
39

Consistent Subtyping for All

NINGNING XIE, The University of Hong Kong, China

XUAN BI, The University of Hong Kong, China

BRUNO C. D. S. OLIVEIRA, The University of Hong Kong, China

TOM SCHRIJVERS, KU Leuven, Belgium

Consistent subtyping is employed in some gradual type systems to validate type conversions. The original

definition by Siek and Taha serves as a guideline for designing gradual type systems with subtyping. Polymor-

phic types à la System F also induce a subtyping relation that relates polymorphic types to their instantiations.

However Siek and Taha’s definition is not adequate for polymorphic subtyping. The first goal of this paper is to

propose a generalization of consistent subtyping that is adequate for polymorphic subtyping, and subsumes the

original definition by Siek and Taha. The new definition of consistent subtyping provides novel insights with

respect to previous polymorphic gradual type systems, which did not employ consistent subtyping. The second

goal of this paper is to present a gradually typed calculus for implicit (higher-rank) polymorphism that uses

our new notion of consistent subtyping. We develop both declarative and (bidirectional) algorithmic versions

for the type system. The algorithmic version employs techniques developed by Dunfield and Krishnaswami

for higher-rank polymorphism to deal with instantiation. We prove that the new calculus satisfies all static

aspects of the refined criteria for gradual typing. We also study an extension of the type system with static

and gradual type parameters, in an attempt to support a variant of the dynamic criterion for gradual typing.

Assuming a coherence conjecture for the extended calculus, we show that the dynamic gradual guarantee of

our source language can be reduced to that of λB, which, at the time of writing, is still an open question. Most

of the metatheory of this paper, except some manual proofs for the algorithmic type system and extensions,

has been mechanically formalized using the Coq proof assistant.

ACM Reference Format:
Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2010. Consistent Subtyping for All. ACM

Trans. Web 9, 4, Article 39 (March 2010), 85 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Gradual typing [Siek and Taha 2006] is an increasingly popular topic in both programming lan-

guage practice and theory. On the practical side there is a growing number of programming lan-

guages adopting gradual typing. Those languages include Clojure [Bonnaire-Sergeant et al. 2016],

Python [Lehtosalo et al. 2006; Vitousek et al. 2014], TypeScript [Bierman et al. 2014], Hack [Ver-

laguet 2013], and the addition of Dynamic to C# [Bierman et al. 2010], to name a few. On the

theoretical side, recent years have seen a large body of research that defines the foundations of

gradual typing [Cimini and Siek 2016, 2017; Garcia et al. 2016], explores their use for both functional

and object-oriented programming [Siek and Taha 2006, 2007], as well as its applications to many

Authors’ addresses: Ningning Xie, The University of Hong Kong, Hong Kong, China, nnxie@cs.hku.hk; Xuan Bi, The

University of Hong Kong, Hong Kong, China, xbi@cs.hku.hk; Bruno C. d. S. Oliveira, The University of Hong Kong, Hong

Kong, China, bruno@cs.hku.hk; Tom Schrijvers, KU Leuven, Leuven, Belgium, tom.schrijvers@cs.kuleuven.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

1559-1131/2010/3-ART39 $15.00

https://doi.org/0000001.0000001

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

39:2 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

other areas [Bañados Schwerter et al. 2014; Castagna and Lanvin 2017; Jafery and Dunfield 2017;

Siek and Wadler 2016].

A key concept in gradual type systems is consistency [Siek and Taha 2006]. Consistency weakens

type equality to allow for the presence of unknown types ⋆. In some gradual type systems with

subtyping, consistency is combined with subtyping to give rise to the notion of consistent subtyp-

ing [Siek and Taha 2007]. Consistent subtyping is employed by gradual type systems to validate

type conversions arising from conventional subtyping. One nice feature of consistent subtyping is

that it is derivable from the more primitive notions of consistency and subtyping. As Siek and Taha

[2007] put it, this shows that “gradual typing and subtyping are orthogonal and can be combined in

a principled fashion”. Thus consistent subtyping is often used as a guideline for designing gradual

type systems with subtyping.

Unfortunately, as noted by Garcia et al. [2016], notions of consistency and/or consistent subtyping

“become more difficult to adapt as type systems get more complex”. In particular, for the case of type

systems with subtyping, certain kinds of subtyping do not fit well with the original definition of

consistent subtyping by Siek and Taha [2007]. One important case where such amismatch happens is

in type systems supporting implicit (higher-rank) polymorphism [Dunfield and Krishnaswami 2013;

Odersky and Läufer 1996; Peyton Jones et al. 2007]. It is well-known that polymorphic types à la

System F induce a subtyping relation that relates polymorphic types to their instantiations [Mitchell

1990; Odersky and Läufer 1996]. However Siek and Taha’s definition is not adequate for this kind

of subtyping. Moreover the current framework for Abstracting Gradual Typing (AGT) [Garcia

et al. 2016] does not account for polymorphism either, but the authors acknowledge that it is an

interesting avenue for future work.

Existing work on gradual type systems with polymorphism does not use consistent subtyping.

The Polymorphic Blame Calculus (λB) [Ahmed et al. 2011, 2017] is an explicitly polymorphic

calculus with explicit casts, which is often used as a target language for gradual type systems with

polymorphism. In λB a notion of compatibility is employed to validate conversions allowed by casts.

Interestingly λB allows conversions from polymorphic types to their instantiations. For example, it is

possible to cast a value with type ∀a. a→ a into Int→ Int. Thus an important remark here is that,

while λB is explicitly polymorphic, casting and conversions are closer to implicit polymorphism.

That is, in a conventional explicitly polymorphic calculus (such as System F), the primary notion is

type equality, where instantiation is not taken into account. Thus the types ∀a. a→ a and Int→ Int
are deemed incompatible. However in implicitly polymorphic calculi [Dunfield and Krishnaswami

2013; Odersky and Läufer 1996; Peyton Jones et al. 2007] ∀a. a → a and Int → Int are deemed

compatible, since the latter type is an instantiation of the former. Therefore λB is in a sense a hybrid

between implicit and explicit polymorphism, utilizing type equality (à la System F) for validating

applications, and compatibility for validating casts.

An alternative approach to polymorphism has recently been proposed by Igarashi et al. [2017].

Like λB their calculus is explicitly polymorphic. However, they employ type consistency to validate

cast conversions, and forbid conversions from ∀a. a → a to Int → Int. This makes their casts

closer to explicit polymorphism, in contrast to λB. Nonetheless, there is still some flavor of implicit

polymorphism in their calculus when it comes to interactions between dynamically typed and

polymorphically typed code. For example, in their calculus type consistency allows types such

as ∀a. a → Int to be related to ⋆→ Int, where some sort of (implicit) polymorphic subtyping is

involved.

The first goal of this paper is to study the gradually typed subtyping and consistent subtyping

relations for predicative implicit polymorphism. To accomplish this, we first show how to reconcile

consistent subtyping with polymorphism by generalizing the original consistent subtyping defini-

tion by Siek and Taha. Our new definition of consistent subtyping can deal with polymorphism,

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:3

and preserves the orthogonality between consistency and subtyping. To slightly rephrase Siek and

Taha, the motto of our paper is that:

Gradual typing and polymorphism are orthogonal and can be combined in a principled

fashion.
1

With the insights gained from our work, we argue that, for implicit polymorphism, Ahmed et al.’s

notion of compatibility is too permissive (i.e., too many programs are allowed to type-check), and

that Igarashi et al.’s notion of type consistency is too conservative. As a step towards an algorithmic

version of consistent subtyping, we present a syntax-directed version of consistent subtyping

that is sound and complete with respect to our formal definition of consistent subtyping. The

syntax-directed version of consistent subtyping is remarkably simple and well-behaved, and does

not require the restriction operator of Siek and Taha [2007]. Moreover, to further illustrate the

generality of our consistent subtyping definition, we show that it can also account for top types,

which cannot be dealt with by Siek and Taha’s definition either.

The second goal of this paper is to present the design of GPC, which stands for Gradually
Polymorphic Calculus: a (source-level) gradually typed calculus for (predicative) implicit higher-

rank polymorphism that uses our new notion of consistent subtyping. As far as we are aware,

there is no work on bridging the gap between implicit higher-rank polymorphism and gradual

typing, which is interesting for two reasons. On the one hand, modern functional languages (such

as Haskell) employ sophisticated type-inference algorithms that, aided by type annotations, can

deal with implicit higher-rank polymorphism. So a natural question is how gradual typing can be

integrated in such languages. On the other hand, there are several existing works on integrating

explicit polymorphism into gradual typing [Ahmed et al. 2011; Igarashi et al. 2017]. Yet no work

investigates how to move its expressive power into a source language with implicit polymorphism.

Therefore as a step towards gradualizing such type systems, this paper develops both declarative

and algorithmic versions for a gradual type system with implicit higher-rank polymorphism. The

new calculus brings the expressive power of full implicit higher-rank polymorphism into a gradually

typed source language. We prove that our calculus satisfies all of the static aspects of the refined

criteria for gradual typing [Siek et al. 2015].

As a step towards the dynamic gradual guarantee property [Siek et al. 2015], we propose an

extension of our calculus. This extension employs static type parameters, which are placeholders for

monotypes, and gradual type parameters, which are placeholders for monotypes that are consistent

with the unknown type. The concept of static type parameters and gradual type parameters in the

context of gradual typing was first introduced by Garcia and Cimini [2015], and later played a central

role in the work of Igarashi et al. [2017]
2
. With this extension it becomes possible to talk about

representative translations: those translations that generalize a number of other translations using

specific monotypes. Our work recasts the dynamic gradual guarantee in terms of representative

translations. Assuming a coherence conjecture regarding representative translations, the dynamic

gradual guarantee of our extended source language now can be reduced to that of λB, which, at the
time of writing, is still an open question. Nonetheless, we believe our discussion of representative

translations is helpful in shedding some light on this issue.

In summary, the contributions of this paper are:

• We define a framework for consistent subtyping with:

– a new definition of consistent subtyping that subsumes and generalizes that of Siek and

Taha, and can deal with polymorphism and top types, and

1
Note here that we borrow Siek and Taha’s motto mostly to talk about the static semantics. As Ahmed et al. [2011] show

there are several non-trivial interactions between polymorphism and casts at the level of the dynamic semantics.

2
The static and gradual type variables in their work.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:4 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

• Subtyping

• Consistency

(Fig. 4)

Consistent

Subtyping

(Def. 4.1)

Ψ ⊢ A ≲ B

(Fig. 8)

Ψ ⊢ e : A
(Fig. 9)

Γ ⊢ e ⇒ A ⊣ ∆
Γ ⊢ e ⇐ A ⊣ ∆

(Fig. 15)

Siek and Taha

(Def. 2.2)
AGT

Ψ ⊢OL e : A

(Fig. 3)

Ψ ⊢B s : A

superimposed

Thm. 1 based on

Thm. 7.8

Thm. 7.4

generalizes

(Prop. 4.2)

verified on

simple types

(Prop. 4.5)

verified on Top
(Prop. 8.2)

gradualizes

type-directed

translation

(Thm. 2)

Fig. 1. Some key results in the paper.

– a syntax-directed version of consistent subtyping that is sound and complete with respect

to our definition of consistent subtyping, but still guesses instantiations.

• Based on consistent subtyping, we present GPC: a declarative gradual type system with

predicative implicit higher-rank polymorphism. We prove that our calculus satisfies the static

aspects of the refined criteria for gradual typing [Siek et al. 2015], and is type-safe by a

type-directed translation to λB [Ahmed et al. 2011].

• We present a sound and complete bidirectional algorithm for implementing the declarative

system based on the design principle of Garcia and Cimini [2015] and the approach of Dunfield

and Krishnaswami [2013]. A Haskell implementation of the type checker is also available.

