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ABSTRACT 

An increase in local connectivity within countries and cities in recent decades has sparked a new 

expansion in the railway industry, in an effort to ease transfer of human and commercial capital 

across regions. Developing nations and emerging markets around the globe, and in particular in 

Asia and Africa, with rapidly expanding economies, are actively attempting to connect citizens 

residing in rural areas to major urban centres and metropolis’. Well-developed cities such as Hong 

Kong, which is a major global financial hub and boasts of quality infrastructure and transportation 

networks, are expanding investments in fields such as technology. Hong Kong’s rail system which 

offers connectivity throughout the city has a good performance record in terms of reaching 

destinations on time. However, rail systems are not foolproof and may suffer from disruptions, such 

as technical failures and accidents, leading to delays. At present, there exists no conclusive 

technological response platform for mitigating the impact of such mishaps and offering relevant, 

real-time recommendations for optimising the handling of incidents. The thesis project explores a 

solution in the form of a recommendation engine which can simulate various scenarios and thereby 

propose effective responses to potential mishaps. The report therefore, acts as a platform for 

discussing the potential application, benefits and challenges of utilising technology in transport 

systems and in particular, railway networks. The work discusses the available technological choices 

and various development approaches and compares them, also discussing relevant works of 

literature offering domain expertise, constraints faced during the project and remedial measures 

taken to tackle them. Future prospects of the project include automation of the entire rail network, 

from automated generation of timetables to driverless trains. For the purpose of this project, the 

authors have partnered with the Mass Transit Railway Corporation (MTR) Limited of Hong Kong. 
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1 INTRODUCTION 

The objective of this chapter is to introduce this research thesis, beginning with a brief background 

on the Mass Transit Railway Corporation Limited (MTR), followed by a concise problem statement 

describing the current issues, the purpose and final deliverable of the project, as well as a well-

defined scope. The chapter then discusses the potential benefits of the project, the planned schedule 

to be followed, a description of the personnel involved and lastly, an overview of the structure and 

content covered in the report. 

 

1.1 Mass Transit Railway Corporation Limited (MTR) 

The MTR is a 40 year old organisation, acting as a major public transport network, offering railway 

connectivity in Hong Kong, covering all 18 districts and on average, enabling over 12 million 

passenger journeys, every weekday (MTR, 2019). The MTR likely has a positive reputation with 

regards to service quality and punctuality, given that it has achieved an on-time rate of 99.9% 

between February 2018 and January 2019, inferring that on average, 999 out of 1,000 passengers 

generally arrive at their desired destination within a 5-minute period of the scheduled time (MTR, 

2019). 

 

This is further reaffirmed by figure 1, as shown below, which highlights the market share of various 

means of public transport in Hong Kong, indicating the market leading popularity of the MTR, with 

a 41% market share (Legislative Council Secretariat, 2017). 
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Figure 1: Market Share of Public Transport in Hong Kong 
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1.2 Problem Statement 

As aforementioned, the MTR has delivered satisfactory performance for its patrons, however, there 

continue to be incidents leading to passenger delays. For instance, on the 25th of October 2018, 

train services at Po Lam station suffered from a significant delay, due to power supply issues, 

prompting the MTR to arrange shuttle buses for affected passengers (Wong, 2018). Similarly, on 

the 5th of August 2017, the Kwun Tong Line (KTL) suffered a delay of more than 10 hours, due to 

signaling issues (Chung, 2017). Such incidents may cause significant inconvenience to passengers 

as well as the MTR, since, in the event of a delay of over 5 minutes, the MTR is required to pay a 

penalty to the Hong Kong government, while commuters may also suffer from the loss of valuable 

time. 

 

At present, when facing disruptive scenarios, such as the ones listed above, the MTR generally 

relies on possibly the past experience and technical expertise of their train operators for minimising 

the negative impact. However, this may potentially lead to an increase in the risk of a human error 

taking place, on part of the train operator, possibly further compounding the problem. 

 

Hence, a problem statement may be summarised as follows - The MTR, is at present, likely reliant 

on train operators and officials to minimise the delay caused by a potential disruption, thereby 

potentially heightening the risk of a human error occurring. Furthermore, there is a possible need to 

reduce delays, in order to deliver potentially improved service to its commuters and reduce the 

probability of incurring a fine from the government. 

 

1.3 Objective and Deliverable 

The goal of this project is to work with the MTR, in order to develop a software platform that 

analyses and visualises train schedule and movement, for example, the amount of time the train 

spends at a platform, the departure time of the train, the amount of time for which the train stops in 

a tunnel etc. with the aim of reducing the delay suffered. The project is intended to reduce the 

number of trains that suffer from a short delay, i.e. greater than or equal to 5 minutes and long 

delay, i.e. 30 minutes or above. 

