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Bidirectional Rollouts in Model-Based 

Reinforcement Learning 

 

Project Background 

 

The use of deep neural networks in reinforcement learning, also known as deep reinforcement 

learning, has recently achieved remarkable successes. For instance, by combining deep neural 

networks with Q-learning, a deep reinforcement learning agent is able to achieve human-level 

and beyond human-level play in Atari games (Mnih et. al., 2013). In robotics, using 

convolutional neural networks has been rather successful too in learning complex control 

policies for visuomotors (Levine et. al., 2016). This combination appears to be promising and 

may be a right path in materializing the eventual goal of having general learning agents living 

among us.  

Despite all the successes, most of the works rely on model-free reinforcement learning. These 

methods often require huge number of samples in order to solve a task. In other words, they 

often have very high sample complexity. A model-free agent normally needs millions and 

millions of interactions, with the environments to achieve high performances. As an often-used 

and intuitive but likely unfair comparison, we as humans do not require years of non-stop 

playing to learn how to perform well in a video game which remains to be the case for many of 

our best model-free reinforcement learning agents. To handle the sample complexity problem, 

model-based reinforcement learning has been regarded as a potential solution by learning the 

model of the environment.    

With model-based reinforcement learning, the goal is to reduce the number of agent’s 

interactions with the environment. This is done by learning a model that predicts the next state 

and reward given a state-action pair (Sutton and Barto, 2018). The model is learned by data 

collected from interactions with the environment. With an accurate model, ‘Imagined’ data or 

transitions can be generated from the model without actually interacting with the environment. 

This can be thought as humans imagining or replaying what could happen in our heads if we 

take certain actions without actually taking those actions. The use of these imagined transitions 

to learn is commonly known as planning. In fact, evidence of model-based reinforcement 

learning has been found in animals (Doll et. al., 2012), pointing to the possibility for artificially 

intelligent agent to learn efficiently with less samples if it can learn with a model.   

To my best knowledge, the first fully formulated model-based reinforcement learning approach 

is the Dyna architecture proposed by Sutton (1990). In the work, a model generates next states 
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and rewards based on states visited to minimize the number of real-world samples needed. 

These ‘imagined’ transitions are then used by the agent to learn from. Such process ‘imagines’ 

one step into the future from a state, is formally known as a one-step rollout. By learning from 

‘imagined’ data and real data, it was shown that an agent can learn with way less data. Many 

works came along after Dyna with a renewed interest over the years as the successes of using 

neural networks in reinforcement learning also highlighted the issue of sample complexity. For 

instance, [6] applied model-based approach in deep reinforcement learning on complex 

locomotion tasks by training a model using randomly generated trajectories. Their promising 

results indicate the potential of model-based approach in reducing sample complexity. 

 

 

 

   Figure 1: The Dyna Architecture (Sutton, 1990) 

Given the potential of model-based reinforcement learning in improving the learning and data 

efficiency of an artificial agent, there are still many unexplored areas and unresolved issues in 

the field. The mechanism of rolling out is one of them. Assuming we have a good enough 

model, how we use the agent to roll out or generate ‘imagined’ data may matter a lot. Consider 

humans learning with internal models, a rather loosely connected analogical example, we don’t 

simply imagine one step into the future. Sometimes, we imagine many steps into the future. 
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Other times, we imagine backwards into the past to hypothesize what might be some other 

ways that would have led us to this point. Hence, wouldn’t it matter for an artificial agent too if 

it can vary in its mechanism of rollout in terms of the extent and directionality?  

As shown by Holland et. al. (2018), the extent of rollout matters a lot. The planning shape, 

which refers to the extent of a rollout, has significant impact to the effectiveness of model-

based learning. An interesting conclusion of the work is the trivial benefits of one-step rollouts 

and the significantly greater benefits of medium-length rollouts. In addition to the extent, Goyal 

et. al. (2018) and Ashley et. al. (2018) demonstrated the benefits of rolling out backwards with 

a backward dynamics model. By rolling out backwards, values can be propagated faster for high 

reward states, which is especially beneficial for sparse reward environments. With the effects 

of the extent and directionality of rollouts demonstrated separately, we are motivated to 

systematically study and understand the separate and combined effects in controlling both the 

extent and directionality of rollouts. We hypothesize such understanding would allow 

developments of more dynamic rollout mechanisms, which may greatly amplify the benefits 

and effectiveness of model-based reinforcement learning. 

