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Abstract. Bi-directional type checking has proved to be an extremely
useful and versatile tool for type checking and type inference. The con-
ventional presentation of bi-directional type checking consists of two
modes: inference mode and checked mode. In traditional bi-directional
type-checking, type annotations are used to guide (via the checked mode)
the type inference/checking procedure to determine the type of an ex-
pression, and type information flows from functions to arguments.
This paper presents a variant of bi-directional type checking where the
type information flows from arguments to functions. This variant retains
the inference mode, but adds a so-called application mode. Such design
can remove annotations that basic bi-directional type checking cannot,
and is useful when type information from arguments is required to type-
check the functions being applied. We present two applications and de-
velop the meta-theory (mostly verified in Coq) of the application mode.

1 Introduction

Bi-directional type checking has been known in the folklore of type systems
for a long time. It was popularized by Pierce and Turner’s work on local type
inference [29]. Local type inference was introduced as an alternative to Hindley-
Milner (henceforth HM system) type systems [11, 17], which could easily deal
with polymorphic languages with subtyping. Bi-directional type checking is one
component of local type inference that, aided by some type annotations, en-
ables type inference in an expressive language with polymorphism and subtyp-
ing. Since Pierce and Turner’s work, various other authors have proved the ef-
fectiveness of bi-directional type checking in several other settings, including
many different systems with subtyping [12, 15, 14], systems with dependent
types [37, 10, 2, 21, 3], and various other works [1, 13, 28, 7, 22]. Furthermore,
bi-directional type checking has also been combined with HM-style techniques
for providing type inference in the presence of higher-ranked types [27, 14].

The key idea in bi-directional type checking is simple. In its basic form typing
is split into inference and checked modes. The most salient feature of a bi-
directional type-checker is when information deduced from inference mode is
used to guide checking of an expression in checked mode. One of such interactions
between modes happens in the typing rule for function applications:

Γ ` e1 ⇒ A→ B Γ ` e2 ⇐ A

Γ ` e1 e2 ⇒ B
APP
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In the above rule, which is a standard bi-directional rule for checking applica-
tions, the two modes are used. First we synthesize (⇒) the type A→ B from e1,
and then check (⇐) e2 against A, returning B as the type for the application.

This paper presents a variant of bi-directional type checking that employs a
so-called application mode. With the application mode the design of the appli-
cation rule (for a simply typed calculus) is as follows:

Γ ` e2 ⇒ A Γ p Ψ,A ` e1 ⇒ A→ B

Γ p Ψ ` e1 e2 ⇒ B
APP

In this rule, there are two kinds of judgments. The first judgment is just the
usual inference mode, which is used to infer the type of the argument e2. The
second judgment, the application mode, is similar to the inference mode, but it
has an additional context Ψ . The context Ψ is a stack that tracks the types of
the arguments of outer applications. In the rule for application, the type of the
argument e2 is inferred first, and then pushed into Ψ for inferring the type of e1.
Applications are themselves in the application mode, since they can be in the
context of an outer application. With the application mode it is possible to infer
the type for expressions such as (λx. x) 1 without additional annotations.

Bi-directional type checking with an application mode may still require type
annotations and it gives different trade-offs with respect to the checked mode
in terms of type annotations. However the different trade-offs open paths to
different designs of type checking/inference algorithms. To illustrate the utility
of the application mode, we present two different calculi as applications. The
first calculus is a higher ranked implicit polymorphic type system, which infers
higher-ranked types, generalizes the HM type system, and has polymorphic let
as syntactic sugar. As far as we are aware, no previous work enables an HM-style
let construct to be expressed as syntactic sugar. For this calculus many results
are proved using the Coq proof assistant [9], including type-safety. Moreover a
sound and complete algorithmic system, inspired by Peyton Jones et al. [27],
is also developed. A second calculus with explicit polymorphism illustrates how
the application mode is compatible with type applications, and how it adds
expressiveness by enabling an encoding of type declarations in a System-F-like
calculus. For this calculus, all proofs (including type soundness), are mechanized
in Coq.

We believe that, similarly to standard bi-directional type checking, bi-directional
type checking with an application mode can be applied to a wide range of type
systems. Our work shows two particular and non-trivial applications. Other po-
tential areas of applications are other type systems with subtyping, static over-
loading, implicit parameters or dependent types.

In summary the contributions of this paper are1:

– A variant of bi-directional type checking where the inference mode is
combined with a new, so-called, application mode. The application mode
naturally propagates type information from arguments to the functions.

1 All supplementary materials are available in https://bitbucket.org/ningningxie/

let-arguments-go-first

https://bitbucket.org/ningningxie/let-arguments-go-first
https://bitbucket.org/ningningxie/let-arguments-go-first
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– A new design for type inference of higher-ranked types which gen-
eralizes the HM type system, supports a polymorphic let as syntactic sugar,
and infers higher rank types. We present a syntax-directed specification, an
elaboration semantics to System F, some meta-theory in Coq, and an algo-
rithmic type system with completeness and soundness proofs.

– A System-F-like calculus as a theoretical response to the challenge noted
by Pierce and Turner [29]. It shows that the application mode is compatible
with type applications, which also enables encoding type declarations. We
present a type system and meta-theory, including proofs of type safety and
uniqueness of typing in Coq.

2 Overview

2.1 Background: Bi-Directional Type Checking

Traditional type checking rules can be heavyweight on annotations, in the sense
that lambda-bound variables always need explicit annotations. Bi-directional
type checking [29] provides an alternative, which allows types to propagate down-
ward the syntax tree. For example, in the expression (λf:Int → Int. f) (λy.

y), the type of y is provided by the type annotation on f. This is supported by
the bi-directional typing rule for applications:

Γ ` e1 ⇒ A→ B Γ ` e2 ⇐ A

Γ ` e1 e2 ⇒ B
APP

Specifically, if we know that the type of e1 is a function from A → B, we can check
that e2 has type A. Notice that here the type information flows from functions
to arguments.

One guideline for designing bi-directional type checking rules [15] is to dis-
tinguish introduction rules from elimination rules. Constructs which correspond
to introduction forms are checked against a given type, while constructs cor-
responding to elimination forms infer (or synthesize) their types. For instance,
under this design principle, the introduction rule for pairs is supposed to be in
checked mode, as in the rule Pair-C.

Γ ` e1 ⇐ A Γ ` e2 ⇐ B

Γ ` (e1, e2) ⇐ (A,B)
Pair-C

Γ ` e1 ⇒ A Γ ` e2 ⇒ B

Γ ` (e1, e2) ⇒ (A,B)
Pair-I

Unfortunately, this means that the trivial program (1, 2) cannot type-check,
which in this case has to be rewritten to (1, 2) : (Int , Int).

In this particular case, bi-directional type checking goes against its original
intention of removing burden from programmers, since a seemingly unnecessary
annotation is needed. Therefore, in practice, bi-directional type systems do not
strictly follow the guideline, and usually have additional inference rules for the
introduction form of constructs. For pairs, the corresponding rule is Pair-I.

Now we can type check (1, 2), but the price to pay is that two typing rules
for pairs are needed. Worse still, the same criticism applies to other constructs.
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This shows one drawback of bi-directional type checking: often to minimize anno-
tations, many rules are duplicated for having both inference and checked mode,
which scales up with the typing rules in a type system.