 

The end deliverables of the project include a working simulation model, visualised, to take into 

account various scenarios that a train may face, such as a signal fault, overcrowding of passengers 

etc. which could potentially cause a disruption to train service, and build a software/algorithm that 

can provide relevant recommendations to deal with such a scenario in an optimised manner. 
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1.4 Scope 

The scope of the project is limited to a simple visualisation model which can possibly simulate a 

finite set of scenarios in a 2-Dimensional space, i.e. the visualisation model cannot account for all 

the infinite possibilities and the exact scenarios which are possible. The recommendations that are 

made by the software/algorithm are expected to be in approximately real-time and are limited to 

certain options and constraints that have been communicated to the team by the MTR, for instance, 

the software may recommend the train operator to offboard passengers from the train, however it 

cannot recommend changing the direction of movement of the train in the opposite direction. 

Furthermore, the project is specifically focused on the Kwun Tong Line (KTL) in particular, as 

shown in figure 2 below, and does not take into account other lines of service, such as the Tsuen 

Wan Line etc. 

 

 

 

 

 

 

 

 

 

 

 

1.5 Potential Impact and Benefits 

As the objective of the project is to minimise the delays suffered by the train, the potential benefits 

from the impact of this project include, but are not limited to, a reduction in delays, improved 

efficiency and time management, lower probability of the MTR being penalised by the government 

for extensive delays and time being saved for commuters. Should the project be successful in 

implementing a simulation model and recommendation system, it may possibly pave the way for 

driverless trains in the future, as the current MTR trains are operated by train operators. 

 

 

 

 

Figure 2: Kwun Tong Line (KTL) System Map 
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1.6 Timeline 

This project was initiated in early September and a completion timeline, as shown below in figure 3 

was established and strictly adhered to. 

 

 

 

1.7 Personnel Involved 

The project is a large scale collaboration between the MTR and the University of Hong Kong 

(HKU), involving multiple departments, including the department of Computer Science, Statistics 

and Mathematics. The project is supervised by Dr. Reynold Cheng, Associate Professor of the 

Department of Computer Science, HKU, Dr. Cheng's main research area is large-scale data 

management and he has worked on the modelling, querying, cleaning, mining, and system 

development of databases. 

 

The primary team of this project consists of three members, namely Eashan Trehan, Aditya Mehta 

and Pang Ming Kin. Eashan Trehan, the author of this report, is pursuing a Computer Science and 

Finance double major at HKU and has attended exchange programs at the University of Toronto 

(UofT) and the London School of Economics and Political Science (LSE), with past work 

experience at J.P. Morgan and Deutsche Bank in Hong Kong. Aditya Mehta is also a Computer 

Science and Finance double major, with experience in Machine Learning and has previously 

worked at the Hong Kong and Shanghai Banking Corporation (HSBC). Pang Ming Kin is also a 

Computer Science student, with experience in Data Analysis, and has previously worked as an 

Figure 3: Timeline 
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intern at the Alibaba Group and China Merchants Bank (CMB). The team is supported by Ms. 

Wenya Sun, a PhD student at the Department of Computer Science and Kai-i Lam, a penultimate 

year Computer Science major at HKU. 

 

 

1.8 Individual Contributions 

Throughout the duration of the project, Eashan performed multiple roles based on the requirements 

of the team and the project. Before the start of the term in September 2019, the author participated 

in early meetings with the MTR and project supervisor, for establishing the scope and objectives of 

the project. Furthermore, early research was carried out based on publicly available information, 

pertaining to the MTR’s operations and potential applications for the project. This period of time 

was also utilized for obtaining technical knowledge about the MTR’s functioning and establishing 

Key Performance Indicators (KPIs). During the first semester, between September to December 

2019, the author worked alongside colleagues to create the KTL track layout in a 2-D environment 

using Unity and JavaScript. Following which, a dashboard for showcasing simulated events was 

created for improving interaction with users and real data received from the MTR was simulated. 

Post the simulation of real data, certain changes and fixes were made to the visualized simulator to 

more accurately represent the data, such as removal of outliers, errors and duplicate events in the 

data. During the second semester, between January to April, the author worked extensively on data 

analysis, analyzing train journey, timetable and passenger data for identifying any significant 

patterns. In addition, during the lifetime of this project, the author has also taken charge of 

administrative responsibilities, such as preparing presentation slides, progress reports, meeting 

minutes etc. 

 

Throughout the project lifecycle, Patrick was responsible for the development of a data 

preprocessing pipeline, and also involved in the train data analysis. In Phase 1, from August to 

September, Patrick assisted in exploratory data analysis with the preliminary dataset provided by 

the MTR, which has enabled us to provide early feedback on the data requirements and 

communicate with several stakeholders for expectations. For instance, the project team has clarified 

the definitions of important terms and metrics with MTR and formulated a glossary. In Phase 2, 

from October to January, Patrick developed the prototype of a data preprocessing pipeline, which is 

the underlying infrastructure of the project that transforms raw log data into comprehensible 

records, and calculates metrics such as arrival delay, departure delay and journey delay. I have also 

explored one of the possible models for delay prediction using linear regression and regression 

trees, which serves as a baseline. In Phase 3, Patrick analyzed the efficiency of timetables in normal 
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days and the response of train operators during incidents, which serves as the foundation for a 

recommendation engine. The understanding of the context has in turn led to a more polished 

pipeline to reflect the inherent complexity of the train scheduling problem. For example, it is 

discovered that MOK (Mong Kok) and PRE (Prince Edward) share the same station ID in the 

signaling system, but identified separately in timetables. In sum, it has been a truly rewarding 

experience to work on real-world data and generate insights with algorithms. 

