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Abstract

With the rise in digital adoption, having an early warning system in the event of a cyberattack is

increasingly important. One of the most common ways this is implemented is through network-

based intrusion detection systems (NIDSs) that identify malicious network activity and notify the

appropriate stakeholders to take responsive actions. Malamenator is an NIDS project that consists

of two components: an engineering component to produce a secure NIDS-integrated router, and

a research component to determine the best anomaly detection methods to deploy on the system.

This paper focuses on the latter.

Many approaches to anomaly detection in network flow data have sub-optimal performance due

to challenges in the lack of interpretability as well as due to the absence of accurate, representative,

and consistent datasets for training. Despite this, researchers are constantly proposing more and

more advanced techniques to gain marginally higher performance on network datasets that have

disjoint features. However, little work has been done to look at feature engineering as a method to

improve model performance.

This paper highlights the shortcomings of NSL-KDD as a benchmark dataset and shows that

two more recent datasets, UNSW-NB15 and CICIDS 2017, provide features that more accurately

capture malicious behavior. We further show that with the appropriate feature engineering, out-of-

box ensemble learners like Random Forest, XGBoost, and LightGBM are able to exhibit state of the

art performance at an extremely reduced computational cost. Each of the ensemble learners were

able to achieve a detection rate and f1 score above 99% for both the UNSW-NB15 and CICIDS 2017

datasets with an extremely limited training set size.
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Chapter 1

Introduction

1.1 Motivation

Year after year, spending on cybersecurity increases, but the cost of cyberattacks only continues to

grow[1]. Despite this phenomena, there is a shortage of investments for public research into network

security, which has led to a lack of robust and interpretable network anomaly detection methods

[2]. Malmenator is a project that aims to make cybersecurity more accessible to broader society at

a reduced cost to enable trust in confidence in an increasingly digital world. We aim to create an

effective, affordable, and portable NIDS that can be utilized in any personal environment.

Here in this report, we focus on research goal of analyzing anomaly detection techniques. These

techniques will be implemented in the custom NIDS covered in [3].

1.2 Problem formulation

From an academic perspective, network anomaly detection faces two large challenges. The

foremost problem is the lack of a single widely accepted network traffic dataset. Each of the

benchmark network flow datasets available contain distinct features. Without a comprehensive and

representative dataset, the second problem is reached - appropriately developing, testing, and

deploying anomaly-based detection techniques using standardized norms and metrics. Malmenator

investigates the performance of anomaly detection models across datasets and proposes a robust

and scalable solution to implement as part of a hybrid anomaly detection tool for NIDS evaluation.
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1.3 Contributions

Malmenator aims to push the explore new techniques for anomaly detection that are more directly

relevant to the problem domain of cybersecurity. In particular, Malmenator proposes that the key

to making breakthroughs lies in the creation of better features rather than better models. Lastly,

Malmenator makes available an accessible NIDS implemented on top of a Raspberry Pi that functions

as a secure internet access point.

This report focuses on the former contributions detailing the research into anomaly detection

methodologies, while the last is covered in [3]. Specifically, this report shows the robustness of

ensemble learners for anomaly detection in network flows and proposes that the features relevant

to anomaly detection lie primarily in the statistical behavior and contents of packets. Thus, future

benchmark datasets ought to engineer and include these relevant features from the captured pcap

data.

1.4 Report organization

The remaining contents of this report are as follows. This report begins by providing a technical

background to the machine learning classification techniques that are used in anomaly detection.

It then gives an introduction to several key network datasets used in anomaly detection that are

popular in research before proceeding to discuss some state of the art techniques that have been

used to perform anomaly detection. From there, this report outlines the methodology by which

we perform anomaly detection across various datasets and evaluates the performance of our models

compared to other relevant research. Finally, this report provides a look into future directions of

research, some challenges that we dealt with, as well as a few concluding remarks.

Please note that this report is mean to be read in conjunction with [3], and the relevance and

background of certain sections rely on knowledge covered in its twin report. Relevant sections in [3]

will be addressed in each chapter’s overview.
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Chapter 2

Technical background

2.1 Overview

This section provides an introduction to the tools employed by Malmenator for our research in

network anomaly detection. This section is primarily for those who are unfamiliar with classical

machine learning methods or for those who are interested in a brief overview of various anomaly

detection techniques.

2.2 Machine learning methods in network anomaly detection

The anomaly detection problem boils down to the task of labeling a data point as being either a

normal point or an outlier (i.e. harmless or malicious network traffic in this case). The following

subsections cover different machine learning approaches to anomaly classification that this project

will explore with a particular emphasis on tree based ensemble learners. Variations of these

techniques are some of the highest performers on tabular data found on Kaggle today [4].

An overview for network anomaly detection techniques is depicted in figure 2.1. Note that an

exhaustive and in depth discussion on the various subcategories of each methodology is not discussed

in this report, but are discussed at length in several overview and survey articles including [6] [7]

[8] [9] [5]. This section will center its discussion on the shallow and supervised model of anomaly

detection. Specifically, we will focus on decision trees and advanced techniques that stem from them.
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Figure 2.1: Taxonomy of network anomaly detection methods

Categorization of the main approaches to network anomaly detection as shown in [5]. In green, we have
highlighted the decision tree approach which is the building blocks to the methodology that we explore. Note
that this list is by no means exhaustive. Research is being done on the applications of new algorithms in
anomaly detection such as genetic algorithms, artificial immune systems, and other statistical and ensemble
based methods. The full-name terms of the abbreviations can be easily found and explained online.

2.3 Decision trees

Decision tree algorithms are a machine learning technique that has been widely used in both

classification and regression problems. They operate by splitting the data into different partitions

based on certain if-else decision rules. With each decision rule, the data is split into smaller subsets

until a predefined depth of the splitting is reached or a maximum number of subsets are reached.

The partitioning method can differ based on different information gain metrics, and a number of

decision tree implementation have been created including ID3, C4.5, and CART [10] [11] [12].
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2.3.1 Classification and regression tree (CART)

The CART (classification and regression tree) implementation of decision trees was proposed in 1986

[12], but is still one of the highest performing forms of decision trees that is currently implemented

in the popular machine learning package, scikit-learn [13]. CART is similar to C4.5, but has the

added benefit of supporting regression problems. Other advantages of CART found by [14] include

the fact that CART is non parametric (no probabilistic assumptions) and that it is able to deal with

missing values.

2.4 Ensemble learning

Ensemble learners, like their name implies, are an ensemble of different machine learning algorithms

whose decisions are combined and taken into consideration holistically. This enables the ensemble to

make better predictions than any of its individual constituents [15]. There are several approaches to

determining the ensemble’s final output including a simple majority vote of its constituent models or

a weighted vote where different constituent models have a stronger input than others. The classical

machine learning implemented in Malmenator below are all ensemble learners.

2.4.1 Bagging (bootstrap aggregating)

Bagging is technique for ensemble learners that is designed to reduce variance, improve stability

and accuracy, and avoid overfitting. Bagging divides the original training set into multiple smaller

training sets by sampling the original training set uniformly and with replacement. Each of the

models inside the ensemble learner is then fit onto a corresponding smaller training set. It has been

shown that bagging leads to improvements for unstable procedures, which include classification

decision trees [16] [17].

2.4.2 Boosting

Boosting is another technique for ensemble learners that is used to reduce bias and variance. With

boosting, multiple weak learners within an ensemble are weighted and adjusted in such a manner

that they are able become a strong learner [18]. Here, weak learners refer to simpler models with non-

ideal performance who are then added to a stronger classifier with a weight that corresponds to the

weak learner’s accuracy. With each iteration, new weak learners focus on data that was previously
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misclassified. Since the rise of boosting, some variation of boosting algorithms have been used to

win a majority of Kaggle competitions according to its CEO, Anthony Goldbloom [4]. Boosting was

popularized by the Adaboost implementation by [19].

