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Abstract. The de Bruijn graph assembly approach breaks reads into k-mers 
before assembling them into contigs. The string graph approach forms contigs 
by connecting two reads with k or more overlapping nucleotides. Both 
approaches face the problem of false-positive vertices from erroneous reads, 
missing vertices due to non-uniform coverage and branching due to erroneous 
reads and repeat regions. A proper choice of k is crucial but for any single k 
there is always a trade-off: a small k favors the situation of erroneous reads and 
non-uniform coverage, and a large k favors short repeat regions.  

We propose an iterative de Bruijn graph approach iterating from small to 
large k capturing merits of all values in between. With real and simulated data, 
our IDBA algorithm is superior to all existing algorithms by constructing longer 
contigs with similar accuracy and using less memory. The running time of 
IDBA is comparable with existing algorithms. 
Availability: IDBA is available at http://www.cs.hku.hk/~alse/idba/ 
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1   Introduction 

Despite tremendous research efforts, de novo assembly remains an incompletely 
solved problem. Although more reference genomes are known, de novo assembly 
remains a critical step in studying a genome. Applications such as detection of 
structural variations [1] cannot be done easily based on resequencing techniques and 
there are findings that show genome assembly based on resequencing may produce 
errors especially for species with high mutation rates [1].  

With high throughput sequencing technologies (e.g. Ilumina Genome Analyzer and 
Applied Biosystems SOLiD), mate-pair short reads (35nt to 75nt) for a mammalian 
genome can be generated in a few weeks at a low cost. As short reads have different 
characteristics (i.e. shorter length, higher coverage, but relatively higher error rates) as 
compared to traditional Sanger reads, new assembly tools have emerged [2-11]. The 
first batch of tools (e.g. SSAKE [3], VCAKE [4], SHARCGS [5]) uses the “overlap-
then-extend” idea but need to rely on data structures such as prefix trees, so they 
require lots of memory and run very slowly. The newer tools are divided into those 



based on the de Bruijn graph (e.g. Velvet [7], Abyss [8], Euler-SR[2, 6], AllPaths[11]) 
and those based on the string graph (e.g. Edena [9]). Each of the two approaches has 
merits and limitations, and it is not clear which is better. 

De Bruijn graph algorithms [7-8, 12-13] assemble reads by constructing a de 
Bruijn graph in which each vertex represents a length-k substring (k-mer) in a length-l 
read and connects vertex u to vertex v if u and v are consecutive k-mers in a read, i.e. 
the last (k – 1) nucleotides of the k-mer represented by u is the same as the first (k – 1) 
nucleotides of the k-mer represented by v. Intuitively, maximal paths of vertices 
without branches in the graph correspond to contigs to be outputted by algorithms.  

String graph algorithms [9, 14] represent each read by a vertex and there is a 
directed edge from vertex u to vertex v if the suffix of at least x nucleotides of read u 
is the same as the prefix of read v. Similar to de Bruijn graph algorithms, string graph 
algorithms report maximal paths without branches as a contigs.  

When the reads are error-free with high coverage, most tools work well. However, 
because of repeats, erroneous reads, and non-uniform coverage, their performances 
have not always been satisfactory. In this paper, we focus on three major problems: (1) 
false positive vertices (due to errors in reads); (2) gap problem (due to non-uniform or 
low coverage) and; (3) branching problem (due to repeats or errors in reads). 
 
Three major problems:  
(a) False Positive Vertices: Errors in reads introduce false positive vertices which 
make both graphs bigger and consume more memory; for example, for the human 
genome with 30x coverage, the memory requirement of Velvet [7] and Abyss[8] is 
more than 250G. 
(b) Gap problem: Due to non-uniform or low coverage, reads may not be sampled for 
every position in the genome. For the de Bruijn graph, when all the (possible l – k) 
reads covering consecutive k-mers are missing, we may have short “dead-end” paths. 
The larger the k, the more serious is the gap problem. The same applies to the string 
graph if all the (possible l – x) reads following another read are missing.  
(c) Branching problem: Those k-mers which connect with multiple k-mers due to 
repeat regions or erroneous reads introduce branches in the de Bruijn graph. Many 
algorithms [7-9] stop the contigs at branches and it is not possible to extend a contig 
without additional information. A small k will lead to more branches. The same 
branching problem occurs in string graph algorithms, and depending on the value of x 
(the number of overlapping nucleotides for two consecutive reads), the same read can 
be connected with multiple other reads.  

