
Disjoint Polymorphism with Intersection and Union Types

Baber Rehman∗

Huawei Technologies

Hong Kong SAR, China

brehman@connect.hku.hk

Bruno C. d. S. Oliveira
The University of Hong Kong

Hong Kong SAR, China

bruno@cs.hku.hk

Abstract

Intersection and union types are advance programming features

and are able to encode various classical programming constructs.

The signi�cance of intersection and union types is visible by the fact

that these types are available in many modern programming lan-

guages including Scala, TypeScript and Ceylon. (Un-tagged) Union

types are normally eliminated using a type-based switch construct.

The branches of the switch construct may overlap thus resulting in

an ambiguous semantics. Recently, a disjointness based approach

so called _D has been proposed to deal with ambiguity in (un-

tagged) union elimination. When studied with intersection types

and parametric polymorphism, _D poses an un-intuitive ground

type restriction on type variable bounds. This restriction reduces

the expressiveness of the calculus. In this paper, we propose a novel

disjointness algorithm based on union splittable types. The novel

disjointness algorithm does not require ground type restriction on

type variable bounds. Therefore, the resulting calculus is more ex-

pressive. We prove soundness and completeness of our disjointness

algorithm (without parametric polymorphism) w.r.t disjointness

speci�cations for monomorphic _D . All the metatheory of this paper

has been formalized in Coq theorem prover.

CCS Concepts

• Theory of computation→ Type theory.

Keywords

Intersection types, Union types, Disjointness, Polymorphism

ACM Reference Format:

Baber Rehman and Bruno C. d. S. Oliveira. 2024. Disjoint Polymorphismwith

Intersection and Union Types. In Proceedings of the 26th ACM International

Workshop on Formal Techniques for Java-like Programs (FTfJP ’24), September

20, 2024, Vienna, Austria. ACM, New York, NY, USA, 7 pages. https://doi.

org/10.1145/3678721.3686230

1 Background

This section brie�y introduces _D [14] and the limitations in disjoint-

ness algorithm for polymorphic _D . Essence of _D lies in disjoint

switches meaning that branches with overlapping types are not

∗Also with The University of Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

FTfJP ’24, September 20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1111-4/24/09
https://doi.org/10.1145/3678721.3686230

A, B, C F ⊤ | ⊥ | Int | A → B | A ∨ B | A ∧ B | Null

e F x | i | _x .e | e1 e2 | null

| switch e { (G : A) → e1, (~ : B) → e2}

v F i | _x .e | null

Γ F · | Γ, x : A

�◦, �◦,�◦
F Int | Null | A → B

A <: B (Subtyping)

s-top

A <: ⊤

s-int

Int <: Int

s-bot

⊥ <: A

s-null

Null <: Null

s-arrow
B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

s-ora
A <: C B <: C

A ∨ B <: C

s-orb
A <: B

A <: B ∨ C

s-orc
A <: C

A <: B ∨ C

s-anda
A <: B A <: C

A <: B ∧ C

s-andb
A <: C

A ∧ B <: C

s-andc
B <: C

A ∧ B <: C

Γ ⊢ e : A (Typing)

typ-int

Γ ⊢ i : Int

typ-null

Γ ⊢ null : Null

typ-var
x : A ∈ Γ

Γ ⊢ x : A

typ-app
Γ ⊢ e1 : A → B Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B

typ-sub
Γ ⊢ e : A A <: B

Γ ⊢ e : B

typ-abs
Γ, x : A ⊢ e : B

Γ ⊢ _x .e : A → B

typ-and
Γ ⊢ e : A Γ ⊢ e : B

Γ ⊢ e : A ∧ B

typ-switch
Γ ⊢ e : A ∨ B Γ, x : A ⊢ e1 : C

Γ, y : B ⊢ e2 : C A ∗ B

Γ ⊢ switch e { (G : A) → e1, (~ : B) → e2} : C

Figure 1: Syntax and subtyping for _D with intersection types.

allowed in a type-based switch construct ensuring deterministic

semantics. For example, _D rejects the following program1:

Bool isInteger (x : Int | Bool) = switch (x)

(x:Int) → true

(y:Int|Bool) → false

1.1 _D Calculus

Syntax and subtyping. Figure 1 presents the syntax and subtyp-

ing for _D [14]. Types include top, bottom, integer, function, union,

intersection and null types. Expressions consist of variable, integer,

1Note that we use | in code and ∨ in metatheory for union types. Similarly, we use &
in code and ∧ in metatheory for intersection types.