2.4.2.1 Gradient boosting

Gradient boosting is variation on the standard boosting algorithm that approaches the error

adjustments of boosting from a gradient-descent based formulation [20] [21]. In gradient boosting,

new weak learners are maximally correlated with the negative gradient of the loss function

associated with the whole ensemble [22]. The loss function can be chosen or customized by the

user, which enables gradient boosted ensamble to be highly flexible and customizable to a variety

of domains.

2.4.3 Random forest (RF)

Random forest is supervised ensemble learner method that is used primarily for classification. It

consists of a predefined number of decision trees who are trained one different subsets of the training

set. Here, boosting can be used to divide up the training set into subsets for each decision tree.

At the time of prediction, the random forest ensemble outputs the mode of the decisions of the

individual decision trees [23]. RFs are highly robust because they can reduce overfitting to the

training set [24], and are widely considered a top-performing machine learning algorithm [25]. In

this paper, we focus on random forests that implement underlying decision trees with the CART

algorithm that is implemented in scikit-learn [13].

2.4.4 XGBoost and LightGBM

In this paper, we focus on two highly popular implementations of gradient boosting libraries:

XGBoost [26], which was released in 2016 , and LightGBM [27], released in 2017. The main

difference between the two is that XGBoost uses a pre-sorted and histogram-based algorithm to

detemine the appropriate partition of decisions. On the other hand, LightGBM uses a new

technique, gradient-based one-side sampling (GOSS), to find the best split. Both libraries are

extremely robust and high-performing.
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2.5 Particulars for anomaly detection

In the anomaly detection, extra care must be taken when applying models to data due to the nature

of the problem scope. Different challenges in machine learning for anomaly detection are listed

below.

2.5.1 Class balancing

By definition, anomalies appear far less frequently than the majority class. This can cause issues

when training classifiers since the classifiers may tend to overlook features that relate to anomalous

activities. Thus, a number of techniques have been proposed to remedy this solution, namely:

1. Downsampling the majority class: Downsampling the majority class is a popular technique to

acheive class balance, and is commonly used preprocess the training data in network anomaly

detection.

2. Upsampling the minority class: Upsampling the minority class is similar to bootstrapping

data in that we can duplicate the minority class. However, it is not commonly used in network

anomaly detection due to the biases that can arise from duplicating a large number of flows.

3. Creating synthetic minority class data: SMOTE is one of the most popular techniques for

generating synthetic data [28]. This technique works by finding clusters of minority data and

creating synthetic data that would also lie within that cluster. However, the data generated

by this technique may not reflect real-life malicious traffic data, so this technique is not

consistently used in network anomaly detection.

4. Combine the minority classes: In multiclass problems with several different anomaly classes,

the problem can be reworked into a binary classification problem to detect anomalies. This

approach is widely used for network anomaly detection.

5. Penalize misclassified minority classes extra: By assigning more importance to classifying

minority classes, we can allow models to learn from a smaller set of anomalies. Interestingly,

although this technique is widely applied in other problem domains, it has not found much

traction in the network anomaly detection area.
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2.5.2 Model performance metrics

In network anomaly detection, great care is taken to reduce the number of false negatives and

minimize the amounts of false positives as described in table 2.1. A true positive (TP) occurs when

a predicted anomaly is a real anomaly, and a true negative (TN) occurs when a predicted benign

flow is a real benign flow. More importantly, we focus on false positives (FP), when a benign flow

is predicted as anomalous, as well as false negatives (FN), when an anomalous flow is predicted to

be benign. Also note that in the network anomaly detection domain, false positives are also known

as false alarms.

Actual Values
True (Anomaly) False (Benign)

Predicted
Values

True (Anomaly) True Positive False Positive
False (Benign) False Negative True Negative

Table 2.1: Classification of TP, FP, FN, and TN

Table indicating the different types of predictions for a binary classification problem. In anomaly detection,
we aim to minimize the number of false positives and false negatives.

To quantify performance of a model, there are the concepts of accuracy, precision, recall (known

in this space as detection rate), false alarm rate (FAR), and f1-score. The formulas of each are listed

below:

Accuracy =
TP + TN

TP + FP + FN + TN

Accuracy is the ratio of correct predictions to the total predictions. It is the most intuitive

performance measure, but it fails with asymmetric datasets such as anomaly detection. For

example, if only 1% of netflow traffic is anomalous, one could achieve .99 accuracy by blindly

predicting everything as benign.

Precision =
TP

TP + FP

Precision is the ratio of correct positive (anomalous) predictions to the total predicted positives.

High precision implies a low false positive rate, so it is a useful metric in anomaly detection.

Recall = Detection Rate =
TP

TP + FN

Recall is the ratio of correct positive predictions to all actual positive instances. This can be useful

8



in helping us indirectly asses our false negatives.

False Alarm Rate =
FP

FP + TN

False alarm rate is the ratio of incorrectly predicted positives to all true negatives. This can be

helpful in letting us know what percentage of benign network traffic we are flagging as anomalous.

F1 = 2 ∗ (Recall ∗ Precision)

Recall + Precision

Lastly, the F1 score is the weighted average of precision and recall and gives a holistic picture that

captures the rate of false positives and negatives.

2.6 Summary

In this section, we have given a high level overview of some different approaches that are used for

anomaly detection, and have discussed in greater detail the types of algorithms that are used in

this paper. Furthermore, this section discussed unique challenges in the network anomaly detection

space and their remedies.
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Chapter 3

Literature Review

3.1 Overview

This chapter provides an in depth look into the context of the Malmenator project through a review

of relevant literature. It first looks at research in the areas of network traffic dataset generation

before proceeding with various model approaches in network anomaly detection.

Given that cybersecurity is a niche field in cybersecurity, it may prove useful to read ıCh.2 A

Primer on Cybersecurity from [3] for a general introduction to the field as well as an overview of

different types of cyberattacks. It is also advisable to read ıCh.3 Technical Background from the

same report for a deeper understanding of the data types, such as flow-based data, that will be

encountered later in this section.

3.2 Network traffic datasets

One of the major research challenges in training and evaluating an NIDS is the unavailability of

a single comprehensive network traffic dataset which that reflects modern network traffic scenarios

[7]. Since the effectiveness of an NIDS is evaluated based on its performance against data set that

contains normal and abnormal behaviors, it is critically important to use a combination of datasets

that feature different attack behaviours to serve as a metric for evaluation.
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3.2.1 Methods for network traffic dataset generation

Testing NIDSs against realistic data has always been a challenge in the network security field as

captured data from the real world is sensitive and is not publicly available [29]. Thus, the common

practice is to generate realistic data in an environment that mimics the real world as close as possible.

There are three main methods by which network data is generated:

1. Simulation: all entities of the network are simulated

2. Emulation: attackers and targets are physically implemented, while the network structure is

simulated with software

3. Physical Representation: all entities of the network are physically implemented

Each method has their own benefits and drawbacks that are more fully discussed in [29]. It

important to note that testing NIDSs is not a straightforward task, and that it is recommended

to use a number of datasets for comprehensive evaluation [30]. In the network security field, it is

important to be aware of the means by which datasets are generated as network dataset generation

is a huge research area itself.

3.2.2 Old reference datasets

The most famous and classical benchmark network datasets are the KDD99, DARPA 1998, and

DARPA 1999 datasets, were all gathered from simulated environments [31] [32] [33]. Unfortunately,

since their inception nearly two decades ago, a number of studies have shown that evaluating an

NIDS on these datasets is ineffective as they do not reflect realistic network data [34] [35] [36]

[37]. These datasets have not been able to accurately reflect the changing landscape of network

cybersecurity.