 
Existing assembly algorithms: 
Table 1 summarizes the major techniques used by existing algorithms to solve the 
above three problems. There are two methods for handling false positive vertices. (1) 
Dead-end removal: False positive vertices usually lead to short dead-end paths. Both 
de Bruijn and string algorithms (e.g. [7-8]) remove false positive vertices by 
removing these paths. However, due to the gap problem, some paths may be removed 
by mistake. (2) Filtering: De Bruijn graph algorithms  remove false positive vertices 
if the corresponding k-mers appear no more than m times. However, some correct k-
mers with low coverage might also be removed especially for large k for which the 
expected k-mer occurrence frequency is low. As for string graph algorithms, the 



expected occurrence of each read is also low (1 or 2) and they rely on error correction 
which fall back to consider the multiplicity of k-mers [15] to correct errors in each 
read before forming contigs. 

 
Problems Techniques de Bruijn graph String graph 
1) False positive 
vertices 

(i) Dead-end removal Yes Yes 
(ii) Filtering Yes (not effective 

if k is large) 
Not applicable (relies on 
error correction algorithms) 

2) Gap No effective method (try to 
use a reasonable small k or x) 

-- -- 

3) Branching (i) Using read information Yes Not applicable (already use 
the whole read information) 

(ii) Bubble removal Yes Yes 

Table 1: Major techniques used to handle the three problems. 

There is no effective method to deal with the gap problem except all algorithms try 
to avoid gaps by using a large k (or x in string graphs). 

Some de Bruijn graph algorithms [12] solve the branching problem by considering 
only those branches that are supported by reads. However, this method may easily 
lead to erroneous contigs [12] if the reads are erroneous especially when error rates 
are high. This method cannot be applied to string graph algorithms as they already 
consider the read information. The other technique is bubble removal, which is used 
by both approaches [7-9] and tries to merge similar paths of very similar vertices into 
one path as the small differences may only be due to SNPs or errors. However, the 
merging might be incorrect and this process increases the length of contigs at the 
expense of their accuracy. 
 

 High Coverage 
Low Error Rate 

(100x, 0.5%) 

Low Coverage 
Low Error Rate 

(30x, 1%) 

High Coverage 
High Error Rate 

(100x, 2%) 

Low Coverage 
High Error Rate 

(30x, 2%) 
Edena (string Graph) 63256 5104 53491 147 
Velvet (de Bruijn Graph) 61204 19284 32596 9424 
Abyss (de Bruijn Graph) 58678 22109 50009 10992 
IDBA (our algorithm) 63218 63218 59287 32612 

Table 2: Performance (N50) of three existing assembly algorithms (Edena, Velvet, Abyss) 
against IDBA under different coverage and error rates for the simulated dataset using E.coli 
where read length is 75nt. The best results generated are used for comparison. 

To summarize, string graph algorithms do not have an effective method to remove 
errors from reads and have the gap problem if x is set to a reasonable value to avoid 
the branching problem. However, string graph algorithms, which make use of the 
direct information in the whole read, perform very well in case of high coverage and 
low error rate. For other cases, de Bruijn graph algorithms may perform better. Our 
observations are confirmed by the N50 comparison of Edena [9] (currently one of the 
best string graph algorithms), Velvet [7] and Abyss [8] (the best de Bruijn graph 
algorithms) based on different coverage and error rates of the data as shown in Table 
2 (more details on the comparison can be found in Section 4.) 

The best existing assembly algorithms are Edena (string graph based), Velvet and 
Abyss (both de Bruijn graph based, differing in the exact details for handling dead-



ends and bubble removal). However, setting the correct parameter k in de Bruijn 
graph algorithms (or x in string graph algorithms) is crucial. Not only does the choice 
affect the filtering but also, for any single k (or x) value, there is a trade-off between 
the gap problem and the branching problem. In order to minimize the number of gaps, 
a smaller k (or x) should be used. But with a small k (or x), the branching problem 
becomes more serious. Existing algorithms usually pick a moderate value for k (or x) 
to balance between the two problems. None of the existing approaches try to take 
advantage of using different k (or x) values1.  

