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Abstract. We describe a method to automatically detect and label the
vertebrae in human lumbar spine MRI scans.
Our contribution is to show that marrying two strong algorithms (the
Deformable Part Model (DPM) object detector of Felzenszwalb et al. [9],
and inference using dynamic programming on chains) together with ap-
propriate modelling, results in a simple, computationally cheap proce-
dure, that achieves state-of-the-art performance. The training of the al-
gorithm is principled, and heuristics are not required. The detections are
performed in all slices of a sagittal scan.
The method is evaluated quantitatively on a dataset of 371 MRI scans,
and it is shown that the method copes with pathologies such as scoliosis,
joined vertebrae, deformed vertebrae and disks, and imaging artifacts.
We also demonstrate that the same method is applicable (without re-
training) to CT scans.

Keywords: Spine, HOG, MRI, Detection, Vertebrae, SVM

1 Introduction

The task dealt with in this paper is the following: given an MRI scan of the
lumbar spine, localize and label all the vertebrae present in that image. The
motivation for this work is that spine appearance, shape and geometry measure-
ments are necessary for abnormality detection locally at each disk [2, 3, 7, 12, 17,
20] and vertebrae [11, 22] (such as herniation), as well as globally for the whole
spine (such as spinal scoliosis).

In more detail, the input 3D image is a (sparsely spaced) stack of 2D sagittal
images, and the output consists of labelled tight bounding boxes with labels
around all the vertebrae in the image. Each bounding box is specified by its
position, orientation, and scale. An example of the detection and labelling for a
typical normal scan is shown in Figure 1.

This detection task is challenging for a number of reasons, including: (i)
the repetitive nature of the vertebrae, (ii) varying image resolution and imag-
ing protocols; artefacts, and (iii) large anatomical and pathological variation,



Fig. 1. The task. Given a 3D MR lumbar spine image comprising of a stack of sagittal
2D slices as input (the mid-slice is shown on the left), localize and label in that 3D
image all the vertebrae that are present. The output (projected on the mid-slice on the
right) consists of labelled tight bounding boxes around the vertebrae. Note that all the
2D slices in the 3D slice stack are searched for vertebrae candidates.

particularly in the lumbar spine. Various examples of challenging cases in our
dataset are highlighted in Figure 2. The anatomy and pathology variation can
affect both the local vertebrae / disks appearance (e.g. degraded disks – Figure
2 H), and the global layout of the spine (e.g. scoliosis – Figure 2 C).

Contributions. Our method brings together two strong algorithms – the De-
formable Part Model of Felzenszwalb et al. [9] based on Histogram of Oriented
Gradients (HOG) image descriptors [6] and efficient inference on graphical mod-
els [10, 8] – making the algorithm accurate, robust, and efficient on challenging
spine datasets. The algorithm is also tolerant to varying MRI acquisition proto-
cols, image resolutions, patient position, and varying slice spacing unlike related
solutions in the literature. It localizes all the vertebrae present in a scan, and
labels them correctly as long as the sacrum is present. Importantly, the method
is appliccable to standard MRI protocols.

The method has two distinct stages. First, vertebrae candidates are detected
using a sliding window detector searching over position, scale, and angle (section
2.1). Second, a graphical model is fitted to the set of candidate detections to find
the optimal spine layout and labelling based on the unary soft output score of
the detector for each part, and a spatial cost between each pair of connected
parts (section 2.2). The HOG descriptor captures the near rectangular shape of
the vertebrae. We detect vertebrae rather than disks since the vertebrae shape is
more consistent than the disk shape as the lumbar spine studies are more often



Fig. 2. Spine variation in our data. A collection of example images showing assorted
image, anatomical and pathological modes of global variation of the spine shape, and
local variation of the vertebrae, and the disks. Our algorithm is robust to all those
variations. Abnormalities have been highlighted by the red arrows. (A) Normal spine
with a zoom on a normal vertebra. (B) A low-resolution image. (C) A coronal view of
a scoliotic spine, resulting in the spine not being cut by a single sagittal slice. (D) Top:
a normal sacrum, with unambiguous L5, S1 labelling based on shape and S1 and L5
orientation. Bottom: a sacrum with ambiguous L5, S1 labelling based on their shape
and orientation. (E) Joined vertebrae. (F-J) Pathologically deformed vertebrae and
disks. (K) Magnetic susceptibility imaging artefacts.

aimed at targeting disk deformations, and more suitable to be modelled with
HOG. Disk locations can easily be found after detecting vertebrae.