23

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-9458-8428
https://orcid.org/0000-0002-1846-7210
https://doi.org/10.1145/3678721.3686230
https://doi.org/10.1145/3678721.3686230
https://doi.org/10.1145/3678721.3686230
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678721.3686230&domain=pdf&date_stamp=2024-09-20

FTfJP ’24, September 20, 2024, Vienna, Austria Baber Rehman and Bruno C. d. S. Oliveira

lambda, application, null and a type-based switch expression. Inte-

ger, null, and lambda expressions are also values. The context Γ is

standard and stores variable bindings. Subtyping is also standard

for a calculus with intersection and union types.

Disjointness. Interesting constituent of _D is the type-based dis-

jointness (A ∗ B) in a switch expression. Disjointness restricts

branches with overlapping types. Therefore, the expression under

scrutinee falls in a maximum of one branch. Disjointness speci�ca-

tions are shown in De�nition 1.1. Essentially, two types are disjoint

if they do not share an ordinary common subtype. Ordinary types

are shown in Figure 1. Integer, function, and null types are ordinary

types. Interested readers may refer to [14] for details about algo-

rithmic disjointness. Nevertheless, disjointness algorithm is sound

and complete w.r.t De�nition 1.1.

De�nition 1.1 (∧-Disjointness). A ∗ B F � �◦, �◦
<: A and

�◦
<: B.

Type system and operational semantics. The type system for _D is

shown at the bottom of Figure 1. Rule typ-switch is an interesting

rule. This rule type-checks a switch expression for eliminating

union types. The last premise A ∗ B employs disjointness. Rule typ-

switch type-checks a switch expression only if e has a union type

A ∨ B, �rst branch has type A, second branch has type B, and types

A and B are disjoint. Operational semantics for _D is shown in

Figure 2. ⌊v⌋ is the approximate type relation and shown next:

Approximate Type ⌊v⌋

⌊i⌋ = Int

⌊_x .e⌋ = ⊤ → ⊥

⌊null⌋ = Null

1.2 _D with Disjoint Polymorphism

Rehman et al. [14] study _D with a variant of parametric poly-

morphism called disjoint polymorphism [1]. Polymorphic _D [14]

poses a ground type restriction on type variable bounds2. Ground

types constitute of all the types except type variables. This means

that a type variable cannot be declared as a bound to another type

variable. While this is a common approach in many polymorphic

calculi [5], this approach limits the expressiveness of the calculus.

For example, two type variables cannot be declared disjoint in the

presence of ground type restriction. This restrains us from writing

the following program:

Bool isFirstMatch [X * Y] (x : X | Y) = switch (x)

(x:X) → true

(y:Y) → false

Since the bound of type variable X is another type variable Y, there-

fore, this program will not type-check with ground type restriction

on type variable bound. Any type except the type variable can be a

bound of a type variable. The following program will type-check:

Bool isInteger [X * Int] (x : X | Int) = switch (x)

(x:Int) → true

(y:X) → false

2Note that bound in this context corresponds to the disjointness constraint on a
type variable. The disjointness constraint restricts the possible instantiation of a type
variable. For example, [Γ, U ∗ Int], where U can be instantiated with all the types that
are disjoint with Int such as Null.

Notice that the bound of type variable X in the program above is a

base type i.e. Int.

Limitation of disjoint polymorphism in _D . Rehman et al. [14]

study a disjointness algorithm based on Least Ordinary Subtypes

(LOS) that accounts for intersection and union types. LOS is a func-

tion that computes a set of least ordinary subtypes of the input type.

The disjointness algorithm simply states that two types are disjoint

if set intersection of LOS of two types is an empty set. When ex-

tended with parametric polymorphism, the LOS based disjointness

algorithm requires an un-intuitive ground type restriction on type

variable bounds.

Our contributions. In this paper we study a variant of _D with

disjoint polymorphism [1] and without a ground type restriction

on type variable bounds. This makes our calculus expressive than

the one discussed in [14]. For example, the program isFirstMatch

type-checks in our calculus. All the metatheory has been formal-

ized in Coq theorem prover and is available at: https://github.com/

baberrehman/FTfJP2024-artifact.

2 Revised Disjointness Algorithm

We develop a novel disjointness algorithm for intersection and

union types by exploiting union ordinary and union splittable types

[9]. We study two variants of _D with newly developed disjoint-

ness, one without polymorphism and another with polymorphism.

The �rst calculus establishes a connection with the calculi without

polymorphism. We show that the disjointness in Section 2 is sound

and complete with respect to the disjointness speci�cations (De�-

nition 1.1). The second calculus revisits disjoint polymorphism in

Section 3 and proposes a revised disjointness algorithm without

ground types. Syntax and subtyping for _D with intersection types

is shown in Figure 1.

2.1 Union Ordinary and Union Splittable Types

Union ordinary and union splittable types [9] play an essential

role in the formulation of the novel disjointness algorithm. These

types are shown at the top in Figure 3. ⊤, Int, A → B and Null

are union ordinary types as shown by rules uo-top, uo-int, uo-

arrow, and uo-unit respectively. An intersection type is union

ordinary only if both of its parts are union ordinary types as shown

in rule uo-and. For example, Int ∧ ⊤ is a union ordinary type.

