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Abstract

In recent years, artificial intelligence (AI) has penetrated multiple dimen-
sions of people’s daily lives by making the devices they use smarter. Fueled
by data, AI programs imitate human intelligence in terms of their learning and
behavioral capabilities. With such widespread usage, however, users demand
improved functionalities and speed, pushing developers and data scientists to
make their programs smarter amid industry competition. These smarter pro-
grams have to deal with more complexities, and developers consequently have
to choose whether to prioritize the program’s features or performance, posing
a dilemma for them. This project proposes to design an AI application with a
distributed architecture instead of a centralized architecture (the more common
structure in the status quo) to improve its latency, efficiency, and throughput.
As proof of concept, the project specifically examines a complex image anal-
ysis service. The project’s objective is to develop tooling and foundation to
automatically instantiate and compare distributed systems of a variety of spec-
ifications and scheduling algorithms. There are three milestones in this project.
Firstly, the machine learning stage where test models have to be developed.
Second, modifying the model serving to work in a distributed manner. Lastly,
comparing distributed implementations which is the most crucial aspect of this
project. The project shows that distributed implementations of AI applications
lead to better latency, efficiency and throughput.
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Chapter 1

Introduction

1.1 Background

Artificial intelligence is an area of computer science that focuses on granting
machines the ability to act intelligently [12]. It is a vast field with limitless
applications and each application has its own unique solution. Machine learning,
specifically, is a subset of artificial intelligence that learns from data. [13] Today
we see ubiquitous applications of artificial intelligence such as spam filters [2],
recommendations [11], virtual assistants, and self-driving.

Customers are demanding smarter and smarter capabilities in their ma-
chines, and this trend leads to a new set of software development challenges for
AI developers. Nvidia summarises them with the PLASTER [16] framework:

• Programmability

• Latency

• Accuracy

• Size of Model

• Throughput

• Energy Efficiency

• Rate of Learning

These challenges carry over to the realm of machine learning since it is a
subset of artificial intelligence. A machine learning application has two main
stages:

1. Training (Learning from data)

2. Inference (Given an input, predicting an output)
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Figure 1.1: Inference pipeline of a stock price prediction service. C2 and C5 are
data retrievers that fetch past stock data and twitter mentions of a specified
stock symbol. C6 is a caching layer that allows skipping C7-C11 steps if a
prediction has been recently made for a specific stock symbol. C7, C8, C9,
C10 & C11 are ML models that compete against each other to predict a stock
symbol’s price. C4 is a sentiment analyzer whose results are taken into account
for price prediction. As can be seen, it is a fairly complex pipeline composed of
several different steps.

Take the example of an application that relies on a machine learning model to
transcribe voice. Before the model can be used by the application, it needs to be
trained. To do this, developers expose the model to hundreds of voice recordings
to allow it to learn which sounds match to which words. Now, the application
can use the model by sending it voice recordings and receiving transcribed text
in return. In short, this process of predicting an output in response to an unseen
input is inference, the second stage of machine learning as mentioned previously.

1.2 Motivation

Since end-users of machine learning applications are only concerned with infer-
ence, not training, the inference must be quick.

For inference, an input goes through multiple steps, known as a pipeline.
Figure 1.1 is an example of a stock price prediction service’s pipeline. As tasks in
a pipeline increase in quantity and complexity, it can increase the latency (time
taken) to execute all steps of the pipeline. Moreover, if a centralized architecture
(single machine) executes the complete pipeline, it can create bottlenecks. For
example, if a pipeline for input A is in progress, the pipeline for input B cannot
start.

On a centralized architecture, all tasks have to be done sequentially (even
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if they are independent of each other). This could take a long time and hence
increase the latency.

Consequently, it is also possible for hardware resources to go underutilized
and used for longer periods leading to decreased efficiency.

Moreover, until all tasks for a specific request have finished, processing for
a new request cannot start. Thus, the service cannot handle a high number of
requests in a given period i.e. throughput.

1.3 Objectives

Several methods could be considered to optimize latency, throughput, and effi-
ciency of artificial intelligence applications. This project tackles this optimiza-
tion problem by efficiently distributing the pipeline tasks of artificial intelligence
applications over several machines.

Moving an artificial intelligence application from a centralized architecture to
a distributed architecture not only requires deploying it on a network of multiple
machines but modifying it to properly utilize the newly available resources.