3.2.3 Key datasets

3.2.3.1 NSL-KDD

To solve some issues revolving around the KDD99 dataset such as duplicated entries and improper

class balancing, the NSL-KDD dataset was created in 2009. NSL-KDD enhances the KDD99 dataset

by removing a large number of duplicated columns and eliminating rows with erroneous data [38].

It has advantages over the original KDD99 dataset including that there are no redundant records
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in the train sets, there are no duplicate records in the test sets, and there are fewer records in the

training and test sets that make it more reasonable to run experiments on.

Attack Class Training Instances Testing Instances
Normal 67343 9710

DoS 45927 7458
Probe 11656 2422
R2L 995 2887
U2R 52 67
Total 125973 22544

Table 3.1: Attack class proportions of NSL-KDD training and testing set

# Feature
1 duration
2 protocol type
3 service
4 flag
5 src bytes
6 dst bytes
7 land
8 wrong fragment
9 urgent
10 hot
11 num failed logins
12 logged in
13 num compromised
14 root shell
15 su attempted
16 num root
17 num file creations
18 num shells
19 num access files
20 num outbound cmds
21 is host login

22 is guest login
23 count
24 srv count
25 serror rate
26 srv serror rate
27 rerror rate
28 srv rerror rate
29 same srv rate
30 diff srv rate
31 srv diff host rate
32 dst host count
33 dst host srv count
34 dst host same srv rate
35 dst host diff srv rate
36 dst host same src port rate
37 dst host srv diff host rate
38 dst host serror rate
39 dst host srv serror rate
40 dst host rerror rate
41 dst host srv rerror rate

Table 3.2: The 41 features in the NSL-KDD dataset

However, it is important to note that the underlying network traffic of the NSL-KDD dataset

dates back to more than two decades ago, which renders it a poor representation of a modern attack

environment [39]. Furthermore, the reduced number of elements inside the NSL-KDD dataset do

not address the concerns laid out in [36]. Despite this, the KDD99 and NSL-KDD cup continue

to be widely used as benchmark datasets for validating anomaly detection models even with the
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availability of newer and more relevant datasets.

The NSL-KDD dataset contains a predefined train and test set that enable researchers to quickly

and easily run experiments. Their breakdown and attributes are listed in tables 3.1 and 3.2.

3.2.3.2 UNSW-NB15

The UNSW-NB15 dataset was created using an emulated environment using the IXIA Perfect Storm

tool in the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) using a mix of

synthetic modern attack patters and real user behaviors. It is available in both packet-based and

flow-based formats, which makes it highly suitable for experimentation [39]. The tcpdump tool was

used to capture pcap files of the raw traffic which contained nine different forms of attacks: Generic,

Exploits, Backdoors, Fuzzers, Analysis, Backdoors, DoS, Reconnaissance, Worms, and Shellcode.

UNSW-NB15 was created with the intention of solving several of the criticisms of the KDD99 and

NSL-KDD datasets in the hope of being a contemporary benchmark dataset for NIDSs [39].

Attack Class Training Instances Testing Instances
Normal 56000 37000
Fuzzers 18184 6062
Analysis 2000 677

Backdoors 1746 583
DoS 12264 4089

Exploits 33393 11132
Generic 40000 18871

Reconnaissance 10491 3496
Shell Code 1133 378

Worms 130 44
Total 175341 82332

Table 3.3: Attack class proportions of UNSW-NB15 training and testing set

The UNSW-NB15 dataset contains 49 features and is also presplit into training and test sets for

experimentation that are highlighted in tables 3.3 and 3.4. Additionally, they also make the entire

super set of flow data available to experimentation on larger datasets as needed.

3.2.3.3 CICIDS 2017

The CICIDS 2017 dataset was also created using an emulated environment and contains network

traffic in both packet and flow-based formats. It comprises of 5 days of network traffic generated

in an emulated environment and comes in both bidirectional flow-based format and the standard
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# Feature Description
Flow features

1 srcip Source IP address
2 sport Source port number
3 dstip Destinations IP address
4 dsport Destination port number
5 proto Protocol type (e.g. TCP)

Basic features
6 state State dependent protocol (e.g. CON)
7 dur Flow duration
8 sbytes Source to destination bytes
9 dbytes Destination to source bytes
10 sttl Source to destination time to live
11 dttl Destination to source time to live
12 sloss Source packets retransmitted/dropped
13 dloss Destination packets retransmitted/dropped
14 service e.g. HTTP, STP
15 sload Source bits per second
16 dload Destination bits per second
17 spkts Source to destination packet count
18 dpkts Destination to source packet count

Content features
19 swin Source TCP window advertisement value
20 dwin Destination TCP window advertisement value
21 Stcpb Source TCP base sequence number
22 dtcpb Destination TCP base sequence number
23 smeansz Mean of the packet size transmitted by the srcip
24 dmeansz Mean of the packet size transmitted by the dstip
25 trans depth The connection of http request/response transaction
26 res bdy len The content size of the data transferred from http

Time features
27 sjit Source jitter
28 djit Destination jitter
29 stime Row start time
30 ltime Row last time
31 sintpkt Source inter-packet arrival time
32 dintpkt Destination inter-packet arrival time
33 tcprtt Setup round-trip time, the sum of synack and ackdat
34 synack The time between the SYN and the SYN ACK packets
35 ackdat The time between the SYN ACK and the ACK packets
36 is sm ips ports If srcip (1) = dstip (3) and sport (2) = dsport (4), assign 1 else 0

Additional features
37 ct state ttl No. of each state (6) according to values of sttl (10) and dttl (11)
38 ct flw http mthd No. of methods such as Get and Post in http service
39 is ftp login If the ftp session is accessed by user and password then 1 else 0
40 ct ftp cmd No of flows that has a command in ftp session
41 ct srv src No. of rows of the same service (14) and srcip (1) in 100 rows
42 ct srv dst No. of rows of the same service (14) and dstip (3) in 100 rows
43 ct dst ltm No. of rows of the same dstip (3) in 100 rows
44 ct src ltm ltm No. of rows of the srcip (1) in 100 rows
45 ct src dport ltm No of rows of the same srcip (1) and the dsport (4) in 100 rows
46 ct dst sport ltm No of rows of the same dstip (3) and the sport (2) in 100 rows
47 ct dst src ltm No of rows of the same srcip (1) and the dstip (3) in 100 records

Labelled features
48 Attack cat The name of each attack category
49 Label 0 for normal and 1 for attack records

Table 3.4: The 49 features in the UNSW-NB15 dataset
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Attack Class Instances
BENIGN 2359087

Bot 1966
DDoS 41835

DoS GoldenEye 10293
DoS Hulk 231072

DoS Slow-httptest 5499
DoS slowloris 5796
FTP-Patator 7938
Heartbleed 11
Infiltration 36
PortScan 158930

SSH-Patator 5897
Web Attack - Brute Force 1507
Web Attack - Sql Injection 21

Total 2829888

Table 3.5: Attack class proportions of CICIDS 2017 dataset

packet-based format. It consists of more than 80 features for each flow and enriches the data about

IP addresses and cyberattacks by providing extra metadata for both of them. Normal user behavior

was executed via scripts, and the attacks have a wide range, including SSH brute force, DDoS,

heartbleed, and botnet attacks [40]. A detailed breakdown of this dataset is given in tables 3.5 and

3.6.

A major advantage of this dataset is that it comprises of a wide variety of modern cyberattack

scenarios, which makes it a prime choice for its utilization in this project. The CICIDS2017 dataset

is not split into any predefined training and testing sets, and a number of approaches have been

taken for selecting testing and training datasets that allow for appropriate attack representation and

class balancing [41] [42].