Whereas, (Int∨A → B) ∧⊤ is not union ordinary because left part

of the intersection is not union ordinary i.e Int ∨ A → B.

Union types are never union ordinary types. On the contrary,

union types are union splittable types by rule usp-or. Intersection

types are union splittable if either of the component of the inter-

section is union splittable by rules usp-andl and usp-andr. A type

is either union ordinary or union splittable as stated in lemma 2.1.

Lemma 2.1 (Exclusivity of union ordinary and union split-

table types). ∀ A, A is either union ordinary or union splittable and

never both.

2.2 Algorithmic Disjointness

The algorithmic disjointness based on union ordinary and union

splittable types is shown in Figure 3. Rules ad-bot, ad-intarr,

24

https://github.com/baberrehman/FTfJP2024-artifact
https://github.com/baberrehman/FTfJP2024-artifact

Disjoint Polymorphism with Intersection and Union Types FTfJP ’24, September 20, 2024, Vienna, Austria

e −→ e′ (Operational Semantics)

step-appl
e1 −→ e′1

e1 e2 −→ e′1 e2

step-appr
e −→ e′

v e −→ v e′

step-beta

(_x .e) v −→ e[x { v]

step-switch
e −→ e′

switch e { (G : A) → e1, (~ : B) → e2} −→ switch e′ { (G : A) → e1, (~ : B) → e2}

step-switchl
⌊v⌋ <: A

switch v { (G : A) → e1, (~ : B) → e2} −→ e1 [x { v]

step-switchr
⌊v⌋ <: B

switch v { (G : A) → e1, (~ : B) → e2} −→ e2 [y { v]

Figure 2: Operational semantics for _D .

A⊚ (Union Ordinary Types)

uo-top

⊤⊚

uo-int

Int⊚

uo-arrow

(A → B)⊚

uo-unit

Null⊚

uo-and
A⊚ B⊚

(A ∧ B)⊚

B ⊳ A ⊲ C (Union Splittable Types)

usp-or

A ⊳ A ∨ B ⊲ B

usp-andl
A1 ⊳ A ⊲ A2

A1 ∧ B ⊳ A ∧ B ⊲ A2 ∧ B

usp-andr
B1 ⊳ B ⊲ B2

A ∧ B1 ⊳ A ∧ B ⊲ A ∧ B2

A ∗0G B (Disjointness Axioms)

ad-bot

⊥ ∗0G A

ad-intarr

Int ∗0G A → B

ad-intnull

Int ∗0G Null

ad-nullarr

Null ∗0G A → B

ad-sym
A ∗0G B

B ∗0G A

A ∗0 B (Disjointness)

ad-orll
A1 ⊳ A ⊲ A2 A1 ∗0 B A2 ∗0 B

A ∗0 B

ad-axiom
A ∗0G B

A ∗0 B

ad-orrr
B1 ⊳ B ⊲ B2 A ∗0 B1 A ∗0 B2

A ∗0 B

ad-andll
A1 ∗0 B B⊚

(A1 ∧ A2) ∗0 B

ad-andlss
A2 ∗0 B B⊚

(A1 ∧ A2) ∗0 B

ad-andrr
A ∗0 B1 A⊚

A ∗0 (B1 ∧ B2)

ad-andrss
A ∗0 B2 A⊚

A ∗0 (B1 ∧ B2)

ad-emptyl
A ∗0 B

(A ∧ B) ∗0 C

ad-emptyr
B ∗0 C

A ∗0 (B ∧ C)

Figure 3: Disjointness based on splittable types for _D .

ad-intnull, and ad-nullarr are trivial disjointness axioms. The

novelty of the disjointness algorithm lies in the disjointness rules

for intersection and union types.

Rule ad-orll states that if A is union splittable into A1 and A2

then A is disjoint to B only if A1 and A2 are disjoint to B. Rule ad-

orrr is symmetric to rule ad-orll. Rules ad-andll and ad-andlss

state that an intersection type A1 ∧ A2 is disjoint to another type

B when B is union ordinary and either A1 or A2 is disjoint to B.

Rules ad-andrr and ad-andrss are symmetric to rules ad-andll

and ad-andlss. Rules ad-emptyl and ad-emptyr state that an

intersection of two disjoint types is disjoint with any other type.

The intersection of two disjoint types forms an empty type or

a bottom-like type, which is disjoint with any other type. The

following example illustrates our novel disjointness algorithm:

• (Int ∨ Bool) ∗0 String : Int ∨ Bool is disjoint to String by

rule ad-orll.