• We propose an extension of the type system with type parameters [Garcia and Cimini 2015]

as a step towards restoring the dynamic gradual guarantee [Siek et al. 2015]. The extension

significantly changes the algorithmic system. The new algorithm features a novel use of

existential variables with a different solution space, which is a natural extension of the

approach by Dunfield and Krishnaswami [2013].

• All of the metatheory of this paper, except some manual proofs for the algorithmic type

system and extensions, has been mechanically formalized in Coq.

Figure 1 summarizes some key results in the paper. The reader is advised to refer back to this

figure while reading the rest of the paper, as what it depicts will gradually come to make sense.

This article is a significantly expanded version of a conference paper [Xie et al. 2018]. Besides

many improvements and expansions of the conference paper materials, there are several novel

extensions. Firstly, we have added let expressions to our gradually typed calculus. Therefore it

can now be seen as a complete gradual version of the implicitly polymorphic lambda calculus by

Odersky and Läufer [1996]. Secondly, we have significantly expanded the discussion of applications

of the calculus. In particular we now show how we can model algebraic datatypes, and how

the combination of gradual typing and polymorphism enables simple (gradual) formulations of

heterogeneous data structures [Kiselyov et al. 2004; McBride 2002]. Thirdly, we provide an extensive

discussion of a variant of the calculus with a subsumption rule and prove its soundness and

completeness. Fourthly, we study an extension of the calculus with type parameters and discuss

the dynamic gradual guarantee [Siek et al. 2015] in detail. Furthermore we formalize the notion

of coherence up to cast errors in Section 5. We also include detailed proofs on decidability of the

algorithmic system. Finally, we provide an implementation of our type checking algorithm.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:5

A <: B

Int <: Int Bool <: Bool Float <: Float Int <: Float

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2
[li : A

i ∈1...n+m
i] <: [li : A

i ∈1...n
i] ⋆ <: ⋆

A ∼ B

A ∼ A A ∼ ⋆ ⋆ ∼ A
A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

Ai ∼ Bi

[li : Ai] ∼ [li : Bi]

Fig. 2. Subtyping and type consistency in FOb?<:

All supplementary materials, including Coqmechanization, manual proofs, and the Haskell imple-

mentation of the algorithm, are available at https://github.com/xnning/Consistent-Subtyping-for-All.

2 BACKGROUND
In this section we review a simple gradually typed language with objects [Siek and Taha 2007], to

introduce the concept of consistent subtyping. We also briefly talk about the Odersky and Läufer

type system for higher-rank types [Odersky and Läufer 1996], which serves as the original language

on which our gradually typed calculus with implicit higher-rank polymorphism is based.

2.1 Gradual Subtyping
Siek and Taha [2007] developed a gradual type system for object-oriented languages that they call

FOb?<:. Central to gradual typing is the concept of consistency (written ∼) between gradual types,

which are types that may involve the unknown type ⋆. The intuition is that consistency relaxes

the structure of a type system to tolerate unknown positions in a gradual type. They also defined

the subtyping relation in a way that static type safety is preserved. Their key insight is that the

unknown type ⋆ is neutral to subtyping, with only ⋆ <: ⋆. Both relations are defined in Fig. 2.

A primary contribution of their work is to show that consistency and subtyping are orthogonal.

However, the orthogonality of consistency and subtyping does not lead to a deterministic relation.

Thus Siek and Taha defined consistent subtyping (written ≲) based on a restriction operator, written

A|B that “masks off” the parts of typeA that are unknown in type B. For example, Int→ Int|Bool→⋆ =

Int→ ⋆, and Bool→ ⋆|Int→Int = Bool→ ⋆. The definition of the restriction operator is given below:

A|B = case (A,B) of

| (_,⋆) ⇒ ⋆

| (A1 → A2,B1 → B2) ⇒ A1 |B1
→ A2 |B2

| ([l1 : A1, ..., ln : An], [l1 : B1, ..., lm : Bm]) if n ≤ m ⇒ [l1 : A1 |B1
, ..., ln : An |Bn]

| ([l1 : A1, ..., ln : An], [l1 : B1, ..., lm : Bm]) if n > m ⇒ [l1 : A1 |B1
, ..., lm : Am |Bm , ..., ln : An]

| (_, _) ⇒ A

With the restriction operator, consistent subtyping is simply defined as:

Definition 2.1 (Algorithmic Consistent Subtyping of Siek and Taha [2007]). A ≲ B ≡ A|B <: B |A.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://github.com/xnning/Consistent-Subtyping-for-All

39:6 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Types A,B F Int | a | A→ B | ∀a.A

Monotypes τ ,σ F Int | a | τ → σ
Terms e F x | n | λx : A. e | λx . e | e1 e2 | let x = e1 in e2
Contexts Ψ F • | Ψ, x : A | Ψ, a

Ψ ⊢OL e : A (Typing)

(x : A) ∈ Ψ

Ψ ⊢OL x : A

u-var

Ψ ⊢OL n : Int
u-int

Ψ, x : A ⊢OL e : B

Ψ ⊢OL λx : A. e : A→ B

u-lamann

Ψ, x : τ ⊢OL e : B

Ψ ⊢OL λx . e : τ → B

u-lam

Ψ ⊢OL e1 : A1 → A2 Ψ ⊢OL e2 : A1

Ψ ⊢OL e1 e2 : A2

u-app

Ψ ⊢OL e : A1 Ψ ⊢ A1 <: A2

Ψ ⊢OL e : A2

u-sub

Ψ, a ⊢OL e : A

Ψ ⊢OL e : ∀a.A
u-gen

Ψ ⊢OL e1 : A Ψ, x : A ⊢OL e2 : B

Ψ ⊢OL let x = e1 in e2 : B
u-let

Ψ ⊢ A <: B (Subtyping)

a ∈ Ψ

Ψ ⊢ a <: a
s-tvar

Ψ ⊢ Int <: Int
s-int

Ψ ⊢ B1 <: A1 Ψ ⊢ A2 <: B2

Ψ ⊢ A1 → A2 <: B1 → B2

s-arrow

Ψ ⊢ τ Ψ ⊢ A[a 7→ τ] <: B

Ψ ⊢ ∀a.A <: B
s-forallL

Ψ, a ⊢ A <: B

Ψ ⊢ A <: ∀a. B
s-forallR

Fig. 3. Syntax and static semantics of the Odersky-Läufer type system.

Later they show a proposition that consistent subtyping is equivalent to two declarative defini-

tions, which we refer to as the strawman for declarative consistent subtyping because it servers as a

good guideline on superimposing consistency and subtyping. Both definitions are non-deterministic

because of the intermediate type C .

Definition 2.2 (Strawman for Declarative Consistent Subtyping). The following two are equivalent:

(1) A ≲ B if and only if A ∼ C and C <: B for some C .
(2) A ≲ B if and only if A <: C and C ∼ B for some C .

In our later discussion, it will always be clear which definition we are referring to. For example,

we focus more on Definition 2.2 in Section 4.2, and more on Definition 2.1 in Section 4.5.

2.2 The Odersky-Läufer Type System
The calculus we are combining gradual typing with is the well-established predicative type system

for higher-rank types proposed by Odersky and Läufer [1996].

The syntax of the type system, along with the typing and subtyping judgments is given in Fig. 3.

An implicit assumption throughout the paper is that variables in contexts are distinct. Most typing

rules are standard. The rule u-sub (the subsumption rule) allows us to convert the type A1 of an

expression e to some supertype A2. The rule u-gen generalizes type variables to polymorphic types.

These two rules can be applied anywhere. Most subtyping rules are standard as well. Rule s-forallL

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:7

guesses a monotype τ to instantiate the type variable a, and the subtyping relation holds if the the

instantiated type A[a 7→ τ] is a subtype of B. In rule s-forallR, the type variable a is put into the

typing context and subtyping continues with A and B. We save additional explanation about the

static semantics for Section 5, where we present our gradually typed version of the calculus.

3 MOTIVATION AND APPLICATIONS
In this section we motivate why the combination of gradual typing and implicit polymorphism is

useful. We then illustrate two concrete applications related to algebraic datatypes. The first applica-

tion shows how gradual typing helps in defining Scott encodings of algebraic datatypes [Curry

et al. 1958; Parigot 1992], which are impossible to encode in plain System F. The second application

shows how gradual typing makes it easy to model and use heterogeneous containers.

3.1 Motivation: Gradually Typed Higher-Rank Polymorphism
Our work combines implicit (higher-rank) polymorphism with gradual typing. As is well known,

a gradually typed language supports both fully static and fully dynamic checking of program

properties, as well as the continuum between these two extremes. It also offers programmers fine-

grained control over the static-to-dynamic spectrum, i.e., a program can be evolved by introducing

more or less precise types as needed [Garcia et al. 2016].

Haskell is a language renowned for its advanced type system, but it does not feature gradual

typing. Of particular interest to us is its support for implicit higher-rank polymorphism, which is

supported via explicit type annotations. In Haskell some programs that are safe at run-time may be

rejected due to the conservativity of the type system. For example, consider the following Haskell

program adapted from Peyton Jones et al. [2007]:

foo :: ([Int], [Char])
foo = let f x = (x [1, 2] , x ['a', 'b']) in f reverse

This program is rejected by Haskell’s type checker because Haskell implements the Damas-Milner

[Damas and Milner 1982; Hindley 1969] rule that a lambda-bound argument (such as x) can only

have a monotype, i.e., the type checker can only assign x the type [Int] → [Int], or [Char] →
[Char], but not ∀a. [a] → [a]. Finding such manual polymorphic annotations can be non-trivial,

especially when the program scales up and the annotation is long and complicated.

Instead of rejecting the program outright, due to missing type annotations, gradual typing

provides a simple alternative by giving x the unknown type ⋆. With this type the same program

type-checks and produces ([2, 1], ['b', 'a']). By running the program, programmers can gain

more insight about its run-time behaviour. Then, with this insight, they can also give x a more

precise type (∀a. [a] → [a]) a posteriori so that the program continues to type-check via implicit

polymorphism and also grants more static safety. In this paper, we envision such a language that

combines the benefits of both implicit higher-rank polymorphism and gradual typing.

3.2 Application: Efficient (Partly) Typed Encodings of ADTs
Our calculus does not provide built-in support for algebraic datatypes (ADTs). Nevertheless, the

calculus is expressive enough to support efficient function-based encodings of (optionally polymor-

phic) ADTs
3
. This offers an immediate way to model algebraic datatypes in our calculus without

requiring extensions to our calculus or, more importantly, to its target—the polymorphic blame

calculus. While we believe that such extensions are possible, they would likely require non-trivial

extensions to the polymorphic blame calculus. Thus the alternative of being able to model algebraic

3
In a type system with impure features, such as non-termination or exceptions, the encoded types can have valid inhabitants

with side-effects, which means we only get the lazy version of those datatypes.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:8 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

datatypes without extending λB is appealing. The encoding also paves the way to provide built-in

support for algebraic datatypes in the source language, while elaborating them via the encoding

into λB.

Church and Scott Encodings. It is well-known that polymorphic calculi such as System F can

encode datatypes via Church encodings. However these encodings have well-known drawbacks. In

particular, some operations are hard to define, and they can have a time complexity that is greater

than that of the corresponding functions for built-in algebraic datatypes. A good example is the

definition of the predecessor function for Church numerals [Church 1941]. Its definition requires

significant ingenuity (while it is trivial with built-in algebraic datatypes), and it has linear time

complexity (versus the constant time complexity for a definition using built-in algebraic datatypes).

An alternative to Church encodings are the so-called Scott encodings [Curry et al. 1958]. They

address the two drawbacks of Church encodings: they allow simple definitions that directly corre-

spond to programs implemented with built-in algebraic datatypes, and those definitions have the

same time complexity to programs using algebraic datatypes.

Unfortunately, Scott encodings, or more precisely, their typed variant [Parigot 1992], cannot be

expressed in System F: in the general case they require recursive types, which System F does not

support. However, with gradual typing, we can remove the need for recursive types, thus enabling

Scott encodings in our calculus.