The closest previous work to ours is that of Oktay et al. [18]. They detect disks
and vertebrae in the lumbar spine using a Pyramid HOG descriptor; however,
they only detect six disks and vertebrae with their graphical model, require the
existence of both T1 and T2 scans to first detect the spinal cord, and they have
a separate HOG template for each vertebrae. In contrast, we demonstrate that
just one generic vertebrae detector suffices for all vertebrae, and only require
the T2 scan. Furthermore, they only use the mid-sagittal slices, making it only
applicable to cases where all the spine parts are in the mid-sagittal slice, whereas
we search for vertebrae in all the 2D slices in the 3D stack (not restricted to the
mid-sagittal slice).

Ghosh et al. [13] also use HOG features [6], however they do not label the
vertebrae and make strong use of heuristics and information from complementary
axial scans. They detect disks rather than vertebrae. Zhan et al. [23] present a
robust hierarchical algorithm to detect and label arbitrary numbers of vertebrae
& disks in nearly arbitrary field of view scans, as long as one of four ‘anchor’
vertebrae (C2, T1, L1, S) are present. They first detect the ‘anchor’ vertebrae,



and then other ‘bundle’ vertebrae connected to it graphically. Although the
method works very well within its domain, it requires isotropic 2.1mm resolution
scans which limits its applicability severely. Our method is not limited to this
domain and, in particular, does not require the high isotropic resolution.

A further extensive body of literature on spine localization and labelling ex-
ists. Many of these methods have only been demonstrated on CT, and most with
relatively small test datasets. In almost all the papers, the algorithms work in
two stages. First, some anatomical parts characteristic of the spine are detected
(vertebrae [4, 5, 14] / disks [1, 13, 15, 19] / both [18, 23] ). Second, a spine layout
model is fitted to the candidates to determine the best hypothesis for the spine
layout. The spatial configuration of the spine parts, and in some cases also their
individual characteristics [14, 16, 23], are taken into account to both label the
disks and/or vertebra, and localize the spine.

2 Method

We present a method to localize and label vertebrae in lumbar MR images using
two HOG-based detectors and a graphical model. First, given a stack of sagittal
MRI slices, vertebrae and sacrum candidates are detected using a Deformable
Part Model (DPM) on each slice as described in Section 2.1. Next, after local non-
maxima suppression, the vertebrae candidates comprising the spine are selected
and labelled by fitting a graphical model, as explained in Section 2.2.

2.1 Spine Part Detection

The spine part (vertebrae) detection is implemented using two detectors based on
the DPM framework of [9]. We learn one generic 2D detector for vertebrae bodies
(VBs), and another more specific 2D detector for the sacrum part, comprising
the VBs of the first two links of the sacrum. Both the models are visualized
along with a set of training samples in Figure 3.

Training. Both the generic vertebrae body (VB) detector and the sacrum de-
tector are trained using the DPM framework [9]. The positive training examples
for the VB detector are tight bounding boxes around the vertebral bodies of
T10...L5 vertebrae with the bounding box sides parallel to the vertebral facets
as shown in Figure 3 A. The positive training examples for the sacrum detector
are tight bounding boxes around the first two links of the sacrum, with one side
parallel to the posterior side of the sacrum as shown in Figure 3 B. The bound-
ing boxes for both the VB and the sacrum are defined by fitting a minimum
bounding rectangle to landmarks on them – four for the VB and eight for the
sacrum. Each training sample is extracted from the slice intersecting the middle
of the respective vertebral body.

For the VB detector, four HOG templates are trained, each with a different
aspect ratio. The HOG templates are each 6 cells high, and 6, 7, 8, and 9 cells
wide, corresponding to aspect ratios between 1 and 1.5. The HOG cell size for



Fig. 3. The appearance model. Some training examples and a learned HOG tem-
plate are shown for both the generic vertebrae body detector (A) and for the sacrum
detector (B). The examples have been hand-annotated with tight ground truth bound-
ing boxes as shown above and explained in Figure 5.

the VB model is 8×8 pixels. The HOG template for the sacrum detector is 9 cells
high by 5 cells wide, with 8×8 pixel HOG cell size. The HOG feature vectors are
31-dimensional, with 18 contrast-sensitive, 9 contrast-insensitive direction bins;
and 4 texture feature bins.

The HOG templates capture the rectangular shape of the vertebrae, with
variations due to deformation, and the trapezoid shape of the first two links of
the sacrum. The vertebrae exhibit wide size and resolution variation and are all
scaled and warped to match one of the aspect ratios at training. The model is
learned iteratively in several steps, with new positive samples mined by running
the detector on the positive samples, collecting the strongest detections as new
positives, and training a new detector using the new positives.

The negative samples for the vertebrae detector are first picked randomly
from mid-slices with the vertebrae masked using a manually annotated polygon.
Next, an iterative learning procedure is employed to pick hard negatives as false
positive detections on the negative training images as detailed in [9].

