120×120 =

1 2 ... 119 120






1 1 . 0 0 1

1 1 . 0 0 2

. . . . . ...

0 0 . 1 1 119

0 0 . 1 1 120

(5)

This constraint limits the degree of freedom affecting each predicted spinal

landmark to only neighbouring landmarks in order to improve regression accu-
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racy. The output of the SLE (Y χlm) is thus defined as:

Y χlm = σ[(Pχlm ·W + b) · S], (6)

where σ is the sigmoid logistic function and S is the landmark dependency

matrix as defined in Eqn. 5.

The Spinal Landmark Estimator can thus be formalized as the mapping

function Mlm : Xχ → Lχ where Xχ ∈ R256×128 are the AP/LAT x-ray images,

and Lχ = [x60, y60] are the scaled x/y-coordinates of the AP/LAT spinal land-

marks. In order to accommodate the differences in resolution, we scaled the

Figure 5: The neighbourhood of landmark 3 includes 1/4 (adjacent landmarks on same verte-

bra) and 4/5 (adjacent landmarks on same disc). The neighbourhood of landmark 10 includes

8/9 (adjacent landmarks on same disc) and 9/12 (adjacent landmarks on same vertebra). The

dashed lines represent the connectivity of landmark dependency of the circled landmarks.
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landmark coordinates to between 0 and 1 by dividing the original x/y positions

with the width/height of the original image respectively.

2.3. Angle Regression using Cobb Angle Estimator

The Cobb Angle Estimator (CAE) is a dedicated network for mapping joint

spinal features to Cobb angles. The CAE first projects the landmark feature

projection to a common feature space of R120 (same dimension as landmark

coordinates) and add the result to the landmark output to adaptively mitigate

the error associated with landmark prediction. The adjusted landmarks are

then used to predict the Cobb angles via a densely connected output layer. The

CAE is thus encouraged to explicitly map relevant multi-view x-ray features

(with respect to important spinal landmarks) to the corresponding Cobb angles

by utilizing the landmarks learned by the SLE.

We define the angle feature projection as:

Pχan = tanh(PχlmW + b), (7)

where Pχlm is the AP/LAT landmark feature projection as defined in Eqn. 4. We

then add the projection to the landmarks to compute the adjusted landmark

coordinates Ŷ χlm

Ŷ χlm = Y χlm + Pχan. (8)

Finally, the output of the CAE (Y χan) is computed as:

Y χan = Ŷ χlm ·W + b. (9)

We can formulate this network as the mapping function Man : Xχ → Aχ

where {αi}3i=1 ∈ Aχ are the PT, MT, and TL Cobb angles of respective AP/LAT

x-ray images.

Since spinal landmarks are essential for computing Cobb angles, we have

explicitly tied a task-related relationship between the landmark and angle esti-

mation by directly connecting the CAE to SLE in an end-to-end fashion. This

allows the CAE to more effectively utilize multi-task learning for more accurate

Cobb angle estimation.
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3. Joint Regression Loss

We propose a novel objective function named Joint Regression Loss (JR-

loss) that improves spinal landmark and Cobb angle estimation accuracy by

combining a correlation loss with a robust regression loss. The JR-loss not

only minimizes estimation error but also improves the correlation between the

prediction and ground truth.

3.1. Landmark Loss

Robust Regression Loss The traditional loss function for regression prob-

lems is the Mean Squared Error (MSE) loss:

Lmse(Xχ, Lχ, θ) = MEAN(Mlm(Xχ; θ)− Lχ)2. (10)

where Xχ is an X-ray image, Lχ is its corresponding ground truth landmark,

θ is the parameters of the SLE network Mlm as described in section 2.2, and

MEAN is the element-wise arithmetic mean.

However, this loss is not robust since large errors become squared and will

therefore skew the overall mean of the loss. In order to minimize the effect of

large errors during training, we use the log of hyperbolic cosine as the objective

function instead:

Lreg(Xχ, Lχ, θ) = MEAN[log 1
2 (eMlm(Xχ;θ)−Lχ + eL

χ−Mlm(Xχ;θ))]. (11)

Correlation Loss To make sure that our predictions not only minimize the

error but also conform to the spinal curvature of our ground truth, we use the

Pearson loss defined as:

ρ = MEAN[Mlm(Xχ;θ)Lχ]−MEAN[Mlm(Xχ;θ)]MEAN[Lχ]
STD[Mlm(Xχ;θ)]STD[Lχ] , (12)

where STD is the standard deviation.

