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Abstract. RNA sequencing based on next-generation sequenegimology is
useful for analyzing transcriptomes, discoveringvelogenes and studying
exon/intron structures. Similar to genome assembly, novo transcriptome
assembly does not rely on a reference genome amlitiomél annotated
information. Most, if not all, existing de novo mscriptome assemblers rely
heavily on de novo genome assembly techniques uititfiolly utilizing the
properties of transcriptomes and may result intstamtigs because of the splicing
nature (shared exons) of the genes and the repeiating in different genes. In
this paper, we analyze the properties of the mammalanscriptome and propose
an algorithm to reconstruct expressed isoforms awitha reference genome. We
extend the iterative de Bruijn graph approach (IDB&)d use pair-end
information to solve the problem of long repeatsdifferent genes and the
problem of branching introduced by shared exorthérsame gene. The graph will
then be decomposited into small components, eaghiwh contains a few, if not
single, genes. The most possible isoforms whickehe most support from the
pair-end reads will then be found by depth-firsairsl heuristically. In practice,
our de novo transcriptome assembly software, T-IDBétperforms Abyss (one
of the newest de novo transcriptome assembly taalgstantially in terms of
sensitivity and precision for both simulated andlrdata. We also provide a
theoretical analysis of T-IDBA's performance, whighows that T-IDBA
guarantees most isoforms can be recovered as fotigea&overage of the isoforms
by reads exceeds a certain threshold and matchsSTwWDBA's performance.
Availability: T-IDBA is available at http://www.cs.hku.hk/~als#sa/
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1 Introduction

RNA sequencing (RNA-Seq) is a recently developeathrigue to sequence cDNAs
(complementary DNAs) generated from RNAs using tiegt-generation sequencing
technologies (e.g. lllmina Genome Analyzer and Agipl Biosystems SOLID).
RNA-seq is becoming more important in the analydisranscriptomes and has been
used successfully in identifying novel genes, iafin5’ and 3’ ends of genes, studying
gene functions [1] and locating exon/intron boureaf2, 3]. By aligning the reads
obtained from RNA-seq to a reference genome, [4klbped a method to discover a
complete transcriptome for yeast. Furthermore, Ri¢4-has been used to determine the
expression levels of transcripts [5]. [6] studida tcomplexity of the transcriptome
reconstruction problem (i.e. the reconstructionadif expressed isoforms and their
expression levels) and showed that theoreticallgrtsheads (both single-end and
pair-end) cannot guarantee a unique solution ev¥eimformation of genes, exon



boundaries and isoforms are all known and givewinfer [7] give a practical solution
by formulating the transcriptome reconstructionlgbeon as a convex quadratic problem;
by determining their abundance ratios (i.e. expoestevels) based on the annotated
information of the reference genome such as extrorinboundaries and TSS-PAS
(transcript start sites and polyadenylation sitea)r information; and heuristically
searching for the best possible isoforms and esgmeslevels. Cufflink [8] and
Scripture [9] are two other recently published roeth using gene and exon-intron
boundary information generated by TopHat [3] toorestruct isoforms. Both approaches
build a graph in which exons are the nodes andexans are connected if there are
reads that connect them. Cufflink [8] attached Wwtigto the edges of the graph and
modeled the isoform reconstruction problem as amim path cover problem while
Scripture [9] creates a statistical model to idgrgtignificant segments as isoforms.

Similar to the genome assembly problem, the de tiamscriptome assembly problem
(the problem of reconstructing isoforms without ederence genome and annotated
information) is also very important. Transcriptorassembly methods that rely on a
reference genome and additional annotated infoamatiay suffer from missing and
erroneous information of some genes or exons inddtabase and also cannot detect
structural variations in the sample. Moreover, thelity of these methods depends
heavily on the accuracy of the alignment tools [8}. RNA-seq technology becomes
more mature, there will be an increasing need ¢onstruct unknown mRNAs in the
sample without any reference genome informationwéler, there has been little
progress on the de novo transcriptome assemblylggrobMost, if not all, existing
approaches apply de novo genome assembly techn{geesle Bruijn graph [10-12],
string graph [13]) directly to solve the de novarscriptome assembly problem (e.g.
[14, 15]) without fully utilizing the properties dfanscriptomes. The performance of
these approaches, in particular for the reconstnuaif isoforms for the same gene, is
not satisfactory. There are other approaches [(E5§) that construct isoforms based on
ESTs (Expressed Sequence Tag); for example, [16f uke de Bruijn graph to
construct a splicing graph for ESTs. These appremeine usually not scalable and not
applicable to massive short reads.