A Scott Encoding of Parametric Lists. Consider for instance the typed Scott encoding of parametric

lists in a system with implicit polymorphism:

List a ≜ µL.∀b. b → (a→ L→ b) → b

nil ≜ foldList a (λn. λc. n) : ∀a. List a

cons ≜ λx . λxs. foldList a (λn. λc. c x xs) : ∀a. a→ List a→ List a

This encoding requires both polymorphic and recursive types
4
. Like System F, our calculus only

supports the former, but not the latter. Nevertheless, gradual types still allow us to use the Scott

encoding in a partially typed fashion. The trick is to omit the recursive type binder µL and replace

the recursive occurrence of L by the unknown type ⋆:

List⋆ a ≜ ∀b. b → (a→ ⋆→ b) → b

As a consequence, we need to replace the term-level witnesses of the iso-recursion by explicit type

annotations to respectively forget or recover the type structure of the recursive occurrences:

foldList⋆ a ≜ λx . x : (∀b. b → (a→ List⋆ a→ b) → b) → List⋆ a

unfoldList⋆ a ≜ λx . x : List⋆ a→ (∀b. b → (a→ List⋆ a→ b) → b)

With the reinterpretation of fold and unfold as functions instead of built-in primitives, we have

exactly the same definitions of nil⋆ and cons⋆.
Note that when we elaborate our calculus into the polymorphic blame calculus, the above type

annotations give rise to explicit casts. For instance, after elaboration foldList⋆ a e results in the cast

⟨(∀b. b → (a→ List⋆ a→ b) → b) ↪→ List⋆ a⟩s where s is the elaboration of e.

In order to perform recursive traversals on lists, e.g., to compute their length, we need a fixpoint

combinator like the Y combinator. Unfortunately, this combinator cannot be assigned a type in the

4
Here we use iso-recursive types, but equi-recursive types can be used too.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:9

simply typed lambda calculus or System F. Yet, we can still provide a gradual typing for it in our

system.

fix ≜ λf . (λx : ⋆. f (x x)) (λx : ⋆. f (x x)) : ∀a. (a→ a) → a

This allows us for instance to compute the length of a list.

length ≜ fix (λlen. λl. zero⋆ (λxs. succ⋆ (len xs)))

Here zero⋆ : Nat⋆ and succ⋆ : Nat⋆ → Nat⋆ are the encodings of the constructors for natural

numbers Nat⋆. In practice, for performance reasons, we could extend our language with a letrec
construct in a standard way to support general recursion, instead of defining a fixpoint combinator.

Observe that the gradual typing of lists still enforces that all elements in the list are of the same

type. For instance, a heterogeneous list like cons⋆ zero⋆ (cons⋆ true⋆ nil⋆), is rejected because

zero⋆ : Nat⋆ and true⋆ : Bool⋆ have different types.

Heterogeneous Containers. Heterogeneous containers are datatypes that can store data of different

types, which is very useful in various scenarios. One typical application is that an XML element is

heterogeneously typed. Moreover, the result of a SQL query contains heterogeneous rows.

In statically typed languages, there are several ways to obtain heterogeneous lists. For example,

in Haskell, one option is to use dynamic types. Haskell’s libraryData.Dynamic provides the special
type Dynamic along with its injection toDyn and projection fromDyn. The drawback is that the

code is littered with toDyn and fromDyn, which obscures the program logic. One can also use the

HList library [Kiselyov et al. 2004], which provides strongly typed data structures for heterogeneous

collections. The library requires several Haskell extensions, such as multi-parameter classes [Jones

et al. 1997] and functional dependencies [Jones 2000]. With fake dependent types [McBride 2002],

heterogeneous vectors are also possible with type-level constructors.

In our type system, with explicit type annotations that set the element types to the unknown

type we can disable the homogeneous typing discipline for the elements and get gradually typed

heterogeneous lists
5
. Such gradually typed heterogeneous lists are akin to Haskell’s approach with

Dynamic types, but much more convenient to use since no injections and projections are needed,

and the ⋆ type is built-in and natural to use.

An example of such gradually typed heterogeneous collections is:

l ≜ cons⋆ (zero⋆ : ⋆) (cons⋆ (true⋆ : ⋆) nil⋆)

Here we annotate each element with type annotation⋆ and the type system is happy to type-check

that l : List⋆⋆. Note that we are being meticulous about the syntax, but with proper implementation

of the source language, we could write more succinct programs akin to Haskell’s syntax, such as

[0, True].

4 REVISITING CONSISTENT SUBTYPING
In this section we explore the design space of consistent subtyping. We start with the definitions of

consistency and subtyping for polymorphic types, and compare with some relevant work. We then

discuss the design decisions involved in our new definition of consistent subtyping, and justify the

new definition by demonstrating its equivalence with that of Siek and Taha [2007] and the AGT

approach [Garcia et al. 2016] on simple types.

The syntax of types is given at the top of Fig. 4. We write A,B for types. Types are either the

integer type Int, type variables a, functions types A → B, universal quantification ∀a.A, or the
unknown type ⋆. Though we only have one base type Int, we also use Bool in examples. Note that

5
This argument is based on the extended type system in Section 9.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:10 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Types A,B F Int | a | A→ B | ∀a.A | ⋆

Monotypes τ ,σ F Int | a | τ → σ
Contexts Ψ F • | Ψ, x : A | Ψ, a

A ∼ B (Type Consistency)

A ∼ A A ∼ ⋆ ⋆ ∼ A

A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

A ∼ B

∀a.A ∼ ∀a. B

Ψ ⊢ A <: B (Subtyping)

a ∈ Ψ

Ψ ⊢ a <: a
s-tvar

Ψ ⊢ Int <: Int
s-int

Ψ ⊢ B1 <: A1 Ψ ⊢ A2 <: B2

Ψ ⊢ A1 → A2 <: B1 → B2

s-arrow

Ψ ⊢ τ Ψ ⊢ A[a 7→ τ] <: B

Ψ ⊢ ∀a.A <: B
s-forallL

Ψ, a ⊢ A <: B

Ψ ⊢ A <: ∀a. B
s-forallR

Ψ ⊢ ⋆ <: ⋆
s-unknown

Ψ ⊢ A (Well-formedness of types)

Ψ ⊢ Int Ψ ⊢ ⋆

a ∈ Ψ

Ψ ⊢ a

Ψ ⊢ A Ψ ⊢ B

Ψ ⊢ A→ B

Ψ, a ⊢ A

Ψ ⊢ ∀a.A

Fig. 4. Syntax of types, consistency, subtyping, well-formedness of types in the declarative system.

monotypes τ contain all types other than the universal quantifier and the unknown type ⋆. We

will discuss this restriction when we present the subtyping rules. Contexts Ψ are ordered lists of

type variable declarations and term variables.

4.1 Consistency and Subtyping
We start by giving the definitions of consistency and subtyping for polymorphic types, and com-

paring our definitions with the compatibility relation by Ahmed et al. [2011] and type consistency

by Igarashi et al. [2017].

Consistency. The key observation here is that consistency is mostly a structural relation, except

that the unknown type⋆ can be regarded as any type. In other words, consistency is an equivalence

relation lifted from static types to gradual types [Garcia et al. 2016]. Following this observation,

we naturally extend the definition from Fig. 2 with polymorphic types, as shown in the middle of

Fig. 4. In particular a polymorphic type ∀a.A is consistent with another polymorphic type ∀a. B if

A is consistent with B.

Subtyping. We express the fact that one type is a polymorphic generalization of another by means

of the subtyping judgment Ψ ⊢ A <: B. Compared with the subtyping rules of Odersky and Läufer

[1996] in Fig. 3, the only addition is the neutral subtyping of ⋆. Notice that, in rule s-forallL, the

universal quantifier is only allowed to be instantiated with amonotype. The judgment Ψ ⊢ A checks

whether all the type variables in A are bound in the context Ψ. According to the syntax in Fig. 4,

monotypes do not include the unknown type ⋆. This is because if we were to allow the unknown

type to be used for instantiation, we could have ∀a. a → a <: ⋆ → ⋆ by instantiating a with ⋆.
Since ⋆→ ⋆ is consistent with any functions A→ B, for instance, Int→ Bool, this means that we

could provide an expression of type ∀a. a→ a to a function where the input type is supposed to be

Int→ Bool. However, as we know, ∀a. a→ a is definitely not compatible with Int→ Bool. Indeed,
this does not hold in any polymorphic type systems without gradual typing. So the gradual type

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:11

system should not accept it either. (This is the conservative extension property that will be made

precise in Section 5.3.)

Importantly there is a subtle distinction between a type variable and the unknown type, although

they both represent a kind of “arbitrary” type. The unknown type stands for the absence of type

information: it could be any type at any instance. Therefore, the unknown type is consistent with

any type, and additional type-checks have to be performed at runtime. On the other hand, a type

variable indicates parametricity. In other words, a type variable can only be instantiated to a single

type. For example, in the type ∀a. a→ a, the two occurrences of a represent an arbitrary but single

type (e.g., Int→ Int, Bool→ Bool), while ⋆→ ⋆ could be an arbitrary function (e.g., Int→ Bool)
at runtime.

Comparison with Other Relations. In other polymorphic gradual calculi, consistency and subtyping

are often mixed up to some extent. In λB [Ahmed et al. 2011], the compatibility relation for

polymorphic types is defined as follows:

A ≺ B

A ≺ ∀X .B
Comp-AllR

A[X 7→ ⋆] ≺ B

∀X .A ≺ B
Comp-AllL

Notice that, in rule Comp-AllL, the universal quantifier is always instantiated to ⋆. However, this
way, λB allows ∀a. a→ a ≺ Int→ Bool, which as we discussed before might not be what we expect.

Indeed λB relies on sophisticated runtime checks to rule out such instances of the compatibility

relation a posteriori.

Igarashi et al. [2017] introduced the so-called quasi-polymorphic types for types that may be used

where a ∀-type is expected, which is important for their purpose of conservativity over System F.

Their type consistency relation, involving polymorphism, is defined as follows
6
:

A ∼ B

∀a.A ∼ ∀a. B

A ∼ B B , ∀a. B′ ⋆ ∈ Types(B)

∀a.A ∼ B

Compared with our consistency definition in Fig. 4, their first rule is the same as ours. The second

rule says that a non ∀-type can be consistent with a ∀-type only if it contains ⋆. In this way, their

type system is able to reject ∀a. a → a ∼ Int → Bool. However, in order to keep conservativity,

they also reject ∀a. a → a ∼ Int → Int, which is perfectly sensible in their setting of explicit

polymorphism. However with implicit polymorphism, we would expect ∀a. a → a to be related

with Int→ Int, since a can be instantiated to Int.
Nonetheless, when it comes to interactions between dynamically typed and polymorphically

typed terms, both relations allow ∀a. a → Int to be related with ⋆→ Int for example, which in

our view, is a kind of (implicit) polymorphic subtyping combined with type consistency, and that

should be derivable by the more primitive notions in the type system (instead of inventing new

relations). One of our design principles is that subtyping and consistency are orthogonal, and can

be naturally superimposed, echoing the opinion of Siek and Taha [2007].

4.2 Towards Consistent Subtyping
With the definitions of consistency and subtyping, the question now is how to compose the two

relations so that two types can be compared in a way that takes both relations into account.

Unfortunately, the strawman version of consistent subtyping (Definition 2.2) does not work

well with our definitions of consistency and subtyping for polymorphic types. Consider two types:

(∀a. a → Int) → Int, and (⋆→ Int) → Int. The first type can only reach the second type in one

6
This is a simplified version. These two rules are presented in Section 3.1 in their paper as one of the key ideas of the design

of type consistency, which are later amended with labels.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:12 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

∅ (⋆→ Int) → Int

(∀a.a → Int) → Int (∀a.⋆→ Int) → Int

<: <:

∼

∼

(a)

Int→ Int Int→ ⋆

∀a.a ∅

<: <:

∼

∼

(b)

∅ (((⋆→ Int) → Int) → Bool) → (Int→ ⋆)

(((∀a.a → Int) → Int) → Bool) → (∀a.a) ∅

<: <:

∼

∼

(c)

Fig. 5. Examples that break the original definition of consistent subtyping.

way (first by applying consistency, then subtyping), but not the other way, as shown in Fig. 5a. We

use ∅ to mean that we cannot find such a type. Similarly, there are situations where the first type

can only reach the second type by the other way (first applying subtyping, and then consistency),

as shown in Fig. 5b.