Since the output of Pearson coefficient ρ ranges from -1 (negative correlation)

to 1 (perfect correlation), we rearranged it as follows in order to force the output

to be between 0 (perfect correlation) and 2 (negative correlation):

Lcor(Xχ, Lχ, θ) = 1− ρ. (13)
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The joint regression loss function for optimizing SLE is thus defined as:

Llm(Xχ, Lχ, θ) = Lcor(Xχ, Lχ, θ) + φLreg(Xχ, Lχ, θ), (14)

where φ is a scaling factor controlling the relative importance of the regression

loss term.

Since we want to ensure equal importance for both accuracy and correlation,

a grid search of φ between 1 and 10 (at interval of 1) was performed to select

the optimal value of φ that balances the magnitudes of the robust regression

and correlation loss within the first epoch. The empirically determined value of

φ = 5 was used in all of our experiments.

3.2. Angle Loss

While the joint regression loss works well for euclidean quantities like dis-

tance, it is not robust in dealing with circular quantities due to the phase-

wrapping property of angles. For instance, the euclidean distance between 5◦

and 355◦ is 350◦ while in reality, the difference is only 10◦. We will therefore

have to modify the loss function for circular quantities to alleviate this. To do

so, we can consider performing arithmetics in polar coordinate space and then

converting the result back to angular space using trigonometry.

The angle α can be decomposed as polar coordinates on the unit circle:

α→ {x = cos(α), y = sin(α)}. (15)

Given a list of N angles [α0, · · · , αN ], we can define their circular mean as:

x̄ =
1

N

N∑

i=0

cos(αi) (16)

ȳ =
1

N

N∑

i=0

sin(α1) (17)

CMEAN([α0, · · · , αN ]) = arctan(
ȳ

x̄
). (18)

When computing the loss for Cobb angles, we replace the arithmetic mean

(MEAN) with the circular mean (CMEAN) as defined by Eqn. 18. The robust
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regression loss (Eqn. 11) for angles thus becomes:

Lαreg(Xχ, Aχ,Θ) = CMEAN[log 1
2 (eMan(Xχ;Θ)−Aχ + eA

χ−Man(Xχ;Θ)], (19)

where Aχ is the 6 ground truth Cobb angles and Θ is the parameters of the

CAE network Man as described in section 2.3.

The correlation loss (Eqn. 13) is also modified to:

Lαcor(Xχ, Aχ,Θ) = 1− CMEAN[Man(Xχ;Θ)Aχ]−CMEAN[Man(Xχ;Θ)]CMEAN[Aχ]
STD[Man(Xχ;Θ)]STD[Aχ] . (20)

The objective function for optimizing CAE thus becomes:

Lan(Xχ, Aχ,Θ) = Lαcor(Xχ, Aχ,Θ) + φLαreg(Xχ, Aχ,Θ). (21)

4. Iterative Landmark-Angle Training (ILAT) Algorithm

The ILAT algorithm allows the MVC-Net to leverage the similarities between

tasks of the SLE and CAE for more robust spinal curvature estimation. To

accomplish this, the AP/LAT x-ray images and their corresponding landmark

coordinates and Cobb angles are used to train the MVC-Net through Mini-

batch Stochastic Gradient Descent optimization with momentum of 0.95 and a

starting learning rate of 0.01. A two-stage alternating optimization scheme was

used to train each component network of the MVC-Net iteratively to ensure a

synergistic effect when optimizing the two related tasks (Fig. 6).

For each batch during training, we optimized the Spinal Landmark Esti-

mator and Cobb Angle Estimator in tandem (one after the other). The joint

optimization scheme allows the MVC-Net to leverage the reciprocal relationship

between spinal landmarks and Cobb angles for more accurate Cobb angle esti-

mation (since Cobb angles can be computed from spinal landmarks). We trained

the model for 100 epochs while halving the learning rate after every 10 epochs.