2.2 Bi-Directional Type Checking with the Application Mode

We propose a variant of bi-directional type checking with a new application mode.
The application mode preserves the advantage of bi-directional type checking,
namely many redundant annotations are removed, while certain programs can
type check with even fewer annotations. Also, with our proposal, the inference
mode is a special case of the application mode, so it does not produce duplications
of rules in the type system. Additionally, the checked mode can still be easily
combined into the system (see Section 5.1 for details). The essential idea of
the application mode is to enable the type information flow in applications to
propagate from arguments to functions (instead of from functions to arguments
as in traditional bi-directional type checking).

To motivate the design of bi-directional type checking with an application
mode, consider the simple expression

(λx. x) 1

This expression cannot type check in traditional bi-directional type checking
because unannotated abstractions only have a checked mode, so annotations are
required. For example, ((λx. x) : Int → Int) 1.

In this example we can observe that if the type of the argument is accounted
for in inferring the type of λx. x, then it is actually possible to deduce that the
lambda expression has type Int → Int , from the argument 1.

The Application Mode. If types flow from the arguments to the function, an
alternative idea is to push the type of the arguments into the typing of the
function, as the rule that is briefly introduced in Section 1:

Γ ` e2 ⇒ A Γ p Ψ,A ` e1 ⇒ A→ B

Γ p Ψ ` e1 e2 ⇒ B
APP

Here the argument e2 synthesizes its type A, which then is pushed into the
application context Ψ . Lambda expressions can now make use of the application
context, leading to the following rule:

Γ, x : A p Ψ ` e ⇒ B

Γ p Ψ,A ` λx. e ⇒ A→ B
Lam

The type A that appears last in the application context serves as the type for x,
and type checking continues with a smaller application context and x:A in the
typing context. Therefore, using the rule App and Lam, the expression (λx.

x) 1 can type-check without annotations, since the type Int of the argument 1

is used as the type of the binding x.
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Note that, since the examples so far are based on simple types, obviously
they can be solved by integrating type inference and relying on techniques like
unification or constraint solving. However, here the point is that the application
mode helps to reduce the number of annotations without requiring such sophis-
ticated techniques. Also, the application mode helps with situations where those
techniques cannot be easily applied, such as type systems with subtyping.

Interpretation of the Application Mode. As we have seen, the guideline for de-
signing bi-directional type checking [15], based on introduction and elimination
rules, is often not enough in practice. This leads to extra introduction rules in
the inference mode. The application mode does not distinguish between intro-
duction rules and elimination rules. Instead, to decide whether a rule should be
in inference or application mode, we need to think whether the expression can be
applied or not. Variables, lambda expressions and applications are all examples
of expressions that can be applied, and they should have application mode rules.
However pairs or literals cannot be applied and should have inference rules. For
example, type checking pairs would simply lead to the rule Pair-I. Nevertheless
elimination rules of pairs could have non-empty application contexts (see Sec-
tion 5.2 for details). In the application mode, arguments are always inferred first
in applications and propagated through application contexts. An empty appli-
cation context means that an expression is not being applied to anything, which
allows us to model the inference mode as a particular case2.

Partial Type Checking. The inference mode synthesizes the type of an expression,
and the checked mode checks an expression against some type. A natural question
is how do these modes compare to application mode. An answer is that, in some
sense: the application mode is stronger than inference mode, but weaker than
checked mode. Specifically, the inference mode means that we know nothing
about the type an expression before hand. The checked mode means that the
whole type of the expression is already known before hand. With the application
mode we know some partial type information about the type of an expression:
we know some of its argument types (since it must be a function type when the
application context is non-empty), but not the return type.

Instead of nothing or all, this partialness gives us a finer grain notion on
how much we know about the type of an expression. For example, assume
e : A→ B → C. In the inference mode, we only have e. In the checked mode, we
have both e and A→ B → C. In the application mode, we have e, and maybe
an empty context (which degenerates into inference mode), or an application
context A (we know the type of first argument), or an application context B,A
(we know the types of both arguments).

Trade-offs. Note that the application mode is not conservative over traditional
bidirectional type checking due to the different information flow. However, it

2 Although the application mode generalizes the inference mode, we refer to them as
two different modes. Thus the variant of bi-directional type checking in this paper
is interpreted as a type system with both inference and application modes.
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provides a new design choice for type inference/checking algorithms, especially
for those where the information about arguments is useful. Therefore we next
discuss some benefits of the application mode for two interesting cases where
functions are either variables; or lambda (or type) abstractions.

2.3 Benefits of Information Flowing from Arguments to Functions

Local Constraint Solver for Function Variables. Many type systems, including
type systems with implicit polymorphism and/or static overloading, need infor-
mation about the types of the arguments when type checking function variables.
For example, in conventional functional languages with implicit polymorphism,
function calls such as (id 3) where id: ∀a. (a → a), are pervasive. In such a
function call the type system must instantiate a to Int. Dealing with such im-
plicit instantiation gets trickier in systems with higher-ranked types. For example,
Peyton Jones et al. [27] require additional syntactic forms and relations, whereas
Dunfield and Krishnaswami [14] add a special purpose application judgment.

With the application mode, all the type information about the arguments be-
ing applied is available in application contexts and can be used to solve instanti-
ation constraints. To exploit such information, the type system employs a special
subtyping judgment called application subtyping, with the form Ψ ` A ≤ B. Un-
like conventional subtyping, computationally Ψ and A are interpreted as inputs
and B as output. In above example, we have that Int ` ∀a.a → a ≤ B and we
can determine that a = Int and B = Int → Int. In this way, type system is able
to solve the constraints locally according to the application contexts since we no
longer need to propagate the instantiation constraints to the typing process.

Declaration Desugaring for Lambda Abstractions. An interesting consequence of
the usage of an application mode is that it enables the following let sugar:

let x = e1 in e2  (λx. e2) e1

Such syntactic sugar for let is, of course, standard. However, in the context of
implementations of typed languages it normally requires extra type annotations
or a more sophisticated type-directed translation. Type checking (λx. e2) e1
would normally require annotations (for example an annotation for x), or other-
wise such annotation should be inferred first. Nevertheless, with the application
mode no extra annotations/inference is required, since from the type of the ar-
gument e1 it is possible to deduce the type of x. Generally speaking, with the
application mode annotations are never needed for applied lambdas. Thus let

can be the usual sugar from the untyped lambda calculus, including HM-style
let expression and even type declarations.

2.4 Application 1: Type Inference of Higher-Ranked Types

As a first illustration of the utility of the application mode, we present a calculus
with implicit predicative higher-ranked polymorphism.
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Higher-ranked Types. Type systems with higher-ranked types generalize the tra-
ditional HM type system, and are useful in practice in languages like Haskell or
other ML-like languages. Essentially higher-ranked types enable much of the ex-
pressive power of System F, with the advantage of implicit polymorphism. Com-
plete type inference for System F is known to be undecidable [36]. Therefore,
several partial type inference algorithms, exploiting additional type annotations,
have been proposed in the past instead [25, 15, 31, 27].

Higher-ranked Types and Bi-directional Type Checking. Bi-directional type check-
ing is also used to help with the inference of higher-ranked types [27, 14]. Con-
sider the following program:

(λf. (f 1, f ’c’)) (λx. x)

which is not typeable under those type systems because they fail to infer the type
of f, since it is supposed to be polymorphic. Using bi-directional type checking,
we can rewrite this program as

((λf. (f 1, f ’c’)) : (∀a. a → a) → (Int, Char)) (λx . x)

Here the type of f can be easily derived from the type signature using checked
mode in bi-directional type checking. However, although some redundant an-
notations are removed by bi-directional type checking, the burden of inferring
higher-ranked types is still carried by programmers: they are forced to add poly-
morphic annotations to help with the type derivation of higher-ranked types.
For the above example, the type annotation is still provided by programmers,
even though the necessary type information can be derived intuitively without
any annotations: f is applied to λx. x, which is of type ∀a. a → a.