 

Project Objectives 

 

Motivated by all the previous works in the rollout mechanisms, the project aims to further the 

understanding of rollout mechanisms and hopefully provide insights in terms of how our agents 

should behave during planning with rollouts.  

To be more specific, as pointed out above, the extent and directionality may matter a lot in the 

effectiveness of using a model. Therefore, we would like to explore and answer several 

questions as our objectives: 

• Under what circumstances would forward rollouts be more beneficial than backward 

rollouts?  

• Under what circumstances would backward rollouts be more beneficial than forward 

rollouts?  

• Motivated by Holland et. al. (2018), in which they showed the importance of planning 

shape in forward rollouts, does the same apply to backward rollouts?  

• As a more general and all-encompassing question, how does the extent and 

directionality of rollout mechanisms interact?  

• Can we come up with a rule of thumb in rollout mechanisms that take advantage of 

both extent and directionality of rollouts? 

• Can we automate the decision-making process of rollout mechanisms dynamically that 

would result in better performance and sample complexity? 
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By answering these questions, we believe we would be able to provide useful insights and 

understanding that will be beneficial to the model-based reinforcement learning community, as 

a contribution to further explore the potential of using a model in reinforcement learning 

problems. 

 

Project Methodology  

 

As elaborated in the last section, the project aims to improve our understanding in the effect of 

extent and directionality in rollout mechanisms in model-based reinforcement learning. Based 

on these insights, we aim to propose more effective rollout mechanisms that can further 

demonstrate the power of model-based reinforcement learning in reducing sample complexity.  

To ground the scope of the research project, we will adapt the Dyna architecture (Sutton, 1990) 

in which the agent learns from both environment interactions and ‘imagined’ experiences 

produced from a learned model. We will vary the rollout mechanisms for our purpose. 

 

Intuition and Ideas on Bidirectional Rollouts 

 

In terms of directionality, we hypothesize forward and backward may be serving different 

complementary purposes. One way to look at it, is to have the agent to roll out forward to 

discover novel states and roll out backward whenever interesting states are discovered so the 

agent can acquire such knowledge quickly. 

In terms of extent, we hypothesize, similar to what was found in Holland et. al. (2018), more 

benefits can be observed also in the backward direction in medium-length rollouts than one-

step rollouts.  

As for automating these two decisions, there are many possibilities that we would like to 

explore. One naïve idea would be to treat forward rollout as the exploration process and 

backward rollout as the value propagation process. In the beginning, when the model is still 

learning, forward rollouts may be detrimental to the learning of value functions because the 

imagined next states may simply not exist. On the other hand, the same situation does not 

apply to backward rollouts because even if the predecessor does not exist, a wrongful update a 

non-existent predecessor would not affect the value function for the actual states that much. 

Thus, we may simply use forward rollouts for exploration in the beginning while backward 

rollouts can be done all the time with more of it when a high reward state is reached. Another 

possibility would be to frame these decisions as a reinforcement learning process so the agent 
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would be learning how much and which direction to ‘imagine’ or roll out. Many signals can be 

used like the model errors, rewards and rollout rewards.  

 

Experimental Plan 

   Figure 2: An example of a grid world environment 

To address our research questions, we plan to conduct a systematic study on rollout 

mechanisms. We aim to begin with a small environment where we can perform large scale 

experiments without the need of huge computational resources. We plan to use varying sizes of 

grid worlds with discrete action spaces, similar to the ones used by Edwards et. al. (2018). In 

these grid worlds, the goal of an agent is to navigate to the goal position with a step cost of -0.1 

and a reward of 1 when the goal is reached. We will vary the sizes of these grid worlds to 

compare the effect of different rollout mechanisms. As a start, we will primarily test different 

forward rollouts to backward rollouts ratios. Hopefully, certain patterns and insights can be 

identified.  