 
Our contributions: 
We propose a new assembly algorithm (IDBA) based on the de Bruijn graph. The 
idea is simple but practical in that it alleviates the difficulties in setting a correct k and 
the filtering threshold m, gives good results, uses much less memory (many existing 
tools require huge amount of memory making them infeasible for large genomes) at 
the expense of a reasonable increase in running time. Instead of using a fixed k, our 
algorithm iterates from small to large k (kmin to kmax) capturing the merits of all values 
in between. The key step is to maintain an accumulated de Bruijn graph to carry 
useful information forward as k increases. Note that this is not the same as running the 
algorithm for many different k values independently as it is not clear how to combine 
contigs from different runs to get a better result. We show theoretically that the 
accumulated de Bruijn graph can capture good contigs and these contigs can be made 
longer as k increases. Based on experiments on simulated and real data, we show that 
IDBA can produce longer contigs (see Table 2 for the N50 comparison) with similar 
accuracy (very few wrong contigs and high coverage). More detailed results are 
presented in Section 4.  

We are able to reduce the memory consumption by 70-80% as compared to 
existing algorithms which use a fixed k of moderate size. Because k is of moderate 
size, the algorithms cannot do filtering in the first step if the coverage is not high and 
thus create a big graph due to false positive vertices. However, we can start with a 
small k. With conservative but effective filtering in the first step (e.g. set m = 1), 
many false positive vertices are pruned. Although IDBA iterates through different k 
values, with implementation tricks, IDBA runs a lot faster than Abyss and is 
comparable with other existing algorithms. 

 
Organization of the paper and remarks: 
We organize the paper as follows. In Section 2, we introduce our algorithm IDBA and 
show the advantages of using small and large k values. Also, we provide key 
implementation details which help to reduce the memory consumption and running 
time. Section 3 compares the performance of IDBA with existing algorithms on both 
simulated and real data. We conclude the paper in Section 4. 

We note that using mate-pair information to resolve repeats that are longer than 
reads is another important aspect of an assembly tool. In this paper, we mainly focus 
on short repeats, which account for the largest portion of repeats in genomes and 

                                                           
1 The SHARCGS [5] algorithm uses fixed x values (the number of overlapping nucleotides) 

when extending a read, but they repeat the whole assembling procedure independently using 
a few different x values and combine the resulting contigs from different runs only.  



cannot be resolved by mate-pair information easily as the error in the insert size may 
be even larger than the length of the repeat. We leave the problem of how to use 
mate-pair information for assembly for future study. So, in the last step of our 
assembly tool, which uses mate-pair information to connect the contigs, we simply 
follow Abyss [8]. Note also that, although our approach can be applied to the string 
graph with a range of x values, currently there is no effective way to remove errors 
from reads for string graphs, and so we focus on de Bruijn graphs. 

2   Algorithm IDBA 

In this section, we present our algorithm IDBA (Iterative De Bruijn Graph short read 
Assembler). Given a set of reads, we denote the de Bruijn graph for any fixed k as Gk. 
Instead of using only one fixed k, IDBA iterates on a range of k values from k = kmin 
to k = kmax and maintains an accumulated de Bruijn graph Hk at each iteration. At the 
first step when k = kmin, Hk is equivalent to the graph Gk after deleting all vertices 
whose corresponding k-mers appear no more than m times (we set m = 1 or 2 in 
practice depending on coverage) in all reads. Theorem 1 shows that these k-mers are 
very likely to be false positives.  

To construct Hk+1 from Hk, we first construct potential contigs in Hk by identifying 
maximal paths v1, v2, …, vp in which all vertices have in-degree and out-degree equal 
to 1 except v1 and vp which may have in-degree 0 and out-degree 0, respectively. We 
remove all reads that can be represented by potential contigs in Hk i.e. those reads that 
are substrings of a contig (as these reads cannot be used to resolve any branch). In the 
construction of Hk+1, we only consider the remaining reads and the potential contigs in 
Hk. We perform two steps to convert Hk to Hk+1. (1) For each edge (vi, vj) in Hk, we 
convert the edge into a vertex (representing a (k+1)-mer xi1 xi2 … xik xjk = xi1 xj1 …xjk). 
(2) We connect every two such vertices by an edge if the corresponding two 
consecutive (k+1)-mers have support from one of the remaining reads or potential 
contigs of Hk, i.e. the corresponding (k+2)-mer exists.  