The general outline of the iterative 2-stage training scheme is summarized in

Alg. 1.
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Figure 6: The ILAT algorithm optimizes the Landmark Estimator and Cobb Angle Estimator

in tandem for each training batch during training such that the reciprocal relationship between

spinal landmarks and Cobb angles is reinforced.

Algorithm 1 Iterative Landmark-Angle Training

1: Initialization: randomly initialize Spinal Landmark Estimator (SLE) pa-

rameters θ and Cobb Angle Estimator (CAE) parameters Θ.

2: Set φ = 5

3: repeat

4: for b ∈ {1, · · · , nbatches} do
5: Compute loss of SLE using 14

6: Update θ using backpropagation

7: Compute loss of CAE using 21

8: Update Θ using backpropagation

9: end for

10: until Convergence

5. Experimental Setup

5.1. Dataset

Our dataset consists of 526 spinal x-ray images from 154 patients equally

divided between AP and LAT views. The images were provided by local clin-

icians and all of them show signs of scoliosis to varying extent. The average

resolution of the images is 0.26mm/pixel. In order to reduce potential problems

caused by different image resolutions, we scaled all the images to 128 pixels in
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width and 256 pixels in height. We also normalized the labeled landmark coor-

dinates as a percentage of the scaled image (i.e. the midpoint {64, 128} of the

image becomes {0.5, 0.5}). Since the cervical vertebrae (vertebrae of the neck)

are seldom involved in spinal deformity (Group, 2008), 15 vertebrae composed

of the thoracic and lumbar vertebrae was selected by an expert as part of the

spinal curvature evaluation. Each vertebra is marked by four landmarks with

respect to its four corners resulting in 60 points per spinal image. These land-

marks comprises the ground truth (GT) of our data and are used to train the

SLE. The Cobb angle GT data is then computed from the GT landmarks and

used for training the CAE. At testing time, the images are divided into training

and validation set for each fold such that no patient is included in both sets.

The results from our experiments were attained by averaging performance over

10-fold patient-wise crossvalidation.

5.2. Data Augmentation

In order to allow our model to generalize better to unseen data, we introduce

the necessary invariance through dynamic data augmentation during training.

At training time, the images are randomly transformed to account for such

invariances. In terms of spinal x-ray images we want to introduce shift, intensity,

and rotation invariance.

We therefore augmented the data with:

• Randomly introducing Poisson distributed noise to the images to simulate

intensity variance.

• Randomly rotating the images up to 5◦ to allow for flexibility in rotation.

• Randomly shifting the images by 1% to encourage shift invariance.

5.3. Performance Metric

Spinal Landmark. We evaluate the accuracy of our Spinal Landmark es-

timation using the following two metrics: (1) The Mean Absolute Error (MAE)

and (2) Pearson correlation coefficient (ρ) between the predicted values and

annotated ground truth.
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The MAE is defined as:

MAE =
1

N

N∑

i=1

MEAN[|Mlm(Xχ
i ; θ)− Lχi |] (22)

where N is the number of χ ∈ {AP,LAT} x-ray images. The ρ-correlation is

defined as:

ρ = 1
N

∑N
i=1 MEAN[

MEAN[Mlm(Xχi ;θ)Lχi ]−MEAN[Mlm(Xχi ;θ)]MEAN[Lχi ]

STD[Mlm(Xχi ;θ)]STD[Lχi ]
] (23)

Cobb Angle. For Cobb angle estimation, we used circular MAE and Sym-

metric Mean Absolute Error (SMAPE) instead of ρ-correlation to represent the

relative error.

The circular MAE is defined as:

CMAE =
1

N

N∑

i=1

CMEAN[|Man(Xχ
i ; Θ)−Aχi |] (24)

The SMAPE metric is defined as:

SMAPE =
1

N

N∑

i=1

SUM[|Man(Xχ
i ; Θ)−Aχi |]

SUM[Man(Xχ
i ; Θ) +Aχi ]

× 100% (25)

where SUM is the element-wise summation of a vector.