3.2.4 Dataset selection

According to the most recent survey on network datasets published earlier this year [30], the CIDDS-

001, CICIDS 2017, UNSW-NB15, and UGR16 data sets the the most ideal for uses across generalized

applications. UGR16 has a huge volume, CIDDS-001 contains detailed metadata for deeper analysis,

and CICIDS 2017 and UNSW-NB15 have large variations in attack scenarios [30]. However, the

CIDDS-001 and UGR’16 datasets have not been widely used in literature, so utilizing them as

benchmark datasets is impractical. There are also a number of other anomaly detection datasets,

but they are more appropriately utilized in specialized cases and for certain evaluation scenarios
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# Feature
1 Destination Port
2 Flow Duration
3 Total Fwd Packets
4 Total Backward Packets
5 Total Length of Fwd Packets
6 Total Length of Bwd Packets
7 Fwd Packet Length Max
8 Fwd Packet Length Min
9 Fwd Packet Length Mean
10 Fwd Packet Length Std
11 Bwd Packet Length Max
12 Bwd Packet Length Min
13 Bwd Packet Length Mean
14 Bwd Packet Length Std
15 Flow Bytes/s
16 Flow Packets/s
17 Flow IAT Mean
18 Flow IAT Std
19 Flow IAT Max
20 Flow IAT Min
21 Fwd IAT Total
22 Fwd IAT Mean
23 Fwd IAT Std
24 Fwd IAT Max
25 Fwd IAT Min
26 Bwd IAT Total
27 Bwd IAT Mean
28 Bwd IAT Std
29 Bwd IAT Max
30 Bwd IAT Min
31 Fwd PSH Flags
32 Bwd PSH Flags
33 Fwd URG Flags
34 Bwd URG Flags
35 Fwd Header Length
36 Bwd Header Length
37 Fwd Packets/s
38 Bwd Packets/s
39 Min Packet Length
40 Max Packet Length

41 Packet Length Mean
42 Packet Length Std
43 Packet Length Variance
44 FIN Flag Count
45 SYN Flag Count
46 RST Flag Count
47 PSH Flag Count
48 ACK Flag Count
49 URG Flag Count
50 CWE Flag Count
51 ECE Flag Count
52 Down/Up Ratio
53 Average Packet Size
54 Avg Fwd Segment Size
55 Avg Bwd Segment Size
56 Fwd Header Length
57 Fwd Avg Bytes/Bulk
58 Fwd Avg Packets/Bulk
59 Fwd Avg Bulk Rate
60 Bwd Avg Bytes/Bulk
61 Bwd Avg Packets/Bulk
62 Bwd Avg Bulk Rate
63 Subflow Fwd Packets
64 Subflow Fwd Bytes
65 Subflow Bwd Packets
66 Subflow Bwd Bytes
67 Init Win bytes forward
68 Init Win bytes backward
69 act data pkt fwd
70 min seg size forward
71 Active Mean
72 Active Std
73 Active Max
74 Active Min
75 Idle Mean
76 Idle Std
77 Idle Max
78 Idle Min
79 Label

Table 3.6: The 79 features in the CICIDS 2017 dataset
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where they may excel such as in botnet attacks or android malware attacks. Discussions on other

specialized or older datasets can be found in [30] [43] [39] and [29]. It is important to note that

many existing network datasets suffer from inaccurate labelling and poor attack diversity [6]. Thus,

results in this field must be taken with a grain of salt, with close attention being paid to the details

of model implementation and validation.

3.3 Network anomaly detection

3.3.1 High performing models

There has been a significant amount of research done on anomaly detection that range the gamut of

deep neural networking to fuzzy computing to information theory. Here, we highlight some of the

techniques that have the highest performance or that are most similar to our models for comparison.

The creators of the CICIDS 2017 dataset ran some classical out-of-box machine learning

techniques on the dataset as a set of benchmarks [40]. Their findings are summarized in table 3.7.

It is interesting to note that KNN, RF, and ID3 far outperform AdaBoost on the dataset.

Algorithm Precision Recall F1
KNN 0.96 0.96 0.96
RF 0.98 0.97 0.97
ID3 0.98 0.98 0.98

AdaBoost 0.77 0.84 0.77
MLP 0.77 0.83 0.76

Naive-Bayes 0.88 0.04 0.04
QDA 0.97 0.88 0.92

Table 3.7: Benchmark model performance metrics from the creators of CICIDS 2017

Table summarizing the findings in [40] that shows the performance results for the K-Nearest Neighbors
(KNN), Random Forest (RF), ID3 Decision Tree, Adaboost, Multilayer perceptron (MLP), Naive-Bayes
(NB), Quadratic Discriminant Analysis (QDA) on the CICIDS 2017 dataset.

In late 2018, Ahmim et al. built upon his earlier research on a binary tree of classifiers [44]

and implemented a novel hierarchical model using three distinct classifiers: one for binary anomaly

detection, one for multiclass classification, and a third one that uses the output of the former two in

making a final predictor [45]. They divided the dataset into two sets of 40,000 flows for training and

testing. Each set had 20,000 benign and 20,000 attack flows, with each of the attacks represented

in both train and test data. They were able to obtain an overall accuracy of .967 with a detection

rate (1 - false negative rate) of .944.
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In April 2019, Vinayakumar and his team implemented a number of deep neural networks (DNNs)

across a number of datasets including KDD99, NSL-KDD, UNSW-NB15, and CICIDS 2017 datasets

[42]. They determined the optimal hyperparamters and network topology of the DNN purely by

looking at the KDD99 dataset. Ultimately, they provided various model results for DNNs of varying

fully connected layers using a ReLU activation function for both binary classification (combining the

attack classes) and multiclass classification problems. Futhermore, they ran test results of clasical

machine learning classifiers as a comparison benchmark. Their highest performing proposed DNN

results and highest performing classical machine learning classifiers are summarized and extracted

into Table 3.8. For the binary classification task, the classical machine learning techniques performed

better in the NSL-KDD and UNSW-NB15 in nearly every regard - especially tree-based ensemble

classifiers. However, the researchers found that the DNNs exhibited better performance in the

CICIDS 2017 dataset and for multiclass classification problem where there was a prevalence of

imbalanced classes.

Dataset (architecture) Accuracy Precision Recall F1
Novel DNN Architectures

NSL-KDD (DNN 1-layer) 0.801 0.692 0.969 0.807
UNSW-NB15 (DNN 1-layer) 0.784 0.944 0.725 0.820
CICIDS 2017 (DNN 1-layer) 0.963 0.908 0.973 0.939

Classical Machine Learning
NSL-KDD (Decision Tree) 0.930 0.928 0.943 0.935

UNSW-NB15 (Random Forest) 0.903 0.988 0.867 0.924
CICIDS 2017 (Random Forest) 0.940 0.849 0.969 0.905

Table 3.8: Selected performances in binary classification from Vinayakumar et al. on various datasets

Table summarizing the findings in [42] regarding their proposed DNN techniques as well as the best classical
machine learning algorithms run on some datasets. Interestingly, the classical machine learning algorithms
outperformed the deep learning techniques by a significant margin in the binary classification task.