Generalization. Generalization is famous for its application in let polymorphism
in the HM system, where generalization is adopted at let bindings. Let polymor-
phism is a useful component to introduce top-level quantifiers (rank 1 types)
into a polymorphic type system. The previous example becomes typeable in the
HM system if we rewrite it to: let f = λx. x in (f 1, f ’c’).

Type Inference for Higher-ranked Types with the Application Mode. Using our
bi-directional type system with an application mode, the original expression can
type check without annotations or rewrites: (λf. (f 1, f ’c’)) (λx. x).

This result comes naturally if we allow type information flow from arguments
to functions. For inferring polymorphic types for arguments, we use generaliza-
tion. In the above example, we first infer the type ∀a. a → a for the argument,
then pass the type to the function. A nice consequence of such an approach
is that HM-style polymorphic let expressions are simply regarded as syntactic
sugar to a combination of lambda/application:

let x = e1 in e2  (λx. e2) e1

With this approach, nested lets can lead to types which are more general than
HM. For example, let s = λx. x in let t = λy. s in e. The type of s is ∀a.
a → a after generalization. Because t returns s as a result, we might expect
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t: ∀b. b → (∀a. a → a), which is what our system will return. However, HM
will return type t: ∀b. ∀a. b → (a → a), as it can only return rank 1 types,
which is less general than the previous one according to Odersky and Läufer’s
subtyping relation for polymorphic types [24].

Conservativity over the Hindley-Milner Type System. Our type system is a con-
servative extension over the Hindley-Milner type system, in the sense that every
program that can type-check in HM is accepted in our type system, which is
explained in detail in Section 3.2. This result is not surprising: after desugaring
let into a lambda and an application, programs remain typeable.

Comparing Predicative Higher-ranked Type Inference Systems. We will give a
full discussion and comparison of related work in Section 6. Among those works,
we believe the work by Dunfield and Krishnaswami [14], and the work by Pey-
ton Jones et al. [27] are the most closely related work to our system. Both their
systems and ours are based on a predicative type system: universal quantifiers
can only be instantiated by monotypes. So we would like to emphasize our sys-
tem’s properties in relation to those works. In particular, here we discuss two
interesting differences, and also briefly (and informally) discuss how the works
compare in terms of expressiveness.

1) Inference of higher-ranked types. In both works, every polymorphic type
inferred by the system must correspond to one annotation provided by the pro-
grammer. However, in our system, some higher-ranked types can be inferred
from the expression itself without any annotation. The motivating expression
above provides an example of this.

2) Where are annotations needed? Since type annotations are useful for in-
ferring higher rank types, a clear answer to the question where annotations are
needed is necessary so that programmers know when they are required to write
annotations. To this question, previous systems give a concrete answer: only on
the binding of polymorphic types. Our answer is slightly different: only on the
bindings of polymorphic types in abstractions that are not applied to arguments.
Roughly speaking this means that our system ends up with fewer or smaller
annotations.

3) Expressiveness. Based on these two answers, it may seem that our system
should accept all expressions that are typeable in their system. However, this
is not true because the application mode is not conservative over traditional
bi-directional type checking. Consider the expression (λf : (∀a. a → a) →
(Int, Char). f) (λg. (g 1, g ’a’)), which is typeable in their system. In this
case, even if g is a polymorphic binding without a type annotation the expression
can still type-check. This is because the original application rule propagates the
information from the outer binding into the inner expressions. Note that the fact
that such expression type-checks does not contradict their guideline of providing
type annotations for every polymorphic binder. Programmers that strictly follow
their guideline can still add a polymorphic type annotation for g. However it does
mean that it is a little harder to understand where annotations for polymorphic
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binders can be omitted in their system. This requires understanding how the
applications in checked mode operate.

In our system the above expression is not typeable, as a consequence of
the information flow in the application mode. However, following our guideline
for annotations leads to a program that can be type-checked with a smaller
annotation: (λf. f) (λg : (∀a. a → a). (g 1, g ’a’)). This means that our
work is not conservative over their work, which is due to the design choice of the
application typing rule. Nevertheless, we can always rewrite programs using our
guideline, which often leads to fewer/smaller annotations.

2.5 Application 2: More Expressive Type Applications

The design choice of propagating arguments to functions was subject to consid-
eration in the original work on local type inference [29], but was rejected due to
possible non-determinism introduced by explicit type applications:

“It is possible, of course, to come up with examples where it would be
beneficial to synthesize the argument types first and then use the result-
ing information to avoid type annotations in the function part of an
application expression....Unfortunately this refinement does not help in-
fer the type of polymorphic functions. For example, we cannot uniquely
determine the type of x in the expression (fun[X](x) e) [Int] 3.” [29]

Therefore, as a response to this challenge, our second application is a variant
of System F. Our development of the calculus shows that the application mode
can actually work well with calculi with explicit type applications. To explain
the new design, consider the expression:

(Λa. λx : a. x + 1) Int

which is not typeable in the traditional type system for System F. In System
F the lambda abstractions do not account for the context of possible function
applications. Therefore when type checking the inner body of the lambda ab-
straction, the expression x + 1 is ill-typed, because all that is known is that x

has the (abstract) type a.
If we are allowed to propagate type information from arguments to functions,

then we can verify that a = Int and x + 1 is well-typed. The key insight in the
new type system is to use application contexts to track type equalities induced
by type applications. This enables us to type check expressions such as the body
of the lambda above (x + 1). Therefore, back to the problematic expression
(fun[X](x) e) [Int] 3, the type of x can be inferred as either X or Int since they
are actually equivalent.

Sugar for Type Synonyms. In the same way that we can regard let expressions
as syntactic sugar, in the new type system we further gain built-in type synonyms
for free. A type synonym is a new name for an existing type. Type synonyms
are common in languages such as Haskell. In our calculus a simple form of type
synonyms can be desugared as follows:
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type a = A in e  (Λa. e) A

One practical benefit of such syntactic sugar is that it enables a direct en-
coding of a System F-like language with declarations (including type-synonyms).
Although declarations are often viewed as a routine extension to a calculus, and
are not formally studied, they are highly relevant in practice. Therefore, a more
realistic formalization of a programming language should directly account for
declarations. By providing a way to encode declarations, our new calculus en-
ables a simple way to formalize declarations.

Type Abstraction. The type equalities introduced by type applications may seem
like we are breaking System F type abstraction. However, we argue that type
abstraction is still supported by our System F variant. For example:

let inc = Λa. λx : a. x + 1 in inc Int e

(after desugaring) does not type-check, as in a System-F like language. In our
type system lambda abstractions that are immediatelly applied to an argument,
and unapplied lambda abstractions behave differently. Unapplied lambda ab-
stractions are just like System F abstractions and retain type abstraction. The
example above illustrates this. In contrast the typeable example (Λa. λx : a.

x + 1) Int, which uses a lambda abstraction directly applied to an argument,
can be regarded as the desugared expression for type a = Int in λx : a . x + 1.