 

With the understanding on the extent and directionality of rollout mechanisms established, we 

aim to further verify the results in a more complicated environment, which we will use the 

MuJoCo environment (Todorov et. al., 2012), an environment with complex control problems in 

the continuous state and action space.  
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Note that in all the experiments mentioned above, we will use different qualities of model, 

namely almost-perfect models (pretrained with lots of data) and imperfect models (learned 

concurrently with value functions or policies). We will use the rewards and sample complexity 

as our performance measures. If time allows, we may further explore the situation when the 

environment has very sparse rewards.  

Figure 3: MuJoCo Environments 

 

Programming Tools and Datasets 

 

With the wide array of support in machine learning tools in Python, we will use Python as our 

primary programming language. As our project will involve the use of neural networks, we will 

use the PyTorch framework (Paszke et. al., 2017), which will offer us the flexibility and 

efficiency in performing large scale experiments.  
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Project Schedule and Milestones  

 

Milestones  

30 Sep: Deliverables of Phase 1 

• Detailed project plan 

• Project Web Page  

30 Nov: Experiments on Grid Worlds  

• A comprehensive set of experiment results on Grid Worlds, studying the effect of extent 

and directionality of rollout mechanisms in model-based reinforcement learning  

• With the insights and findings established, hopefully, clear patterns should be identified 

as to how extent and directionality of rollout mechanisms affect performance and 

sample complexity.  

• Ideas on how to automate the decisions on rollout mechanisms should emerge given 

the initial findings  

2 Feb: Deliverables of Phase 2 

• Detailed analysis on the initial set of experiments should be conducted 

• Additional experiments may be required after the initial set of experiments, they should 

be done too 

• Clean and Comprehensive figures should be prepared  

• Detailed Interim Report 

17 Mar:  Automation of bidirectional rollout mechanisms, experiments on complex 

environments 

• Experiments on ideas to automate bidirectional rollout mechanisms should be done  

• Any conclusions should be further confirmed in more complex environments like the 

MuJoCo environments 

19 Apr: Deliverables of Phase 3 

• Finalized experimental results and analysis  

• Final report  

5 May: Project Exhibition 

• Exhibition Materials (foam boards, poster, decorations, etc.)  

*Official FYP deadlines bolded  
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Schedule  

17 Sep 2019 - 30 Nov 2019 

• Environments and codebase set up for experiments. The goal is to make them modular 

to facilitate quick experimentation of various ideas and large-scale experiments  

• Confirm one single neural network architecture to perform fair and large-scale 

experiments 

• Conduct experiments on Grid Worlds with varying rollout mechanisms to discover 

insights and the role of extent and directionality in model-based reinforcement learning  

• Explore and consolidate on ideas in automating bidirectional rollouts, confirm the ideas 

mentioned in the intuition and ideas section above  

1 Dec 2019 – 2 Feb 2020 

• Conduct detailed analysis on initial set of experiments on grid world 

• Create comprehensive graphs like learning curves and sample complexity curves 

• Review the efficiency in executing the initial set of experiments, improve the codebase 

• Prepare codebase to experiment on more complex environments like the MuJoCo 

environments  

• Preparation of the first presentation and interim report  

• Invite professors and fellow schoolmates to read my report in order to improve the 

readability and make sure people without significant background in reinforcement 

learning can understand 

3 Feb 2020 – 17 Mar 2020  

• Consolidate and review in a detailed manner of all the potential ideas in automating 

bidirectional rollouts 

• Discuss these ideas with Professor Pan to ensure the direction is reasonable  

• Conduct experiments on these ideas  

• Any conclusions drawn will be experimented in more complex environments  

18 Mar 2020 – 19 Apr 2020  

• Conduct more runs to make sure the results are statistically significant 

• If time allows, explore the effect of different qualities of model and environments with 

sparse rewards  

• Preparation of final presentation and final report 

20 Apr 2020 – 5 May 2020 

• Make sure the final report is clear and comprehensive  
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• Make sure figures are easily understandable  

• Preparation of exhibition materials 
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