Seemingly, transcriptome assembly is an easierlgmolthan genome assembly for
eukaryotics, such as mouse and human), as thee¢ arest 40~50 thansands transcripts,
of length at most a few thansands nucleotides,eathié chromosomes are much longer
(up to hundreds of millions). The following issusgke the de novo transcriptome
assembly problem different from the genome assemtdiglem. (1) Due to the splicing
nature of the genes (for eukaryd)eshe same exon may be used in many different
isoforms. This implies that, in both the de Bruijraph and the string graph, there exist
many branches in the subgraph that correspondsp@rtacular gene. The algorithms
designed for de novo genome assembly problem yss@lp extending the contigs at
branches. In order to perform well in de novo tcaiptome assembly, one has to make
a decision as to which edge to traverse at themeches; otherwise, the reported contigs
will be short and long contigs corresponding tofasms cannot be constructed. (2)
Ideally, each subgraph corresponding to a partiqggae can be isolated as a connected
component. However, due to repeats, subgraphsspameling to different genes may
merge together and it is difficult to identify cect paths that correspond to isoforms of
a gene in the graph. This also represents a miferahce between solving the de novo

1 Without splicing, the problem becomes a lot eadiethis paper, we focus on the transcriptome
assembly problem for eukaryotes such as mouse amarh for which splicing occurs in the
majority of the genes.



transcriptome assembly problem and the problem witteference genome, because
with a reference genome, we can focus on one gemetime and reconstruct all its
isoforms based on the alignment. (3) Isoforms maetdifferent expression levels and
it is difficult to identify low-expressed isofornas the majority of the reads may come
from those with relatively higher expression leveite that the uneven expression
levels are quite different from uneven coveraggdnome assembly because the reads
from these ‘weak’ isoforms can have their exokamérs) well covered by other
isoforms.

In this paper, we tackle the de novo transcriptaeseembly problem. To resolve
problems arising from repeats in different geneslisas merged subgraphs of different
genes and more branches by shared exons), we adalyz properties of mammalian
transcriptomes and observed that not too many g@ess than 1.4%) contain repeat
patterns of length greater than 90 bp. This impied if we can construct a de Bruijn
graph using substrings of length 90 in the readisgsaphs that correspond to different
genes are more likely to be isolated. However, dheent next-generation sequence
technology may not produce such long reads and) dvine technology is available,
constructing such a de Bruijn graph directly ussngh long substrings may suffer from
the gap problem. To resolve this problem (Sectidn, 2ve first build an accumulated de
Bruijn graph [17] based on single-end reads upato50bp (for reads of length 75bp)
which can resolve the gap and repeats problem UDlbp, and then, extend to 90bp
based on pair-end reads. The graph will decompasennany connected components,
most of which contain only a single or a few mRNA&gally, the branching problem
introduced by the shared exons is resolved by aidteupath finding algorithm (also
based on pair-end information of reads) to geneattpossible isoforms and the most
possible will be output according to heuristic defitst search (Section 2.2).

We still cannot reconstruct the isoforms with loxpeession levels (i.e. mMRNAs with
low coverage of reads). However, based on theateticalysis (Section 2.3), we can
guarantee that most mRNAs can be recovered by dBRA software as long as their
coverage exceeds a certain threshold. We have mngpited T-IDBA and evaluated its
performance on both simulated and real data whiekcimwell with our theoretical

analysis. The results show that T-IDBA outperforother de novo transcriptome
assembly approaches substantially.