3 A Polymorphic Language with Higher-Ranked Types

This section first presents a declarative, syntax-directed type system for a lambda
calculus with implicit higher-ranked polymorphism. The interesting aspects about
the new type system are: 1) the typing rules, which employ a combination of
inference and application modes; 2) the novel subtyping relation under an appli-
cation context. Later, we prove our type system is type-safe by a type directed
translation to System F[16, 27] in Section 3.4. Finally an algorithmic type system
is discussed in Section 3.5.

3.1 Syntax

The syntax of the language is:

Expr e ::= x | n | λx : A. e | λx. e | e1 e2
Type A,B ::= a | A→ B | ∀a.A | Int
Monotype τ ::= a | τ1 → τ2 | Int
Typing Context Γ ::= ∅ | Γ, x : A

Application Context Ψ ::= ∅ | Ψ,A

Expressions. Expressions e include variables (x), integers (n), annotated lambda
abstractions (λx : A. e), lambda abstractions (λx. e), and applications (e1 e2).
Letters x, y, z are used to denote term variables. Notably, the syntax does not
include a let expression (letx = e1 in e2). Let expressions can be regarded as
the standard syntax sugar (λx. e2) e1, as illustrated in more detail later.
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Types. Types include type variables (a), functions (A→ B), polymorphic types
(∀a.A) and integers (Int). We use capital letters (A,B) for types, and small letters
(a, b) for type variables. Monotypes are types without universal quantifiers.

Contexts. Typing contexts Γ are standard: they map a term variable x to its
type A. We implicitly assume that all the variables in Γ are distinct. The main
novelty lies in the application contexts Ψ , which are the main data structure
needed to allow types to flow from arguments to functions. Application contexts
are modeled as a stack. The stack collects the types of arguments in applications.
The context is a stack because if a type is pushed last then it will be popped first.
For example, inferring expression e under application context (a, Int), means e
is now being applied to two arguments e1, e2, with e1 : Int, e2 : a, so e should be
of type Int→ a→ A for some A.

3.2 Type System

The top part of Figure 1 gives the typing rules for our language. The judgment
Γ p Ψ ` e ⇒ B is read as: under typing context Γ , and application context Ψ ,
e has type B. The standard inference mode Γ ` e ⇒ B can be regarded as a
special case when the application context is empty. Note that the variable names
are assumed to be fresh enough when new variables are added into the typing
context, or when generating new type variables.

Rule T-Var says that if x : A is in the typing context, and A is a subtype of
B under application context Ψ , then x has type B. It depends on the subtyping
rules that are explained in Section 3.3. Rule T-Int shows that integer literals
are only inferred to have type Int under an empty application context. This is
obvious since an integer cannot accept any arguments.

T-Lam shows the strength of application contexts. It states that, without
annotations, if the application context is non-empty, a type can be popped from
the application context to serve as the type for x. Inference of the body then
continues with the rest of the application context. This is possible, because the
expression λx. e is being applied to an argument of type A, which is the type at
the top of the application context stack. Rule T-Lam2 deals with the case when
the application context is empty. In this situation, a monotype τ is guessed for
the argument, just like the Hindley-Milner system.

Rule T-LamAnn1 works as expected with an empty application context: a
new variable x is put with its type A into the typing context, and inference
continues on the abstraction body. If the application context is non-empty, then
the rule T-LamAnn2 applies. It checks that C is a subtype of A before putting
x : A in the typing context. However, note that it is always possible to remove
annotations in an abstraction if it has been applied to some arguments.

Rule T-App pushes types into the application context. The application rule
first infers the type of the argument e2 with type A. Then the type A is gener-
alized in the same way that types in let expressions are generalized in the HM
type system. The resulting generalized type is B. The generalization is shown
in rule T-Gen, where all free type variables are extracted to quantifiers. Thus
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Γ p Ψ ` e ⇒ B

x : A ∈ Γ Ψ ` A <: B

Γ p Ψ ` x ⇒ B
T-Var

Γ ` n ⇒ Int
T-Int

Γ, x : A p Ψ ` e ⇒ B

Γ p Ψ,A ` λx. e ⇒ A→ B
T-Lam

Γ, x : τ ` e ⇒ B

Γ ` λx. e ⇒ τ → B
T-Lam2

Γ, x : A ` e ⇒ B

Γ ` λx : A. e ⇒ A→ B
T-LamAnn1

C <: A Γ, x : A p Ψ ` e ⇒ B

Γ p Ψ,C ` λx : A. e ⇒ C → B
T-LamAnn2

a = ftv(A)− ftv(Γ )

Γgen(A) = ∀a.A
T-Gen

Γ ` e2 ⇒ A Γgen(A) = B Γ p Ψ,B ` e1 ⇒ B → C

Γ p Ψ ` e1 e2 ⇒ C
T-App

A <: B

Int <: Int
S-Int

a <: a
S-Var

A <: B

A <: ∀a.B
S-ForallR

AJa 7→ τK <: B

∀a.A <: B
S-ForallL

C <: A B <: D

A→ B <: C → D
S-Fun

Ψ ` A <: B

∅ ` A <: A
S-Empty

Ψ,C ` AJa 7→ τK <: B

Ψ,C ` ∀a.A <: B
S-ForallL2

C <: A Ψ ` B <: D

Ψ,C ` A→ B <: C → D
S-Fun2

Fig. 1. Syntax-directed typing and subtyping.

the type of e1 is now inferred under an application context extended with type
B. The generalization step is important to infer higher ranked types: since B
is a possibly polymorphic type, which is the argument type of e1, then e1 is of
possibly a higher rank type.

Let Expressions. The language does not have built-in let expressions, but in-
stead supports let as syntactic sugar. The typing rule for let expressions in the
HM system is (without the gray-shaded part):

Γ ` e1 ⇒ A1 Γgen(A1) = A2 Γ, x : A2 p Ψ ` e2 ⇒ B

Γ p Ψ ` letx = e1 in e2 ⇒ B
T-Let
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where we do generalization on the type of e1, which is then assigned as the
type of x while inferring e2. Adapting this rule to our system with application
contexts would result in the gray-shaded part, where the application context is
only used for e2, because e2 is the expression being applied. If we desugar the let
expression (letx = e1 in e2) to ((λx. e2) e1), we have the following derivation:

Γ ` e1 ⇒ A1 Γgen(A1) = A2

Γ, x : A2 p Ψ ` e2 ⇒ B

Γ p Ψ,A2 ` λx. e2 ⇒ A2 → B
T-Lam

Γ p Ψ ` (λx. e2) e1 ⇒ B
T-App

The type A2 is now pushed into application context in rule T-App, and then
assigned to x in T-Lam. Comparing this with the typing derivations with rule
T-Let, we now have same preconditions. Thus we can see that the rules in
Figure 1 are sufficient to express an HM-style polymorphic let construct.

Meta-theory. The type system enjoys several interesting properties, especially
lemmas about application contexts. Before we present those lemmas, we need a
helper definition of what it means to use arrows on application contexts.

Definition 1 (Ψ → B). If Ψ = A1, A2, ..., An, then Ψ → B means the function
type An → ...→ A2 → A1 → B.

Such definition is useful to reason about the typing result with application
contexts. One specific property is that the application context determines the
form of the typing result.

Lemma 1 (Ψ Coincides with Typing Results). If Γ p Ψ ` e ⇒ A, then
for some A′, we have A = Ψ → A′.