 

Aditya has consistently worked on, throughout the lifecycle of the project, the ideation, literature 

review, requirements analysis, design, data analysis, and programming aspects. Aditya also attended 

meetings at MTR headquarters during which Aditya actively worked on capturing stakeholder 

requirements. This is to ensure that there is no discrepancy on key items such as how certain factors 

(delay, journey time, accumulations, etc.) are calculated. During Phase 1, from August to 

September, I have worked on data processing and feature engineering, including calculating the 

descriptive statistics for each station on the KTL. This data has directly been used in the visualizer 

to accurately capture the animation of trains between stations. Aditya also contributed to the 

production of materials such as presentations and reports. During Phase 2, from October to January, 

he worked on Unity to add features to the Simulator. This includes adding a feature for selecting the 

file for replay using a dropdown menu. During Phase 3, he had been working on Data Analytics, 

implementing the machine learning and deep learning models. This is focused on analyzing and 

predicting passenger flow. I have used the passenger flow dataset to predict inflow and outflow 

during a given minute. This includes testing out different kinds of models such as ANNs, DNNs, 

LSTMs and benchmarking and comparing their performance. It has been very thrilling and 

rewarding to work on such an impactful project with such an experienced and talented team. 

 

1.9 Report Outline 

The following chapters of the report are arranged as follows. Chapter 2 discuss the methodology 

and approach adopted, including various software and hardware choices, data collection 

requirements and rationale behind certain decisions made. Followed by Chapter 3 on literature 

review, discussing relevant research and reports pertaining to the project. Chapter 4 then entails the 

initial findings and limitations of the project thus far, and how certain risks can be mitigated, 

concluding with a discussion on future work to be completed in Chapter 5. A summary of the 

current progress is then discussed in Chapter 6. 

 

 

2 METHODOLOGY 
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The following chapter discusses the methodology and certain technical concepts adopted in the 

project, such as Bayesian networks, agile approach, software development process and hardware 

requirements. The chapter concludes with a discussion on data requirements and the rationale 

behind various technical decisions and choices made. 

 

2.1 Neural Network 

Bayesian network is a type of statistical model which represents the conditional dependencies of a 

group of variables in the form of a directed acyclic graph. There are several advantages of opting 

for Bayesian networks, such as avoiding over-fitting of data and better handling of missing data 

points. 

 

A dynamic bayesian network in particular can be utilised for a time series prediction for the train, 

using the day and time as explanatory variables, since certain times during particular days may tend 

to be more crowded than others. Using the data collected by the MTR, a Bayesian inference 

network may be trained, as the delay time of the train is treated as a stochastic process. Therefore, a 

multi-layered neural network was created, which utilised multiple input sources, tracking delays 

occurring across previous stations, as outline in figure 4 below. 

 

 

Long Short Term Memory (LSTM) networks are a subclass of Recurrent Neural Networks. It is a 

deep-learning based approach to modelling time-series data. What is special about LSTMs is their 

ability to capture recurring trends in data (Schimdhuber, 1997). This is possible due to the presence 

of feed-back connections along with the feed-forward connections found in regular Neural 

Networks. LSTMs don’t suffer from the Vanishing Gradient Problems, that can cause the back-

propagated gradient to tend to zero or tend to infinity, which is possible in other kinds of RNNs. 

 

2.2 Agile Approach 

Figure 4: Neural Network 
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An agile software development approach has been adopted for the purpose of this project. Agile 

refers to an iterative method of working, involving regular feedback between the developers and 

various stakeholders, with the aim of keeping stakeholders updated on the progress and direction of 

the project, while gaining a better sense of their expectations and requirements. Hence, as part of 

the project, weekly internal meetings are organised, along with bi-weekly meetings with the 

supervising professor and monthly meetings with officials representing the MTR. 

 

2.3 Hardware Requirements 

As the project is data intensive and based on software development, the hardware requirements are 

likely low and include Graphical Processing Units (GPUs) with high processing capabilities that are 

likely required in order to successfully process vast amounts of data in a short time frame. Based on 

the data files provided, it is estimated that one standard hard drive (1 TeraByte) should suffice for 

processing data volumes up to one year. Further analysis may require processing additional data on 

a longer timeline. That would require extended secondary storage. Since the nature of the data is 

extremely sensitive, it obviates the usage of commercial cloud storage providers such as Google 

Drive, GitLab, Microsoft OneDrive, etc. Any viable solution must be offline and proprietary. For 

the training of the Machine Learning model, significant computing capability will be required. The 

scope provided by the MTR include keeping the model training time within acceptable limits, 

which is defined as less than one hour of processing for a 24-hour data extract. To satisfy these 

constraints, specialised hardware called GPUs, mentioned earlier, will be utilised. These are 

specialised for parallel computations that are required for training Machine Learning models and 

the MTR has been requested for procurement of “NVIDIA RTX 2080”, which is a state-of-the-art 

hardware required to fulfil this purpose. 
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2.4 Software Development 

To accomplish the above deliverable, first the track layout of the railway should be understood and 

relevant data should be collected. Certain data points such as the day, time of day, track segment, 

station name, direction etc. should be specified in the data collected. Next, a visualisation model is 

required to be built to showcase the train movement, the following chapter discusses the various 

options available for creating such a model. The data collected earlier should be used to simulate 

the train movement in the visualisation model. Once the data can be accurately simulated in the 

visualisation model, a recommendation system can be created using “Bayesian Networks” as 

aforementioned at the beginning of this chapter, taking into account various scenarios that may 

occur, including incidents such as technical failures. 