What is worse, if those two examples are composed in a way that those types all appear co-

variantly, then the resulting types cannot reach each other in either way. For example, Fig. 5c shows

two such types by putting a Bool type in the middle, and neither definition of consistent subtyping

works.

Observations on Consistent Subtyping Based on Information Propagation. In order to develop a

correct definition of consistent subtyping for polymorphic types, we need to understand how

consistent subtyping works. We first review two important properties of subtyping: (1) subtyping

induces the subsumption rule: if A <: B, then an expression of type A can be used where B is

expected; (2) subtyping is transitive: if A <: B, and B <: C, then A <: C. Though consistent

subtyping takes the unknown type into consideration, the subsumption rule should also apply: if

A ≲ B, then an expression of type A can also be used where B is expected, given that there might

be some information lost by consistency. A crucial difference from subtyping is that consistent

subtyping is not transitive because information can only be lost once (otherwise, any two types

are a consistent subtype of each other). Now consider a situation where we have both A <: B, and
B ≲ C, this means that A can be used where B is expected, and B can be used where C is expected,

with possibly some loss of information. In other words, we should expect that A can be used where

C is expected, since there is at most one-time loss of information.

Observation 1. If A <: B, and B ≲ C, then A ≲ C.

This is reflected in Fig. 6a. A symmetrical observation is given in Fig. 6b:

Observation 2. If C ≲ B, and B <: A, then C ≲ A.

From the above observations, we see what the problem is with the original definition. In Fig. 6a,

if B can reach C by T1, then by subtyping transitivity, A can reach C by T1. However, if B can only

reach C by T2, then A cannot reach C through the original definition. A similar problem is shown

in Fig. 6b.

It turns out that these two problems can be fixed using the same strategy: instead of taking one-

step subtyping and one-step consistency, our definition of consistent subtyping allows types to take

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:13

T1 C

B T2

A

<:

<:<:

∼

∼

≲

≲

(a)

A

T1 B

C T2

<: <:

<:

∼

∼

≲

≲

(b)

Fig. 6. Observations of consistent subtyping

A2 A3

A1 A4

<: <:

≲

∼

A1 = (((∀a.a → Int) → Int) → Bool) → (∀a.a)

A2 = ((∀a.a → Int) → Int) → Bool) → (Int→ Int)

A3 = ((∀a.⋆→ Int) → Int) → Bool) → (Int→ ⋆)

A4 = (((⋆→ Int) → Int) → Bool) → (Int→ ⋆)

Fig. 7. Example that is fixed by the new definition of consistent subtyping.

one-step subtyping, one-step consistency, and one more step subtyping. Specifically, A <: B ∼ T2 <: C
(in Fig. 6a) and C <: T1 ∼ B <: A (in Fig. 6b) have the same relation chain: subtyping, consistency,

and subtyping.

Definition of Consistent subtyping. From the above discussion, we are ready to modify Defini-

tion 2.2, and adapt it to our notation
7
:

Definition 4.1 (Consistent Subtyping). Ψ ⊢ A ≲ B if and only if Ψ ⊢ A <: A′, A′ ∼ B
′
and

Ψ ⊢ B′ <: B for some A
′
and B

′
.

With Definition 4.1, Figure 7 illustrates the correct relation chain for the broken example shown in

Fig. 5c.

At first sight, Definition 4.1 seems worse than the original: we need to guess two types! It turns

out that Definition 4.1 is a generalization of Definition 2.2, and they are equivalent in the system

of Siek and Taha [2007]. However, more generally, Definition 4.1 is compatible with polymorphic

types.

Proposition 4.2 (Generalization of Declarative Consistent Subtyping).

• Definition 4.1 subsumes Definition 2.2.

In Definition 4.1, by choosing D = B, we have A <: C and C ∼ B; by choosing C = A, we have
A ∼ D, and D <: B.
• Definition 2.2 is equivalent to Definition 4.1 in the system of Siek and Taha.

If A <: C , C ∼ D, and D <: B, by Definition 2.2, A ∼ C ′, C ′ <: D for some C ′. By subtyping

transitivity, C ′ <: B. So A ≲ B by A ∼ C ′ and C ′ <: B.

7
For readers who are familiar with category theory, this defines consistent subtyping as the least subtyping bimodule

extending consistency.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:14 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

4.3 Abstracting Gradual Typing
Garcia et al. [2016] presented a new foundation for gradual typing that they call the Abstracting

Gradual Typing (AGT) approach. In the AGT approach, gradual types are interpreted as sets of

static types, where static types refer to types containing no unknown types. In this interpretation,

predicates and functions on static types can then be lifted to apply to gradual types. Central to

their approach is the so-called concretization function. For simple types, a concretization γ from

gradual types to a set of static types is defined as follows:

Definition 4.3 (Concretization).

γ (Int) = {Int} γ (A→ B) = {A′ → B′ | A′ ∈ γ (A),B′ ∈ γ (B)} γ (⋆) = {All static types}

Based on the concretization function, subtyping between static types can be lifted to gradual

types, resulting in the consistent subtyping relation:

Definition 4.4 (Consistent Subtyping in AGT). A <̃: B if and only if A1 <: B1 for some static types

A1 and B1 such that A1 ∈ γ (A) and B1 ∈ γ (B).

Later they proved that this definition of consistent subtyping coincides with that of Definition 2.2.

By Proposition 4.2, we can directly conclude that our definition coincides with AGT:

Corollary 4.5 (Eqivalence to AGT on Simple Types). A ≲ B if and only if A <̃: B.

However, AGT does not show how to deal with polymorphism (e.g. the interpretation of type

variables) yet. Still, as noted by Garcia et al. [2016], it is a promising line of future work for AGT,

and the question remains whether our definition would coincide with it.

Another note related to AGT is that the definition is later adopted by Castagna and Lanvin

[2017] in a gradual type system with union and intersection types, where the static types A1,B1 in

Definition 4.4 can be algorithmically computed by also accounting for top and bottom types.

4.4 Directed Consistency
Directed consistency [Jafery and Dunfield 2017] is defined in terms of precision and subtyping:

A′ ⊑ A A <: B B′ ⊑ B

A′ ≲ B′

The judgment A ⊑ B is read “A is less precise than B”.8 In their setting, precision is first defined for

type constructors and then lifted to gradual types, and subtyping is defined for gradual types. If

we interpret this definition from the AGT point of view, finding a more precise static type has the

same effect as concretization. Namely, A′ ⊑ A implies A ∈ γ (A′) and B′ ⊑ B implies B ∈ γ (B′) if A
and B are static types. Therefore we consider this definition as AGT-style. From this perspective,

this definition naturally coincides with Definition 4.4, and by Corollary 4.5, it coincides with

Definition 4.1.

The value of their definition is that consistent subtyping is derived compositionally from gradual

subtyping and precision. Arguably, gradual types play a role in both definitions, which is different

from Definition 4.1 where subtyping is neutral to unknown types. Still, the definition is interesting

as it takes precision into consideration, rather than consistency. Then a question arises as to how

are consistency and precision related.

8
Jafery and Dunfield actually read A ⊑ B as “A is more precise than B”. We, however, use the “less precise” notation (which

is also adopted by Cimini and Siek [2016]) throughout the paper. The full rules can be found in Fig. 10.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:15

Consistency and Precision. Precision is a partial order (anti-symmetric and transitive), while

consistency is symmetric but not transitive. Recall that consistency is in fact an equivalence relation

lifted from static types to gradual types [Garcia et al. 2016], which embodies the key role of

gradual types in typing. Therefore defining consistency independently is straightforward, and it is

theoretically viable to validate the definition of consistency directly. On the other hand, precision

is usually connected with the gradual criteria [Siek et al. 2015], and finding a correct partial order

that adheres to the criteria is not always an easy task. For example, Igarashi et al. [2017] argued

that term precision for gradual System F is actually nontrivial, leaving the gradual guarantee of

the semantics as a conjecture. Thus precision can be difficult to extend to more sophisticated type

systems, e.g. dependent types.

Nonetheless, in our system, precision and consistency can be related by the following lemma
9
:

Lemma 1 (Consistency and Precision).

• If A ∼ B, then there exists (static) C , such that A ⊑ C , and B ⊑ C .
• If for some (static) C , we have A ⊑ C , and B ⊑ C , then we have A ∼ B.

4.5 Consistent Subtyping Without Existentials
Definition 4.1 serves as a fine specification of how consistent subtyping should behave in general. But

it is inherently non-deterministic because of the two intermediate types C and D. As Definition 2.1,

we need a combined relation to directly compare two types. A natural attempt is to try to extend

the restriction operator for polymorphic types. Unfortunately, as we show below, this does not

work. However it is possible to devise an equivalent inductive definition instead.

Attempt to Extend the Restriction Operator. Suppose that we try to extend Definition 2.1 to account

for polymorphic types. The original restriction operator is structural, meaning that it works for types

of similar structures. But for polymorphic types, two input types could have different structures

due to universal quantifiers, e.g, ∀a. a→ Int and (Int→ ⋆) → Int. If we try to mask the first type

using the second, it seems hard to maintain the information that a should be instantiated to a

function while ensuring that the return type is masked. There seems to be no satisfactory way to

extend the restriction operator in order to support this kind of non-structural masking.

Interpretation of the Restriction Operator and Consistent Subtyping. If the restriction operator

cannot be extended naturally, it is useful to take a step back and revisit what the restriction

operator actually does. For consistent subtyping, two input types could have unknown types in

different positions, but we only care about the known parts. What the restriction operator does

is (1) erase the type information in one type if the corresponding position in the other type is

the unknown type; and (2) compare the resulting types using the normal subtyping relation. The

example below shows the masking-off procedure for the types Int→ ⋆→ Bool and Int→ Int→ ⋆.
Since the known parts have the relation that Int → ⋆ → ⋆ <: Int → ⋆ → ⋆, we conclude that
Int→ ⋆→ Bool ≲ Int→ Int→ ⋆.

Int→ ⋆ → Bool | Int→ Int→ ⋆ = Int→ ⋆→ ⋆

Int→ Int → ⋆ | Int→ ⋆→ Bool = Int→ ⋆→ ⋆
<:

Here differences of the types in boxes are erased because of the restriction operator. Now if we

compare the types in boxes directly instead of through the lens of the restriction operator, we

can observe that the consistent subtyping relation always holds between the unknown type and an

arbitrary type. We can interpret this observation directly from Definition 4.1: the unknown type is

9
Lemmas with L are those proved in Coq. The same applies to T heorems.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:16 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Ψ ⊢ A ≲ B (Consistent Subtyping)

a ∈ Ψ

Ψ ⊢ a ≲ a

cs-tvar

Ψ ⊢ Int ≲ Int
cs-int

Ψ ⊢ B1 ≲ A1 Ψ ⊢ A2 ≲ B2

Ψ ⊢ A1 → A2 ≲ B1 → B2

cs-arrow

Ψ, a ⊢ A ≲ B

Ψ ⊢ A ≲ ∀a. B
cs-forallR

Ψ ⊢ τ Ψ ⊢ A[a 7→ τ] ≲ B

Ψ ⊢ ∀a.A ≲ B

cs-forallL

Ψ ⊢ ⋆ ≲ A

cs-unknownL

Ψ ⊢ A ≲ ⋆
cs-unknownR

Fig. 8. Consistent Subtyping for implicit polymorphism.

neutral to subtyping (⋆ <: ⋆), the unknown type is consistent with any type (⋆ ∼ A), and subtyping

is reflexive (A <: A). Therefore, the unknown type is a consistent subtype of any type (⋆ ≲ A),

and vice versa (A ≲ ⋆). Note that this interpretation provides a general recipe for lifting a (static)

subtyping relation to a (gradual) consistent subtyping relation, as discussed below.