A distributed application’s success depends on how the application divides
its tasks (job scheduling) and the quality/quantity of resources available for
use. To figure out what works best we need a quick and reliable way of testing
different job scheduling algorithms on networks of different sizes composed of
machines of different specifications.

Consequently, the project’s objectives are to develop the following programs:

1. An AI application with a complex inference pipeline that can work with
different job scheduling algorithms.

2. A deployment method that can programmatically deploy an AI application
according to provided specifications.

3. A web app to measure latency, efficiency and throughput in an architecture-
agnostic way.

With the above-mentioned programs in place, we can confidently investigate
and argue for or against using distributed systems for AI applications.

1.4 Contribution

With data, the project shows that latency, efficiency, and throughput of an AI
application (concerns which were highlighted in the PLASTER framework [16])
can indeed be improved if a decentralized architecture is employed instead of
a centralized architecture. Moreover, the project contributes tools to better
conduct similar investigations.
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1.5 Report Organization

Composed of artificial intelligence, distributed systems, and web development,
the project’s methodology involves several fields of computer science and soft-
ware engineering to achieve the objectives mentioned in section 1.3. Naturally,
that invites its own set of complexities and uncertainties. After literature re-
view and project reasoning in chapter 2, chapter 3 accomplishes the important
task of narrowing down and justifying the methodology. Following this, chap-
ter 4 discusses in detail the implementation and technical details of the project.
Most importantly, chapter 5 shows the results. Lastly, chapter 6 summarises
this report and the project.
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Chapter 2

Literature Review and
Justification

2.1 Literature Review

Published in 2011, Mesos [9] was a pioneering work in resource-sharing across
cluster-computing frameworks. It introduced a two-level scheduling mecha-
nism that resulted in near-optimal performance and reduced resource under-
utilization.

In 2017, Clipper [3] was introduced as a general-purpose prediction system
that acted as a model selection/abstraction layer between applications and dif-
ferent implementations of a model. This ultimately allowed an AI model to
be easily deployed on a distributed system while gaining benefits of modular
architecture and increased performance.

Coming from the same lab as Clipper [3], InferLine [4], published in 2018, was
a general-purpose specification designed to proactively optimize ML inference
pipelines but also reactively control configurations. While generalizing across
different frameworks, it achieved 7.6 times cost-savings and 32 times lower SLO
miss-rate.

Lastly, GrandSLAm [10], published in 2019, was a general-purpose serving
system built on a microservices architecture. It proactively optimized pipelines
to meet latency requirements while improving throughput by 3 times.

2.2 Shortcomings

Mesos [9] is great at resource-optimization but it does not take into account the
bigger picture. It is only concerned with how much resources the task at hand
requires. Hence, it is not suitable for complex machine learning pipelines such
as the one in figure 1.1.
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Clipper [3] deals with different implementations of the same model. In the
case where we have different models in a pipeline, we lose out on its benefits.

InferLine [4] and GrandSLAm [10] are interesting approaches to solving the
problems highlighted in section 1.2. However, no standardized way exists to
compare them. The scheduling techniques and architecture choices also vary.
Not only that, but public implementations are also unavailable and hence further
work cannot be done on them to improve them.

2.3 Project Justification

Regardless of how the pipeline optimization problem is solved, an implementation-
agnostic way is needed to measure the results. In addition to its approach to
solving the problem, this project also develops tools that can be used in the
future to easily deploy and compare other solutions. Moreover, it builds a foun-
dation, utilizing available resources at the University of Hong Kong, on which
further work can be carried out.
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Chapter 3

Methodology

From developing an artificial intelligence application to running it on a dis-
tributed architecture to comparing it to a traditional implementation, there are
many steps to this project and without proper breakdown, it could get over-
whelming quickly. The following sections describe and justify the steps through
which the project aims to accomplish its objectives.

3.1 Choose AI Application for testing

Figure 3.1: Inference pipeline of an image analysis service. It starts with C1
where an image is given as input. C2 runs the image through YOLOv3 [15]
to detect the objects in it. C3 is a conditional where it checks if there is a
car in the image. If true, the image goes through ALPR [14] to extract the
nameplate details. The pipeline ends at C5 by returning the detected objects
and nameplates in the image. With multiple models and branching, the pipeline
represents real-world services e.g. Facebook image moderation, Google image
labeling, etc.