As illustrated by Figure 5 below, there are potentially four key steps to developing a working 

simulation model that can be visualised and provide relevant recommendations. Firstly, the 

algorithm accepts various forms of data, variables such as the train number, the track it is located at, 

the station it is leaving or arriving at, what kind of situation or incident is the train experiencing etc. 

Based on these data points, a recommendation may be produced, to possibly optimise the handling 

of any extraordinary situation. The recommendation is then to be simulated, to judge whether it 

could produce optimal results and the final selected recommendation is then simulated visually. 

 

 

 

 

 

 

 

 

 

2.5 Data Collection and Software Requirements 

The project potentially involves extensive data requirements, including but not limited to - the 

distance between various stations, the planned timetable for different times and days of the week, 

the dwell time at each station etc. These datasets are preferred to be available in .csv or Excel 

format in particular, for ease of use, and may potentially be provided by the MTR. The quality, 

quantity, and availability of data are the primary concerns for any data driven project. Machine 

learning models show increasingly better performance when trained using more volume of data 

(Cong et al., 2007). For statistical models, estimated parameters exhibit lower variance and greater 

Figure 5: Software Development Cycle 
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predictive ability with increasing sample size (Rosenfeld, 2018), therefore, getting access to 

relevant data is essential.   

“Python” and “MongoDB” have been chosen to analyse the data. Python was chosen in particular, 

over the likely alternative “R”, as the latter is mostly used for statistical analysis, while the former 

can be used more widely for data science purposes in general and provides ease of replicability and 

accessibility, in comparison. MongoDB was preferred over “SQL server”, as the former offers 

better availability and scalability, due to auto-sharding and makes it easier to represent complex 

relationships between different variables in the data. The project involves the use of Machine 

Learning, which will be executed by utilising libraries such as SciPy and Scikit-Learn, while Deep 

Learning can be implemented via Caffe, TensorFlow, Theano or Keras and be visualised through 

Pytorch or Keras-vis. Each of these options present their own respective advantages and 

disadvantages and a final decision will be taken after all the relevant data from MTR and studied it 

in detail. Given the sensitive nature of the project and data privacy requirements, the data and code 

assembled for the project is being stored in an online platform called “GitLab”, rather than the more 

popular alternative called “GitHub”, as the former provides a private account free of charge, unlike 

the latter. The visualisation created to showcase the simulation of the project is built through 

“Unity”, a platform and programming language which is often used for creating games, films etc. 

and is apt for creating a 2-Dimensional simulation model for the purpose of this project. Unity was 

chosen in particular, over other options, such as “Arena”, "Unreal Engine” and “Photon”, as it is 

widely compatible with a diverse range of platforms, the visuals produced can adapt to different 

devices and screens without compromising quality and there is extensive documentation and 

tutorials that are available for new developers to learn quickly. 

 

2.6 Development Environment 

In initial stages, the project development starts with local machines for ease of prototyping, as the 

size of the dataset fits in memory. As more data is obtained and more sophisticated algorithms are 

used, the local development approach has shown its limitations. The pace of iterations slows down 

as the hardware requirements arise. Collaborations are also hindered as Git does not handle large 

files well. A shared cloud platform is proposed to facilitate the research, which is based on the HKU 

CS GPU Farm (1). On top of the Linux server provided by the department, Anaconda [2] and 

JupyterLab [3] is set up. Anaconda consists of environments and packages used in the project, 

including Python, Scikit-Learn, Tensorflow, etc. JupyterLab offers a web-based development 

environment for Jupyter notebooks, Python code, and data. The data processing pipeline is also 

modified to work in the cloud platform, and achieves better performance by utilizing multiple cores. 

The computation power of NVIDIA GeForce GTX 1080 Ti GPU provided by the GPU Farm has 
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also proved to be useful in our investigations of Deep Learning techniques. The cloud development 

environment also serves as the single source of truth for datasets, allowing various group members 

to perform experiments while ensuring consistency. 

 

2.7 Delay Calculation 

 

This section describes the calculation of delays from SICP logs and timetables in the project. As the 

target of optimization, delays should be calculated correctly, and comparable to TSSW Type 17 

reports produced by the MTR, which contains the delays of trains in station level. The calculation 

procedures should also handle incidents seamlessly. The data dependencies between different stages 

described below is handled by the data pipeline. 