Defining Consistent Subtyping Directly. From the above discussion, we can define the consistent

subtyping relation directly, without resorting to subtyping or consistency at all. The key idea is

that we replace <: with ≲ in Fig. 4, get rid of rule s-unknown and add two extra rules concerning

⋆, resulting in the rules of consistent subtyping in Fig. 8. Of particular interest are the rules cs-

unknownL and cs-unknownR, both of which correspond to what we just said: the unknown type

is a consistent subtype of any type, and vice versa. From now on, we use the symbol ≲ to refer to

the consistent subtyping relation in Fig. 8. What is more, we can prove that the two definitions are

equivalent.

T heorem 1. Ψ ⊢ A ≲ B⇔ Ψ ⊢ A <: A′, A′ ∼ B
′
, Ψ ⊢ B′ <: B for some A′,B′.

5 GRADUALLY TYPED IMPLICIT POLYMORPHISM
In Section 4 we introduced our consistent subtyping relation that accommodates polymorphic

types. In this section we continue with the development by giving a declarative type system for

predicative implicit polymorphism that employs the consistent subtyping relation. The declarative

system itself is already quite interesting as it is equipped with both higher-rank polymorphism and

the unknown type. The syntax of expressions in the declarative system is given below:

Expressions e F x | n | λx : A. e | λx . e | e1 e2 | let x = e1 in e2
Meta-variable e ranges over expressions. Expressions include variables x, integers n, annotated

lambda abstractions λx : A. e, un-annotated lambda abstractions λx . e, applications e1 e2, and let

expressions let x = e1 in e2.

5.1 Typing in Detail
Figure 9 gives the typing rules for our declarative system (the reader is advised to ignore the

gray-shaded parts for now). Rule var extracts the type of the variable from the typing context.

Rule int always infers integer types. Rule lamann puts x with type annotation A into the context,

and continues type checking the body e . Rule lam assigns a monotype τ to x , and continues type

checking the body e . Gradual types and polymorphic types are introduced via explicit annotations.

Rule gen puts a fresh type variable a into the type context and generalizes the typing result A to

∀a.A. Rule let infers the type A of e1, then puts x : A in the context to infer the type of e2. Rule app

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:17

Ψ ⊢ e : A ⇝ s (Typing)

(x : A) ∈ Ψ

Ψ ⊢ x : A ⇝ x

var

Ψ ⊢ n : Int ⇝ n

int

Ψ, a ⊢ e : A ⇝ s

Ψ ⊢ e : ∀a.A ⇝ Λa. s
gen

Ψ, x : A ⊢ e : B ⇝ s

Ψ ⊢ λx : A. e : A→ B ⇝ λx : A. s
lamann

Ψ, x : τ ⊢ e : B ⇝ s

Ψ ⊢ λx . e : τ → B ⇝ λx : τ . s
lam

Ψ ⊢ e1 : A ⇝ s1 Ψ, x : A ⊢ e2 : B ⇝ s2

Ψ ⊢ let x = e1 in e2 : B ⇝ (λx : A. s2) s1
let

Ψ ⊢ e1 : A ⇝ s1 Ψ ⊢ A ▷ A1 → A2 Ψ ⊢ e2 : A3 ⇝ s2 Ψ ⊢ A3 ≲ A1

Ψ ⊢ e1 e2 : A2 ⇝ (⟨A ↪→ A1 → A2⟩s1) (⟨A3 ↪→ A1⟩s2)
app

Ψ ⊢ A ▷ A1 → A2 (Matching)

Ψ ⊢ τ Ψ ⊢ A[a 7→ τ] ▷ A1 → A2

Ψ ⊢ ∀a.A ▷ A1 → A2

m-forall

Ψ ⊢ A1 → A2 ▷ A1 → A2

m-arr

Ψ ⊢ ⋆ ▷ ⋆→ ⋆
m-unknown

Fig. 9. Declarative typing

first infers the type of e1, then the matching judgment Ψ ⊢ A ▷ A1 → A2 extracts the domain type

A1 and the codomain type A2 from type A. The type A3 of the argument e2 is then compared with

A1 using the consistent subtyping judgment.

Matching. Thematching judgment of Siek et al. [2015] is extended to polymorphic types naturally,

resulting in Ψ ⊢ A ▷A1 → A2. In rule m-forall, a monotype τ is guessed to instantiate the universal

quantifier a. This rule is inspired by the application judgment Φ ⊢ A • e ⇒ C [Dunfield and

Krishnaswami 2013], which says that if we apply a term of type A to an argument e , then we get a

term of type C . If A is a polymorphic type, the judgment works by guessing instantiations until it

reaches an arrow type. Matching further simplifies the application judgment, since it is independent

of typing. Rules m-arr and m-unknown are the same as Siek et al. [2015]. Rule m-arr returns the

domain type A1 and range type A2 as expected. If the input is ⋆, then rule m-unknown returns ⋆
as both the type for the domain and the range.

Note that matching saves us from having a subsumption rule (rule u-sub in Fig. 3). The subsump-

tion rule is incompatible with consistent subtyping, since the latter is not transitive. A discussion

of a subsumption rule based on normal subtyping can be found in Section 8.2.

5.2 Type-directed Translation
We give the dynamic semantics of our language by translating it to λB [Ahmed et al. 2011]. Below

we show a subset of the terms in λB that are used in the translation:

λB Terms s F x | n | λx : A. s | Λa. s | s1 s2 | ⟨A ↪→ B⟩s

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:18 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

A cast ⟨A ↪→ B⟩s converts the value of term s from typeA to type B. A cast fromA to B is permitted

only if the types are compatible, written A ≺ B, as briefly mentioned in Section 4.1. The syntax of

types in λB is the same as ours.

The translation is given in the gray-shaded parts in Fig. 9. The only interesting case here is

to insert explicit casts in the application rule. Note that there is no need to translate matching

or consistent subtyping. Instead we insert the source and target types of a cast directly in the

translated expressions, thanks to the following two lemmas:

Lemma 2 (▷ to ≺). If Ψ ⊢ A ▷ A1 → A2, then A ≺ A1 → A2.

Lemma 3 (≲ to ≺). If Ψ ⊢ A ≲ B, then A ≺ B.

In order to show the correctness of the translation, we prove that our translation always produces

well-typed expressions in λB. By Lemmas 2 and 3, we have the following theorem:

T heorem 2 (Type Safety). If Ψ ⊢ e : A⇝ s , then Ψ ⊢B s : A.

Parametricity. An important semantic property of polymorphic types is relational parametric-

ity [Reynolds 1983]. The parametricity property says that all instances of a polymorphic function

should behave uniformly. A classic example is a function with the type ∀a. a→ a. The parametricity

property guarantees that a value of this type must be either the identity function (i.e., λx . x) or the
undefined function (one which never returns a value). However, with the addition of the unknown

type ⋆, careful measures are to be taken to ensure parametricity. Our translation target λB is taken

from Ahmed et al. [2011], where relational parametricity is enforced by dynamic sealing [Matthews

and Ahmed 2008; Neis et al. 2009], but there is no rigorous proof. Later, Ahmed et al. [2017] imposed

a syntactic restriction on terms of λB, where all type abstractions must have values as their body.

With this invariant, they proved that the restricted λB satisfies relational parametricity. It remains

to see if our translation process can be adjusted to target restricted λB. One possibility is to impose

similar restriction to the rule gen:

Ψ, a ⊢ e : A⇝ v

Ψ ⊢ e : ∀a.A⇝ Λa.v
Gen2

where we only generate type abstractions if the inner body is a value. However, the type system

with this rule is a weaker calculus, which is not a conservative extension of the Odersky-Läufer

type system.

Ambiguity from Casts. The translation does not always produce a unique target expression. This

is because when guessing some monotype τ in rules m-forall and cs-forallL, we could have many

choices, which inevitably leads to different types. This is usually not a problem for (non-gradual)

System F-like systems [Dunfield and Krishnaswami 2013; Peyton Jones et al. 2007] because they

adopt a type-erasure semantics [Pierce 2002]. However, in our case, the choice of monotypes may

affect the runtime behaviour of translated programs, since they could appear inside the explicit

casts. For instance, the following example shows two possible translations for the same source

expression (λx : ⋆. f x) : ⋆→ Int, where the type of f is instantiated to Int→ Int and Bool→ Int,
respectively:

f : ∀a.a → Int ⊢ (λx : ⋆. f x) : ⋆→ Int

⇝ (λx : ⋆. (⟨∀a.a → Int ↪→ Int→ Int⟩ f) (⟨⋆ ↪→ Int⟩ x))

f : ∀a.a → Int ⊢ (λx : ⋆. f x) : ⋆→ Int

⇝ (λx : ⋆. (⟨∀a.a → Int ↪→ Bool→ Int⟩ f) (⟨⋆ ↪→ Bool⟩ x))

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:19

If we apply λx : ⋆. f x to 3, which is fine since the function can take any input, the first translation

runs smoothly in λB, while the second one will raise a cast error (Int cannot be cast to Bool).
Similarly, if we apply it to true, then the second succeeds while the first fails. The culprit lies in

the highlighted parts where the instantiation of a appears in the explicit cast. More generally, any

choice introduces an explicit cast to that type in the translation, which causes a runtime cast error

if the function is applied to a value whose type does not match the guessed type. Note that this

does not compromise the type safety of the translated expressions, since cast errors are part of the

type safety guarantees.

The semantic discrepancy is due to the guessing nature of the declarative system. As far as the

static semantics is concerned, both Int → Int and Bool → Int are equally acceptable. But this is

not the case at runtime. The astute reader may have found that the only appropriate choice is to

instantiate the type of f to ⋆→ Int in the matching judgment. However, as specified by rule m-

forall in Fig. 9, we can only instantiate type variables to monotypes, but ⋆ is not a monotype! We

will get back to this issue in Section 9.

Coherence. The ambiguity of translation seems to imply that the declarative system is incoherent.

A semantics is coherent if distinct typing derivations of the same typing judgment possess the

same meaning [Reynolds 1991]. We argue that the declarative system is coherent up to cast errors

in the sense that a well-typed program produces a unique value, or results in a cast error. In the

above example, suppose f is defined as (λx . 1), then whatever the translation might be, applying

(λx : ⋆. f x) to 3 either results in a cast error, or produces 1, nothing else.

We defined contextual equivalence [Morris Jr 1969] to formally characterize that two open

expressions have the same behavior. The definition of contextual equivalence requires a notion

of well-typed expression contexts C, written C : (Ψ ⊢B A) ⇝ (Ψ′ ⊢B A
′). The definitions

of contexts and context typing are standard and thus omitted. As is common, we first define

contextual approximation. In our setting, we need to relax the notion of contextual approximation

of λB [Ahmed et al. 2017] to also take into consideration of cast errors. We write Ψ ⊢ s1 ⪯ctx s2 : A
to say that s2 mimics the behaviour of s1 at type A in the sense that whenever a program containing

s1 reduces to an integer, replacing it with s2 either reduces to the same integer, or emits a cast error.

We restrict the program results to integers to eliminate the role of types in values. If it is not an

integer, it is always possible to embed it into another context that reduces to an integer. Then we

write Ψ ⊢ s1 ⋍ctx s2 : A to say s1 and s2 are contextually equivalent, that is, they approximate each

other.

Definition 5.1 (Contextual Approximation and Equivalence up to Cast Errors).