Having this lemma, we can always use the judgment Γ p Ψ ` e ⇒ Ψ → A′

instead of Γ p Ψ ` e ⇒ A.
In traditional bi-directional type checking, we often have one subsumption

rule that transfers between inference and checked mode, which states that if an
expression can be inferred to some type, then it can be checked with this type. In
our system, we regard the normal inference mode Γ ` e ⇒ A as a special case,
when the application context is empty. We can also turn from normal inference
mode into application mode with an application context.

Lemma 2 (Subsumption). If Γ ` e ⇒ Ψ → A, then Γ p Ψ ` e ⇒ Ψ → A.

The relationship between our system and standard Hindley Milner type sys-
tem can be established through the desugaring of let expressions. Namely, if e is
typeable in Hindley Milner system, then the desugared expression |e| is typeable
in our system, with a more general typing result.

Lemma 3 (Conservative over HM). If Γ `HM e ⇒ A, then for some B,
we have Γ ` |e| ⇒ B, and B <: A.
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3.3 Subtyping

We present our subtyping rules at the bottom of Figure 1. Interestingly, our
subtyping has two different forms.

Subtyping. The first judgment follows Odersky and Läufer [24]. A <: B means
that A is more polymorphic than B and, equivalently, A is a subtype of B. Rules
S-Int and S-Var are trivial. Rule S-ForallR states A is subtype of ∀a.B only
if A is a subtype of B, with the assumption a is a fresh variable. Rule S-ForallL
says ∀a.A is a subtype of B if we can instantiate it with some τ and show the
result is a subtype of B. In rule S-Fun, we see that subtyping is contra-variant
on the argument type, and covariant on the return type.

Application Subtyping. The typing rule T-Var uses the second subtyping judg-
ment Ψ ` A <: B. To motivate this new kind of judgment, consider the ex-
pression id 1 for example, whose derivation is stuck at T-Var (here we assume
id : ∀a.a→ a ∈ Γ ):

Γ ` 1 ⇒ Int Γgen(Int) = Int

id : ∀a.a→ a ∈ Γ ???

Γ p Int ` id ⇒
T-Var

Γ ` id 1 ⇒
T-App

Here we know that id : ∀a.a → a and also, from the application context, that
id is applied to an argument of type Int. Thus we need a mechanism for solving
the instantiation a = Int and return a supertype Int→ Int as the type of id. This
is precisely what the application subtyping achieves: resolve instantiation con-
straints according to the application context. Notice that unlike existing works
[27, 14], application subtyping provides a way to solve instantiation more locally,
since it does not mutually depend on typing.

Back to the rules in Figure 1, one way to understand the judgment Ψ `
A <: B from a computational point-of-view is that the type B is a computed
output, rather than an input. In other words B is determined from Ψ and A. This
is unlike the judgment A <: B, where both A and B would be computationally
interpreted as inputs. Therefore it is not possible to view A <: B as a special
case of Ψ ` A <: B where Ψ is empty.

There are three rules dealing with application contexts. Rule S-Empty is
for case when the application context is empty. Because it is empty, we have no
constraints on the type, so we return it back unchanged. Note that this is where
HM systems (also Peyton Jones et al. [27]) would normally use a rule Inst to
remove top-level quantifiers:

∀a.A <: AJa 7→ τK
Inst

Our system does not need Inst, because in applications, type information flows
from arguments to the function, instead of function to arguments. In the latter
case, Inst is needed because a function type is wanted instead of a polymorphic
type. In our approach, instantiation of type variables is avoided unless necessary.
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The two remaining rules apply when the application context is non-empty,
for polymorphic and function types respectively. Note that we only need to
deal with these two cases because Int or type variables a cannot have a non-
empty application context. In rule S-Forall2, we instantiate the polymorphic
type with some τ , and continue. This instantiation is forced by the application
context. In rule S-Fun2, one function of type A→ B is now being applied to an
argument of type C. So we check C <: A. Then we continue with B and the
rest application context, and return C → D as the result type of the function.

Meta-theory. Application subtyping is novel in our system, and it enjoys some
interesting properties. For example, similarly to typing, the application context
decides the form of the supertype.

Lemma 4 (Ψ Coincides with Subtyping Results). If Ψ ` A <: B, then
for some B′, B = Ψ → B′.

Therefore we can always use the judgment Ψ ` A <: Ψ → B′, instead of Ψ `
A <: B. Application subtyping is also reflexive and transitive. Interestingly,
in those lemmas, if we remove all applications contexts, they are exactly the
reflexivity and transitivity of traditional subtyping.

Lemma 5 (Reflexivity). Ψ ` Ψ → A <: Ψ → A.

Lemma 6 (Transitivity). If Ψ1 ` A <: Ψ1 → B, and Ψ2 ` B <: Ψ2 → C,
then Ψ2, Ψ1 ` A <: Ψ1 → Ψ2 → C.

Finally, we can convert between subtyping and application subtyping. We
can remove the application context and still get a subtyping relation:

Lemma 7 (Ψ ` <: to <:). If Ψ ` A <: B, then A <: B.

Transferring from subtyping to application subtyping will result in a more
general type.

Lemma 8 (<: to Ψ ` <:). If A <: Ψ → B1, then for some B2, we have
Ψ ` A <: Ψ → B2, and B2 <: B1.

This lemma may not seem intuitive at first glance. Consider a concrete ex-
ample Int → ∀a.a <: Int → Int, and Int ` Int → ∀a.a <: Int → ∀a.a. The
former one, holds because we have ∀a.a <: Int in the return type. But in the
latter one, after Int is consumed from application context, we eventually reach
S-Empty, which always returns the original type back.

3.4 Translation to System F, Coherence and Type-Safety

We translate the source language into a variant of System F that is also used in
Peyton Jones et al. [27]. The translation is shown to be coherent and type safe.
Due to space limitations, we only summarize the key aspects of the translation.
Full details can be found in the supplementary materials of the paper.

The syntax of our target language is as follows:
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Expressions s, f ::= x | n | λx : A. s | Λa.s | s1 s2 | s1 A

In the translation, we use f to refer to the coercion function produced by
the subtyping translation, and s to refer to the translated term in System F. We
write Γ `F s : A to mean the term s has type A in System F.

The type-directed translation follows the rules in Figure 1, with a translation
output in the forms of judgments. We summarize all judgments as:

Judgment Translation Output Soundness

A <: B  f coercion function f ∅ `F f : A→ B

Ψ ` A <: B  f coercion function f ∅ `F f : A→ B

Γ p Ψ ` e ⇒ A  s target expression s Γ `F s : A

For example, A <: B  f means that if A <: B holds in the source lan-
guage, we can translate it into a System F term f , which is a coercion function
and has type A→ B. We prove that our system is type safe by proving that the
translation produces well-typed terms.

Lemma 9 (Typing Soundness). If Γ p Ψ ` e ⇒ A  s, then Γ `F s : A.

However, there could be multiple targets corresponding to one expression due
to the multiple choices for τ . To prove that the translation is coherent, we prove
that all the translations for one expression have the same operational semantics.
We write |e| for the expressions after type erasure since types are useless after
type checking. Because multiple targets could have different number of coercion
functions, we use η-id equality [5] instead of syntactic equality, where two ex-
pressions are regarded as equivalent if they can turn into the same expression
through η-reduction or removal of redundant identity functions. We then prove
that our translation actually generates a unique target:

Lemma 10 (Coherence). If Γ1 p Ψ1 ` e ⇒ A s1, and Γ2 p Ψ2 ` e ⇒ B  s2,
then |s1| ηid |s2|.