Note that in practice, we do not need to go from k to k+1; we can jump from k to 
k+s, in which case, for (1), we convert each path of length s in Hk into a vertex. In 
Theorem 4 in the Appendix, we show that by setting s = 1, we may get high quality 
contigs. The choice of s will represent a trade-off on the efficiency of the algorithm 
and the quality of the contigs. 

For each Hk, we follow other algorithms [7] to remove dead-ends (potential contig 
shorter than 3k – 1 with one end with 0 in-degree or out-degree, which represents a 
path in Hk of length at most 2k). Note that removing a dead-end may create more 
dead-ends, the procedure will repeat until no more dead-ends exist in the graph. These 
dead-end contigs are likely to be false positives (Theorem 2). In fact, most of the 
remaining false positive vertices after the first filtering step can be removed as dead 
ends. After obtaining Hkmax, we merge bubbles where bubbles are two paths 
representing two different contigs going from the same vertex v1 to the same vertex vp 
where these two contigs differ by only one nucleotide. This scenario is likely to be 
caused by an error or a SNP. Like other algorithms [7-9], we merge the two contigs 



into one. Then, finally we use mate-pair information to connect the contigs as much 
as possible using a similar algorithm as Abyss[8] and report the final set of contigs. 

 
Algorithm IDBA: 
1 k <- kmin (kmin = 25 by default) 
2 Filter out k-mers appearing <= m times  
3 Construct Hkmin 
4 Repeat 
5 a) Remove dead-ends with length < 2k 
6 b) Get all potential contigs 
7 c) Remove reads represented by potential contigs 
8 d) Construct Hk+s (s = 1 by default) 
9 Stop if k >= kmax (kmax = 50 by default) 
10 Remove dead-end with length shorter than 2kmax 
11 Merge bubbles 
12 Connect potential contigs in Hkmax using mate-pair information 
13 Output all contigs 
 

First, we note that the probability of removing a true positive vertex in our 
filtering step is very low (Theorem 3 in Appendix A.3 gives the analysis) as long as 
kmin and the filtering threshold m are set to a reasonable value (e.g. m = 1). For 
example, if 1.6×106 length-75 reads are sampled from a genome of length 4.1×106 
(45x coverage) with error rate 1%, the probability of filtering out a true positive 
vertex in H25 is 1.14×10-9, i.e. the expected number of false negative vertices is 0.0047 
<< 1 which is very small. Even for some cases the number is large, say 10, it is still 
relatively very small when compared with the genome size. Thus, for simplicity in 
analysis, we assume there is no false negative vertex in Hkmin. The filtering step can 
remove a large portion of the false positive vertices. Most of the remaining false 
positive vertices are removed in later steps by dead-ends The probability of removing 
a correct contig as a dead-end is also small (see Theorem 4 in Appendix A.3 for the 
exact calculation of the probabilities). The probability of determine a dead-end 
wrongly is 2.46×10-4 only when the above example is considered. 

A contig that appears in Gk for a small k may not be a contig in Gk’ with k’ > k due 
to the gap problem. However, in our construction, if a contig c appears in Hk, there 
must be a contig c’ in Hk’ containing c (Theorem 1). That is, the contig information is 
carried over from Hk to Hk’. As k increases, more branches can be resolved while the 
gaps solved by previous iterations will be preserved in the current Hk. 
 
Theorem 1: Assume that kmin = k and k < k’. If there is a contig c in Gk of length at 
least 3kmax – 1 with all vertices are true positive. there must be a contig c’ in Hk’ such 
that c’ contains c. 
Proof: By induction on k. Let k’ = k + 1 and c = x1x2…xp+k–1 be a contig in Hk 
represented by the path p = (v1, v2, …, vp), all vertices v1, v2, …, vp have in-degree and 
out-degree ≤ 1, it is easy to see that the path p’ = (v1’, v2’, …, vp–1’) in Hk+1 where 
each (k+1)-mer vi’ = xixi+1…xi+k also has in-degree and out-degree ≤ 1. As the length 
of the contig represented by path p’ ≥ 3kmax – 1, there must be a contig including path 
p, i.e. c, in Hk+1.            � 
 



Corollary: Hkmax must contain all contigs in Gkmin of length at least 3kmax – 1 with all 
vertices are true positive. 