2 Method

Different from genome assembly whose input readssampled from a species genome,
the input reads of mammalian transcriptome asseangysampled from the (expressed)
mRNAs of a mammal. As the total length of genesigh shorter than the genome, at
first glance, mammalian transcriptome assembly lpratseems easier than the genome
assembly problem. However, because of alternatplicisg, some long patterns
representing exons may occur in multiple mRNAsf@sos) from the same gene. Thus,
the de Bruijn graph (i.e. the graph with each verepresenting &-mer and an edge
from u to v if u andv adjacently occur in a read) has more branches wbastructed
for the mammalian transcriptome assembly problean those for the genome assembly
problem. Therefore, traditional de novo genome rabsers [11] would not work well
for the mammalian transcriptome assembly problenthay would usually stop at
branches resulting in very short contigs which espnt only part of the exons instead of
the whole isoform.



>k 30 40 50 60 70 80 90 100 110 120
#of genes 5384 3528 2005 996 620 448 367 294 2433 2

Table 1. The number of genes in mouse containing a repgatidrn with lengtte k as some othi
genes.
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Figure 1. The number of components in de Bruijn graph wiffedentk value.

Besides, many de novo genomic assemblers [10,ethipve both ends of a contig to
increase the accuracy. As the mRNAs are usualatively short, e.g. 500~5000nt, the
lengths of contigs decrease significantly.

In order to reconstruct the isoforms of differemngs, we developed T-IDBA which
first divides the de Bruijn graph into many conmectcomponents, most of which
represent isoforms from a single gene. Then T-IDd#ermines each isoform from
each component using pair-end information.

2.1  Congtructing Connected Components

We observe that, although the repeat patternseinvtiole genome can be very long, the
number of genes that contain the same long repgatdrns is actually quite few.
Table 1 shows the number of genes of méuseving repeated patterns of length at
least 30. In particular, there are only 367 genaspf 16,491 genes, containing repeated
patterns of length at least 90bp. If we can cosstude Brujin graph with large most
connected components should contain isoforms fioglesgenes.

We have also built de Bruijn graphs of the refeeemikNA of the mouse (UCSC: mm9,
NCBI build 37) for different values ofk. Figure 1 shows the number of connected
components. The number of connected componenteases wherk increases and
there are 20,457 connected components for the dignRByraph withk = 90. As there are
46,104 mRNAs in the mouse database, each compoaogt#ins on average 2 mRNAs.
Table 2 shows the distribution of the numbers ofNAR in components. About 91% of
MRNAs are in components containing no more tharmBRNAs, with the majority
containing only one mRNA.

2 Data obtained from EMBL-EB{tp://www.ebi.ac.uk/astd/main.html




# of MRNAs 1 2 3 4 5 6 7 8 9 10 >10
# of componentd01134684 2483 1380 748 434 249 117 80 48 121

Table 2. The distribution of MRNASs in components

Kk 30 40 50 60 70 80 90 100 110 120
#of MRNAs 5339 3336 1922 1234 819 588 472 369 321 262

Table 3. The number of MRNAs with lengthrepeats.

Algorithm 1. T-IDBA algorithm

1. Apply IDBA on input reads fromk = kyn t0 kg to get a de Bruijn grap®.

2. Align pair-end reads t& and find connection€(x, y) between nodes witkuppor
of at leasta pair-end readsC = { (x,y) | there are at least pairs of read
connecting« andy} (The default value oé is 5.)

3. For each connectio@(x, y) if there exists a unique path connectingx andy

which is consistent with the insert distance, thveat his path as a long read

the next stepP = {p | p is the unique path i& connectingx, y)in C}

Apply IDBA on input reads anB with k = kioqt0 knaxt0o get a de Bruijn grap8’.

For each component @&’, find paths with highest support from pair-enddea

ok

The current next-generation sequencing technologyally only produces reads of
length about 75 Thus, it is impossible to construct a de Bruijapgh withk = 90 from
single-end reads directly. Even if the reads werslenough, there would be a lot of
gaps in the graph when constructed directly. Ireotd solve this problem, at the first
step, T-IDBA applies the IDBA algorithm [17] to cstruct a de Bruijn graph witk =
kmod < I, wherel is the length of the input read. At the secong,st®eIDBA aligns
mate-pair reads (by exact match) to the graph dofident connection between nodes.
Each connection of nodes is validated by findingnaue path in the graph connecting
the pair of nodes with length matching the inséstashce of the pair-end reads (within
specified error). Note that, the connection betwiem nodes will be discarded if the
number of paths between them is zero or more than Although this problem is
NP-hard, since there are only a few loops in tlElyrwherk;,,,g = 50, the unique path
can be found in practice. Table 3 shows the nuraberRNAs with lengthk repeats. As
we can see, less than 5% (1,922 out of 46,104) RNAs contain loops (lengtk-
repeats) in the graph. All the unique paths folidedion are recorded for resolving
branches and treated as extra long reads for IBZohstruct de Bruijn graph witf,a
>2k=I.