6. Results and Analysis

6.1. Overview of Results

The effectiveness of our MVC-Net for comprehensive spinal curvature assess-

ment has been thoroughly validated through two steps. (1) We first demonstrate

that our method has the best capability of accurately and robustly assessing

spinal curvature compared to current state of the art methods. (2) We then

rationalize the effectiveness of our three innovations (X-module, JR-loss, ILAT)

by examining in isolation the effectiveness of each component. For our exper-

iments, we showed results for both directly estimated angles as well as angles

measured from the directly estimated landmarks. In almost all cases, directly

estimated angles using multi-task learning outperformed angles measured from

the landmarks, which validates the advantages of multi-task learning.
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As shown in table 1, the MVC-Net contains obvious advantage over exist-

ing methods that only use a single-view. The accurate estimation of spinal

landmarks and Cobb angles can be attributed to the robust multi-view fea-

ture representation capabilities of X-modules and multi-task training of the

SLE and CAE. Specifically, our method achieved the lowest estimation error of

0.0398± 0.0153 (scaled), 0.0459± 0.0198 (scaled), 4.04± 0.99 (deg), 4.07± 1.19

(deg) with respect to AP/LAT landmarks (scaled pixels), and AP/LAT angles

(degrees).

Table 1: The MVC-Net achieved the lowest error in landmark and Cobb angle estimation

on 10-fold crossvalidation compared to other methods. The number after ± represents the

standard deviation.

Directly Estimated Landmarks

Method AP LAT

MAE (scaled) ρ MAE (scaled) ρ

Sun et al. (2017) 0.0419± 0.0181 0.945± 0.0508 0.0517± 0.0217 0.921± 0.0734

Criminisi et al. (2011) 0.0442± 0.0148 0.954± 0.0332 0.0505± 0.0183 0.943± 0.0523

Wu et al. (2017) 0.0400± 0.0160 0.951± 0.0389 0.0509± 0.0218 0.923± 0.0762

MVC-Net 0.0398 ± 0.0153 0.956 ± 0.0172 0.0459 ± 0.0198 0.945 ± 0.0214

Directly Estimated Angles

CMAE (deg) SMAPE (%) CMAE (deg) SMAPE (%)

Sun et al. (2017) 6.26± 2.81 37.08± 16.91 6.07± 2.08 24.23± 9.10

Criminisi et al. (2011) 5.67± 3.16 35.62 ± 15.41 6.20± 2.39 20.55 ± 10.53

Wu et al. (2017) 5.37± 2.98 41.35± 13.33 5.54± 2.95 25.14± 12.68

MVC-Net 4.04 ± 0.99 35.85 ± 15.46 4.07 ± 1.19 23.72 ± 9.87

Angles Measured from Predicted Landmarks

CMAE (deg) SMAPE (%) CMAE (deg) SMAPE (%)

Sun et al. (2017) 6.37± 3.52 41.34 ± 20.42 6.85± 3.42 24.75± 12.33

Criminisi et al. (2011) 6.27± 3.38 42.62± 21.49 6.34 ± 2.58 22.12 ± 12.47

Wu et al. (2017) 6.44± 4.67 43.60± 20.73 6.67± 4.54 26.00± 12.62

MVC-Net 6.08 ± 3.07 45.48 ± 19.96 6.40 ± 2.96 32.40 ± 14.69

6.2. Benefits of X-Modules

The results in Table 2 indicate that the X-module is the best method for

incorporating joint feature learning. The X-module was compared against three
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other methods of incorporating joint features, namely Parallel, Siamese, and

Concatenate (Fig. 4b-d). The Parallel connection uses a separate convolution

layer for each of the two views, the Concatenate connection concatenates the fea-

ture maps of the two x-ray views while Siamese connection shares the same layer

for both views. The network trained using the X-module achieved the lowest

MAE and highest correlation coefficient compared to networks using Parallel,

Siamese, or Concatenate connections. The visual validation in Fig. 7 shows

that the X-module produces more discriminative feature maps as indicated by

the presence of noticeable spinal structures in both AP and LAT features. The

inclusion of these spinal structures in the feature map helps mitigate the verte-

brae occlusion problem, resulting in higher overall accuracy as is validated by

our results. Fig. 8 provides visual confirmation that the X-module connection

achieves superior performance compared to other types of connections.