As the project proposes a distributed architecture for artificial intelligence
applications, our test AI application must be a sufficient representative of most if

7



not all AI applications for a fair investigation. Naturally, a fairly representative
application is one with a pipeline composed of different kinds of tasks with a
mix of mutually dependent and independent ones. Ergo, choosing a single AI
application as a testing ground for our solution is an important task that requires
studying popular AI techniques and implementations in the community.

3.2 Develop basic application

For any artificial intelligence application, first of all, machine learning models
need to be trained and an inference pipeline needs to be developed. This requires
studying current techniques for the application of our choice and using that
knowledge to build and train good enough models. At this stage, accuracy
is not important so we do not need to fine-tune the models. Once the model
training is done, it needs to be ready for inference. Therefore, we need to ensure
that all the steps required to accomplish inference on unseen inputs have been
implemented at a satisfactory level.

3.3 Run on a centralized system

After having chosen a test AI application and trained basic models for it, we
need to ensure we can successfully run inference on a single machine. This step
is important for two reasons. Firstly, this gives us a baseline performance we can
compare our distributed implementations with. Second, we will have a working
implementation of our application and we can refer to it while converting our
application to work with a distributed implementation.

3.4 Convert to a distributed system

Consequently, the next step is to convert the application from a centralized
implementation to a distributed implementation. This will require modifying
the source code to use distributed system techniques such as RPC (remote
procedure call). To ensure consistency, we should ensure our distributed imple-
mentation running on one machine has the same performance as the centralized
implementation from earlier.

3.5 Programmatic Deployment

The only way to test a distributed implementation is to deploy it on a cluster
of computers and measure performance. We also need to vary the cluster speci-
fications and test repeatedly. Moreover, we need to ensure all specifications are
reproducible and give consistent performance. Doing all this manually can get
complex and out of control quickly. Therefore, having a programmatic way of
deploying and keeping track of distributed system deployments is crucial.
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3.6 Compare architecture-agnostically

With all these different deployments, we need a reliable way of comparing each
deployment performance that is completely decoupled from its intrinsic quali-
ties. A fair and reliable way to compare is to create a web app that accepts a
server URL and sends numerous requests to it. As the web app is run in the
browser, it measures these metrics from the client-side and all it cares about
is input and output. Thus, it does not matter for the web app if the server
implementation is on a centralized or distributed architecture.

3.6.1 Test Cases

To study whether a distributed architecture can indeed improve latency, effi-
ciency, and throughput, performance will be compared across systems of various
specifications:

1. Centralized implementation (baseline)

2. 1 machine for n tasks (should be same as above)

3. Less than n machines for n tasks

4. n machines for n tasks (optimum)

3.7 Summary

To summarise, the project picks an AI application, builds it to run on a cen-
tralized architecture, converts the application to run on a distributed archi-
tecture, runs the application on distributed systems of different specifications
and, lastly, compares the application across all these implementations to assess
whether latency, efficiency, and throughput can be improved using a distributed
architecture.
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Chapter 4

Implementation

The next few sections highlight the implementation of the methodology dis-
cussed in chapter 3. It incorporates state-of-the-art open-source technologies
and reproducible techniques while adapting to resource constraints.

4.1 AI Application of Choice

Figure 4.1: YOLOv3 Results. It shows two correctly identified cars and their
location in image.

An image analysis service (Figure 3.1) was chosen for multiple reasons. First
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of all, image services are quite common nowadays and thus representative of
the production landscape of artificial intelligence. Second, there are several
open-source models e.g. YOLOv3 [15] available so we can save time by not
developing our own. Moreover, we can replicate real-world load by using them.
Lastly, GPUs are fundamental to machine learning and our experiments need
to take their usage into account. As image models heavily rely on GPUs, they
are perfect candidates for being part of our inference pipeline.

4.2 Architecture (Simplified)

Figure 4.2: Project Architecture. A web app interacts with an API server
which fulfills requests by communicating using RPC with pipeline task instances
deployed across several machines.

As figure 4.2 shows, the application architecture involves remote procedure
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calls to instances of pipeline tasks running across multiple machines.

4.2.1 Container for each pipeline task.

Figure 4.3: Containerization using Docker. Docker has been used to run isolated
gRPC server containers for each task of the pipeline.