Note that IDBA needs to be tuned specifically fanscriptome assembly. Tips removal
in de Bruijn graph is performed using very shorigih to avoid removing too many
k-mers, since transcripts are usually very shoraddition, a bigger threshofd is used
for filtering those incorreck-mers due to sequencing errors. Since this magr fdut
some low-coveragek-mers, it is unlikely that we can recover mRNAs hwibw

3 Although some genome centers can produce longdsyehe majority of them are still working
with reads of length 75 or shorter.



converage (i.e. low expression level) and only ¢hagell-expressed mRNAs are
considered.

2.2 Discovering Isoformsin Connected Components

For each connected component in the de Bruijn greighk = k.., T-IDBA discovers
those paths starting from a vertex with zero inrdego a vertex with zero out-degree
with the highest support from pair-end reads. Apsatsupported by a pair-end reads if
the pair-end reads can be aligned (by exact maictie path with the distance between
the aligned positions matching the insert distaofcine pair-end reads (with up to 10%
error). T-IDBA performs depth-first search from ertex with zero in-degree to a vertex
with zero out-degree in decreasing order of suppbtihe branches. In practice, instead
of performing a complete depth-first search, T-IDB@ports at most 3 potential
isoforms for each zero in-degree node in each adadecomponent (note that 3 is a
parameter set to be set by the user).

2.3 Expected Sensitivity of T-IDBA

Given a lengtlh mRNA R witht lengthw exons, i.en = tw. If the coverage of pair-end
length{ reads on R i€ and the error rate of each nucleotide in a reag| ise can
evaluate in the following the probability that Rnche recovered by T-IDBA as one
contig. Thus, we can conclude that most mMRNAs candzovered by T-IDBA with
high probability as long as the coverage of the PARINceeds a certain threshold.

In order to recover R, all,,-mers of R must exist in the de Bruijn graph wkenkp,;,,
i.e. everykni,-mer must be sampled at leasttimes with no error. Since there &e
cn/(2l) pair of reads sampled from R and the probabilitst a particulak.,,-mer
contains in a pair of read isl2(ky, + 1)/(n —| + 1), the probability that &,;,-mer of R

is sampled times is
S 2(' - kmin +1) ! 1_ 2(' B I(min +1) -
j n-1+1 n-1+1

However, some of the sampl&g,-mers may contain error. Since the probability that
Kmin-mer contains error ispkrnin :1—(1—e)kmi", the probability that alh — ky,, + 1

kmin-mers of R exist in the de Bruijn graph when ko4 is

j W N—Kmin +1
(s 2(I_kmin‘|':|.)J _w ST J il
IZU(W] -2 5 i p)ﬂ}] o

j=m g=m
If R exists in the de Bruijn graph whé&r= k.4 R exists in a connected component if
and only if for each pair of adjacent exons, theneo branch (with probability 1 p) or
the branches can be resolved by pair-end readslasito (1), the probability tha
pair-end reads connecting two adjacent exons angplsd is

s ((I —km,+1)j‘(1_ ( —kmd+1)j“’
] n-1+1 n-1+1



And the probability that twdk,,smers, one from each one of pair-end reads, are
sampled correctly isp, = (1- p,'(_k;“wﬂ)z, the probability that R exists in a connected

component is

- o[ S (I_kmin+1)j _(I_kmin+1) e j a1 — i-q a
{(1 pb)+pbj_2a(j]( e ](1 e ] (;(q]pc(l P.) H @

By multiplying the two probabilities given in (1pd (2), we can calculate the sensitivity
of finding an mRNA witht lengthm exons and coverage For example, given a
length-2500 mMRNA wittb length-500 exons and 30X coverage, if the errte i®1%
and the thresholth= 4,0 = 5 the mRNA can be discovered with probabilityD.