 
In practice Hkmax always contains longer contigs than Gkmin by resolving branches at 

each iteration. By iterating the graph Hk towards larger k, we may get longer and 
longer contigs as some of the branches (e.g. length-k repeat region (Case 1) and error 
branches in Hk+1 (Case 2)) may be resolved when using a larger k. 

Case 1: Let c1 = s1vrs2 and c2 = s3vrs4 be two substrings in the genome where vr is a 
common length-k substring representing a repeat region, s1, s2, s3, s4 are different 
substrings. c1 and c2 are represented by five contigs in Hk as the k-mer vr has in-degree 
of 2 and out-degree of 2. If there are two correct reads containing vr and its 2 
neighboring nucleotides at both ends in c1 and c2 respectively, and there is no error 
read containing s1vrs4 or s3vrs2, then there must be two contigs, one containing c1 and 
the other containing c2 in Hk+1. 

Case 2: Let c be a contig in Hk that stops before vertex u whose in-degree is 1 and 
out-degree is >1. Assume that among all branches of u, only u to v is correct. If there 
is a correct read containing u and its 2 pairs of neighboring nucleotides at both ends 
and there is no error read linking c with other branches, there will be a longer contig 
c’ in Hk+1 that contains c. 
 
Theorem 2: If there is a contig c in Gk of length at least 3kmax – 1 with all vertices are 
true positive which satisfies case 1 or case 2 in Hk’, k = kmin ≤ k’ < kmax, there is a 
longer contig c’ in Hkmax contains c. 
 

In the algorithm, we increase the value of k by 1 at each iteration, i.e. s = 1. 
Theorem 5 in Appendix A.3 shows that for a better quality of the contigs, this is 
essential. On the other hand, as a trade-off between the efficiency of the algorithm 
and the quality of the contigs, it is possible to set s > 1, i.e. to increase the value of k 
by more than 1 at each iterative step. 

2.1  Implementation details 

The memory used by IDBA is only about 20-30% of that used by the other existing 
tools because 80% of false positive vertices are removed in the filtering step and 
IDBA uses a compact hash table to represent De Bruijn graph implicitly with each 
edge is represented by one bit only. 

Although IDBA construct Hkmax from Hkmin step by step, the running time of IDBA 
is not directly proportional to the number of k values between kmax and kmin. 
According to Theorem 3, a contig in Hk is also a contig in Hk+1, thus IDBA only needs 
to check whether a branch in Hk can be resolved in Hk+1. Since reads represented by a 
contig is removed in each iteration, the number of reads considered in each step is 
decreasing, e.g. half of the reads are removed when constructing Hkmin+1. In practice, 
IDBA runs much faster than Abyss, and three times slower than Velvet. 



3   Experimental Results 

The genome of Escherichia coli (O157:H7 str. EC4115) from NCBI [16] is used for 
simulated experiments (the genome length is 5.6 M). Reads are randomly sampled 
uniformly with coverage 30x. In our experiments, we generated reads with error rates 
1%, read length 75 and insert distance 250. Note that we have repeated the 
experiments using other coverage (e.g.  50x, 100x), error rates (e.g. 2%) and read 
length (e.g. 50). The results are similar, so we only show the result for 30x coverage 
with 1% error on length-75 reads. We also use a real data set, namely bacillus subtilis, 
to evaluate our algorithm. The length of the genome is 4.1M. The reads are sequenced 
using Solexa machine with coverage 45x, read length 75 and insert distance 400. The 
estimated error rate is about 1%. 

3.1   Simulated data 

We compare the performance of Velvet2, Abyss, Edena and our algorithm IDBA on 
the simulated data based on different k values (or x values). For IDBA, we fix kmin = 
25, m = 1 and compare the performance of IDBA with different kmax. For the other 
algorithms, defaults are used for other parameters. We also plot the upper bound that 
can be achieved by an ideal de Bruijn graph with no false positive or false negative 
vertices and edges. 