Docker [5] has been used to run separate containers for each task of our
pipeline e.g. YOLOv3. This makes it easy to develop, package, and deploy
each task reliably. As long as we have Docker running on our cluster nodes,
we can run any task on any node. If OpenALPR requires a specific version
of Linux but YOLOv3 requires something else, we don’t have to worry about
finding common ground. Using Docker, we can isolate each task into its runtime
and start/stop/restart it at any time. Moreover, we can scale up or down the
number of tasks with just a single instruction.

4.2.2 Remote Procedure Calls

For remote procedure calls, gRPC [7] is used because it is open-source, mod-
ern (uses HTTP/2), efficient and cross-platform (uses Protocol Buffers as the
interface description language). To implement gRPC, every task container of
the pipeline is a gRPC server. Our API server acts as a gRPC client when
communicating with any task instance. Because gRPC is cross-platform, we are
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not limited by our choice of language/framework to build our RPC servers. All
we need is to define our task as a gRPC service using Protocol Buffers [6] (a
method of serializing structured data).

4.2.3 API Server

Our API server is the bridge between our client and our task instances. It imple-
ments the REST architecture style using Python and Flask. As it is responsible
for managing our task instances, all the scheduling logic lies here. By changing
how it fulfills the requirements of incoming requests, we can increase/decrease
the performance of our distributed system.

In addition to accepting inputs for our image analysis pipeline, it also accepts
inputs to the scheduling logic. This allows us to easily modify its behavior while
conducting experiments.

4.2.4 Web App

Figure 4.4: Metric-measuring Web App. The distributed system’s specifications
can be modified using the ”Hardware In Use” panel on top left. The ”Send Re-
quests” panel on the right is used to control the number of concurrent requests.
The results section shows the output and response time for each request.

The purpose of the web app is three-fold. First, we can use it to send
requests and measure response time. Second, we can modify the type/number
of requests we send. Third, we can set the scheduling logic of the API server.
With these three functions, we can conduct all kinds of experiments and collect
valuable data for our project.

The web app is a fully client-side and all the required HTML, CSS and
JavaScript is fetched once in the beginning. This ensures our API server is not
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wasting valuable resources rendering web pages. It is built using JavaScript and
React. As it does not know how the API server works other than the kind of
input it accepts and the output it sends back, our web app is fully architecture-
agnostic.

4.3 Architecture (Actual)

As with any real-world implementation, we are constrained by the resources we
have at hand. To overcome them, the architecture has been slightly modified
as shown in figure 4.5.

Figure 4.5: Modified architecture to overcome resource constraints. SSH tun-
neling has been used to port forward API server’s ports to task instances. The
entire architecture runs on the CS VPN.

14



4.3.1 Challenges

The machines available for use at the Computer Science department of the
University of Hong Kong have highly powered CPUs (Intel(R) Xeon(R) Silver
4116 CPU @ 2.10GHz) and GPUs (4 x GeForce RTX 2080 Ti). However, using
them involved a few challenges:

1. All ports are blocked

2. Only SSH is allowed

3. CSVPN is required

As RPC communication between our API server and the task instances
running on these machines requires several ports to be open, it was a make-or-
break situation. But on the other hand, it would have been costly not to use
these machines so overcoming these challenges was important.

4.3.2 CS VPN

The first solution was to use the same machine to run the API server and browse
the web app. If connected to CS VPN, the machine allows us to communicate
with other department machines via SSH.

4.3.3 SSH Tunneling

Figure 4.6: SSH Tunneling to connect to task instances from my Macbook
running the API server.

Because all ports are blocked on department machines except SSH (22), SSH
tunneling was used for port forwarding (Figure 4.6). What that means is that
the API server acts as if the task instances are running on the same machine as
itself but the port requests are forwarded to cluster machines via SSH tunneling.
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4.4 Deployment & Source Code

4.5 Terraform

Figure 4.7: Deployment using Terraform. By writing our infrastructure as code
in config files, we can easily track, manage, scale and deploy our experiments.

With complex pipelines, several machines and tens of task instances, it is
highly important to track deployment. Through Terraform [8], we can pro-
grammatically deploy and manage our infrastructure. If we need to increase
or decrease the number of YOLOv3 instances across multiple machines (while
keeping track of their port numbers), we only need to modify a single config
file, and Terraform handles the rest. Moreover, this brings infrastructure under
version control, allows reproducibility and increases scalibility (more machines
can be easily added).