Testing. During the candidate detection step at test time, a previously unseen
sagittal scan is taken as input, and tight bounding boxes around vertebrae can-
didates are returned as output. The candidate search is performed in all slices
of the scan. The VB and sacrum detector are run on each slice, searching over
position, scale, and orientation. In the search over orientation, the scan rotated
by −20◦ to 20◦ for vertebrae, and −60◦ to 0◦ for the sacrum, in 10 degree in-
crements. A feature pyramid is calculated for each angle, with HOG cells placed
densely next to each other. The feature pyramid has 10 levels per doubling of
resolution (10 levels per octave), with the image resized and resampled to 2x
the original size to 0.5x the original size from the finest to coarsest scale. All
the detections at all positions, scales, orientations are collected and transformed
onto the original test image coordinate system as shown in Figure 4.

A greedy non-maxima suppression algorithm is employed to remove most
of the false positive detections in each slice as follows. First, the top-scoring



Fig. 4. Vertebrae Detection Pipeline. (A) Input image. (B) All detections at all
rotation angles and scales. The green rectangles are generic vertebrae, and the red
rectangles are sacrum candidates. (C) All detections, with top detections shown in
thick blue line, and the “+” mark the ground truth vertebrae centre locations. (D)
Output detection bounding boxes along with the ground truths and labels.

bounding box is retained, and all bounding boxes overlapping it more than 50%
are discarded. Next, the second-highest scoring remaining bounding box is re-
tained, and the discarding and retention process continues until all the remaining
bounding boxes have at most 50% overlap.

Next, the remaining bounding boxes from all the slices are collected, and
the non-maxima suppression process is repeated to retain only highest-scoring
bounding boxes across all the slices that have at most 50% overlap between any
two boxes. These bounding boxes are next passed as input to the Graphical
Model as described in Section 2.2 in order to eliminate any remaining false
positives, and to label the vertebrae.

2.2 Graphical Model for Spine Layout

We train a parts-based graphical model [8] connecting the vertebrae in a chain.
The graphical model takes as input the detections after non-maxima suppression
described in the previous section, and gives as output the placement and labels of
all vertebrae in the image. The method deals with detections in multiple slices
by ignoring the slice index in inference. However, detections in all slices are
considered, and the slice index is returned in output. The spine layout is given
as a configuration L = (l1, l2, ..., ln−1, ln) where li are the vertebra locations,
with l1 the C1 and ln = l25 the sacrum. The optimal configuration L∗ of the
graphical model is

L∗ = arg min
L

 n∑
i=1

mi (li) +
∑

vi,j∈G
dij (li, lj)

 (1)

where li and lj denote the vertebrae locations l = (xi, yi, heighti, widthi, θi)
given by their location (x, y), size (height, width), and orientation θi. The best
model fit minimizes the sum of the unary appearance mismatch terms mi from
the part detectors output and the spatial deformation cost dij for connected



pairs ij of parts, laid at li and lj respectively. The last appearance term value
m25 comes from the sacrum detector, and the rest of the appearance term values
come from the universal vertebra detector. Since there might be fewer vertebrae
visible in the scan than the model has, an additional “out-of-FOV” state is
available for those vertebrae that indicates if they are not included in the scan.
The appearance term mi value for those vertebrae takes a constant penalty value
learned on the training set as described in [21].

The spatial deformation cost is a sum of four box functions S, T , U , V on
pairs of adjacent vertebrae in the chain:

dij(li, lj) = S(Ai/Aj) + T (xi − xj) + U(yi − yj) + V (θi − θj) (2)

where Ai, Aj are the areas, xi, xj & yi, yj the positions, and θi, θj the angles
of the adjacent vertebrae i and j. The box functions take a low constant value if
their argument values are within favourable distance of each other and a higher
constant value if their arguments are outside that distance.

To speed up the fitting process, a Viterbi message passing scheme from [8]
for fast inference in O(nh2) time is employed where n is the number of parts
and h the number of candidates per part. Typically, there are around h = 100
candidate positions per part, plus an “out-of-FOV” state for each part.

Training. The edges for the box functions S, T , U , and V are found as the
minimum and maximum argument values of those functions on the training set
(e.g. the minimum and maximum x-distance between L1 and L2 for T , etc.).

Testing. At test time, the full model is fitted to the scan, with each part allowed
to be visible, or out-of-FOV.

3 Experiments

3.1 Data, annotation and evaluation

The dataset consists of 371 MRI T2-weighted lumbar scans, acquired under
various protocols. The scans contain normal and various abnormal cases as illus-
trated in Figure 2. The dataset is split into 80 training and 291 testing images.
The scans have isotropic in-slice resolution varying from 0.34 to 1.64 mm with
mean at 0.78, median at 0.84 mm; and varying slice spacing from 3mm to 5 mm,
with 4mm in almost all scans. The scans range in fields of view, containing 7 to
23 vertebrae starting from the sacrum, with median at 10 per scan.