Ψ ⊢ s1 ⪯ctx s2 : A ≜ Ψ ⊢B s1 : A ∧ Ψ ⊢B s2 : A ∧
for all C. C : (Ψ ⊢B A) ⇝ (• ⊢B Int) =⇒
C{s1} ⇓ n =⇒ (C{s2} ⇓ n ∨ C{s2} ⇓ blame)

Ψ ⊢ s1 ⋍ctx s2 : A ≜ Ψ ⊢ s1 ⪯ctx s2 : A ∧ Ψ ⊢ s2 ⪯ctx s1 : A

Before presenting the formal definition of coherence, first we observe that after erasing types and

casts, all translations of the same expression are exactly the same. This is easy to see by examining

each elaboration rule. We use ⌊s⌋ to denote an expression in λB after erasure.

Lemma 5.2. If Ψ ⊢ e : A⇝ s1, and Ψ ⊢ e : A⇝ s2, then ⌊s1⌋ ≡α ⌊s2⌋.

Second, at runtime, the only role of types and casts is to emit cast errors caused by type mismatch.

Therefore, By Lemma 5.2 coherence follows as a corollary:

Lemma 5.3 (Coherence up to cast errors). For any expression e such that Ψ ⊢ e : A⇝ s1 and
Ψ ⊢ e : A⇝ s2, we have Ψ ⊢ s1 ⋍ctx s2 : A.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:20 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

A ⊑ B Type precision

⋆ ⊑ A
L-Unknown

Int ⊑ Int
L-Nat

A1 ⊑ B1 A2 ⊑ B2

A1 → A2 ⊑ B1 → B2
L-Arrow

a ⊑ a
L-TVar

A ⊑ B

∀a.A ⊑ ∀a.B
L-Forall

e1 ⊑ e2 Term precision

e ⊑ e
L-Refl

A1 ⊑ A2 e1 ⊑ e2

λx : A1. e1 ⊑ λx : A2. e2
L-LamAnn

e1 ⊑ e3 e2 ⊑ e4

e1 e2 ⊑ e3 e4
L-App

Ψ1 p Ψ2 ⊢ e1 ⊑B e2 Term less precision in λB

x ⊑B x
L-Var

n ⊑B n
L-Nat

A1 ⊑ A2 e1 ⊑
B e2

λx : A1. e1 ⊑
B λx : A2. e2

L-LamAnn

e1 ⊑
B e2

Λa.e1 ⊑
B Λa.e2

L-LamAnn

e1 ⊑
B e3 e2 ⊑

B e4

e1 e2 ⊑
B e3 e4

L-App

A1 ⊑ B1 A2 ⊑ B2 e1 ⊑
B e2

⟨A1 ↪→ A2⟩ e1 ⊑
B ⟨B1 ↪→ B2⟩ e2

L-Cast

Fig. 10. Less precision

5.3 Correctness Criteria
Siek et al. [2015] present a set of properties, the refined criteria, that a well-designed gradual typing

calculus must have. Among all the criteria, those related to the static aspects of gradual typing are

well summarized by Cimini and Siek [2016]. Here we review those criteria and adapt them to our

notation. We have proved in Coq that our type system satisfies all these criteria.

Lemma 4 (Correctness Criteria).

• Conservative extension: for all static Ψ, e, and A,
– if Ψ ⊢OL e : A, then there exists B, such that Ψ ⊢ e : B, and Ψ ⊢ B <: A.
– if Ψ ⊢ e : A, then Ψ ⊢OL e : A
• Monotonicity w.r.t. precision: for all Ψ, e, e′,A, if Ψ ⊢ e : A, and e′ ⊑ e, then Ψ ⊢ e′ : B, and
B ⊑ A for some B.

• Type Preservation of cast insertion: for all Ψ, e,A, if Ψ ⊢ e : A, then Ψ ⊢ e : A ⇝ s , and
Ψ ⊢B s : A for some s .
• Monotonicity of cast insertion: for all Ψ, e1, e2, s1, s2,A, if Ψ ⊢ e1 : A ⇝ s1, and Ψ ⊢ e2 :

A⇝ s2, and e1 ⊑ e2, then Ψ p Ψ ⊢ s1 ⊑B s2.

The first criterion states that the gradual type system should be a conservative extension of the

original system. In other words, a static program is typeable in the Odersky-Läufer type system

if and only if it is typeable in the gradual type system. A static program is one that does not

contain any type ⋆10. However since our gradual type system does not have the subsumption rule,

it produces more general types.

10
Note that the term static has appeared several times with different meanings.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:21

The second criterion states that if a typeable expression loses some type information, it remains

typeable. This criterion depends on the definition of the precision relation, written A ⊑ B, which is

given in Fig. 10. The relation intuitively captures a notion of types containing more or less unknown

types (⋆). The precision relation over types lifts to programs, i.e., e1 ⊑ e2 means that e1 and e2 are
the same program except that e1 has more unknown types.

The first two criteria are fundamental to gradual typing. They explain for example why these

two programs (λx : Int. x + 1) and (λx : ⋆. x + 1) are typeable, as the former is typeable in the

Odersky-Läufer type system and the latter is a less-precise version of it.

The last two criteria relate the compilation to the cast calculus. The third criterion is essentially

the same as T heorem 2, given that a target expression should always exist, which can be easily

seen from Fig. 9. The last criterion ensures that the translation must be monotonic over the

precision relation ⊑. Ahmed et al. [2011] does not include a formal definition of precision, but an

approximation definition and a simulation relation. Here we adapt the simulation relation as the

precision, and a subset of it that is used in our system is given at the bottom of Fig. 10.

The Dynamic Gradual Guarantee. Besides the static criteria, there is also a criterion concerning

the dynamic semantics, known as the dynamic gradual guarantee [Siek et al. 2015].

Definition 5.4 (Dynamic Gradual Guarantee). Suppose e
′ ⊑ e, and • ⊢ e : A ⇝ s and • ⊢ e′ :

A
′ ⇝ s ′,

• if s ⇓ v , then s ′ ⇓ v ′ and v ′ ⊑ v . If s ⇑ then s ′ ⇑.
• if s ′ ⇓ v ′, then s ⇓ v where v ′ ⊑ v , or s ⇓ blame. If s ′ ⇑ then s ⇑ or s ⇓ blame.

The first part of the dynamic gradual guarantee says that if a gradually typed program evaluates

to a value, then making type annotations less precise always produces a program that evaluates to

an less precise value. Unfortunately, coherence up to cast errors in the declarative system breaks

the dynamic gradual guarantee. For instance:

(λf : ∀a.a → Int. λx : Int. f x) (λx . 1) 3 (λf : ∀a.a → Int. λx : ⋆. f x) (λx . 1) 3

The left one evaluates to 1, whereas its less precise version (right) will give a cast error if a is

instantiated to Bool for example. In Section 9, we will present an extension of the declarative system

that will alleviate the issue.

6 ALGORITHMIC TYPE SYSTEM
In this section we give a bidirectional account of the algorithmic type system that implements

the declarative specification. The algorithm is largely inspired by the algorithmic bidirectional

system of Dunfield and Krishnaswami [2013] (henceforth DK system). However our algorithmic

system differs from theirs in three aspects: (1) the addition of the unknown type ⋆; (2) the use of
the matching judgment; and 3) the approach of gradual inference only producing static types [Garcia

and Cimini 2015]. We then prove that our algorithm is both sound and complete with respect

to the declarative type system. Full proofs can be found in the appendix. We also provide an

implementation, which can be found in the supplementary materials.
11

Algorithmic Contexts. Figure 11 shows the syntax of the algorithmic system. A noticeable differ-

ence are the algorithmic contexts Γ, which are represented as an ordered list containing declarations

of type variables a and term variables x : A. Unlike declarative contexts, algorithmic contexts also

contain declarations of existential type variables â, which can be either unsolved (written â) or
solved to some monotype (written â = τ). Finally, algorithmic contexts include a marker ▶â (read

11
Note that the proofs in the appendix and the implementation are for the extended system in Section 9, which subsumes

the algorithmic system presented in this section.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:22 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Expressions e ::= x | n | λx : A. e | λx . e | e1 e2 | e : A | let x = e1 in e2
Types A,B ::= Int | a | â | A→ B | ∀a.A | ⋆
Monotypes τ ,σ ::= Int | a | â | τ → σ
Algorithmic Contexts Γ,∆,Θ ::= • | Γ, x : A | Γ, a | Γ, â | Γ, â = τ | Γ,▶â
Complete Contexts Ω ::= • | Ω, x : A | Ω, a | Ω, â = τ | Ω,▶â

Fig. 11. Syntax of the algorithmic system

Γ ⊢ A (Well-formedness of types)

Γ ⊢ Int
ad-int

Γ ⊢ ⋆
ad-unknown

Γ[a] ⊢ a
ad-tvar

Γ[â] ⊢ â
ad-evar

Γ[â = τ] ⊢ â
ad-solved

Γ ⊢ A Γ ⊢ B

Γ ⊢ A→ B
ad-arrow

Γ, a ⊢ A

Γ ⊢ ∀a.A
ad-forall

⊢ Γ (Well-formedness of algorithmic contexts)

⊢ •
wf-empty

⊢ Γ x < fv(Γ) Γ ⊢ A

⊢ Γ, x : A
wf-var

⊢ Γ a < fv(Γ)

⊢ Γ, a
wf-tvar

⊢ Γ â < fv(Γ)

⊢ Γ, â
wf-evar

⊢ Γ â < fv(Γ) Γ ⊢ τ

⊢ Γ, â = τ
wf-solved

⊢ Γ ▶â< fv(Γ)

⊢ Γ,▶â
wf-marker

Fig. 12. Well-formedness of types and contexts in the algorithmic system

“marker â”), which is used to delineate existential variables created by the algorithm. We will have

more to say about markers when we examine the rules. Complete contexts Ω are the same as

contexts, except that they contain no unsolved variables.

Apart from expressions in the declarative system, we add annotated expressions e : A. The
well-formedness judgments for types and contexts are shown in Fig. 12.

Notational convenience. Following DK system, we use contexts as substitutions on types. We write

[Γ]A to mean Γ applied as a substitution to typeA. We also use a hole notation, which is useful when

manipulating contexts by inserting and replacing declarations in the middle. The hole notation is

used extensively in proving soundness and completeness. For example, Γ[Θ] means Γ has the form

ΓL,Θ, ΓR ; if we have Γ[â] = (ΓL, â, ΓR), then Γ[â = τ] = (ΓL, â = τ , ΓR). Occasionally, we will see a
context with two ordered holes, e.g., Γ = Γ0[Θ1][Θ2] means Γ has the form ΓL,Θ1, ΓM ,Θ2, ΓR .

Input and output contexts. The algorithmic system, comparedwith the declarative system, includes

similar judgment forms, except that we replace the declarative contextΨwith an algorithmic context

Γ (the input context), and add an output context ∆ after a backward turnstile, e.g., Γ ⊢ A ≲ B ⊣ ∆
is the judgment form for the algorithmic consistent subtyping. All algorithmic rules manipulate

input and output contexts in a way that is consistent with the notion of context extension, which

will be described in Section 7.1.

We start with the explanation of the algorithmic consistent subtyping as it involves manipulating

existential type variables explicitly (and solving them if possible).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:23

Γ ⊢ A ≲ B ⊣ ∆ (Under input context Γ, A is a consistent subtype of B, with output context ∆)

Γ[a] ⊢ a ≲ a ⊣ Γ[a]
as-tvar

Γ ⊢ Int ≲ Int ⊣ Γ
as-int

Γ[â] ⊢ â ≲ â ⊣ Γ[â]
as-evar

Γ ⊢ ⋆ ≲ A ⊣ Γ
as-unknownL

Γ ⊢ A ≲ ⋆ ⊣ Γ
as-unknownR

Γ ⊢ B1 ≲ A1 ⊣ Θ Θ ⊢ [Θ]A2 ≲ [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2 ≲ B1 → B2 ⊣ ∆
as-arrow

Γ, a ⊢ A ≲ B ⊣ ∆, a,Θ

Γ ⊢ A ≲ ∀a. B ⊣ ∆
as-forallR

Γ,▶â , â ⊢ A[a 7→ â] ≲ B ⊣ ∆,▶â ,Θ

Γ ⊢ ∀a.A ≲ B ⊣ ∆
as-forallL

â < fv(A) Γ[â] ⊢ â ⪅ A ⊣ ∆

Γ[â] ⊢ â ≲ A ⊣ ∆
as-instL

â < fv(A) Γ[â] ⊢ A ⪅ â ⊣ ∆

Γ[â] ⊢ A ≲ â ⊣ ∆
as-instR

Fig. 13. Algorithmic consistent subtyping

6.1 Algorithmic Consistent Subtyping
Figure 13 presents the rules of algorithmic consistent subtyping Γ ⊢ A ≲ B ⊣ ∆, which says that

under input context Γ, A is a consistent subtype of B, with output context ∆. The first five rules do
not manipulate contexts, but illustrate how contexts are propagated.