 

Raw Data - The calculation procedures rely on two raw data sources from MTR: SICP logs and 

timetables. SICP logs provide information about actual train movements, while timetables provide 

information about scheduled train movements. During the development process, both data sources 

should be provided in the form of batches of historical data. In the production environment, SICP 

logs should be provided to the system in real time, while timetables only need to be updated when 

there are changes. 

 

Preprocessing - Raw data obtained are preprocessed to extract the relevant data.  For SICP logs, 

Relevant lines (TKNU and TKOC) in KTL are extracted. Relevant data (actual arrival time, station, 

track, and train) are then extracted from the TKNU records. Actual departure time is then 

determined by finding the nearest TKOC 2 records happening afterwards in the same track. 

Platform tracks, where trains stop during their dwell time in a station, are identified in the stop 

column, according to the list of tracks extracted manually from the track diagram. Hourly data is 

then combined into daily data. Timetables are parsed by replacing destination codes (e.g. 114) with 

stations. Due to the limitation of MTR's timetable system, the effective timetable for one day is split 

into two timetables. Hence, the timetables are merged according to internal rules. 

 

Matching - Matching phase is the core of the delay calculation procedures, which locates the actual 

trip a train is serving based on actual arrival time in the SICP logs and scheduled arrival time in the 

timetables. Delays are then calculated simply by their difference. 

 

There are four timetables currently: weekday, friday, saturday, sunday / public holiday. To 

determine the timetable used in a day, the public holiday calendar from the HKSAR government is 



 

 Page 18 of 32 

fetched. If the day is not a public holiday, the timetable used will be determined by the day of week. 

Due to the difference in concerns, SICP logs are partitioned by day (from 00:00:00 AM to 23:59:59 

PM), while timetables start from 5 AM of the current day to 1 AM of the next day. To find the 

effective timetable used in one day of SICP logs, two timetables of the current day and the previous 

day (starting from 23:00:00 PM onwards) are merged. 

 

In a normal day without incidents, the actual trip a train is serving is located by matching actual 

arrival time in SICP logs of platform tracks to the nearest scheduled arrival time in the timetable, 

with the same train and station. This matching method minimizes the arrival delay of trains, which 

is consistent with the goal of train scheduling. The arrival and departure delays (in seconds) can 

then be calculated as differences between actual and scheduled time. However, there are some train 

movements that are not serving a trip, and hence should not be associated with the timetable. 

Therefore, when one timetable entry is matched to two SICP logs, only the one with the smallest 

absolute arrival delay will be kept. Besides, during the development process, outliers in the training 

data are removed based on z-score. Z-scores are calculated on arrival delays, and SICP logs with z-

score higher than 3 are detected as outliers. Z-score is defined as: 

 

 

 

The matching procedures in a day with incidents are the same as those in the normal case, which 

can handle different regulation measures seamlessly. In case of train changeover, the replacement 

train carries the same train number, and the SICP logs associated to the timetable are expected to be 

the same as the normal case, due to the principle of minimization of arrival delay. In case of train 

withdrawal, train cancellation, or trip cancellation, as the timetable remains unchanged, the 

matching procedures will assign trains to timetables based on the principle of minimization of 

arrival delay, which is aligned to the behaviour of train operators. 

 

Output - The output of the delay calculation procedures is a set of annotated train operation logs in 

CSV format. The columns are described below: 

 

• act_arr_time: actual arrival time, recorded as the train entering the track in SICP log 

• act_dep_time: actual departure time, recorded as the train leaving the track in SICP log 

• arr_time: scheduled arrival time in timetable 

• dep_time: scheduled departure time in timetable 
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• station: e.g. MOK 

• track: track number, e.g. 40 

• train: logical train number, e.g. GC01 

• arr_delay: arrival delay, defined as the difference between actual and scheduled arrival time 

• dep_delay: departure delay, defined as the difference between actual and scheduled 

departure time 
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3 LITERATURE REVIEW 

The chapter in discussion highlights key technical aspects and areas of domain expertise which are 

potentially vital to obtaining a fair understanding of the concepts and knowledge required by the 

project, as learned from reviewing certain relevant works of literature. 

 

3.1 Introduction 

The existing body of literature focusing on simulating the operations of light railway networks was 

examined during the first phase of our project. 

 

 

 

 

 

 

 

As evidenced by figure 6 above, a considerable volume of research papers has been published on 

the subject of the topic of ‘Railway Network Simulation’ worldwide. Based on the frequency of 

citations, a curated selection of papers pertinent to our use cases was chosen and reviewed in detail. 

It was discovered that three broad approaches to railway network simulation are well documented, 

these include - utilisation of statistical techniques and models, applying machine learning models, 

and using the open-source software ‘OpenTrack’. 

 

3.2 Analytical Models 

Before considering more technologically driven approaches, the presently prevalent analytical 

methods that are being utilised to study rail networks were researched first. Sahin (2017) evaluates 

the efficacy of using Markov Chains to model “disruptions and disturbances”. Viewing the 

departure and arrival times as probabilistic processes allows the prediction of steady-state delays. A 

physics-based approach to predicting rail timings using mechanical properties such as weight of 

train, acceleration, drag, et cetera was also examined (Goodman et al., 1998). However, this 

Figure 6: Published Papers on Railway Network Simulation 
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research did not yield promising results. The feasibility of modelling the light-rail network as 

Space-Time network (Dessouky & Leachman, 1999) was also evaluated and discounted. 