3.5 Algorithmic System

Even though our specification is syntax-directed, it does not directly lead to an
algorithm, because there are still many guesses in the system, such as in rule
T-Lam2. This subsection presents a brief introduction of the algorithm, which
essentially follows the approach by Peyton Jones et al. [27]. Full details can be
found in the supplementary materials.

Instead of guessing, the algorithm creates meta type variables α̂, β̂ which are
waiting to be solved. The judgment for the algorithmic type system is (S0, N0) p
Γ p Ψ ` e ⇒ A ↪→ (S1, N1). Here we use N as name supply, from which we
can always extract new names. We use S as a notation for the substitution that
maps meta type variables to their solutions. For example, rule T-Lam2 becomes

(S0, N0) p Γ, x : β̂ ` e ⇒ A ↪→ (S1, N1)

(S0, N0β̂) p Γ ` λx. e ⇒ β̂ → A ↪→ (S1, N1)
AT-Lam1
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Comparing it to rule T-Lam2, τ is replaced by a new meta type variable β̂
from name supply N0β̂. But despite of the name supply and substitution, the
rule retains the structure of T-Lam2.

Having the name supply and substitutions, the algorithmic system is a direct
extension of the specification in Figure 1, with a process to do unifications that
solve meta type variables. Such unification process is quite standard and similar
to the one used in the Hindley-Milner system. We proved our algorithm is sound
and complete with respect to the specification.

Theorem 1 (Soundness). If ([], N0) p Γ ` e ⇒ A ↪→ (S1, N1), then for any
substitution V with dom(V ) = fmv (S1Γ, S1A), we have V S1Γ ` e ⇒ V S1A.

Theorem 2 (Completeness). If Γ ` e ⇒ A, then for a fresh N0, we have
([], N0) p Γ ` e ⇒ B ↪→ (S1, N1), and for some S2, we have Γ (S2S1B) <: Γ (A).

4 More Expressive Type Applications

This section presents a System-F-like calculus, which shows that the application
mode not only does work well for calculi with explicit type applications, but it
also adds interesting expressive power, while at the same time retaining unique-
ness of types for explicitly polymorphic functions. One additional novelty in this
section is to present another possible variant of typing and subtyping rules for
the application mode, by exploiting the lemmas presented in Sections 3.2 and 3.3.

4.1 Syntax

We focus on a new variant of the standard System F. The syntax is as follows:

Expr e ::= x | n | λx : A. e | λx. e | e1 e2 | Λa.e | e [A]

Type A ::= a | Int | A→ B | ∀a.A
Typing Context Γ ::= ∅ | Γ, x : A | Γ, a | Γ, a = A

Application Context Ψ ::= ∅ | Ψ,A | Ψ, [A]

The syntax is mostly standard. Expressions include variables x, integers n,
annotated abstractions λx : A. s, unannotated abstractions λx. e, applications
e1 e2, type abstractions Λa.s, and type applications e1 [A]. Types includes type
variable a, integers Int, function types A→ B, and polymorphic types ∀a.A.

The main novelties are in the typing and application contexts. Typing con-
texts contain the usual term variable typing x : A, type variables a, and type
equations a = A, which track equalities and are not available in System F. Ap-
plication contexts use A for the argument type for term-level applications, and
use [A] for the type argument itself for type applications.

Applying Contexts. The typing contexts contain type equations, which can be
used as substitutions. For example, a = Int, x : Int, b = Bool can be applied to
a → b to get the function type Int → Bool . We write 〈Γ 〉A for Γ applied as a
substitution to type A. The formal definition is given in Figure 2.
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〈∅〉A = A 〈Γ, x : B〉A = 〈Γ 〉A
〈Γ, a〉A = 〈Γ 〉A 〈Γ, a = B〉A = 〈Γ 〉(AJa 7→ BK)

Fig. 2. Apply contexts as substitutions on types.

a ∈ Γ
Γ ` a

WF-TVar
Γ ` Int

WF-Int
Γ ` A Γ ` B
Γ ` A→ B

WF-Arrow
Γ, a ` A
Γ ` ∀a.A

WF-All

Fig. 3. Well-formedness.

Well-formedness. The type well-formedness under typing contexts is given in
Figure 3, which is quite straightforward. Notice that there is no rule correspond-
ing to type variables in type equations. For example, a is not a well-formed type
under typing context a = Int, instead, 〈a = Int〉a is. In other words, we keep the
invariant: types are always fully substituted under the typing context.

The well-formedness of typing contexts Γ ctx , and the well-formedness of
application contexts Γ ` Ψ can be defined naturally based on the well-formedness
of types. The specific definitions can be found in the supplementary materials.

4.2 Type System

Typing Judgments. From Lemma 1 and Lemma 4, we know that the application
context always coincides with typing/subtyping results. This means that the
types of the arguments can be recovered from the application context. So instead
of the whole type, we can use only the return type as the output type. For
example, we review the rule T-Lam in Figure 1:

Γ, x : A p Ψ ` e ⇒ B

Γ p Ψ,A ` λx. e ⇒ A→ B
T-Lam

Γ, x : A p Ψ ` e ⇒ C

Γ p Ψ,A ` λx. e ⇒ C
T-Lam-Alt

We have B = Ψ → C for some C by Lemma 1. Instead of B, we can directly
return C as the output type, since we can derive from the application context
that e is of type Ψ → C, and λx. e is of type (Ψ,A) → C. Thus we obtain the
T-Lam-Alt rule.

Note that the choice of the style of the rules is only a matter of taste in the
language in Section 3. However, it turns out to be very useful for our variant of
System F, since it helps avoiding introducing types like ∀a = Int.a. Therefore,
we adopt the new form of judgment. Now the judgment Γ p Ψ ` e ⇒ A is
interpreted as: under the typing context Γ , and the application context Ψ , the
return type of e applied to the arguments whose types are in Ψ is A.

Typing Rules. Using the new interpretation of the typing judgment, we give the
typing rules in the top of Figure 4. SF-Var depends on the subtyping rules.
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Γ p Ψ ` e ⇒ B

Γ ctx Γ ` Ψ x : A ∈ Γ Ψ ` A <: B

Γ p Ψ ` x ⇒ B
SF-Var

Γ ctx

Γ ` n ⇒ Int
SF-Int

Γ, x : 〈Γ 〉A ` e ⇒ B

Γ ` λx : A. e ⇒ 〈Γ 〉A→ B
SF-LamAnn1

Γ, x : 〈Γ 〉A p Ψ ` e ⇒ B

Γ p Ψ, 〈Γ 〉A ` λx : A. e ⇒ B
SF-LamAnn2

Γ, x : A p Ψ ` e ⇒ B

Γ p Ψ,A ` λx. e ⇒ B
SF-Lam

Γ ` e2 ⇒ A Γ p Ψ,A ` e1 ⇒ B

Γ p Ψ ` e1 e2 ⇒ B
SF-App

Γ, a ` e ⇒ B

Γ ` Λa.e ⇒ ∀a.B
SF-TLam1

Γ, a = A p Ψ ` e ⇒ B

Γ p Ψ, [A] ` Λa.e ⇒ B
SF-TLam2

Γ p Ψ, [〈Γ 〉A] ` e ⇒ B

Γ p Ψ ` e [A] ⇒ B
SF-TApp

Ψ ` A <: B

∅ ` A <: A
SF-SEmpty

Ψ ` BJa 7→ AK <: C

Ψ, [A] ` ∀a.B <: C
SF-STApp

Ψ ` B <: C

Ψ,A ` A→ B <: C
SF-SApp

Fig. 4. Type system for the new System F variant.