We only consider valid contigs which are longer than 100 bps and can be aligned 
to the reference with 99.9% similarity. Figure 1(a) shows the comparison of the 
softwares based on N50. As we mentioned in Section 1, existing assembly algorithms 
have many false positive vertices and branching problems when k is small and they 
have many gaps when k is large. Thus these algorithms have the best performance 
(largest N50) for in-between values of k (the optimal k for Velvet, Edena and Abyss 
are 30, 40 and 40 respectively in this data set). However, since IDBA consider a range 
of k values, its performance is better than the others even when considering a range of 
10 values for k (kmin = 25 and kmax = 35). Furthermore, when IDBA considers a larger 
range for k (kmin = 25 and kmax = 50), its performance is close to the upper bound. We 
have only 10 false positive contigs when setting kmin = 25 and kmax = 50 while Abyass, 
Velvet and Edena produce 66, 19 and 650 false positive contigs respectively. 

 
 Time Memory k Contigs Coverage 

Number N50 Max length  Wrong contigs (total len.) 

Velvet 155s 1641M 30 1369 19284 96905 19 (9813) 94.57% 
Edena 957s 678M 40 4672 5104 46908 650 (72019) 97.22% 
IDBA 371s 360M 25 – 50 1550 63218 217365 10 (3935) 97.50% 
IDBA-pe 412s 360M 25 – 50 952 92207 217365 34 (108625) 94.58% 
Abyss 1114s 1749M 40 1390 22109 87118 66 (34998) 95.05% 
abyss-pe 1237s 1749M 40 484 59439 226626 186 (352437) 91.39% 
upper-bound -- -- 50 1561 63218 217365 0 (0) 99.11% 

Table 3. Statistics of optimal (w.r.t. N50) result of each algorithm for simulated data 

 

                                                           
2 Velvet cannot handle k larger than 31; we implemented Velvet algorithm by ourselves for the comparison. Note 

that since Abyss performs better than Velvet, we did not implement the pair-end version of Velvet. 



 
Fig. 1. (a) N50 for contigs produced by assembly algorithms with different k-values (x-values if 
the software is string graph based) on simulated data using E.coli as the reference genome 
where read length is 75nt, coverage is 30x and error rate is 1%. (IDBA-pe and abyss-pe are the 
results for using mate-pair information to extend the contigs while Edena does not use mate-
pair information) (b) N50 for contigs produced by assembly algorithms with different k (or x) 
values on real data from bacillus subtilis where read length is 75nt, coverage is 45x and error 
rate is 1%. 

For IDBA and Abyss, we also apply the pair end information to connect the 
resulting contigs to make them longer. The results are shown in the same graph 
(IDBA-pe and abyss-pe). Note that as k increases, the N50 may drop when applying 
the mate-pair procedure since more branches have been resolved incorrectly and some 
short contigs are removed as dead-ends. In fact, further research is required on how to 
use mate-pair information effectively for assembly. The pair-end version of Abyss has 
optimal result when k is 35 while IDBA has optimal result when k is 45. 

Table 3 shows a comprehensive statistics on the performance of the algorithms on 
their optimal k values (w.r.t. N50). IDBA produced much longer contigs than all other 
algorithms. When mate-pair information is not available, the N50 of IDBA (63218) is 
about three times that of the next best algorithm (22109 by Abyss) and is the same as 
the upper bound. IDBA also produced the fewest number of wrong contigs (a contig 
which cannot be aligned to the reference genome with 99.9% similarity) and the total 
length of all wrong contigs is only about 4000nt which is half of the next best 
algorithm (Velvet). The coverage of IDBA is also the best among all algorithms. 
Since IDBA performs well on assembling single end reads, it outperforms other 
algorithms when considering mate-pair information. To conclude, IDBA outperforms 
other algorithms substantially and produce much longer contig with high accuracy. 

3.2   Real data 

Figure 1(b) shows the N50 of the contigs produced by Velvet, Abyss, Edena and our 
algorithms IDBA on the real reads from bacillus subtilis using different k values (x 



values). Since the reads may not be uniformly sampled in the real data set, we usea 
smaller kmin (20nt) and keep m = 1 to run IDBA. For the other algorithms, we use their 
default parameters except for k. We do not have the reference genome to check if a 
contig is valid. We calculate the N50 for all reported contigs longer than 100bp. Note 
that the result may not be accurate, because some algorithms may produce longer but 
invalid contigs. The results are consistent with that of the simulated data. Velvet, 
Edena and Abyss get their best performance when k = 35, 40 and 45 respectively. 
IDBA can keep improving the result while kmax is increasing.  