Essence of Union Ordinary Types. Note that the union ordinary

premise in rules ad-andll, ad-andlss, ad-andrr, and ad-andrss

is optional. This premise only makes the rules less overlapping. It

allows the application of rules ad-andll, ad-andlss, ad-andrr,

and ad-andrss only if one type is an intersection type and the other

type is a union ordinary type. When the other type is not union

ordinary type, the disjointness algorithm falls to the union rules.

The algorithm then splits the other type until it becomes union

ordinary and then applies either of the rules ad-andll, ad-andlss,

ad-andrr, and ad-andrss.

Essence of Union Splittable Types. A naive disjointness algorithm

without union splittable types may potentially be incomplete. For

example, (Int∨Bool∨String)∧(Bool∨String∨Char) and (String∨
Char∨Int)∧(Char∨Int∨Bool) are clearly disjoint types but a naive
algorithm that works on the principal of strict smaller reductions

may fails to classify them as disjoint types without union splittable

types. It does not matter whether we break the left intersection or

the right intersection �rst, we cannot make these two types disjoint.

Importantly the two types as a whole are disjoint. But if we drop

any component from either of the intersection, the smaller types

are no longer disjoint.

Union splittable types come to the rescue in such cases and solve

the incompleteness problem of the disjointness algorithm. Note that

union ordinary types are optional because union ordinary types

just make the rules less overlapping. The disjointness algorithm

stays sound and complete without union ordinary types. But union

splittable types are essential. The disjointness algorithm will not

be complete without union splittable types.

Soundness and completeness of disjointness. We prove that the

novel disjointness algorithm is sound and complete with respect to

the disjointness speci�cations (de�nition 1.1).

Lemma 2.2 (Soundness of disjointness algorithm). ∀ A B,

A ∗0 B → A ∗ B.

Lemma 2.3 (Completeness of disjointness algorithm). ∀ A

B, A ∗ B → A ∗0 B.

25

FTfJP ’24, September 20, 2024, Vienna, Austria Baber Rehman and Bruno C. d. S. Oliveira

A, B, C F ... | P | U | ∀ (U ∗ A) .B

e F ... | new P | e A | Λ(U ∗ A) .e

v F ... | new P | Λ(U ∗ A) .e

Γ F · | Γ, x : A | Γ, U ∗ A

Δ F · | Δ, P <: A

�◦, �◦,�◦
F ... | ∀ (U ∗ A) .B | P

A⊚ (Union Ordinary Types)

uo-tvar

U⊚

uo-all

∀(U ∗ A) .B⊚

uo-nom

P⊚

Figure 4: Extended Syntax and union ordinary types for poly-

morphic _D .

2.3 Metatheory

Typing and operational semantics. Subtyping, typing and opera-

tional semantics essentially stay the same and are shown in Figure 2.

This calculus preserves the standard properties of subtyping, type-

safety and determinism as shown below:

Lemma 2.4 (Subtyping Reflexivity). A <: A

Lemma 2.5 (Subtyping Transitivity). If A <: B and B <: C

then A <: C

Theorem 2.6 (Type Preservation). If Γ ⊢ e : A and e −→ e′

then Γ ⊢ e′ : A.

Theorem 2.7 (Progress). If Γ ⊢ e : A then either e is a value; or

e can take a step to e′.

Theorem 2.8 (Determinism). If Γ ⊢ e : A and e −→ e1 and

e −→ e2 then e1 = e2.

3 Polymorphic Disjointness

Section 2 presents a novel disjointness algorithm by exploiting

union ordinary and union splittable types. We show that the dis-

jointness algorithm is sound and complete with respect to the dis-

jointness speci�cations. In this section we extend the calculus from

Section 2 with disjoint polymorphism. Importantly, we show that

the ground type restriction on type variable bounds is no longer

needed with the novel disjointness algorithm.

Syntax, union ordinary, and union splittable types. The syntax for

polymorphic _D is shown at the top in Figure 4. Types are extended

with the nominal types P, type variables U , and disjoint quanti�ers

∀(U ∗ A) .B. The syntactic category of expressions now include a

new expression (new P) to construct instances of type P. It also

includes type applications e A and type abstractions Λ(U ∗ A) .e.
Expressions new P and Λ(U ∗A) .e are also values. Typing context Γ
also has entries for type variables Γ, U ∗ A. A new context Δ keeps

a list and subtyping bounds of nominal types.

Union ordinary types are shown in Figure 4. Union ordinary

types are extended with type variables (rule uo-tvar), disjoint

quanti�ers (rule uo-all) and nominal types (rule uo-nom). Union

splittable types stay the same as in Section 2.

3.1 Disjointness

Note that we use ∗ for algorithmic disjointness in this section for

simplicity. Disjointness speci�cations for disjoint polymorphism is

an open problem. The disjointness algorithm with polymorphism

is shown in Figure 5. In addition to the disjointness rules from

Figure 3, we add axioms for universal types and the nominal types.