Rules as-tvar and as-int do not involve existential variables, so the output contexts remain

unchanged. Rule as-evar says that any unsolved existential variable is a consistent subtype of

itself. The output is still the same as the input context as the rule gives no clue as to what is the

solution of that existential variable. Rules as-unknownL and as-unknownR are the counterparts

of rules cs-unknownL and cs-unknownR.

Rule as-arrow is a natural extension of its declarative counterpart. The output context of the

first premise is used by the second premise, and the output context of the second premise is the

output context of the conclusion. Note that we do not simply check A2 ≲ B2, but apply Θ (the

input context of the second premise) to both types (e.g., [Θ]A2). This is to maintain an important

invariant: whenever Γ ⊢ A ≲ B ⊣ ∆ holds, the types A and B are fully applied under input context

Γ (they contain no existential variables already solved in Γ). The same invariant applies to every

algorithmic judgment.

Rule as-forallR, similar to the declarative rule cs-forallR, adds a to the input context. Note

that the output context of the premise allows additional existential variables to appear after the

type variable a, in a trailing context Θ. These existential variables could depend on a; since a goes

out of scope in the conclusion, we need to drop them from the concluding output, resulting in ∆.
The next rule is essential to eliminating the guessing work. Instead of guessing a monotype τ out

of thin air, rule as-forallL generates a fresh existential variable â, and replaces a with â in the

body A. The new existential variable â is then added to the input context, just before the marker

▶â . The output context (∆,▶â ,Θ) allows additional existential variables to appear after ▶â in Θ.
For the same reasons as in rule as-forallR, we drop them from the output context. A central idea

behind these two rules is that we defer the decision of picking a monotype for a type variable, and

hope that it could be solved later when we have more information at hand. As a side note, when

both types are universal quantifiers, then either rule as-forallR or as-forallL could be tried. In

practice, one can apply rule as-forallR eagerly as it is invertible.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:24 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Γ ⊢ â ⪅ A ⊣ ∆ (Under input context Γ, instantiate â such that â ≲ A, with output context ∆)

Γ ⊢ τ

Γ, â, Γ′ ⊢ â ⪅ τ ⊣ Γ, â = τ , Γ′
instl-solve

Γ[â] ⊢ â ⪅ ⋆ ⊣ Γ[â]
instl-solveU

Γ[â][b̂] ⊢ â ⪅ b̂ ⊣ Γ[â][b̂ = â]
instl-reach

Γ[â], b ⊢ â ⪅ B ⊣ ∆, b,Θ

Γ[â] ⊢ â ⪅ ∀b. B ⊣ ∆
instl-forallR

Γ[â2, â1, â = â1 → â2] ⊢ A1 ⪅ â1 ⊣ Θ Θ ⊢ â2 ⪅ [Θ]A2 ⊣ ∆

Γ[â] ⊢ â ⪅ A1 → A2 ⊣ ∆
instl-arr

Γ ⊢ A ⪅ â ⊣ ∆ (Under input context Γ, instantiate â such that A ≲ â, with output context ∆)

Γ ⊢ τ

Γ, â, Γ′ ⊢ τ ⪅ â ⊣ Γ, â = τ , Γ′
instr-solve

Γ[â] ⊢ ⋆ ⪅ â ⊣ Γ[â]
instr-solveU

Γ[â][b̂] ⊢ b̂ ⪅ â ⊣ Γ[â][b̂ = â]
instr-reach

Γ[â],▶b̂ , b̂ ⊢ B[b 7→ b̂] ⪅ â ⊣ ∆,▶b̂ ,Θ

Γ[â] ⊢ ∀b. B ⪅ â ⊣ ∆
instr-forallL

Γ[â2, â1, â = â1 → â2] ⊢ â1 ⪅ A1 ⊣ Θ Θ ⊢ [Θ]A2 ⪅ â2 ⊣ ∆

Γ[â] ⊢ A1 → A2 ⪅ â ⊣ ∆
instr-arr

Fig. 14. Algorithmic instantiation

The last two rules (as-instL and as-instR) are specific to the algorithm, thus having no counter-

parts in the declarative version. They both check consistent subtyping with an unsolved existential

variable on one side and an arbitrary type on the other side. Apart from checking that the existential

variable does not occur in the type A, both rules do not directly solve the existential variables, but

leave the real work to the instantiation judgment.

6.2 Instantiation
Two symmetric judgments Γ ⊢ â ⪅ A ⊣ ∆ and Γ ⊢ A ⪅ â ⊣ ∆ defined in Fig. 14 instantiate unsolved

existential variables. They read “under input context Γ, instantiate â to a consistent subtype (or

supertype) of A, with output context ∆”. The judgments are extended naturally from DK system,

whose original inspiration comes from Cardelli [1993]. Since these two judgments are mutually

defined, we discuss them together.

Rule instl-solve is the simplest one – when an existential variable meets a monotype – where

we simply set the solution of â to the monotype τ in the output context. We also need to check that

the monotype τ is well-formed under the prefix context Γ.
Rule instl-solveU is similar to rule as-unknownR in that we put no constraint

12
on â when it

meets the unknown type⋆. This design decision reflects the point that type inference only produces

static types [Garcia and Cimini 2015].

Rule instl-reach deals with the situation where two existential variables meet. Recall that

Γ[â][b̂] denotes a context where some unsolved existential variable â is declared before b̂. In this

situation, the only logical thing we can do is to set the solution of one existential variable to

12
As we will see in Section 9 where we present a more refined system, the “no constraint” statement is not entirely true.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:25

Γ ⊢ e ⇒ A ⊣ ∆ (Under input context Γ, e infers output type A, with output context ∆)

(x : A) ∈ Γ

Γ ⊢ x ⇒ A ⊣ Γ
inf-var

Γ ⊢ n⇒ Int ⊣ Γ
inf-int

Γ ⊢ A Γ ⊢ e ⇐ A ⊣ ∆

Γ ⊢ e : A⇒ A ⊣ ∆
inf-anno

Γ ⊢ A Γ, b̂, x : A ⊢ e ⇐ b̂ ⊣ ∆, x : A,Θ

Γ ⊢ λx : A. e ⇒ A→ b̂ ⊣ ∆
inf-lamann

Γ, â, b̂, x : â ⊢ e ⇐ b̂ ⊣ ∆, x : â,Θ

Γ ⊢ λx . e ⇒ â → b̂ ⊣ ∆
inf-lam

Γ ⊢ e1 ⇒ A ⊣ Θ1 Θ1, â, x : A ⊢ e2 ⇐ â ⊣ ∆, x : A,Θ2

Γ ⊢ let x = e1 in e2 ⇒ â ⊣ ∆
inf-let

Γ ⊢ e1 ⇒ A ⊣ Θ1 Θ1 ⊢ [Θ1]A ▷A1 → A2 ⊣ Θ2 Θ2 ⊢ e2 ⇐ [Θ2]A1 ⊣ ∆

Γ ⊢ e1 e2 ⇒ A2 ⊣ ∆
inf-app

Γ ⊢ e ⇐ A ⊣ ∆ (Under input context Γ, e checks against input type A, with output context ∆)

Γ, x : A ⊢ e ⇐ B ⊣ ∆, x : A,Θ

Γ ⊢ λx . e ⇐ A→ B ⊣ ∆
chk-lam

Γ, a ⊢ e ⇐ A ⊣ ∆, a,Θ

Γ ⊢ e ⇐ ∀a.A ⊣ ∆
chk-gen

Γ ⊢ e ⇒ A ⊣ Θ Θ ⊢ [Θ]A ≲ [Θ]B ⊣ ∆

Γ ⊢ e ⇐ B ⊣ ∆
chk-sub

Γ ⊢ A ▷A1 → A2 ⊣ ∆ (Under input context Γ, A matches output type A1 → A2, with output context ∆)

Γ, â ⊢ A[a 7→ â] ▷A1 → A2 ⊣ ∆

Γ ⊢ ∀a.A ▷A1 → A2 ⊣ ∆
am-forall

Γ ⊢ A1 → A2 ▷A1 → A2 ⊣ Γ
am-arr

Γ ⊢ ⋆ ▷ ⋆→ ⋆ ⊣ Γ
am-unknown

Γ[â] ⊢ â ▷ â1 → â2 ⊣ Γ[â1, â2, â = â1 → â2]
am-var

Fig. 15. Algorithmic typing

the other one, depending on which one is declared before. For example, in the output context of

rule instl-reach, we have b̂ = â because in the input context, â is declared before b̂.
Rule instl-forallR is the instantiation version of rule as-forallR. Since our system is pred-

icative, â cannot be instantiated to ∀b. B, but we can decompose ∀b. B in the same way as in

rule as-forallR. Rule instr-forallL is the instantiation version of rule as-forallL.

Rule instl-arr applies when â meets an arrow type. It follows that the solution must also be an

arrow type. This is why, in the first premise, we generate two fresh existential variables â1 and â2,
and insert them just before â in the input context, so that we can solve â to â1 → â2. Note that the
first premise A1 ⪅ â1 switches to the other instantiation judgment.

6.3 Algorithmic Typing
We now turn to the algorithmic typing rules in Fig. 15. Because general type inference for System F is

undecidable [Wells 1999], our algorithmic system uses bidirectional type checking to accommodate

(first-class) polymorphism. Traditionally, two modes are employed in bidirectional systems: the

checking mode Γ ⊢ e ⇐ A ⊣ Θ, which takes a term e and a type A as input, and ensures that the

term e checks against A; the inference mode Γ ⊢ e ⇒ A ⊣ Θ, which takes a term e and produces a

type A. We first discuss rules in the inference mode.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:26 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Rules inf-var and inf-int do not generate any new information and simply propagate the input

context. Rule inf-anno is standard, switching to the checking mode in the premise.

In rule inf-lamann, we generate a fresh existential variable b̂ for the function codomain, and

check the function body against b̂. Note that it is tempting to write Γ, x : A ⊢ e ⇒ B ⊣ ∆, x : A,Θ
as the premise (in the hope of better matching its declarative counterpart rule lamann), which

has a subtle consequence. Consider the expression λx : Int. λy. y. Under the new premise, this is

untypable because of • ⊢ λx : Int. λy. y ⇒ Int → â → â ⊣ • where â is not found in the output

context. This explains why we put b̂ before x : A so that it remains in the output context ∆. Rule inf-
lam, which corresponds to rule lam, one of the guessing rules, is similar to rule inf-lamann. As

with the other algorithmic rules that eliminate guessing, we create new existential variables â (for

function domain) and b̂ (for function codomain) and check the function body against b̂. Rule inf-let
is similar to rule inf-lamann.

Algorithmic Matching. Rule inf-app (which differs significantly from that of [Dunfield and

Krishnaswami 2013]) deserves attention. It relies on the algorithmic matching judgment Γ ⊢
A ▷ A1 → A2 ⊣ ∆. The matching judgment algorithmically synthesizes an arrow type from an

arbitrary type. Rule am-forall replaces a with a fresh existential variable â, thus eliminating

guessing. Rules am-arr and am-unknown correspond directly to the declarative rules. Rule am-

var, which has no corresponding declarative version, is similar to rule instl-arr/instr-arr: we

create â1 and â2 and solve â to â1 → â2 in the output context.