4.6 Source code

To ensure the project is replicable and open to further improvement, the source
code has been made available. [1] With the tools the project publishes, it hopes
to contribute to further research in distributed systems at the University of
Hong Kong.
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Chapter 5

Results

Table 5.1: Response times for Image Analysis pipeline with a car image as
input. n represents the number of concurrent requests. Each column represents
the number of task instances in the distributed system. n/2 for n in the case
of n = 10 means that there were 5 instances each of YOLOv3 and OpenALPR
available for use. The response time is the total time it took for all requests to
finish (averaged over three trials)

Requests (n) / Task instances 1 for n (baseline) n/2 for n n for n (optimum)
1 4.61s 4.60s 4.64s
10 46.41s 9.30s 4.59s
50 231.22s 9.29s 4.61s
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Chapter 6

Conclusion

The project has three crucial parts: machine learning, tooling, and distributed
architecture. As shown in chapter 4, a functional image analysis service has
been developed and deployed which closely resembles machine learning applica-
tions in the real world. Moreover, reliable tooling has been successfully devel-
oped for metric measurement and deployment that can be used outside of this
project. Adding to that, a distributed implementation has been developed. As
mentioned in chapter 3, the hypothesis mentioned in section 1.4 (distributed
architecture is better than traditional architecture) has been tested using a
production-representative machine learning application and reliable metric tool-
ing. With the data obtained from these tests (Table 5.1), the project has shown
that the latency, efficiency, and throughput of AI applications can be improved
using a distributed architecture.

18



Bibliography

[1] Waqas Ali. Serving AI using a Distributed Architecture. https://github.
com/WaqasAliAbbasi/HKU-FYP. 2020.

[2] Ion Androutsopoulos et al. “Learning to Filter Spam E-Mail: A Com-
parison of a Naive Bayesian and a Memory-Based Approach”. In: CoRR
cs.CL/0009009 (2000). url: http://arxiv.org/abs/cs.CL/0009009.

[3] Daniel Crankshaw et al. “Clipper: A Low-Latency Online Prediction Serv-
ing System”. In: Proceedings of the 14th USENIX Conference on Net-
worked Systems Design and Implementation. NSDI’17. Boston, MA, USA:
USENIX Association, 2017, pp. 613–627. isbn: 9781931971379.

[4] Daniel Crankshaw et al. “InferLine: ML Inference Pipeline Composition
Framework”. In: CoRR abs/1812.01776 (2018). arXiv: 1812.01776. url:
http://arxiv.org/abs/1812.01776.

[5] Docker. Docker. https : / / www . docker . com / products / container -

runtime. 2020.

[6] Google. protobuf 3.11.4. https://github.com/protocolbuffers/protobuf.
2020.

[7] gRPC. gRPC 1.28.1. https://github.com/grpc/grpc. 2020.

[8] HashiCorp. Terraform. https://www.terraform.io/. 2020.

[9] Benjamin Hindman et al. “Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center”. In: Proceedings of the 8th USENIX Confer-
ence on Networked Systems Design and Implementation. NSDI’11. Boston,
MA: USENIX Association, 2011, pp. 295–308.

[10] Ram Srivatsa Kannan et al. “GrandSLAm: Guaranteeing SLAs for Jobs in
Microservices Execution Frameworks”. In: Proceedings of the Fourteenth
EuroSys Conference 2019. EuroSys ’19. Dresden, Germany: Association
for Computing Machinery, 2019. isbn: 9781450362818. doi: 10.1145/

3302424.3303958. url: https://doi.org/10.1145/3302424.3303958.

[11] George Lekakos and Petros Caravelas. “A hybrid approach for movie
recommendation”. In: Multimedia tools and applications 36.1-2 (2008),
pp. 55–70.

[12] John McCarthy. What Is Artificial Intelligence? Tech. rep. Stanford Uni-
versity, 2007.

19



[13] Thomas Mitchell. Machine Learning (McGraw-Hill Series in Computer
Science). McGraw-Hill Education, 1997.

[14] OpenALPR. OpenALPR 2.3.0. https://github.com/openalpr/openalpr.
2016.

[15] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improve-
ment”. In: (Apr. 2018).

[16] David A. Teich and Paul R. Teich. PLASTER: A Framework for Deep
Learning Performance. Tech. rep. TIRIAS Research, 2018.

20