Universal types are disjoint to all the base types and so are the

nominal types. Type variables are disjoint to all the subtypes of its

bound as shown in rules adpp-varr and adpp-varl. For example in

a context [Γ, U ∗⊤], U is essentially disjoint to all the types because

all the types are subtype of⊤. In another context [Γ, U ∗ Int∨Bool],

U is disjoint with all the subtypes of Int ∨ Bool including Int and

Bool but is not disjoint to String.

Δ; Γ ⊢ A ∗0G B (Disjointness Axioms)

adpa-intall

Δ; Γ ⊢ Int ∗0G ∀(U ∗ A) .B

adpa-nullall

Δ; Γ ⊢ Null ∗0G ∀(U ∗ A) .B

adpa-arrall

Δ; Γ ⊢ C → D ∗0G ∀(U ∗ A) .B

adpa-pint

Δ; Γ ⊢ P ∗0G Int

adpa-parr

Δ; Γ ⊢ P ∗0G A → B

adpa-pnull

Δ; Γ ⊢ P ∗0G Null

adpa-pall

Δ; Γ ⊢ P ∗0G ∀(U ∗ A) .B

Δ; Γ ⊢ A ∗ B (Disjointness)

adpp-varr
U ∗ A ∈ Γ Δ; Γ ⊢ B <: A

Δ; Γ ⊢ B ∗ U

adpp-varl
U ∗ A ∈ Γ Δ; Γ ⊢ B <: A

Δ; Γ ⊢ U ∗ B

adpp-nom
P1 :: Δ(P1) ∩ P2 :: Δ(P2) = {}

Δ; Γ ⊢ P1 ∗ P2

Figure 5: Extended disjointness rules with union splittable

types for polymorphic _D .

Note that we scrap the optional union ordinary premise from

rules ad-andll, ad-andlss, ad-andrr, and ad-andrss. This sim-

pli�es the metatheory with type variables. We also drop rules ad-

emptyl and ad-emptyr from disjointness algorithm in Figure 5.

Dropping rules ad-emptyl and ad-emptyr restricts writing some

programs but all the practical programs still type-check. Generally,

it does not allow writing empty intersection types in branches. For

example, the following program will no longer type-check because

of the empty type in the �rst branch i.e Int ∧ Bool.

Bool isInt (x : Int | Bool) = switch (x)

(x:Int&Bool) → true

(y:Int) → true

(z:Bool) → false

Sincewe cannot construct a value of type Int∧Bool in contemporary

system, the �rst branch in the above program has no practical

signi�cance. Therefore not allowing such empty intersections does

not a�ect the programs in practice.

Disjointness for nominal types. The disjointness rule for nominal

types (rule adpp-nom) is interesting. It states that two nominal

26

Disjoint Polymorphism with Intersection and Union Types FTfJP ’24, September 20, 2024, Vienna, Austria

types P1 and P2 are disjoint if the intersection of their subtypes

is an empty set. Nominal subtypes (Δ(A)) is a function that �nds

the subtypes of type A in Δ and returns a list. Note that nominal

subtypes is a transitive closure and shown next:

Nominal Subtypes Δ(A)

·(A) = {}

(Δ′, P <: B) (A) =

{P} ∪ Δ
′ (A) if P <: A ∈ Δ

Δ
′ (A) otherwise

Is Nominal Subtype A <: B ∈ Δ

A <: B ∈ · = FALSE

A <: B ∈ (Δ′, P <: C) =

TRUE if � == % 0=3 � == �

C <: B ∈ Δ
′ if � == % 0=3 � ≠ �

A <: B ∈ Δ
′ otherwise

For example, in a context Δ = {Person <: ⊤, Student <: Person,
GradStudent <: Student, Robot <: ⊤, OptimumPrime <: Robot}:

• Person is disjoint to Robot as per rule adpp-nom, because the

set intersection of the subtypes of Person and Robot is empty

i.e {Person, Student, GradStudent} ∩ {Robot, OptimumPrime}

= {}.

• Whereas, Person is not disjoint to GradStudent, because the

set intersection of the subtypes of Person and GradStudent is

not empty i.e {Person, Student, GradStudent}∩ {GradStudent}

= {GradStudent}.

Contravariance of disjointness. Contravariance3 of disjointness

(lemma 3.1) states that if two types A and B are disjoint, then

the subtypes of A are also disjoint with B. In general subtypes of

disjoint types are disjoint as well. For example if A → B is disjoint

to Int ∨ Null, then A → B is disjoint to both Int and Null among

other subtypes of Int ∨ Null. Similarly if a type A is disjoint to ⊤,
then A is disjoint with all the types.

Lemma 3.1 (Contravariance of disjointness). If Δ; Γ ⊢ A ∗ B
and Δ; Γ ⊢ C <: A then Δ; Γ ⊢ C ∗ B.