6.3. Benefits of Joint Regression Loss Function

The novel JR-loss function not only improves robustness of spinal landmark

detection but also directly reinforces the accuracy of Cobb angle estimation.

The JR-loss optimizes both regression accuracy as well as the output correla-

tion, which enables the network to utilize the general trend of spinal landmarks

for more accurate Cobb angle estimation. Table 3 compares our method against

networks with the same architecture trained using the following loss functions:

(1) the mean squared error loss ‘mse-loss’ (Eqn. 10), (2) the cosine-proximity

loss ‘cos-loss’ (Scipy, 2014), (3) the pearson correlation loss ‘cor-loss’ (Eqn. 13),

and (4) the robust regression loss ‘reg-loss’ (Eqn. 11). The JR-loss demonstrates

obvious advantage by achieving lower MAE error and standard deviation com-

pared to networks trained with other loss functions.

6.4. Benefits of ILAT Algorithm

Table 4 shows that the network trained using the ILAT algorithm has the

best performance compared to the sequential, angles-only, and landmark-only

training methods. The sequential training scheme involves first optimizing
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Table 2: The X-module represents the best connectivity for multi-view feature learning. The

number after ± represents the standard deviation.

Directly Estimated Landmarks

Method AP LAT

MAE (scaled) ρ MAE (scaled) ρ

Siamese 0.0501± 0.0242 0.926± 0.0231 0.0528± 0.0394 0.895± 0.0458

Parallel 0.0430± 0.0164 0.944± 0.0425 0.0567± 0.0209 0.908± 0.0432

Concat 0.0494± 0.0180 0.932± 0.0476 0.0505± 0.0252 0.942± 0.0374

X-Module 0.0398 ± 0.0153 0.956 ± 0.0172 0.0459 ± 0.0198 0.945 ± 0.0214

Directly Estimated Angles

CMAE (deg) SMAPE (%) CMAE (deg) SMAPE (%)

Siamese 5.45± 2.62 44.16± 17.18 5.44± 2.03 45.62± 18.28

Parallel 5.18± 2.73 44.80± 20.45 5.56± 3.26 43.07± 18.42

Concat 4.94± 2.76 46.2± 11.49 5.59± 3.64 41.78± 19.68

X-Module 4.04 ± 0.99 35.85 ± 15.46 4.07 ± 1.19 23.72 ± 9.87

Angles Measured from Predicted Landmarks

CMAE (deg) SMAPE (%) CMAE (deg) SMAPE (%)

Siamese 6.82± 4.00 47.56± 21.43 9.14± 5.76 39.40± 19.85

Parallel 6.09± 3.26 44.80± 20.45 5.75 ± 3.10 29.39 ± 12.89

Concat 6.94± 3.94 44.61 ± 11.50 7.14± 5.41 35.31± 15.85

X-Module 6.08 ± 3.07 45.48 ± 19.96 6.40 ± 2.96 32.40 ± 14.69

the SLE until convergence followed by optimizing the CAE. Angles-only and

landmark-only refers to solely training the CAE or SLE respectively. The ILAT

algorithm demonstrates up to 3 times lower MAE error compared to the sequen-

tially trained network commonly used in traditional pipelines. This is attributed

to the ILAT algorithm bringing the network parameters closer to a global min-

imum during each stage of the gradient descent by taking advantage of the

interdependency between spinal landmarks and Cobb angles. Further compari-

son with the angles-only and landmark-only method proves that the ILAT uses

positive reinforcement between spinal landmark and Cobb angle prediction in

order to reach a lower error.
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Original Image

AP x-ray LAT x-ray

X-module Feature Map

Parallel Feature Map

Siamese Feature Map

Concatenate Feature Map

AP features LAT features

Figure 7: The X-module is able to learn more discriminative features compared to Parallel,

Siamese, and Concatenate connections as shown by the white outline in the first row of the

feature maps (drawn by the authors for visualization purpose). The X-module feature map

exhibits more defined spinal structure similar to the original x-ray image compared to the

feature maps produced by other connection types.