3 Experimental Results

3.1 Simulated data

We test our transcriptome assembler T-IDBA on maesges. The reference mRNA of

all known mouse genes from UCSC (mm9, NCBI build 8% used to generate the

simulated sequencing reads. There are 26,989 gaaes9,409 isoforms in this dataset.

About 60% of these genes have only one isoform@gé of these genes have more

than 10 isoforms. For the simulation, we first ramlly generate the expression level for

each isoform and sequencing reads are then sampiddrmly in each mRNA

according to expression level. We consider the¥alhg three different distributions of

expression level to show the performance of T-IDBithout expression level and with

the last two distributions to capture the propeftyeal data [18, 19].

(1) Equal: the expression level of each mRNA idadt.

(2) Uniform: the expression level of each mRNA engrated according to a uniform
distribution in [0,1].

(3) Log Normal: a number is generated according to a normal distributi({f, 1)
and the expression level of each mRNA is se&f.to

The sequencing reads are sampled with read leng#) error rate = 1%, insert distance
= 250. Based on expression levels, the numberaafsref each mRNA is calculated by
setting the total number of reads to 78M (about &&pth on average).

The sensitivity and precision of T-IDBA and Abyskl] are compared for the three
simulated datasets of different distributions. 8imnly those isoforms above a certain
expression level can be reconstructed from thesteauly the mRNAs with sequencing
depths larger than 30x are considered for sertyittwialuation.

For T-IDBA, we evaluate the performances of thepautt three stages of T-IDBA to

show the effect of each stages.

I.  Single-end stage: contigs of the gradplatk = k,.q (Step 1 of Algorithm 1, without
using pair-end information).

II. Pair-end stage: contigs of the graBhatk = k. (Step 4 of Algorithm 1, using
pair-end information to extend the de Bruijn graph)

lll. Full stage: final results from T-IDBA.
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An isoform is said to be found if a contig can ligreed to the isoform with similarity
exceeding a threshold. We compare sensitivity aredigion under different levels of
similarity. Similarly, a contig is considered asrreet if it can be globally aligned to

some part of a reference mRNA with the given sintila




Note that the total number of correctly reconsgdcnRNAs may not be the same as
the total number of correct contigs, because an AsHay be separated into more than
one contigs in the graph due to the gap or repedigm. In this case, the contigs might
be correct, while the corresponding mRNA is notsidared as reconstructed.

For T-IDBA, Knin, Kmos Kmax @re set to 25, 50, 90 repectively, while the valfieis set to

50 for Abyss. Figures 2, 3 and 4 show sensitivitgt precision under different similarity
settings. In all cases, the sensitivities of aljoaithms drop when the similarity
threshold increases, because higher similarityireguhe algorithms to reconstruct a
larger portion of the transcripts. Using traditibda novo assembly method, the repeats
in different isoforms of the same gene are verfidlift to resolve. Even with pair-end
information, only a small portion of the isoformancbe found correctly. The reason is
that if two contigs are supported by many pairgezds, they are usually merged to
form a large contig by the genome assembler. Bthiercase of transcriptome assembly,
it is insufficient to merge them together directhgcause two contigs can be connected
in more than one way.

In Figure 2, T-IDBA has the highest sensitivitypesially when the similarity is more
than 80%. For 95% similarity, only 0.43% and 1.48¥R®NAs can be found in the
single-end and pair-end versions of Abyss, whike 3hstages of T-IDBA (single-end,
pair-end and full version) have sensitivity valuels 18.54%, 24.08% and 72.10%
respectively, which demonstrates the effectiveréssach stage of T-IDBA. Note that
there should be 10113 components in the errordeeBruijn graph wittk = 90. Using
pair-end information to increase tkevalue to 90, T-IDBA can find 11100 components
from simulated reads, which is more than expectauber of components because of
the gap problem which breaks some components imi@ than one component. Path
finding stage can further reconstruct isoforms frtra same gene and improves the
sensitivity to 72.10% with 33241 out 46409 mRNAsamstructed from scratch. Figures
3 and 4 show a similar trends for different disttibn assumptions. There are 32130
and 23123 expressed isoforms in uniform and lognabdistribution data set. T-IDBA
can reconstruct 74.47% and 75.05% of them for 9b8dagity respectively, while those
values of Abyss are 1.78% and 1.89 % respectively.