Expressiveness of disjointness. Our novel disjointness algorithm

allowswriting the programs that are not allowed in the polymorphic

_D proposed in [14] due to the ground type restriction. In particular,

our calculus allows writing programs by declaring type variables

as bounds of other type variables:

Bool isFirstMatch [X * Y] (x : X | Y) = switch (x)

(x:X) → true

(y:Y) → false

3.2 Metatheory

Subtyping, typing, and operational semantics. Subtyping, typing

and operational semantics are altered to lift the ground type restric-

tion on type variable bounds and are shown in Figure 6. Note that

subtyping, typing, and operational semantics extend all the rules

3Alpuim et al. [1] proved covariance for supertypes in the context of intersection types.
We call this property contravariance due to subtypes in our context of union types.

>: Δ (Well-formed Nominal Context)

okp-empty

>: ·

okp-sub
>: Δ Δ; Γ ⊢ P2 P1 ∉ 3>< Δ

>: Δ, P1 <: P2

Δ; Γ ⊢ A (Well-formed Types)

wftp-int

Δ; Γ ⊢ Int

wftp-tvar
U ∗ A ∈ Γ

Δ; Γ ⊢ U

wftp-top

Δ; Γ ⊢ ⊤

wftp-bot

Δ; Γ ⊢ ⊥

wftp-arrow
Δ; Γ ⊢ A Δ; Γ ⊢ B

Δ; Γ ⊢ A → B

wftp-all
Δ; Γ ⊢ A Δ; Γ, U ∗ A ⊢ B

Δ; Γ ⊢ ∀(U ∗ A) .B

wftp-or
Δ; Γ ⊢ A Δ; Γ ⊢ B

Δ; Γ ⊢ A ∨ B

wftp-and
Δ; Γ ⊢ A Δ; Γ ⊢ B

Δ; Γ ⊢ A ∧ B

wftp-prim
P ∈ 3>< Δ

Δ; Γ ⊢ P

wftp-null

Δ; Γ ⊢ Null

Δ; Γ ⊢ A <: B (Subtyping)

polys-tvar
>: Δ Δ; Γ ⊢ U

Δ; Γ ⊢ U <: U

polys-alldisj

Δ; Γ ⊢ A1 <: A2

Δ; Γ, U ∗ A2 ⊢ B1 <: B2

Δ; Γ ⊢ ∀(U ∗ A1) .B1 <: ∀(U ∗ A2) .B2

polys-prefl
>: Δ Δ; Γ ⊢ P

Δ; Γ ⊢ P <: P

polys-pin
>: Δ Δ; Γ ⊢ P1 P2 ∈ Δ(P1)

Δ; Γ ⊢ P2 <: P1

Δ; Γ ⊢ e : A (Typing)

ptyp-prim
>: Δ Δ; Γ ⊢ P

Δ; Γ ⊢ new P : P

ptyp-tapdisj

Δ; Γ ⊢ e : ∀(U ∗ A) .C Δ; Γ ⊢ B ∗ A

Δ; Γ ⊢ e B : C [U { B]

ptyp-tabsdisj

Δ; Γ, U ∗ A ⊢ e : B

Δ; Γ ⊢ Λ(U ∗ A) .e : ∀(U ∗ A) .B

Δ; Γ ⊢ e −→ e′ (Operational Semantics)

polystep-tappl
Δ; Γ ⊢ e −→ e′

Δ; Γ ⊢ e B −→ e′ B

polystep-tappdisj

Δ; Γ ⊢ (Λ(U ∗ A) .e) B −→ e[U { B]

Approximate Type ⌊v⌋Δ;Γ

⌊Λ(U ∗ A) .e⌋Δ;Γ = ∀(U ∗ ⊥) .⊥

⌊new P⌋Δ;Γ = P

Figure 6: Extended subtyping, typing, and operational seman-

tics for polymorphic _D .

from Section 2. We also show the well-formedness relation at the

top in Figure 6.

Modi�cations in metatheory. The subtyping changes are re�ected

by rule polys-alldisj in Figure 6. Note that �rst premise does not

have ground type restriction. A1 and A2 can be any types. Typing

changes are shown in rules ptyp-tapdisj and ptyp-tabsdisj in

27

FTfJP ’24, September 20, 2024, Vienna, Austria Baber Rehman and Bruno C. d. S. Oliveira

Figure 6. Similarly, changes for operational semantics are shown

in Figure 6. Importantly, we no longer use syntactic category of

ground types and the bound of a type variable can be any other

type.

Type safety and determinism. Polymorphic _D with updated dis-

jointness preserves standard properties of subtyping, type-safety

and determinism.

