References

The references used for the development for this project are listed as below. Click on the references to view the papers.
- 1. Wachs, J. P., Kölsch, M., Stern, H., & Edan, Y. (2011). Vision-based hand-gesture applications. Communications of the ACM, 54(2), 60-71.
- 2. Narayana, P., Beveridge, R., & Draper, B. A. (2018). Gesture recognition: Focus on the hands. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5235-5244).
- 3. Köpüklü, O., Gunduz, A., Kose, N., & Rigoll, G. (2019). Real-time hand gesture detection and classification using convolutional neural networks. arXiv preprint arXiv:1901.10323.
- 4. Tompson, J., Stein, M., Lecun, Y., & Perlin, K. (2014). Real-time continuous pose recovery of human hands using convolutional networks. ACM Transactions on Graphics (ToG), 33(5), 169.
- 5. https://labicvl.github.io/hand.html
- 6. Sun, X., Wei, Y., Liang, S., Tang, X., & Sun, J. (2015). Cascaded hand pose regression. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 824-832).
- 7. Gomez-Donoso, F., Orts-Escolano, S., & Cazorla, M. (2019). Large-scale multiview 3D hand pose dataset. Image and Vision Computing, 81, 25-33.
- 8. Zhang, Y., Cao, C., Cheng, J., & Lu, H. (2018). Egogesture: a new dataset and benchmark for egocentric hand gesture recognition. IEEE Transactions on Multimedia, 20(5), 1038-1050.
- 9. Cao, C., Zhang, Y., Wu, Y., Lu, H., & Cheng, J. (2017). Egocentric gesture recognition using recurrent 3d convolutional neural networks with spatiotemporal transformer modules. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3763-3771).
- 10. Gupta, P. M. X. Y. S., & Kautz, K. K. S. T. J. (2016). Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural networks. CVPR.
- 11. Kopuklu, O., Kose, N., & Rigoll, G. (2018). Motion fused frames: Data level fusion strategy for hand gesture recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 2103-2111).