Other research done in March 2019 on improving the performance of the AdaBoost algorithm

on CICIDS 2017 used a combination of Synthetic Minority Oversampling Technique (SMOTE),

Principal Component Analysis (PCA), and Ensemble Feature Selection (EFS) [46]. The utilized

different approaches for features selection including identifying 16 features that accounted for the

most variance according to PCA as well as another set of 25 features that were giving the highest

weight importance in ensemble learning. Building on top of these features, the researchers were

able to achieve a maximum accuracy, precision, recall, and F1 Score of 81.83%, 81.83%, 100%, and

90.01% respectively.
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In June 2019, Chiba et al. proposed a combination of machine learning algorithms for anomaly

detection [47]. They proposed a deep neural network whose hyperparameters were encoded into

strings and used as chromosomes in an improved genetic algorithm to optimize the network

parameters. After 200 generations, the network architecture with the highest fitness was

determined using the AUC as a fitness function. On the They were able to achieve impressive

results on the NSL-KDD, CICIDS 2017, and CIDDS-001 datasets, achieving an F1 score of .99 on

all three of them with both false positive and false negative rate below 0.01 across all datasets.

They created train and test sets for CICIDS 2017 in the same manner as [45] with 40,000 flows for

train and test sets each.

In December 2019, further work was done to improve the performance of XGBoost on the UNSW-

NB15 data [48]. Since XGBoost only support numeric values, all nominal values such as protocol

type (e.g. TCP and UDP), the flow state (e.g ACC and CLO) and its service (e.g. HTTP and SSH)

were not included in the analysis. Furthermore, the source and destination ports were not included

in the analyses. The researchers ran a number of classical machine learning models on the data in

comparison with XGBoost and found that Random Forest had a similar performance. XGBoost and

Random Forest were able to obtain accuracies of 92% and 93% respectively.

3.3.2 Feature selection

Significant work has also been done to identify the key features within each dataset. The relevant

papers found all focus on finding a minimal subset of relevant features that either preserve of enhance

the performance of models. However, little work has been done to engineer new features or to

determine the most ideal features across datasets.

In 2015, Moustafa and Slay used an association rule mining (ARM) algorithm to determine the

strongest features of the KDD99 and UNSW-NB15 datasets [49]. They recreated the KDD99 dataset

using the features in the UNSW-NB15 dataset and determined that the features encapsulated in the

UNSW-NB15 feature set were stronger predictors than the original features in KDD99 for binary

classifiers. Most notably, they highlighted that the features of the flow state, packet life duration,

packet loss, the window advertisement size, the packet rate, and the mean packet size were all critical

features.

In October 2019, Reis et al. reduced the feature set of CICIDS 2017 to 10 key features using

permutation importance [50]. Reis et al. used three feature selection approaches, namely gini

importance, permutation importance, and drop column importance to find the most important
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features, and then utilized a mixture of RF, XGBoost, and LightGBM to evaluate the dataset.

They found that the most important features included the the minimum flow interarrival time

(IAT), initial window of bytes, the destination port, and the mean and minimum size of packets.

Using the reduced feature set, the authors were able to achieve a high of 93% precision, 91% recall

and 91.9% F1-score, on the multiclass classification formulation of the problem.

Binbusayyis and Vaiyapuri [51] also propose a feature a combination of ensemble methods for

feature selection process consistency based feature selection (CBF), correlation based feature

selection (CFS), information gain based feature selection (IG), and ReliefF Filter. Using these

feature selection and weighting methods in conjunction with a RF classifier, they were able to

achieve a maximum of .9993 accuracy, a .999 detection rate, and a .001 false alarm rate on the

CICIDS 2017 dataset. They identified key features to include the destination port, flow duration,

the flow packet and bit rate, and the mean flow IAT and its standard deviation.

3.4 Constraints of machine learning

Despite the huge variety of network anomaly detection techniques being researched, all machine

learning methodologies must keep several key points in mind in order for to be functional in a real

world implementation. According to one of the world’s leading cybersecurity firms, Kaspersky Labs,

network anomaly detection models must: (1) be interpretable, (2) have relatively few false positives,

(3) adapt to counteractions, and (4) be trained on a large and comprehensive dataset [52]. These

key points are touted not only in industry, but also in academic research environments [53].

3.5 Summary

This section first explored methods for formatting and creating network data before proceeding to

highlight several recent and comprehensive datasets. Lastly, this section discussed several recent

papers for applying machine learning to the network anomaly detection problem. With ample

background knowledge of the topic and relevant research, the next section will detail how Malmenator

approaches the anomaly detection problem.
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Chapter 4

Methodology

4.1 Overview

This chapter covers in detail data preprocessing and analysis of the three selected datasets. From

there, we discuss our methodology for model training and evaluation with regards to different metrics.

For the engineering methodology of Malmenator, please refer to [3]

4.2 General methodology

Given that each of the benchmark netflow datasets contain many different engineered features, with

only a small subset of them overlapping, we opted to push for research that would enable us to look

into the types of features that are most relevant to discovering anomalies in the domain space rather

than proposing novel architectures that have marginally better performance. To do this, we closely

scrutinize the predictive accuracy of the models as well as the relative importance of their features.

4.3 Data processing

Unlike some of the prior work done to perform rigorous feature selection on each individual dataset,

we opted to do as little feature selection as possible in order to better visualize the important

features. instead, we only eliminated features with significant correlation (absolute value ¿ 0.95) to

other features after normalization on a standardized normal distribution. The selection of ensemble

decision tree models also made our research less reliant to heavy feature selection. For the NSL-
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KDD dataset, little work was done except to use that as a benchmark comparison due to lack

of access to the underlying pcap files. For the UNSW-NB15 dataset, we used both the suggested

train/test datasets as well as engineered our own from the raw data for comparison. For the CICIDS

2017 dataset, since there is no recommended train/test split, we created our own. The following

procedures were taken in the process of creating our own custom train/test datasets from UNSW-

NB15 and CICIDS 2017:

1. Dataset Cleaning : Remove rows with missing elements. Correct cells with impossible values.

Eliminate columns with the same value for all features

2. Feature Engineering : One-hot encode categorical variables with a dummy variable dropped to

prevent multicollinearity. Pseudo-encode information properly (e.g. not treating ports as a

continuous value)

3. Feature Scaling & Correlation Detection: Remove columns with correlation of R ¿ 0.95 to

better isolate key features

4. Train/Test Split : Vary train test split to test hypothesis of number of flow instances requires

to develop and accurate baseline. Can also vary between stratified and not stratified (i.e.

whether or not to expose the training set to same distribution of attacks as test set)

5. Class Balancing : Downsample the majority class, benign traffic, to enable the classifier to

better learn from the features. Combine the minority attack classes for pure binary anomaly

classification.

6. Dataset Visualization: Visualize the training data to see how well the features explain the

variance within the data.

4.3.1 NSL-KDD

For the NSL-KDD dataset, minimal data preprocessing work was needed since it is a processed

and cleaned subset of the underlying KDD99 dataset. There were no missing attributes, erroneous

columns, or anything else that needed cleaning. The main steps that were performed for feature

engineering was the one hot encoding of the ’service’, ’protocol type’, and ’flag’ features.

Furthermore, the feature ’num outbound cmds’ was removed due to being uniformly filled with 0.

In addition, the following features were removed since they had a correlation value R ¿ 0.95 with

other features in the dataset: ’num root’, ’srv serror rate’, ’srv rerror rate’, ’dst host serror rate’,
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’dst host srv serror rate’, ’dst host srv rerror rate’, and ’flag S0’. The modified training dataset in

visualized in figure 4.1. It is evident that the decision boundaries between the classes are

non-linear, but also that the features themselves do not adequately explain variance between the

types of network flows.

(a) t-SNE

(b) 2-dimensional PCA (c) 3-dimensional PCA

Figure 4.1: Visualization of NSL-KDD training set

The three figures show different representations of of the high dimensional data space. The t-SNE shows
that there is significant overlap between the benign flows (colored in red) with the attack classes. The same
is true for the underlying PCA analysis where the feature space does not adequately represent the latent
variance in the data.