Lemma 3.2 (Subtyping Reflexivity). Δ; Γ ⊢ A <: A

Lemma 3.3 (Subtyping Transitivity). If Δ; Γ ⊢ A <: B and

Δ; Γ ⊢ B <: C then Δ; Γ ⊢ A <: C

Theorem 3.4 (Type Preservation). If Δ; Γ ⊢ e : A and Δ; Γ ⊢
e −→ e′ then Δ; Γ ⊢ e′ : A.

Theorem 3.5 (Progress). If Δ; · ⊢ e : A then either e is a value;

or e can take a step to e′.

Theorem 3.6 (Determinism). If Δ; Γ ⊢ e : A and Δ; Γ ⊢ e −→ e1
and Δ; Γ ⊢ e −→ e2 then e1 = e2.

Substitution, narrowing, andweakening lemmas. Type-safety proofs

need type substitution (lemma 3.7), type narrowing (lemma 3.8),

and type weakening (lemma 3.9) lemmas. Narrowing lemma essen-

tially explains the relation between disjointness and subtyping. It

states that it is safe to replace the bound of a type variable with a

supertype of its existing bound.Weakening lemma states that if a re-

lation is valid in a smaller context, then it stays valid in an enlarged

context given that the enlarged context is well-formed. Note that

we do not show corresponding subtyping and disjointness lemmas,

such as subtyping substitution and disjointness substitution due

to space constraints. All of these lemmas are available in the Coq

formalization of this paper.

Lemma 3.7 (Typing Substitution). If Δ; Γ, U ∗ A1 ⊢ e : B and

Δ; Γ ⊢ A2 ∗ A1 then Δ; Γ [U { A2] ⊢ e[U { A2] : B[U { A2]

Lemma 3.8 (Typing narrowing). If Δ; Γ, U ∗ A1 ⊢ e : B and

Δ; Γ ⊢ A1 <: A2 then Δ; Γ, U ∗ A2 ⊢ e : B

Lemma 3.9 (Typing weakening). If Δ; Γ1, Γ2 ⊢ e : B and ok Γ1,

Γ3, Γ2 then Δ; Γ1, Γ3, Γ2 ⊢ e : B

More auxiliary lemmas. We discuss a few more interesting aux-

iliary lemmas in this paragraph. Lemma 3.10, lemma 3.11 and

lemma 3.12 are essential in proving the metatheory. Lemma 3.10

states that if a union ordinary type A⊚ is a subtype of a union

splittable type B (B1 ⊳ B ⊲ B2), then A is subtype of either B1 or

B2. Lemma 3.11 states disjointness symmetry. Finally, lemma 3.12

states that if A and B are disjoint types, then this is not the case

that a value v checks against both A and B.

Lemma 3.10 (Subtyping inversion of union ordinary and

union splittable types). If Δ; Γ ⊢ A <: B and B1 ⊳ B ⊲ B2 and A
⊚

then Δ; Γ ⊢ A <: B1 ∨ Δ; Γ ⊢ A <: B2.

Lemma 3.11 (Disjointness symmetry). If Δ; Γ ⊢ A ∗ B then

Δ; Γ ⊢ B ∗ A.

Lemma 3.12 (Exclusivity of Disjoint Types). If Δ; Γ ⊢ A ∗ B
then � v such that both Δ; Γ ⊢ v : A and Δ; Γ ⊢ v : B holds.

4 Related Work

Intersection and union types have extensively been studied in the

literature. We discuss the work closest to ours in this section.

Intersection types. Coppo et al. [4] and Pottinger [13] initially

studied intersection types in programming languages to assign

meaningful types to terms. Compagnoni and Pierce [3] studied mul-

tiple interface inheritance by exploiting intersection types. Pierce

[12] studied a calculus with intersection types, union types and

polymorphism. Intersection types have also been studied in the

context of re�nement types [7]. Re�nement types increase the ex-

pressiveness of types but not the terms. The merge operator, an

introduction form for the intersection types, was �rst introduced

in Forsythe programming language by Reynolds [15]. Dun�eld [6]

studied merge operator in a calculus with union types.

Disjoint intersection types. Oliveira et al. [11] studied disjoint

intersection types to overcome the non-deterministic behaviour of

the merge operator. Alpuim et al. [1] studied disjoint intersection

types with disjoint polymorphism. Recently, Huang and Oliveira

[8] proposed a direct operational semantics for the merge operator.

However, this line of work does not count for union types and a

type-based switch construct.

Union types. Union types were introduced in programming

languages by MacQueen et al. [10]. They proposed an implicit

elimination rule for union types. Barbanera et al. [2] solved the

type preservation problem of implicit union elimination rule by

parallel reduction. Single-branch case construct for union types is

proposed by Pierce [12]. Rioux et al. [16] studied merge operator

together with intersection and union types. However, their merge

operator is restricted to functions. Recently, Rehman et al. [14]

studied disjoint switches as a deterministic elimination form for

union types. The order of branches of a switch construct does not

matter in their calculus due to the disjointness constraint. However,

their disjointness algorithm poses an ad-hoc restriction on type

variable bounds when studied with disjoint polymorphism.