The precision performance of the algorithms onttivee datasets have similar trend
(Figures 2, 3 and 4). The single-end version of $sbgnd the single-end and pair-end
stages for T-IDBA all have nearly 99% precisioralixontigs are correct but short. The
pair-end Abyss and T-IDBA introduce a small numbkerrors by connecting incorrect
contigs together. After applying path finding algfom at the final stage, the precision
of T-IDBA further drops to about 83%, because ahsovrong combinations of contigs.
When compared to Isolnfer [7], which makes use té#farence genome and additional
annotated information, the performance of the $tdige of T-IDBA is similar in terms
of sensitivity and precision even without a refeeigenome. (Isolnfer’s sensitivity and
precision are around 77.4% and 81.3%, respectifely simulated log normal
distribution data on the mouse.)

3.2 Real data

The RNA sequencing reads (152 millions 76-base-qrair reads )of embryonic stem
cells in [9] are used to evaluate our assemblyralgn. We applied our assembler and
Abyss on this dataset using the same parametédis dise simulated data. Since only
mRNAs with coverage depth more than 30 can be mtamted, we aligned the reads
using BLAT [20] to the mRNA reference database #&mghd that there are 2,835
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mRNASs' with coverage higher than 30 and at least 80%@frégion covered by more
than 4 reads.

For real data, the performance of both T-IDBA aruy#s drops (Figure 5). It may be
caused by the noise which is not well understoogl feom intron regions of the gene)
or the log normal distribution of reads which magt e able to capture the real
property of the transcriptome data. In all case$DBA outperforms Abyss as more
isoforms can be reconstructed by T-IDBA. When snitiy is set to 80%, the sensitivity
and precision of T-IDBA are 46.7% and 79.7%, coragawith only 8.6% and 47.9%,
respectively, for Abyss.

There might be another explanation for the pooegfogpmance for real data. Some parts
of an exon are not covered by enough reads thusdhesponding mRNA will be
covered by more than one contig. The non-uniforstridiution of reads within one
MRNA will also cause problems in T-IDBA as shownFigure 6. Some parts of the
MRNAs have very low coverage. It is unlikely tha¢ wan reconstruct these mRNAs
using only one contig. If two contigs are allowedcbver one mRNA, the sensitivity of
T-IDBA and Abyss can be increased to 69% and 1®4pectively, and this matches
with our mathematical analysis as given in Secf2dh Compared with Scripture [9],

4 In [9], they showed that 15,352 known genes armdoand 13,362 of them are significant
expressed. The difference between these figure®arglis because they assume that a gene is
found as long as there are enough reads covera@uiittions (exon boundaries) of the gene
instead of requiring the whole mRNA to be coverethv@inough coverage while in our case,
we want to recover the whole mRNA sequence, thusouerage requirement is higher.



which uses reference genomes and can reconstriietof 8he expressed isoforms, the
performance of T-IDBA looks reasonably good.

4  Conclusions

We observed that the de Bruijn graph of transcnige can be decomposed into small
connected componentskfis large enough. Our T-IDBA algorithm, which cagtsi the
merits of all k values in betweerk,, and kn.x with pair-end information, can
decomposite the graph generated from the traneongtsequencing reads into many
connected components, each of which contains vemy mRNAs. Since most of the
isoforms from the different genes will fall into fidirent components, the isoform
reconstruction becomes easier for each componetieukistic-based isoform finding
algorithm, based on maximizing the number of paul-support, is used to generate the
most possible isoforms. The performance of T-IDBAtperforms Abyss for both
simulated and real data and matched with theotetazalysis. However, the
performance of T-IDBA for real data is not as gasdthat for simulated data (although
it is still a lot better than that of Abyss) dueth® non-uniform read distribution in an
mRNA. Further analysis on real data should be pewd to build better model of the
error and expression level distribution so as teeh@ more robust and accurate de novo
transcriptome assembler.
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