4.3.2 UNSW-NB15

4.3.2.1 Presplit

UNSW-NB15 contains a proposed presplit train/test dataset. Similar to with NSL-KDD, we

performed one hot encoding of the ’service’, ’proto’, and ’state’ features and removed features with
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high correlation after scaling, namely: ’sbytes’, ’dbytes’, ’sloss’, ’dloss’, ’dwin’, ’ct src dport ltm’,

’ct dst src ltm’, ’ct ftp cmd’, ’ct srv dst’, ’protocol tcp’, ’protocol arp’, ’state FIN’. The t-SNE

dimensional reduction technique as well as PCA were both run on the data to visualize the

variability in the data that is accounted for by the features in figure 4.2, and it is clear there is a

nice spread.

(a) t-SNE

(b) 2-dimensional PCA (c) 3-dimensional PCA

Figure 4.2: Visualization of the UNSW-NB15 downsampled presplit training set

The figures depict different representations of of the high dimensional data space.for UNSW-NB15. This
downsampled dataset has been feature engineered, and both the PCA and t-SNE show that although the
data is not linearly separable, its latent vectors can account for a large amount of its variance

4.3.2.2 Custom Split

In addition to the presplit train/test data, the authors of UNSW-NB15 also made the raw netflow

data available. This raw netflow data contains 2540047 flows, which is more than 10x more

compared to 175341 flows in the presplit test dataset. Furthermore, this raw data contains

24



additional information such as the source and destination port addresses. Using this information,

we engineered additional features for if a port was a ”well known” port (i.e. range 0-1023) or if it

was a ”registered” port registered with the Internet Assigned Numbers Authority (IANA) or by

Internet Corporation for Assigned Names and Numbers (ICANN). Registered ports range from

1024 to 49151. Like in the presplit data, columns that were filled entirely with the same value or

which had exceedingly high correlation values to another column were removed. Columns which

had more than 50% of their attributes empty were also removed, which includes

’ct flw http mthd’, ’is ftp login’, and ’ct ftp cmd’. Note that all of these columns were filled in the

presplit train/test set.

From here, we create our own enlarged stratified dataset. Stratified in this case means that both

the test and train datasets contain the same distribution of normal and attack class types. The

breakdown of classes can be found in 4.1. Here, we experimented with lowering the training set to

ludicrously low levels to see if the models were robust enough to learn generalisable features using

a combination of the original features as well as the engineered features.

Split 1 2 3 4 5 6 7 8 9 Attacks Total
UNSW-NB15 Stratified

Train (70%) 150837 31167 16972 11447 9791 1874 1630 1058 122 224898 574898
Test (30%) 64644 13358 7274 4906 4196 803 699 453 52 96385 246385

UNSW-NB15 Stratified Small Train Proportion
Train (10%) 21548 4452 2425 1635 1399 268 233 151 17 32128 82128
Test (90%) 193933 40073 40073 14718 12588 2409 2096 1360 157 289155 739155

UNSW-NB15 Stratified Tiny Train Proportion
Train (5%) 10774 2226 1212 818 699 134 116 76 9 16064 41064
Test (95%) 204707 42299 23034 15535 13288 2543 2213 1435 165 305219 780219

UNSW-NB15 Stratified Miniscule Train Proportion
Train (2%) 4309 890 485 327 280 54 47 30 3 6425 16425
Test (98%) 211172 43635 23761 16026 13707 2623 2282 1481 171 314858 804858

Table 4.1: Feature breakdowns for the different UNSW-NB15 test/train splits

Table summarizing the feature breakdowns for the different custom splits. The attack type integer mappings
are as follows: 1: Generic, 2:Exploit, 3:Fuzzer, 4:DoS, 5:Recon, 6:Analysis, 7:Backdoor, 8:Shellcode, and
9:Worm.

4.3.3 CICIDS 2017

CICIDS 2017 did not have any presplit train/test sets, so we first created a split of the data similar

to that found in [45] and [42] that consisted of equal sized training and test sets, each of which

contained 40000 flows. Both testing and training sets consisted of 20000 attacks and 20000 benign

flows.
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(a) t-SNE

(b) 2-dimensional PCA (c) 3-dimensional PCA

Figure 4.3: Visualization of a CICIDS 2017 downsampled training set

In the figures above, the PCA and t-SNE dimensionality reduction techniques show that the variance in the
data is greatly explained through its features. Of the 3 datasets analyzed, its principal component account
for the greatest amount of variance.

For creating our own custom feature set, we uncovered a number of issues that to our knowledge

was not mentioned by other researchers. First, flow data from one of the component csv files had

some values of ’Init win bytes forward’ set to -1. However, it is impossible to initiate a byte window

of size -1, and it took a large amount of digging to discover to uncover that it was cause by a

software issue with CICFlowmeter and should be set to 0 instead. Second, some rows contained

negative segment lengths which is also impossible. These entries were removed from usage. Other

rows containing NaNs and inf values were removed as they were in other papers. Lastly, empty

columns and highly correlated columns after standardization were removed. Visualization of the

dataset is shown in 4.3 and the class breakdowns of the train/test splits are in 4.2
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Split 1 2 3 4 5 6 7 8 9 Attacks Total

CICIDS 2017 Stratified

Train (70%) 35000 35000 35000 5552 4126 1369 1526 25 5 117603 397602
Test (30%) 15000 15000 15000 2379 1769 587 654 10 2 50401 170402

CICIDS 2017 Stratified Small Train Proportion

Train (10%) 5000 5000 5000 793 589 196 218 3 1 16800 56800
Test (90%) 45000 45000 45000 7138 5306 1760 1962 32 32 151204 511204

CICIDS 2017 Stratified Tiny Train Proportion

Train (5%) 2500 2500 2500 396 295 98 109 2 0 8400 28400
Test (95%) 47500 47500 47500 7535 1858 2071 2213 33 7 159604 539604

CICIDS 2017 Stratified Miniscule Train Proportion

Train (2%) 1000 1000 1000 159 118 39 43 1 0 3360 11360
Test (98%) 49000 49000 49000 7772 5777 1917 2137 34 7 164644 556644

Table 4.2: Feature breakdowns for the different CICIDS 2017 test/train splits

Table summarizing the feature breakdowns for the different custom splits. The attack type integer
mappings are as follows: 1: DDoS, 2:DoS, 3:PortScan, 4:FTP-Patator, 5:SSH-Patator, 6:Bot, 7:Web Attack,
8:Infiltration, and 9:Heartbleed.

4.4 Model performance and feature importance

We fit the RF, XGBoost, and LightGBM ensemble learners across various splits of the datasets. Table

5.1 contains the model performance on the presplit NSL-KDD, presplit UNSW-NB15, and several

custom and feature engineered splits of UNSW-NB15. The performance metrics for the CICIDS 2017

dataset are listed in table 5.2 and contains a variety of scenarios of train/test splits that include

giving the ensemble a limited number of training samples and changing attack distributions between

the train and test sets.

In addition, we are interested to see which features in each of the underlying datasets are the

most pertinent to anomaly detection. To this end, for each of the models trained on each of the data

partitions, we track them in table 5.4 for NSL-KDD and UNSW-NB15 and table 5.5 for CICIDS

2017.

4.5 Summary

In this chapter, we cover the process of feature engineering and data preprocessing that enables us

to train computationally efficient, yet robust models that have comparable performance to state of

the art models. Understanding the procedures done here are key to understanding the implications

of the results

27



Chapter 5

Results and discussion

5.1 Overview

This chapter focuses on analyzing the results from the experiment. Here, we focus on the the

performance and robustness of the models across the different train/test splits discussed in the

methodology, the feature importances, and the important implications this has toward the future of

feature engineering in anomaly detection.