Annotation. The scans were hand-annotated with two types of ground truth as
illustrated in Figure 5: (i) All the vertebrae centres in all the scans are marked
with a point (“+” in Figure 5), and labelled with the vertebrae name; and (ii)
all the training scans plus some test scans are annotated with a tight bounding
box around each vertebra (Figure 5 A3, B3). The tight bounding boxes were
defined by points (“x” in Figure 5) along the vertebrae boundaries as shown.



Fig. 5. The ground truth annotation process. A1-A3 show the generic vertebral,
and B1-B3 the sacrum annotation process. There are two types of annotation: single
point (the green “+” in the Figure – used for testing) and bounding box (the red
rectangle – used for training). Given an input (A1, B1), the points (“+” and “x”) are
hand-placed (A2,B2). The bounding box annotation is found as the minimal bounding
rectangle to the “x” points around the vertebra / sacrum boundary. There are four
boundary points for vertebrae (A) and eight for the sacrum (B).

Evaluation protocol. The detections are evaluated against vertebrae-centre and
the sacrum-centre ground truth points. A positive detection for the sacrum is
counted if a detected sacrum bounding box contains the sacrum ground truth
point and does not contain any vertebrae centre ground truth points. A posi-
tive detection for the vertebrae is counted if a detected vertebra bounding box
contains one and only one ground truth point for a vertebral body, including
the sacrum. Note, this evaluation protocol ensures that the case where a large
detection covers several vertebrae is not counted as positive.

3.2 Results

The algorithm is evaluated on a set of 291 lumbar spine test images with vari-
able number of vertebrae visible. Example outputs are shown in Figure 6, and
statistical results on localization error over the test set are plotted in Figure 7
and tabulated in Figure 8 by vertebrae type.

We achieve 84.1% correct identification rate overall, and 86.9% for the lumbar
vertebrae. The mean detection error between the ground truth centre of the
vertebrae and the centre of the detected bounding box is 3.3mm, with standard
deviation 3.2mm. If the assigned labels are allowed to be shifted by one vertebra
in either direction, the errors are 92.9% and 94.7% respectively. Typically, the
full detection and labelling process from input to output takes less than a minute,
with majority of time spent on candidate detection.

Independent sacrum detection (without graphical model) with local non-
maxima supression shows 98.1% recall at 48% precision. Independent general
vertebrae detection (without graphical model) shows 97.1% recall at 9.1% pre-
cision.

Our method works well on very challenging examples with various anomalies
illustrated earlier in Figure 2. The identification results compare favourably to
other approaches in the literature, although direct comparison is not possible
since the algorithms have been evaluated on different datasets. Glocker et al. [14]
report median identification error of 81% with median localization error below



Fig. 6. Example results. Input and output are shown for six different scans a-f.
The thick solid line rectangles show the detections for each vertebrae, along with their
anatomical labels. Note how the algorithm is robust to varying Field of View, resolution,
and anatomy. Note, for visualization purposes, only the mid-sagittal slice is shown for
each scan, and all bounding boxes are projected onto it.

6mm on CT images. Zhan et al. [23] detect disks and vertebrae in isotropic MRI
scans with 97.7% “perfect” labelling rate as assessed by a medic but do not
report detection errors. Pekar et al. [19] report 83% correct labelling rate on 30
lumbar MRI scans. Our method correctly localizes the centres of vertebrae out
of the mid-sagittal slice in scoliotic cases such as scan (f) in Figure 6.

Application to CT images. Although the method has been principally designed
for MR images, it is directly applicable to CT images as shown in Figure 9. No
retraining is required for detection on CT due to the high generalization of HOG
detectors.



Fig. 7. Localization error by vertebrae type. Boxplots representing detection
errors are shown. The error for a given vertebra type is calculated as the distance
between the centre of the detected bounding box and the ground truth vertebra centre,
divided by the mean width of that vertebra. The mean vertebrae widths are evaluated
based on the bounding boxes on the training set. The horizontal line in the middle
of each box is the median error, and the bottom and top of each box are the 25 and
75 percentile errors respectively. The bottom and top error bar end are the 5 and 95
percentile errors respectively, and the ‘+’ denote statistical outliers.

4 Conclusion

We have presented a HOG-based algorithm to localize vertebrae in lumbar MRI
scans of the spine that is simple, accurate and efficient. We demonstrate robust-
ness to severe deformations due to diseases, image artefacts, and a wide range of
resolution, patient position, and acquisition protocols on a challenging clinical
dataset. It is straightforward to extend the method to completely general FOVs
if required, by taking other anatomical context into account [14].
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