6.5. Analysis

The proposed MVC-Net architecture achieved the lowest average MAE of

0.0398 (AP), 0.0459 (LAT) scaled pixel values and the highest correlation co-

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
(a) MVC-Net (b) Parallel (c) Siamese (d) Concat (e) Label

Figure 8: The model trained using X-modules (a) shows the best landmark quality. The

spinal landmarks detected by our method more closely resembles the labeled (e) landmarks

compared to other connection types (b− d).

efficient of 0.956 (AP), 0.945 (LAT) for predicting spinal landmarks and 4.04

(AP), 4.07 (LAT) degrees for Cobb angle estimation. This is due to the con-

tributions of 1) the X-Module, which successfully learned joint AP and LAT

features, 2) the novel JR-loss objective function, which ensures both regression

accuracy and consistency of the landmark coordinates, and 3) the strategically

designed ILAT algorithm, which leverages the relationship between spinal land-

marks and Cobb angles for more accurate estimations. The directly estimated

angles using multi-task learning unequivocally outperformed angles measured

from landmarks, leading to a lower error and standard deviation. Furthermore,

our results demonstrate that the high performance can only be achieved by
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Table 3: The network trained using the JR-loss achieved the lowest error in 10-fold cross-

validation compared to other loss functions. The number after ± represents the standard

deviation.

Directly Estimated Landmarks

Method AP LAT

MAE (scaled) ρ MAE (scaled) ρ

mse-loss 0.0608± 0.0220 0.927± 0.0512 0.0628± 0.0252 0.906± 0.0522

cos-loss 0.0507± 0.0291 0.942± 0.0474 0.0567± 0.0338 0.933± 0.0394

cor-loss 0.0560± 0.0211 0.935± 0.0341 0.0557± 0.0303 0.926± 0.0427

reg-loss 0.0523± 0.0225 0.923± 0.0369 0.0563± 0.0265 0.919± 0.0412

JR-loss 0.0398 ± 0.0153 0.956 ± 0.0172 0.0459 ± 0.0198 0.945 ± 0.0214

Directly Estimated Angles

CMAE (deg) SMAPE (%) CMAE (deg) SMAPE (%)

mse-loss 5.87± 4.30 48.33± 18.44 5.84± 3.31 49.05± 18.53

cos-loss 4.83± 2.46 36.60± 12.53 5.07± 2.58 27.72± 15.80

cor-loss 5.14± 2.57 40.58± 12.08 5.87± 2.36 32.21± 14.08

reg-loss 5.34± 2.27 41.61± 13.59 5.61± 2.04 25.76± 12.31

JR-loss 4.04 ± 0.99 35.85 ± 15.46 4.07 ± 1.19 23.72 ± 9.87

Angles Measured from Predicted Landmarks

CMAE (deg) SMAPE (%) CMAE (deg) SMAPE (%)

mse-loss 7.06± 5.02 48.40± 20.08 8.13± 5.37 36.34± 15.71

cos-loss 7.48± 6.04 46.83± 20.59 7.80± 4.31 44.72± 19.72

cor-loss 6.53± 4.18 45.05 ± 21.48 7.81± 4.75 35.13± 15.35

reg-loss 7.32± 5.77 47.39± 19.05 7.97± 6.64 48.43± 19.05

JR-loss 6.08 ± 3.07 45.48 ± 19.96 6.40 ± 2.96 32.40 ± 14.69

training the SLE and CAE iteratively, which indicates that reciprocal multi-

task learning of both landmarks and angles is essential for achieving higher

accuracy and precision.

It is widely known by the spinal surgeon community that there is a large

inter- and intra-observer variability in manual Cobb angle measurements. Pruijs

et al. (1994) determined the variability of Cobb angle measurements by physi-

cians to be 3.2 degrees standard deviation. Meanwhile, the standard deviation
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Table 4: The Iterative-training algorithm achieved the lowest error in landmark estimation

on 10-fold crossvalidation compared to sequential and angles-only method. The number after

± represents the standard deviation.