5.2 Model performance metrics

The most critical aspect of creating an anomaly detection model is its evaluation - this is doubly

true for the cybersecurity space for the reasons listed in the introduction. On the feature engineered

UNSW-NB15 and CICIDS 2017 datasets, the model consistently is able to achieve over 99% on

accuracy, precision, recall, f1 score, and detection rate (See tables 5.1 and 5.2). At the same time,

the model regularly has less than a 0.5% false alarm rate. Both ensemble learners that used gradient

boosting, XGBosst and LightGMB, exhibited similar performance metrics. The RF classifier was also

similarly robust. On the UNSW-NB15 dataset, the RF model had noticeable fewer false negatives

when exposed to a small training set, although the reverse was true on the CICIDS 2017 dataset.

The model’s stable performance regardless independent of the training test size seem to show

that the model is able to generalize well overfitting to the profiles of the different attack classes -

given that there are sufficient features to learn from. It is interesting to note that the ensemble

learners trained on the presplit training data set were outperformed by models exposed to an order
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Model architecture TP TN FP FN Accuracy Precision Recall F1
NSL-KDD

train=125973 (85%), test=22544 (15%)
Random Forest 9448 7931 263 4902 0.771 0.973 0.658 0.785

XGBoost 9441 8331 270 4502 0.788 0.972 0.677 0.798
LightGBM 9436 8144 275 4689 0.780 0.972 0.668 0.792

UNSW-NB15 Presplit Train/Test
train=175341 (68%), test=82332 (32%)

Random Forest 27123 44692 9877 640 0.872 0.733 0.977 0.838
XGBoost 27520 44600 9480 732 0.876 0.744 0.974 0.844

LightGBM 27326 44687 9674 645 0.875 0.739 0.977 0.841
UNSW-NB15 Stratified

train=574898 (70%), test=246385 (30%)
Random Forest 148461 96065 1539 320 0.992 0.998 0.990 0.994

XGBoost 148465 96027 1535 358 0.992 0.998 0.990 0.994
LightGBM 148324 96131 1676 254 0.992 0.998 0.989 0.993

UNSW-NB15 Stratified
Small Train Proportion: train=82128 (10%), test=739155 (90%)

Random Forest 444397 288458 5603 697 0.991 0.998 0.988 0.993
XGBoost 444862 287708 5138 1447 0.991 0.997 0.989 0.993

LightGBM 444701 288217 5299 938 0.992 0.998 0.988 0.993
UNSW-NB15 Stratified

Tiny Train Proportion: train=41064 (5%), test=780219 (95%)
Random Forest 468768 304679 6232 540 0.991 0.999 0.987 0.993

XGBoost 469359 303699 5641 1520 0.991 0.997 0.988 0.992
LightGBM 469271 303914 5729 1305 0.991 0.997 0.988 0.992

UNSW-NB15 Stratified
Miniscule Train Proportion: train=16426 (2%), test=804857 (98%)

Random Forest 483382 314462 6601 413 0.991 0.999 0.987 0.993
XGBoost 484086 313105 5897 1770 0.990 0.996 0.988 0.992

LightGBM 484064 313385 5919 1490 0.991 0.997 0.988 0.992

Table 5.1: Model performance on NSL-KDD and UNSW-NB15 datasets

Table summarizing the prediction results for the models trained on different partitions of the NSL-KDD and
UNSW-NB15 datasets. UNSW-NB15 Original refers to training on the provided test/train split with
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Model architecture TP TN FP FN Accuracy Precision Recall F1
CICIDS 2017 Standard Split (w/ Feature Engineering)

Stratified: train=40000 (%50), test=40000 (50%)
Random Forest 19939 19918 61 82 0.996 0.997 0.996 0.996

XGBoost 19954 19963 46 37 0.998 0.998 0.998 0.998
LightGBM 19945 19966 55 34 0.998 0.997 0.998 0.998

CICIDS 2017 Stratified
train=397602 (70%), test=170402 (30%)

Random Forest 119862 50255 139 146 0.998 0.999 0.999 0.999
XGBoost 119866 50342 135 59 0.999 0.999 1.000 0.999

LightGBM 119829 50315 172 86 0.998 0.999 0.999 0.999
CICIDS 2017 Stratified

Small Train Proportion: train=56800 (10%), test=511204 (90%)
Random Forest 359361 150368 639 836 0.997 0.998 0.998 0.998

XGBoost 359463 359463 537 467 0.999 0.999 0.999 0.999
LightGBM 359377 150829 623 375 0.998 0.998 0.999 0.999

CICIDS 2017 Stratified
Tiny Train Proportion: train=28400 (5%), test=539604 (95%)

Random Forest 379249 158172 751 1432 0.996 0.998 0.996 0.997
XGBoost 379391 159087 609 517 0.998 0.998 0.999 0.999

LightGBM 379308 159114 692 692 0.997 0.998 0.998 0.998
CICIDS 2017 Stratified

Miniscule Train Proportion: train=11360 (2%), test=556644 (98%)
Random Forest 390976 162631 1024 2013 0.995 0.997 0.995 0.996

XGBoost 390939 163938 1061 706 0.997 0.997 0.998 0.998
LightGBM 390979 163880 1021 764 0.997 0.997 0.998 0.998

Table 5.2: Model performance on CICIDS 2017 datasets

Table summarizing the prediction results for the models trained on different partitions of the CICIDS 2017
datasets. CICIDS 2017 standard refers to the partitioning found in [45] and [42], while the CICIDS 2017
Custom is our own split.

of magnitude less data, but with engineered features.

The performance of our models are comparable to any state of the art model, including the

advanced evolutionary neural network in [42] as well as other advanced models including those

proposed in An Efficient Hybrid Self-Learning Intrusion Detection System Based on Neural Networks

[58], Network Intrusion Detection System based PSO-SVM for Cloud Computing [57], An Enhanced

Approach to Fuzzy C-means Clustering for Anomaly Detection [55], among others. Table 5.3 clearly

shows the competitive performance of ensemble learners with appropriate feature engineering.
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Model architecture Year Accuracy Precision Recall F1
ANN [54] 2016 0.994 - 0.941 -
KNN [29] 2017 - 0.96 0.96 0.96
ID3 [29] 2017 - 0.98 0.98 0.98

Random Forest [29] 2017 - 0.98 0.97 0.97
AdaBoost [46] 2018 0.818 0.818 1.00 .901

Fuzzy C-means Clustering [55] 2018 0.953 0.995 0.958 -
Behavior Based ID [56] 2018 0.989 - 0.992 0.987

PSO-SVM [57] 2019 0.991 0.995 0.991 0.991
DNN [42] 2019 0.784 0.944 0.725 0.820

SOM + RBF + ANN [58] 2019 - 0.976 0.982 -
IGA-SA + DNN [47] 2019 0.999 0.999 0.999 0.999

Random Forest (Malmenator) 2020 0.998 0.999 0.999 0.999
XGBoost (Malmenator) 2020 0.999 0.999 1.000 0.999

LightGBM (Malmenator) 2020 0.998 0.999 0.999 0.999

Table 5.3: Model performance comparisons

Table comparing our model’s performance on the feature engineered train (70%) / test (30%) CICIDS 2017
splits with other high performance models in the literature.

5.3 Feature importances and its implications

Interestingly, different ensemble models appear to favor different features. For example, on CICIDS

2017, LightGBM consistently looks at ’Init Win bytes forward’ and ’Init Win bytes backward’

regardless of whether it is exposed to 2% or 70% of the dataset. On the other hand, XGBoost is

able to achieve similar performance by looking at attributes relating to the length and size of

packets. There is quite a large amount of variation with regards to the important features on

CICIDS 2017. However, it is important to note that they all relate to derived statistical features

about the packets sent.