 

3.3 Machine Learning Models 

The past three years have witnessed a dramatic rise in the application of Machine Learning (ML) 

technology to a myriad of use-cases. Railway simulation has also witnessed a concomitant increase 

in the application of ML techniques to achieve higher prediction accuracy than traditional 

approaches. Ostensibly uncorrelated factors such as weather and temperature can offer insight into 

predicting train network delays (Wang & Zhang, 2019). This approach may offer positive collateral 

benefits, such as a lower operating cost. A closely related approach is to train multiple mini-models 

for every station, instead of one global model (Zhang & Nguyen, 2013). However, mini-models can 

only be trained if access to highly granular (station-level) data is available. 

 

3.4 OpenTrack 

Started in 1990 as a research project at the Federal Institute of Technology, Switzerland, OpenTrack 

is now the gold-standard software package utilised by many global rail networks to plan routes, 

model scenarios and simulate crowd movement (Nash & Huerlimann, 2004). However, this 

software has primarily been used to evaluate infrastructure components such as crossing throughput 

and side channel efficiency. The MTR Corporation makes use of this software and the project team 

is in ongoing negotiations regarding access to this platform for gaining better understanding of the 

KTL structure. 

 

3.5 Miscellaneous 

Dessouky and Leachman (1995) in their paper discussing simulation modelling in complex rail 

networks highlight the development of time and event based train models for simulation of rail 

traffic in a likely realistic manner and how such models may be utilised to analyse delays and 

domino effects from mishaps in a railway network. One may infer from this research paper that a 

simulation model should take into account factors such as the time of day and day of the week to 

predict train delay. For instance, there may be more passenger traffic during the morning hours of 

weekdays as people rush to work, while on weekends there may be increased passenger traffic 

during the evening as friends and family go for an outing. This theory may further be advanced by 

taking into consideration factors such as consumption of energy, traction and speed of the train 

(Goodman, Siu and Ho, 1998). 
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The Nanjing Metro Line in China serves as a fair case study example, taking into account details 

pertaining to the train, track, controller and power supply (Wang and Cheng, 2012) which may be 

modelled in a queue based context through machine learning algorithms (Zhang, Nguyen and 

Zhang, 2013). Yaghini, Khoshraftar and Seyedabadi (2013) also discuss the application of a neural 

network based structure with a relatively high accuracy compared with other options such as 

decision trees and logistic regression models. These works of literature further encourage the use of 

“Bayesian Networks” as mentioned earlier in this paper for building a recommendation system, 

since Bayesian Networks are a neural network based structure and a type of machine learning 

algorithm. 

 

3.6 Summary 

In sum, it may potentially be stated that building an accurate simulation model requires use of 

several complex factors including but not limited to the train’s features, track features, power 

supply etc. in order to create a realistic time series model, through means of a neural network based 

algorithm. 

 

Based on the literature review, a multi-pronged approach has been adopted. Since conventional 

analytical models are not applicable to this use case, the project team has maintained a focus on 

Machine Learning Models and OpenTrack. Work is underway to recreate a global-local model 

approach (Zhang & Nguyen, 2013). Additional data is required to implement this model and has 

been requested from MTR. An application has also been made to the Computer Science department 

for the procurement of OpenTrack software for the team. 

 

 

 

 

 

 

 

 

 

 



 

 Page 23 of 32 

 

 

 

4 RESULTS AND DISCUSSION 

The following chapter discusses certain initial findings at the current stage of the project, detailing 

the observations and inference derived from these findings. Followed by a discussion of various 

risks and challenges that have been encountered. 

 

4.1 Initial Findings 

Due to reasons pertaining to confidentiality, there are certain restrictions on information that can be 

shared with third parties, with a view to protect the MTR’s proprietary data and functioning 

methodologies. Thus, certain findings and factors may not be disclosed. 

 

In order to simulate train operations, running times and dwell times derived from the datasets are 

used to calibrate and validate the model. The ultimate goal of the development of model is to 

reproduce the behaviour pattern of the railway system in the past, and predict the effect of different 

types of events on the operations. While some related works computes running times and dwell 

times using train motion equations and traffic conditions, a data-driven approach is proposed in this 

project, since a large amount of track occupancy data is provided by MTR. 

 

The statistical approach captures the distribution of running times and dwell times due to external 

conditions without manual tuning of parameters, and does not require the knowledge of train 

motion characteristics. It is also more adaptive for future changes in timetables and extensions to 

other lines. The terminology outlined earlier in the report before the introductory chapter lists the 

input variables of simulation models selected according to findings in exploratory data analysis 

 

4.2 Data Pipeline 

A robust data processing pipeline is the backbone of effective data analysis, which streamlines the 

iterations of algorithms and update of datasets. In our case, train operation logs received from MTR 

are encoded in a special format produced by the log management system. The pipeline currently 

includes transformation of the special format into CSV format, and combination of logs partitioned 

by hours. An automation toolset called doit is used to describe the tasks involved with their 

dependencies, similar to a Makefile. The generated dependency graph ensures only the necessary 

tasks are executed when datasets are updated. Parallel execution of tasks also increases the 
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efficiency of the pipeline, resulting in a shorter feedback loop. In the current stage, the pipeline is 

used for data cleaning and preprocessing. Training of simulation and recommendation models can 

be integrated when the design is finalised. 