Rule SF-Int always infers integer types. Rule SF-LamAnn1 first applies cur-
rent context on A, then puts x : 〈Γ 〉A into the typing context to infer e. The
return type is a function type because the application context is empty. Rule
SF-LamAnn2 has a non-empty application context, so it requests that the type
at the top of the application context is equivalent to 〈Γ 〉A. The output type
is B instead of a function type. Notice how the invariant that types are fully
substituted under the typing context is preserved in these two rules.

Rule SF-Lam pops the type A from the application context, puts x : A into
the typing context, and returns only the return type B. In rule SF-App, the
argument type A is pushed into the application context for inferring e1, so the
output type B is the type of e1 under application context (Ψ,A), which is exactly
the return type of e1 e2 under Ψ .

Rule SF-TLam1 is for type abstractions. The type variable a is pushed
into the typing context, and the return type is a polymorphic type. In rule SF-
TLam2, the application context has the type argument A at its top, which means
the type abstraction is applied to A. We then put the type equation a = A into
the typing context to infer e. Like term-level applications, here we only return
the type B instead of a polymorphic type. In rule SF-TApp, we first apply the
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typing context on the type argument A, then we put the applied type argument
〈Γ 〉A into the application context to infer e, and return B as the output type.

Subtyping. The definition of subtyping is given at the bottom of Figure 4. As with
the typing rules, the part of argument types corresponding to the application
context is omitted in the output. We interpret the rule form Ψ ` A <: B as,
under the application context Ψ , A is a subtype of the type whose type arguments
are Ψ and the return type is B.

Rule SF-SEmpty returns the input type under the empty application con-
text. Rule SF-STApp instantiates a with the type argument A, and returns C.
Note how application subtyping can be extended naturally to deal with type
applications. Rule SF-SApp requests that the argument type is the same as the
top type in the application context, and returns C.

4.3 Meta Theory

Applying the idea of the application mode to System F results in a well-behaved
type system. For example, subtyping transitivity becomes more concise:

Lemma 11 (Subtyping Transitivity). If Ψ1 ` A <: B, and Ψ2 ` B <: C,
then Ψ2, Ψ1 ` A <: C.

Also, we still have the interesting subsumption lemma that transfers from the
inference mode to the application mode:

Lemma 12 (Subsumption). If Γ ` e ⇒ A, and Γ ` Ψ , and Ψ ` A <: B,
then Γ p Ψ ` e ⇒ B.

Furthermore, we prove the type safety by proving the progress lemma and
the preservation lemma. The detailed definitions of operational semantics and
values can be found in the supplementary materials.

Lemma 13 (Progress). If ∅ ` e ⇒ T , then either e is a value, or there exists
e′, such that e −→ e′.

Lemma 14 (Preservation). If Γ p Ψ ` e ⇒ A, and e −→ e′, then Γ p Ψ `
e′ ⇒ A.

Moreover, introducing type equality preserves unique types:

Lemma 15 (Uniqueness of typing). If Γ p Ψ ` e ⇒ A, and Γ p Ψ `
e ⇒ B, then A = B.

5 Discussion

This section discusses possible design choices regarding bi-directional type check-
ing with the application mode, and talks about possible future work.



21

5.1 Combining Application and Checked Modes

Although the application mode provides us with alternative design choices in
a bi-directional type system, a checked mode can still be easily added. One
motivation for the checked mode would be annotated expressions e : A, where
the type of expressions is known and is therefore used to check expressions.

Consider adding e : A for introducing the third checked mode for the lan-
guage in Section 3. Notice that, since the checked mode is stronger than appli-
cation mode, when entering checked mode the application context is no longer
useful. Instead we use application subtyping to satisfy the application context
requirements. A possible typing rule for annotation expressions is:

Ψ ` A <: B Γ ` e ⇐ A

Γ p Ψ ` (e : A) ⇒ B
T-Ann

Here, e is checked using its annotation A, and then we instantiate A to B using
subtyping with application context Ψ .

Now we can have a rule set of the checked mode for all expressions. For
example, one useful rule for abstractions in checked mode could be Abs-Chk,
where the parameter type A serves as the type of x, and typing checks the
body with B. Also, combined with the information flow, the checked rule for
application checks the function with the full type.

Γ , x : A ` e ⇐ B

Γ ` λx. e ⇐ A→ B
Abs-Chk

Γ ` e2 ⇒ A Γ ` e1 ⇐ A→ B

Γ ` e1 e2 ⇐ B
App-Chk

Note that adding expression annotations might bring convenience for pro-
grammers, since annotations can be more freely placed in a program. For exam-
ple, (λf. f 1) : (Int → Int) → Int becomes valid. However this does not add
expressive power, since programs that are typeable under expression annotations,
would remain typeable after moving the annotations to bindings. For example
the previous program is equivalent to (λf : (Int → Int). f 1).

This discussion is a sketch. We have not defined the corresponding declarative
system nor algorithm. However we believe that the addition of a checked mode
will not bring surprises to the meta-theory.

5.2 Additional Constructs

In this section, we show that the application mode is compatible with other
constructs, by discussing how to add support for pairs in the language given
in Section 3. A similar methodology would apply to other constructs like sum
types, data types, if-then-else expressions and so on.

The introduction rule for pairs must be in the inference mode with an empty
application context. Also, the subtyping rule for pairs is as expected.

Γ ` e1 ⇒ A Γ ` e2 ⇒ B

Γ ` (e1, e2) ⇒ (A,B)
T-Pair

A1 <: B1 A2 <: B2

(A1, A2) <: (B1, B2)
S-Pair
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The application mode can apply to the elimination constructs of pairs. If one
component of the pair is a function, for example, (fst (λx. x, 3) 4), then it is
possible to have a judgment with a non-empty application context. Therefore,
we can use the application subtyping to account for the application contexts:

Γ ` e ⇒ (A,B) Ψ ` A <: C

Γ p Ψ ` fst e ⇒ C
T-Fst1

Γ ` e ⇒ (A,B) Ψ ` B <: C

Γ p Ψ ` snd e ⇒ C
T-Snd1

However, in polymorphic type systems, we need to take the subsumption rule
into consideration. For example, in the expression (λx : (∀a.(a, b)). fst x), fst
is applied to a polymorphic type. Interestingly, instead of a non-deterministic
subsumption rule, having polymorphic types actually leads to a simpler solution.
According to the philosophy of the application mode, the types of the arguments
always flow into the functions. Therefore, instead of regarding (fst e) as an
expression form, where e is itself an argument, we could regard fst as a function
on its own, whose type is (∀ab.(a, b)→ a). Then as in the variable case, we use
the subtyping rule to deal with application contexts. Thus the typing rules for
fst and snd can be modeled as:

Ψ ` (∀ab.(a, b)→ a) <: A

Γ p Ψ ` fst ⇒ A
T-Fst2

Ψ ` (∀ab.(a, b)→ b) <: A

Γ p Ψ ` snd ⇒ A
T-Snd2

Note that another way to model those two rules would be to simply have an
initial typing environment Γinitial ≡ fst : (∀ab.(a, b)→ a), snd : (∀ab.(a, b)→ b).
In this case the elimination of pairs be dealt directly by the rule for variables.

An extended version of the calculus presented in Section 3, which includes
the rules for pairs (T-Pair, S-Pair, T-Fst2 and T-Snd2), has been formally
studied. All the theorems presented in Section 3 hold with the extension of pairs.