In UNSW-NB15, we see a large amount of converge regarding the important features. Both RF

and XGBoost look heavily at ’sttl’ and ’ct state ttl’, both of which directly relate to the number of

stops a packet makes as it travels from one computer to another. On the other hand, LightGBM

looks heavily on the mean size of the packets as well as the total number of bytes that are sent.

Although the features these ensembles select are quite different, they are still able to achieve similar

performance metrics.

As for NSL-KDD, all of the ensembles ultimately rely significantly on the number of bytes sent

from the source to the destination. Nearly all of the revelant features that enabled the ensemble

learners to have a robust performance in UNSW-NB15 and CICIDS 2017 are not present in NSL-
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KDD except for the number of bytes sent from the source to destination. Many of the features

in NSL-KDD pertain to the number of attempts at making connections as well as the types of

connection, which do not appear to be as highly relevant to anomaly detection as one may initially

suppose. This is reflected by an overall much lower performance of models on the NSL-KDD dataset

when compared to models that utilize the features of UNSW-NB15 and CICIDS 2017.

Model architecture Top features
NSL-KDD

train=125973 (85%), test=22544 (15%)
Random Forest src bytes, dst bytes

XGBoost service ecr i, service http, src bytes,
LightGBM src bytes, dst bytes, duration

UNSW-NB15 Presplit Train/Test
train=175341 (68%), test=82332 (32%)

Random Forest ct state ttl, sttl
XGBoost sttl

LightGBM smean, sbytes
UNSW-NB15 Stratified

train=574898 (70%), test=246385 (30%)
Random Forest ct state ttl, sttl

XGBoost sttl, ct state ttl,
LightGBM smeansz, sbytes, dbytes

UNSW-NB15 Stratified
Small Train Proportion: train=82128 (10%), test=739155 (90%)
Random Forest ct state ttl, sttl

XGBoost sttl, ct state ttl,
LightGBM smeansz, sbytes, dtcpb

UNSW-NB15 Stratified
Tiny Train Proportion: train=41064 (5%), test=780219 (95%)
Random Forest ct state ttl, sttl

XGBoost sttl, ct state ttl,
LightGBM smeansz, sbytes, dtcpb

UNSW-NB15 Stratified
Miniscule Train Proportion: train=16426 (2%), test=804857 (98%)

Random Forest ct state ttl, sttl
XGBoost sttl, ct state ttl

LightGBM dmeansz, smeansz, Sload, sbytes

Table 5.4: Feature importance for models trained on the NSL-KDD and UNSW-NB15

Table summarizing the two most important features for each of the ensemble learners in the dataset. Looking
at the important features enables us to continue to engineer more relevant feature columns in the future.

It is also worthwhile to note that the most important features in the presplit UNSW-NB15 dataset

are the same as those in the feature engineered UNSW-NB15 dataset. However, the engineered
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Model architecture Top features
CICIDS 2017 Standard Split (w/ Feature Engineering)

Stratified: train=40000 (%50), test=40000 (50%)
Random Forest Init Win bytes forward, Packet Length Variance, Fwd Packet Length Min

XGBoost Bwd Packet Length Min, Max Packet Length
LightGBM Init Win bytes forward, Init Win bytes backward, Flow IAT Min

CICIDS 2017 Stratified
train=397602 (70%), test=170402 (30%)

Random Forest Packet Length Variance, Packet Length Std, Avg Bwd Segment Size
XGBoost Average Packet Size, Bwd Packet Length Std

LightGBM Init Win bytes forward, Init Win bytes backward
CICIDS 2017 Stratified

Small Train Proportion: train=56800 (10%), test=511204 (90%)
Random Forest Packet Length Variance, Packet Length Std, Avg Bwd Segment Size

XGBoost Average Packet Size, Bwd Packet Length Std, Bwd Header Length
LightGBM Init Win bytes forward, Init Win bytes backward

CICIDS 2017 Stratified
Tiny Train Proportion: train=28400 (5%), test=539604 (95%)

Random Forest Packet Length Variance, Bwd Packet Length Std, Average Packet Size
XGBoost Average Packet Size, Bwd Packet Length Std, Max Packet Length

LightGBM Init Win bytes forward, Init Win bytes backward, Flow IAT Min
CICIDS 2017 Stratified

Miniscule Train Proportion: train=11360 (2%), test=556644 (98%)
Random Forest Init Win bytes forward, Packet Length Variance, Fwd Packet Length Min

XGBoost Bwd Packet Length Min, Max Packet Length
LightGBM Init Win bytes forward, Init Win bytes backward, Flow IAT Min

Table 5.5: Feature importance for models trained on the CICIDS 2017 dataset

Table summarizing the two most important features for each of the ensemble learners in CICIDS 2017
depending on partitions. Looking at the important features enables us to continue to engineer more relevant
feature columns in the future.

features enabled the classifiers to make more fine tuned and accurate decisions. Access to an increased

number of relevant features provides a similar performance boost to state of the art models and is

far more computationally efficient and practical in real-world scenarios.

5.4 Future Works

The results of this paper open up a new direction in the field of network anomaly detection research.

That is, what features can be captured from network traffic that are best able to highlight the

behavior of malicious traffic? Until now, the collection and conversion of benchmark dataset pcap

files into netflow data has been a process largely determined by the team proposing a new dataset.
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These teams ultimately determine the relevant features to compute and include in the flow data,

which leads to wide discrepancies in the features of different datasets. It would be a monumental,

yet worthwhile, work to reconvert the source pcap files for various benchamrk anomaly detection

datasets into network flow data with a superset of features from the different datasets available

today. This would allow researchers to have a clearer insight in to the most relevant features that

exist in reality, and not just the most relevant features in a given dataset.

5.5 Challenges

5.5.1 Understanding the domain-specific data

As can be seen with the arduous task of appropriate feature engineering, a strong base of

understanding the computer network and security is required to carry out this task. However, all

member of the team lacked of prior knowledge in the cybersecurity field. This lead to two major

issues. First, we initially set unrealistic expectations for our project scope which required us to

reevaluate our decision and narrow our scope several times. Second, our approach to solving this

problem was initially viewed from a more traditional lens without the domain knowledge required

for us to make the breakthrough we did. This results in a number of delays to our project.

5.5.2 Scope identification

Cybersecurity is a broad domain, and this is our teams first foray into the field. This made it difficult

to limit the scope of the project initially due to a lack of foresight. This was also true in the area of

research particularly, as our initial approach was to design an extremely complex model to achieve

high performance. Our methodology on changed once we began deeply analyzing the features and

asking ourselves why they were so limited and different between different datasets.
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Conclusion

This paper closely examines the performance of ensemble learners on the NSL-KDD,

UNSW-NB15, and CICIDS 2017 datasets. By using appropriate feature engineering techniques to

encode nominal features such as the protocol type and the destination port, we were able to utilize

out of the box ensemble learners to achieve a breakthrough state of the art performance with

minimal computational cost. Furthermore, we show that ensemble learners such as RF, XGBoost,

and LightGBM are robust enough have extremely high performance (99% accuracy, precision,

detection rate, and f1 score) even when trained on minimal training datasets. The results of this

research have deep implications for future work around building and implementing anomaly

detection systems. We propose that the key to an effective, scalable, and generalizable model is

discovering what underlying network features are most useful for gaining insights into malicious

network behaviour. The next meaningful breakthroughs in network anomaly detection models will

not come from building more complex models that may have marginal improvements in accuracy

on flawed data, but rather from engineering relevant features on top of trustworthy data.
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