In this data set, pair end information is not so useful for IDBA because using read 
information can already solve most of the branches. When using kmax equal to 50, the 
pair end version IDBA is only slightly better than single end version. The 
performance of pair end version Abyss has similar performance as in simulated data. 
Its optimal k is 35, and the longest N50 it produces is 30% shorter than IDBA. In 
conclusion, IDBA produced the longest contigs among all algorithms. A detailed 
comparison is given in Table 4 in Appendix A.2. 

3.3   Running time and memory consumption 

Besides Abyss (12.8 minutes – 7 hours for simulated data and 10 minutes – 1.2 hours 
for real data depending on the value of k), the running time of other algorithms are 
more or less the same. Abyss runs much slower when k is small, probably due to its 
slow procedure for dealing with graphs with many false positive vertices. Velvet (120 
– 190 seconds for simulated data and 80 – 100 seconds for real data) is the fastest 
among all algorithms. IDBA (150 – 270 seconds for simulated data and 190 – 320 
seconds for real data) runs faster than Abyss and is about three times slower than 
Velvet. Refer to Figures 2 and 3 in the Appendix for details. 

The memory consumption is about the same for different k values across the 
existing algorithms. Abyss and Velvet require about 2G bytes of memory for 
simulated data and 1G memory for real data. IDBA only requires about 400M and 
300M respectively because 80% of false positive vertices are removed in the first 
filtering step with only 8 25-mers are removed incorrectly (matches with expected 
number 8.88 calculated in Theorem 3). So, the memory consumption of IDBA is only 
about 20 – 30% of the existing De Bruijn graph tools. Edena consumes less memory 
than Abyss and Velvet because the number of reads is small, but still double the 
amount used by IDBA. Refer to Tables 3 in Section 3.2 and Table 4 in the Appendix 
for details. 

4   Conclusions 

Our IDBA algorithm, based on de Bruijn graphs, can capture the merits of all k values 
in between kmin and kmax to achieve a good performance in producing long and correct 
contigs. Because the initial filtering step removes many false positive k-mers and the 
number of reads considered at each iterative step is reduced, the required memory and 
running time is much reduced. Though an accumulated de Bruijn graph is maintained 
at each iterative step, the running time is comparable with the existing algorithms. In 



fact, this running time can be further reduced if, say, one or two k values are skipped 
at each iterative step. In practice, the quality of the result is only slightly affected by 
the skipping of values, in exchange for shorter running time.  

Our next target is to investigate how to better use mate-pair information for 
resolving long repeats in order to produce even longer and more accurate contigs. 
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Appendix 

A.1   Running Times of the Assembling Algorithms 

Figure 2 and Figure 3 show the running time of IDBA and existing assembling 
algorithm, Velvet, Abyss and Edena on the simulated data set and the real data set. 
From the figures, we can see that IDBA has similar running time as other assembling 
algorithm except Abyss which takes a very long time when k is small due to a 
complicated method for removing dead-ends. 
 

 

Fig. 2. Running time of assembly algorithms with different k (or x) values on simulated data. 

 

Fig. 3. Running time of assembly algorithms with different k (or x) values on real data. 

Abyss took longer than 
2000 seconds when k 
smaller than 40. (It took 
27000 seconds when k = 
25) 

Abyss took longer than 
1600 seconds when k 
smaller than 40. (It took 
8000 seconds when k = 
30) 



A.2   Detailed comparison of the Assembly Algorithms for real data 

In Table 4, we show comprehensive statistics on the performance of the algorithms on 
their optimal k value (w.r.t. N50) for the real dataset. IDBA produced much longer 
contigs than all other algorithms no matter whether the single-end or the pair-end 
version is used. The result is consistent with that of the simulated dataset. 
 