5.3 Dependent Type Systems

One remark about the application mode is that the same idea is possibly appli-
cable to systems with advanced features, where type inference is sophisticated
or even undecidable. One promising application is, for instance, dependent type
systems [37, 10, 2, 21, 3]. Type systems with dependent types usually unify the
syntax for terms and types, with a single lambda abstraction generalizing both
type and lambda abstractions. Unfortunately, this means that the let desugar
is not valid in those systems. As a concrete example, consider desugaring the
expression let a = Int inλx : a. x+ 1 into (λa. λx : a. x + 1) Int, which is ill-
typed because the type of x in the abstraction body is a and not Int.

Because let cannot be encoded, declarations cannot be encoded either. Mod-
eling declarations in dependently typed languages is a subtle matter, and nor-
mally requires some additional complexity [34].

We believe that the same technique presented in Section 4 can be adapted
into a dependently typed language to enable a let encoding. In a dependent type
system with unified syntax for terms and types, we can combine the two forms
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in the typing context (x : A and a = A) into a unified form x = e : A. Then
we can combine two application rules SF-App and SF-TApp into De-App, and
also two abstraction rules SF-Lam and SF-TLam1 into De-Lam.

Γ ` e2 ⇒ A Γ p Ψ, e2 : A ` e1 ⇒ B

Γ p Ψ ` e1 e2 ⇒ B
De-App

Γ, x = e1 : A p Ψ ` e ⇒ B

Γ p Ψ, e1 : A ` λx. e ⇒ B
De-Lam

With such rules it would be possible to handle declarations easily in depen-
dent type systems. Note this is still a rough idea and we have not fully worked
out the typing rules for this type system yet.

6 Related Work

6.1 Bi-Directional Type Checking

Bi-directional type checking was popularized by the work of Pierce and Turner
[29]. It has since been applied to many type systems with advanced features. The
alternative application mode introduced by us enables a variant of bi-directional
type checking. There are many other efforts to refine bi-directional type checking.

Colored local type inference [25] refines local type inference for explicit poly-
morphism by propagating partial type information. Their work is built on dis-
tinguishing inherited types (known from the context) and synthesized types (in-
ferred from terms). A similar distinction is achieved in our algorithm by ma-
nipulating type variables [14]. Also, their information flow is from functions to
arguments, which is fundamentally different from the application mode.

The system of tridirectional type checking [15] is based on bi-directional type
checking and has a rich set of property types including intersections, unions and
quantified dependent types, but without parametric polymorphism. Tridirec-
tional type checking has a new direction for supporting type checking unions
and existential quantification. Their third mode is basically unrelated to our
application mode, which propagates information from outer applications.

Greedy bi-directional polymorphism [13] adopts a greedy idea from Cardelli
[4] on bi-directional type checking with higher ranked types, where the type
variables in instantiations are determined by the first constraint. In this way,
they support some uses of impredicative polymorphism. However, the greediness
also makes many obvious programs rejected.

6.2 Type Inference for Higher-Ranked Types

As a reference, Figure 5 [20, 14] gives a high-level comparison between related
works and our system.

Predicative Systems. Peyton Jones et al. [27] developed an approach for type in-
ference for higher rank types using traditional bi-directional type checking based
on Odersky and Läufer [24]. However in their system, in order to do instantia-
tion on higher rank types, they are forced to have an additional type category (ρ
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System Types Impred Let Annotations

MLF flexible and rigid yes yes on polymorphically used parameters
HML flexible F-types yes yes on polymorphic parameters
FPH boxy F-types yes yes on polymorphic parameters and some

let bindings with higher-ranked types
Peyton Jones
et al. (2007)

F-types no yes on polymorphic parameters

Dunfield et al.
(2013)

F-types no no on polymorphic parameters

this paper F-types no sugar on polymorphic parameters that are
not applied

Fig. 5. Comparison of higher-ranked type inference systems.

types) as a special kind of higher rank type without top-level quantifiers. This
complicates their system since they need to have additional rule sets for such
types. They also combine a variant of the containment relation from Mitchell
[23] for deep skolemisation in subsumption rules, which we believe is compatible
with our subtyping definition.

Dunfield and Krishnaswami [14] build a simple and concise algorithm for
higher ranked polymorphism based on traditional bidirectional type checking.
They deal with the same language of Peyton Jones et al. [27], except they do
not have let expressions nor generalization (though it is discussed in design
variations). They have a special application judgment which delays instantiation
until the expression is applied to some argument. As with application mode, this
avoids the additional category of types. Unlike their work, our work supports
generalization and HM-style let expressions. Moreover the use of an application
mode in our work introduces several differences as to when and where annota-
tions are needed (see Section 2.4 for related discussion).

Impredicative Systems. MLF [18, 32, 19] generalizes ML with first-class poly-
morphism. MLF introduces a new type of bounded quantification (either rigid
or flexible) for polymorphic types so that instantiation of polymorphic bindings
is delayed until a principal type is found. The HML system [20] is proposed as
a simplification and restriction of MLF . HML only uses flexible types, which
simplifies the type inference algorithm, but retains many interesting properties
and features.

The FPH system [35] introduces boxy monotypes into System F types. One
critique of boxy type inference is that the impredicativity is deeply hidden in the
algorithmic type inference rules, which makes it hard to understand the interac-
tion between its predicative constraints and impredicative instantiations [31].

6.3 Tracking Type Equalities

Tracking type equalities is useful in various situations. Here we discuss specifi-
cally two related cases where tracking equalities plays an important role.
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Type Equalities in Type Checking. Tracking type equalities is one essential
part for type checking algorithms involving Generalized Algebraic Data Types
(GADTs) [6, 26, 33]. For example, Peyton Jones et al. [26] propose a type infer-
ence algorithm based on unification for GADTs, where type equalities only apply
to user-specified types. However, reasoning about type equalities in GADTs is
essentially different from the approach in Section 4: type equalities are intro-
duced by pattern matches in GADTs, while they are introduced through type
applications in our system. Also, type equalities in GADTs are local, in the
sense different branches in pattern matches have different type equalities for the
same type variable. In our system, a type equality is introduced globally and
is never changed. However, we believe that they can be made compatible by
distinguishing different kinds of equalities.

Equalities in Declarations. In systems supporting dependent types, type equal-
ities can be introduced by declarations. In the variant of pure type systems pro-
posed by Severi and Poll [34], expressions x = a : A in b generate an equality
x = a : A in the typing context, which can be fetched later through δ-reduction.
However, δ-reduction rules require careful design, and the conversion rule of δ-
reduction makes the type system non-deterministic. One potential usage of the
application mode is to help reduce the complexity for introducing declarations
in those type systems, as briefly discussed in Section 5.3.

7 Conclusion

We proposed a variant of bi-directional type checking with a new application
mode, where type information flows from arguments to functions in applications.
The application mode is essentially a generalization of the inference mode, can
therefore work naturally with inference mode, and avoid the rule duplication
that is often needed in traditional bi-directional type checking. The application
mode can also be combined with the checked mode, but this often does not
add expressiveness. Compared to traditional bi-directional type checking, the
application mode opens a new path to the design of type inference/checking.

We have adopted the application mode in two type systems. Those two sys-
tems enjoy many interesting properties and features. However as bi-directional
type checking can be applied to many type systems, we believe application mode
is applicable to various type systems. One obvious potential future work is to
investigate more systems where the application mode brings benefits. This in-
cludes systems with subtyping, intersection types [30, 8], static overloading, or
dependent types.
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