5 Conclusion and Future Work

We present a type-safe and deterministic calculus with intersection

types, union types and disjoint polymorphism. The determinism

of the calculus is ensured by employing a notion of disjointness.

Disjointness restricts overlapping branches of a switch construct.

Thus scrutinee can fall in a maximum of one branch. We present a

novel disjointness algorithm which naturally extends for disjoint

polymorphism without ad-hoc restrictions on type variable bounds.

All the metatheory has been formalized in Coq theorem prover.

There are a few future explorations of the proposed calculus.

The �rst future direction is to study the proposed calculus with

the merge operator. Disjointness for union types and the type-

based switch expression is essentially dual to the disjointness for

intersection types with the merge operator. Another interesting

and practical future direction is to study disjoint switches with

gradual typing. The challenge of studying disjointness with gradual

typing is because of the unknown type.

Acknowledgments

We thank the reviewers for the insightful comments. We also thank

Xuejing Huang for technical discussions.

28

Disjoint Polymorphism with Intersection and Union Types FTfJP ’24, September 20, 2024, Vienna, Austria

References
[1] João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymor-

phism. In European Symposium on Programming (ESOP).
[2] Franco Barbanera, Mariangiola Dezaniciancaglini, and Ugo Deliguoro. 1995. In-

tersection and union types: syntax and semantics. Information and Computation
119, 2 (1995), 202–230.

[3] Adriana B Compagnoni and Benjamin C Pierce. 1996. Higher-order intersection
types and multiple inheritance. Mathematical Structures in Computer Science 6, 5
(1996), 469–501.

[4] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981. Func-
tional characters of solvable terms. Mathematical Logic Quarterly 27, 2-6 (1981),
45–58.

[5] Stephen Dolan and Alan Mycroft. 2017. Polymorphism, subtyping, and type
inference in MLsub. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. 60–72.

[6] Joshua Dun�eld. 2014. Elaborating intersection and union types. Journal of
Functional Programming 24, 2-3 (2014), 133–165.

[7] Tim Freeman and Frank Pfenning. 1991. Re�nement types for ML. In Proceed-
ings of the ACM SIGPLAN 1991 conference on Programming language design and
implementation. 268–277.

[8] Xuejing Huang and Bruno C. d. S. Oliveira. 2020. A Type-Directed Operational
Semantics For a Calculus with a Merge Operator. In 34th European Conference
on Object-Oriented Programming (ECOOP 2020) (Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 26:1–
26:32. https://doi.org/10.4230/LIPIcs.ECOOP.2020.26

[9] Xuejing Huang and Bruno C d S Oliveira. 2021. Distributing intersection and
union types with splits and duality (functional pearl). Proceedings of the ACM on
Programming Languages 5, ICFP (2021), 1–24.

[10] David MacQueen, Gordon Plotkin, and Ravi Sethi. 1984. An ideal model for
recursive polymorphic types. In Proceedings of the 11th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. 165–174.

[11] Bruno C. d. S. Oliveira, Zhiyuan Shi, and Joao Alpuim. 2016. Disjoint intersec-
tion types. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming. 364–377.

[12] Benjamin C Pierce. 1991. Programming with intersection types, union types. Tech-
nical Report. and polymorphism. Technical Report CMU-CS-91-106, Carnegie
Mellon University.

[13] Garrel Pottinger. 1980. A type assignment for the strongly normalizable _-terms.
To HB Curry: essays on combinatory logic, lambda calculus and formalism (1980),
561–577.

[14] Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C d S Oliveira. 2022.
Union Types with Disjoint Switches. In 36th European Conference on Object-
Oriented Programming (ECOOP 2022). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik.

[15] John C Reynolds. 1997. Design of the Programming Language F orsythe. In
ALGOL-like languages. Springer, 173–233.

[16] Nick Rioux, Xuejing Huang, Bruno C d S Oliveira, and Steve Zdancewic. 2023. A
Bowtie for a Beast: Overloading, Eta Expansion, and Extensible Data Types in F.
Proceedings of the ACM on Programming Languages 7, POPL (2023), 515–543.

Received 2024-06-26; accepted 2024-07-24

29

https://doi.org/10.4230/LIPIcs.ECOOP.2020.26

	Abstract
	1 Background
	1.1 Lambda-u Calculus
	1.2 Lambda-u with Disjoint Polymorphism

	2 Revised Disjointness Algorithm
	2.1 Union Ordinary and Union Splittable Types
	2.2 Algorithmic Disjointness
	2.3 Metatheory

	3 Polymorphic Disjointness
	3.1 Disjointness
	3.2 Metatheory

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