 

4.3 Data Analysis 

As part of the project’s objective, a data analysis has been conducted to find any relevant patterns 

and it has been discovered that on average there is a significant standard deviation in the average 

travel time of trains on KTL, thereby suggesting that the simulation model may be required to take 

into account any deviation from the timetable which takes place and also factor in any cumulative 

delay which may be caused by a train suffering from disruption, leading to other trains also being 

delayed. Furthermore, the travel time of a train through a station on KTL, including the time taken 

to decelerate, dwell time and accelerate is also varying significantly. This likely indicates that the 

model may also need to factor in the station at which the train is arriving. 

 

Post the aforementioned data analysis, a log file containing the travel time of various trains and 

stations over a 2-day period on Sundays in August was simulated using Unity, showcasing the 

movement and arrival of multiple trains at their respective destinations, while also providing a 

dashboard which displayed the logic and reasoning behind various actions, such as removal of a 

train from a track due to a disruption or introduction of a new train into KTL to meet passenger 

requirements, to likely provide greater transparency into the decision making rationale of the 

simulator, to the user. 

 

Train movements are time-dependent, as train delays in different periods of a day vary significantly, 

which is likely to be affected by different train schedules and fluctuations in passenger demands. 

This finding supports the conclusion that time and location are two key factors in designing the 

simulation model. 

 

The MTR provided a passenger flow dataset. The dataset is split into two files: one for inflow and 

one for outflow. Both files contain data aggregated at 1 minute intervals for all the 98 stations. Our 

objective is to use 30 minutes on inflow and outflow data to predict the outflow during the 31st 

minute for a given station. We followed an 80-20 train-test split for the data, and also used cross 

validation to evaluate the performance of the models. We carried out extensive exploratory data 

analysis, during which the correlations between inflow and outflow across various stations was 

analysed. Several interesting correlations were discovered such as between inflow at KOT and 

outflow at WTS. Conversely uncorrelated stations have also been discovered. Many hypotheses for 
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such relations were proposed and discussed with MTR engineers to better understand the 

underlying reasons. This data is essential to understand how a disruption at one station could affect 

and cause aftershocks across the line. We used dense ANN and LSTM to predict these values. 

In order to better predict delays, passenger movement was also taken as a factor, since certain 

periods during a day, or days of a week, may perhaps be busier with greater passenger traffic 

volumes. In terms of the correlation between passenger inflow and outflow, one can notice that 

there is significant variance across stations. Furthermore, during the data analysis, temporal peaks 

were also observed during specific timings of a day as well. 

 

Two months of train operation logs are obtained for data analysis. In order to divide the logs into 

normal days (no incidents observed) and abnormal days (minor or major incidents observed), the 

journey delay is extracted from individual train operations. Journey delay is defined as the arrival 

delay at the destination, which is the last station of a train trip. The destination is determined by the 

train number according to an internal naming rule used by MTR. 

 

In normal days, two peaks of delays can be observed during two periods (8 AM - 9 AM, 6 PM - 7 

PM), which corresponds to two peak hours by commuters, confirmed by the passenger inflow and 

outflow analysis. In general, the distribution of journey delays cluster around zero. In abnormal 

days, while there are major incidents with substantial delays, most of the incidents are minor and 

only affect the train service briefly. 

 

In order to better understand the timetable and evaluate the efficiency of train operations, normal 

days are selected for further investigation. The train operation logs are aggregated and the arrival 

delays are analyzed. 

 

The arrival delay distribution in different stations generally approximates normal distribution, with 

notable exceptions of some busy stations, such as KWT (Kwun Tong). For the busy stations, there 

are two peaks observed around zero and positive delay, indicating frequent occurrences of 

noticeable delays. One of the terminal stations, TIK (Tiu Keng Leng) is also distinct with its peak of 

negative delay, which shows that the design of timetable leaves extra buffers for the actual train 

operations. 
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The medians of arrival delays among different stations generally stay around zero in normal days, 

which shows that the timetable design is reasonable and reflects the actual train operations well. 

However, TIK is still the noticeable exception, as mentioned previously. 

 

The implementation of the visualisation module has been completed and is now able to reproduce 

the train movements of KTL from the log files received from the MTR. It serves as a platform to 

present the project's findings in an intuitive manner, and uncover operational patterns of trains when 

they are located in terminal stations. For instance, apart from regular train service, the timetable also 

specifies some special trains during high traffic periods such as public holidays, which are aligned 

with our observations of operational logs. The operational patterns reveal the need to integrate the 

timetable into the simulation model to reflect the differences in train schedules. 