Directly Estimated Landmarks

Method AP LAT

MAE (scaled) ρ MAE (scaled) ρ

sequential 0.091± 0.0537 0.728± 0.242 0.0951± 0.0392 0.792± 0.153

angles-only −− −− −− −−
landmark-only 0.0417± 0.0165 0.951± 0.0380 0.0492± 0.0219 0.936± 0.0621

ILAT 0.0398 ± 0.0153 0.956 ± 0.0172 0.0459 ± 0.0198 0.945 ± 0.0214

Directly Estimated Angles

CMAE (deg) SMAPE (%) CMAE (deg) SMAPE (%)

sequential 8.27± 5.25 47.99± 21.28 6.59± 2.84 33.31± 15.28

angles-only 8.24± 3.54 54.04± 18.50 6.49± 2.86 30.48± 13.29

landmark-only −− −− −− −−
ILAT 4.04 ± 0.99 35.85 ± 15.46 4.07 ± 1.19 23.72 ± 9.87

Angles Measured from Predicted Landmarks

CMAE (deg) SMAPE (%) CMAE (deg) SMAPE (%)

sequential 7.98± 4.84 44.84± 18.50 6.99± 3.50 42.78± 18.00

angles-only −− −− −− −−
landmark-only 6.51± 3.86 43.98 ± 21.98 7.01± 4.42 33.32± 16.63

ILAT 6.08 ± 3.07 45.48 ± 19.96 6.40 ± 2.96 32.40 ± 14.69

of our approach was 0.99 for AP and 1.19 for LAT x-ray images, which vali-

dates our approach as a more robust method of measurement. Table 5 shows the

similarity in data distribution (mean and standard deviation) of Cobb angles

between the ground truth and our prediction, which indicates that our predic-

tions indeed reflect the distribution of our dataset. However, since our dataset

does not contain x-ray images with metal artifacts, potential degradation in

landmark accuracy might occur when processing images with metal artifacts

caused by spinal bracing. While our approach was thoroughly validated on

x-ray images acquired at our clinic, further investigation using x-ray images ac-

quired at different clinics or inclusion of images with various imaging artifacts

is warranted.
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Table 5: The distribution of Cobb angles in the prediction resembles the distribution in our

dataset. The number after ± is the standard deviation (STD) of the angles.

Distribution of Cobb Angles in Our Dataset

AP LAT

Angle Min ↔ Max Mean ± STD Min ↔ Max Mean ± STD

PT 0.0119↔ 34.7 6.74± 7.69 0.0446↔ 47.4 8.53± 6.67

MT 0.0766↔ 66.0 11.2± 10.6 0.00631↔ 58.8 6.80± 7.25

TL 0.0176↔ 32.3 7.67± 6.48 1.05↔ 49.6 18.2± 7.78

Distribution of Cobb Angles in Our Prediction

AP LAT

Angle Min ↔ Max Mean ± STD Min ↔ Max Mean ± STD

PT 1.66↔ 35.8 8.05± 5.80 1.88↔ 25.0 8.06± 4.05

MT 1.75↔ 41.9 10.1± 6.65 2.10↔ 23.1 7.43± 3.44

TL 1.74↔ 28.8 7.89± 4.60 7.79↔ 35.5 16.8± 4.29

7. Conclusion

We proposed a fully automated spinal curvature estimation framework for

comprehensive assessment of AIS using MVC-Net. The MVC-Net creatively

utilizes the joint feature learning capabilities of the X-module, our novel JR-

loss function, and specially designed ILAT algorithm to provide accurate and

robust spinal curvature assessments in multi-view x-rays. It is the first time that

multi-view x-rays have been used to solve the problem of vertebrae occlusion.

When validated on our large dataset of 526 x-ray images, the MVC-Net was

able to achieve automated estimation of Cobb angles in both AP and LAT x-

rays. The highly accurate spinal landmarks and Cobb angles produced by our

framework can not only be used by clinicians for comprehensive AIS assessment,

but also be further extended to other clinical applications such as assessment of

osteoporosis.
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