 
Time Memory k 

Contigs 
Total No. N50 Max length  

Velvet 89s 893M 35 1369 35136 164023 
Edena 649s 632M 40 4672 19423 66455 
IDBA 314s 310M 25 – 50 1550 122574 602412 
IDBA-pe 349s 310M 25 – 50 952 143987 602609 
Abyss 729s 923M 40 1390 30081 134067 
Abyss-pe 3766s 936M 35 484 120807 537397 

Table 4. Statistics for the optimal (w.r.t. N50) result of each algorithm for real data. 

A.3   Theorems and proofs 

Theorem 3: Assume m is the filtering threshold, the probability that a kmin-mer v in 
the genome (except the first l – kmin and last l – kmin kmin-mer in the whole genome) 
does not appear in Hkmin (false negative) when t length-l reads are uniformly sampled 

from a length-g genome with error rate e is at most ∑ =
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Theorem 4: Assume that a contig c in Hk is treated as dead-end and removed. The 
probability that c is a correct contig is less than 
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Proof: A contig c in Hk is treated as dead-end only if c is of length less than 3k – 1 
and is not a dead end in Hk–1. Since all contigs in Hk–1 are preserved in Hk, c is 
removed because (1) the length of c is at least 3(k – 1) – 1 and shorter than 3k – 1, or  
(2) c is shorter than 3(k – 1) – 1 and one of its ends has 0 in-degree or out-degree in 
Hk. Thus c will not be treated as a dead-end if the two adjacent (k+3)-mers of c is 
sampled. By considering kmin = k + 3 and m = 0 in Theorem 1, the probability that no 
read contains a particular (k+3)-mer is at most 
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and the probability that no read contains a particular (k+3)-mer cover a particular end 
of c is at most 
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Theorem 5 Shows that Hkmax,1 has at most the same number of gaps as Hkmax,2. 

There are some cases that there is a longer contig in Hkmax,1 which is not in Hkmax,2. For 
example, consider a contig c in Hk stops before vertex u whose in-degree = 1 and out-
degree >1 and all branches of u are shorter than 2k and only u to v is correct. If there 
is only one read contains u and its 2 pairs of neighboring nucleotides at both ends 
which has error in other positions and there is no error read linking c with other 
branches, there is a longer contig c’ in Hk+2,1 that contains c which does not appear in 
Hk+2,2. 
 
Theorem 5: Let Hk,s denote the accumulated de Bruijn graph graph Hk at step s. If a 
kmax-mer (kmax+1-mer) in the genome appears in Hkmax,2, it also appears in Hkmax,1. 
 
Proof: By induction on kmax. Consider kmax = kmin + 2. Given a kmax-mer ((kmax+1)-mer) 
v does not appear in Hkmax,1, let v’ be the shortest substring of v of length-k which does 
not appear as a vertex in Hk,1 or an edge in Hk–1,1, kmin ≤ k ≤ kmax. 

If k = kmin, i.e. v’ does not appear in Hkmin,2, v does not appear in Hkmax+1,2.  
If k = kmin+1, there are two cases: (a) v’ does not appear in Hkmin,1 as an edge or (b) 

v’ is a vertex on a dead-end with length less than 2(kmin+1) in Hkmin+1,1. In case (a), 
since any (kmin+2)-mer contains v’ as substring does not appear in Hkmax,2, v does not 
appear in Hkmax,2. In case (b), v is a vertex on a dead-end with length less than 2(kmin+2) 
in Hkmax,2 which will be removed. 

If k = kmin+2, there are two cases: (a) v does not appear in Hkmin+1,1 as an edge or (b) 
v is a vertex on a dead-end with length less than 2(kmin+2) in Hkmin+2,1. In case (a), 
consider the path (v1, v2, v3) in Hkmin,1 representing the (kmin+2)-mer v. Since v does not 
appear in Hkmin+1,1 as an edge, v2 has >1 in-degree or out-degree and there is no read 
contains v’ as subsring. Thus the in-degree and out-degree of v are 0 in Hkmax,2 and v 
will be removed as dead-end. In case (b), v is a vertex on a dead-end with length less 
than 2(kmin+2) in Hkmax,2 which will be removed.  



If k = kmin+3, i.e. v does not appear in Hkmax,1 as an edge, the path (v1, v2, v3, v3) in 
Hkmin,1 representing the (kmin+3)-mer v is not a potential contig and there is no read 
contains v as a substring. Thus v does not appear in Hkmax,2 as an edge.      � 
 
 