 

4.4 Machine Learning Model 

Due to a lack of sufficient data, a statistical-inference driven approach has been adopted to derive 

key insights. Based on our findings thus far, it is estimated that at least 4 – 8 weeks of daily 

ridership data will be required to accurately simulate the KTL train movement. This is further 

corroborated by the variance of the data fields, even within the small sample provided, that were 

highlighted in the previous section focusing on data analysis.  

In spite of these issues, the development of the models has been initiated. Until actual data becomes 

available, user-generated dummy data has been used as model input, to enable the structural 

development of the models. The downside of this approach is the limited ability to evaluate the 

performance of the model. Based on the team’s consideration and negotiations with the MTR, this 

is an acceptable trade-off. 

Results of predictions are compared in terms of mean squared errors in seconds, using local models 

trained for each station, and a global model for the whole KTL. Comparing mean squared errors 

from prediction using different models, the performance are similar in general, with linear 

regression being the least accurate, and boosting with regression tree being the most accurate. 

Experiments with larger dataset and other ensemble modeling approaches will be carried out to 

select the optimal model. It is also observed that errors for terminal stations (i.e. WHA and TIK) are 

larger than other stations, which highlights room for improvement using more specific models. 

 

We have made use of LSTM as an approach to predict passenger inflow and outflow during a given 

minute for any given station on the KTL. We used the LSTM implementation as defined in Keras 

library as our reference. We compared the accuracy and error of the predictions against predictions 
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generated using a feed-forward ANN as a baseline. The ANN had only 1 fully-connected hidden 

layer, and made use of MSE as the loss function, and Stochastic Gradient Descent as the 

optimization algorithm. The LSTM network had 1 LSTM layer with 20 cells, followed by a fully-

connected layer. The results were tabulated after adequate hyperparameter optimization had been 

carried out. The results indicated that the LSTM network accuracy was, on average, 7.1% worse 

than the feed-forward ANN.  

 

 

 

 

 

 

 

 

 

 

 

Based on the model created for simulating train movement and potential delays, a mean squared 

error of about 2,100 was detected, as shown in the figure 15 attached above. 

 

Initial experiments have been conducted on Bayesian Network, which explicitly declares the 

relationship between arrival delay among different stations in a single journey. The training data is 

split according to the headway defined in the timetable, which reflects the expected frequency of 

train service and thereby the requirements on dwell time and operational efficiency. It is concluded 

that more factors should be utilized for the network to improve its performance, which is not on par 

with the predictive models. It is also observed that the error decreases down the line as less 

complexity is involved in later stations. 

 

 

  

Figure 7: Model Performance 
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4.5 Limitations and Difficulties Encountered 

The project involves certain ambiguities and new skills that need to be learned, for instance, in 

order to gain a good understanding of the datasets, one needs to have obtain the necessary domain 

knowledge and a sound understanding of the concepts. As highlighted in table 1 below, there is a 

high probability of there being technical terms and concepts that are new to the members of the 

team, for instance, “dwell time” refers to the time that a train waits at a particular station, to allow 

passengers to onboard and offboard. Such key pieces of information may be learned by 

interviewing train operators, reviewing existing literature and reaching out to experts who are 

familiar with such concepts. 

 

 

 

 

 

 

 

 

 

 

Another key challenge is gaining access to data, since a lot of the data is confidential and 

proprietary, hence the team needs to be aware of what forms of data are necessary and negotiate 

with the MTR officials for the required access. For example, data on the distance between various 

stations is required in order to calculate the required speed and time for travelling. Given that the 

students involved are new to the field of railways, the project is exploratory in nature, this poses a 

key risk which can be overcome through an emphasis on teamwork, maintaining flexibility, regular 

communication and adopting an agile approach to the development process. These are some of the 

main challenges that may be faced by the team, during the course of this project, certain other 

challenges, such as multitasking, ability to meet deadlines etc. may also pose a risk. 

 

 

 

 

 

Table 1: Risk Matrix 
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5 FUTURE WORK 

Presently, post the final completion of the visualization and recommendation model discussed in 

this thesis report, the implementation of the simulator at ground level will likely be finalized after 

comprehensive testing and validation. A fully functional working prototype of the recommendation 

engine is also expected to be developed shortly, for the same. 

 

The key milestones of the project thus far include the creation of a visualised simulation model, a 

software/algorithm for providing recommendations and linking the simulation model with the 

recommendation system to provide real-time recommendations. 

 

In future, the project may also lead to opportunities in automation of the railway network, such as 

driverless trains and automatic timetable generation. 

 

6 CONCLUSION 

The project intends to attempt the creation of a visualised simulation model, showcasing complex 

pieces of information, and also a recommendation system which could provide relevant advice on 

handling a wide variety of disruptions which may cause passengers loss of valuable time. At 

present, challenges such as a lack of technical knowledge in the rail transportation industry and 

certain limitations on access to internal data of the MTR have surfaced. To tackle these constraints, 

steps such as interviewing experts, reviewing relevant pieces of literature and actively negotiating 

with the MTR have been undertaken. The currently undergoing second phase has involved the 

creation of a simulation model, visualised using Unity software and the data provided by the MTR. 

With rigorous analysis of data obtained thus far and in the future, the third phase will involve 

generating useful recommendations which can lead to likely more informed decisions. 
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