Back to the rule inf-app. This rule first infers the type of e1, producing an output context Θ1.

Then it appliesΘ1 toA and goes into the matching judgment, which delivers an arrow typeA1 → A2

and another output context Θ2. Θ2 is used as the input context when checking e2 against [Θ2]A1,

where we go into the checking mode.

Rules in the checking mode are quite standard. Rule chk-lam checks against A→ B. Rule chk-
gen, like the declarative rule gen, adds a type variable a to the input context. Rule chk-sub uses

the algorithmic consistent subtyping judgment.

6.4 Decidability
Our algorithmic system is decidable. It is not at all obvious to see why this is the case, as many rules

are not strictly structural (e.g., many rules have [Γ]A in the premises). This implies that we need a

more sophisticated measure to support the argument. Since the typing rules (Fig. 15) depend on the

consistent subtyping rules (Fig. 13), which in turn depends on the instantiation rules (Fig. 14), to

show the decidability of the typing judgment, we need to show that the instantiation and consistent

subtyping judgments are decidable. The proof strategy mostly follows that of the DK system. Here

only highlights of the proofs are given; the full proofs can be found in Appendix C.

Decidability of Instantiation. The basic idea is that we need to show A in the instantiation

judgments Γ ⊢ â ⪅ A ⊣ ∆ and Γ ⊢ A ⪅ â ⊣ ∆ always gets smaller. Most of the rules are structural

and thus easy to verify (e.g., rule instl-forallR); the non-trivial cases are rules instl-arr and

instr-arr where context applications appear in the premises. The key observation there is that

the instantiation rules preserve the size of (substituted) types. The formal statement of decidability

of instantiation needs a few pre-conditions: assuming â is unsolved in the input context Γ, that A
is well-formed under the context Γ, that A is fully applied under the input context Γ ([Γ]A = A),
and that â does not occur in A. Those conditions are actually met when instantiation is invoked:

rule chk-sub applies the input context, and the subtyping rules apply input context when needed.

Theorem 6.1 (Decidability of Instantiation). If Γ = Γ0[â] and Γ ⊢ A such that [Γ]A = A and

â < fv(A) then:

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:27

(1) Either there exists ∆ such that Γ ⊢ â ⪅ A ⊣ ∆, or not.
(2) Either there exists ∆ such that Γ ⊢ A ⪅ â ⊣ ∆, or not.

Decidability of Algorithmic Consistent Subtyping. Proving decidability of the algorithmic con-

sistent subtyping is a bit more involved, as the induction measure consists of several parts. We

measure the judgment Γ ⊢ A ≲ B ⊣ ∆ lexicographically by

(M1) the number of ∀-quantifiers in A and B;

(M2) the number of unknown types in A and B;

(M3) |unsolved(Γ) |: the number of unsolved existential variables in Γ;
(M4) |Γ ⊢ A| + |Γ ⊢ B |.

Notice that because of our gradual setting, we also need to measure the number of unknown types

(M2). This is a key difference from the DK system. We refer the reader to Appendix C for more

details. For (M4), we use contextual size—the size of well-formed types under certain contexts,

which penalizes solved variables (*).

Definition 6.2 (Contextual Size).

|Γ ⊢ Int| = 1

|Γ ⊢ ⋆| = 1

|Γ ⊢ a| = 1

|Γ ⊢ â | = 1

|Γ[â = τ] ⊢ â | = 1 + |Γ[â = τ] ⊢ τ | (∗)
|Γ ⊢ ∀a.A| = 1 + |Γ, a ⊢ A|
|Γ ⊢ A→ B | = 1 + |Γ ⊢ A| + |Γ ⊢ B |

Theorem 6.3 (Decidability of Algorithmic Consistent Subtyping). Given a context Γ and

types A, B such that Γ ⊢ A and Γ ⊢ B and [Γ]A = A and [Γ]B = B, it is decidable whether there exists
∆ such that Γ ⊢ A ≲ B ⊣ ∆.

Decidability of Algorithmic Typing. Similar to proving decidability of algorithmic consistent

subtyping, the key is to come up with a correct measure. Since the typing rules depend on the

matching judgment, we first show decidability of the algorithmic matching.

Lemma 6.4 (Decidability of Algorithmic Matching). Given a context Γ and a type A it is

decidable whether there exist types A1, A2 and a context ∆ such that Γ ⊢ A ▷A1 → A2 ⊣ ∆.

Now we are ready to show decidability of typing. The proof is obtained by induction on the lexi-

cographically ordered triple: size of e , typing judgment (where the inference mode⇒ is considered

smaller than the checking mode⇐) and contextual size.〈
e,
⇒

|Γ ⊢ A|
〉

⇐,

The above measure is much simpler than the corresponding one in the DK system, where they also

need to consider the application judgment together with the inference and checking judgments.

This shows another benefit (besides the independence from typing) of adopting the matching

judgment.

Theorem 6.5 (Decidability of Algorithmic Typing).

(1) Inference: Given a context Γ and a term e , it is decidable whether there exist a type A and a

context ∆ such that Γ ⊢ e ⇒ A ⊣ ∆.
(2) Checking: Given a context Γ, a term e and a type B such that Γ ⊢ B, it is decidable whether there

exists a context ∆ such that Γ ⊢ e ⇐ B ⊣ ∆.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:28 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Γ −→ ∆ (Context extension)

• −→ •
ext-id

Γ −→ ∆ [∆]A = [∆]A′

Γ, x : A −→ ∆, x : A′
ext-var

Γ −→ ∆

Γ, a −→ ∆, a
ext-tvar

Γ −→ ∆

Γ, â −→ ∆, â
ext-evar

Γ −→ ∆ [∆]τ = [∆]τ ′

Γ, â = τ −→ ∆, â = τ ′
ext-solved

Γ −→ ∆

Γ, â −→ ∆, â = τ
ext-solve

Γ −→ ∆

Γ −→ ∆, â
ext-add

Γ −→ ∆

Γ −→ ∆, â = τ
ext-addSolve

Γ −→ ∆

Γ,▶â−→ ∆,▶â
ext-marker

Fig. 16. Context extension

7 SOUNDNESS AND COMPLETENESS
To be confident that our algorithmic type system and the declarative type system agree with each

other, we need to prove that the algorithmic rules are sound and complete with respect to the

declarative specification. Before we give the formal statements of the soundness and completeness

theorems, we need a meta-theoretical device, called context extension [Dunfield and Krishnaswami

2013], to capture a notion of information increase from input contexts to output contexts.

7.1 Context Extension
A context extension judgment Γ −→ ∆ reads “Γ is extended by ∆”. Intuitively, this judgment says

that ∆ has at least as much information as Γ: some unsolved existential variables in Γ may be

solved in ∆. The full inductive definition can be found Fig. 16. We refer the reader to Dunfield and

Krishnaswami [2013, Section 4] for further explanation of context extension.

7.2 Soundness
Roughly speaking, soundness of the algorithmic system says that given a derivation of an algo-

rithmic judgment with input context Γ, output context ∆, and a complete context Ω that extends

∆, applying Ω throughout the given algorithmic judgment should yield a derivable declarative

judgment. For example, let us consider an algorithmic typing judgment • ⊢ λx . x ⇒ â → â ⊣ â,
and any complete context, say, Ω = (â = Int), then applying Ω to the above judgment yields

• ⊢ λx . x : Int→ Int, which is derivable in the declarative system.

However there is one complication: applying Ω to the algorithmic expression does not necessarily

yield a typable declarative expression. For example, by rule chk-lam we have λx . x ⇐ (∀a. a→
a) → (∀a. a→ a), but λx . x itself cannot have type (∀a. a→ a) → (∀a. a→ a) in the declarative

system. To circumvent that, we add an annotation to the lambda abstraction, resulting in λx :

(∀a. a→ a). x, which is typeable in the declarative system with the same type. To relate λx . x and

λx : (∀a. a→ a). x, we erase all annotations on both expressions.

Definition 7.1 (Type annotation erasure). The erasure function is denoted as ⌊·⌋, and defined as

follows:

⌊x⌋ = x ⌊n⌋ = n
⌊λx : A. e⌋ = λx . ⌊e⌋ ⌊λx . e⌋ = λx . ⌊e⌋
⌊e1 e2⌋ = ⌊e1⌋ ⌊e2⌋ ⌊e : A⌋ = ⌊e⌋

Theorem 7.2 (Instantiation Soundness). Given ∆ −→ Ω and [Γ]A = A and â < fv(A):

(1) If Γ ⊢ â ⪅ A ⊣ ∆ then [Ω]∆ ⊢ [Ω]â ≲ [Ω]A.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:29

(2) If Γ ⊢ A ⪅ â ⊣ ∆ then [Ω]∆ ⊢ [Ω]A ≲ [Ω]â.

Notice that the declarative judgment uses [Ω]∆, an operation that applies a complete context Ω to

the algorithmic context ∆, essentially plugging in all known solutions and removing all declarations

of existential variables (both solved and unsolved), resulting in a declarative context.

With instantiation soundness, next we show that the algorithmic consistent subtyping is sound:

Theorem 7.3 (Soundness of Algorithmic Consistent Subtyping). If Γ ⊢ A ≲ B ⊣ ∆ where

[Γ]A = A and [Γ]B = B and ∆ −→ Ω then [Ω]∆ ⊢ [Ω]A ≲ [Ω]B.

Finally the soundness theorem of algorithmic typing is:

Theorem 7.4 (Soundness of Algorithmic Typing). Given ∆ −→ Ω:

(1) If Γ ⊢ e ⇒ A ⊣ ∆ then ∃e′ such that [Ω]∆ ⊢ e′ : [Ω]A and ⌊e⌋ = ⌊e′⌋.
(2) If Γ ⊢ e ⇐ A ⊣ ∆ then ∃e′ such that [Ω]∆ ⊢ e′ : [Ω]A and ⌊e⌋ = ⌊e′⌋.

7.3 Completeness
Completeness of the algorithmic system is the reverse of soundness: given a declarative judgment

of the form [Ω]Γ ⊢ [Ω] . . . , we want to get an algorithmic derivation of Γ ⊢ · · · ⊣ ∆. It turns out that
completeness is a bit trickier to state in that the algorithmic rules generate existential variables on

the fly, so ∆ could contain unsolved existential variables that are not found in Γ, nor in Ω. Therefore
the completeness proof must produce another complete context Ω′ that extends both the output

context ∆, and the given complete context Ω. As with soundness, we need erasure to relate both

expressions.

Theorem 7.5 (InstantiationCompleteness). Given Γ −→ Ω andA = [Γ]A and â < unsolved(Γ)
and â < fv(A):

(1) If [Ω]Γ ⊢ [Ω]â ≲ [Ω]A then there are ∆,Ω′ such that Ω −→ Ω′ and ∆ −→ Ω′ and Γ ⊢ â ⪅
A ⊣ ∆.

(2) If [Ω]Γ ⊢ [Ω]A ≲ [Ω]â then there are ∆,Ω′ such that Ω −→ Ω′ and ∆ −→ Ω′ and Γ ⊢ A ⪅
â ⊣ ∆.

Next is the completeness of consistent subtyping:

Theorem 7.6 (Generalized Completeness of Consistent Subtyping). If Γ −→ Ω and Γ ⊢ A
and Γ ⊢ B and [Ω]Γ ⊢ [Ω]A ≲ [Ω]B then there exist ∆ and Ω′ such that ∆ −→ Ω′ and Ω −→ Ω′ and
Γ ⊢ [Γ]A ≲ [Γ]B ⊣ ∆.

We prove that the algorithmic matching is complete with respect to the declarative matching:

Theorem 7.7 (Matching Completeness). Given Γ −→ Ω and Γ ⊢ A, if [Ω]Γ ⊢ [Ω]A ▷ A1 → A2

then there exist ∆, Ω′, A′
1
and A′

2
such that Γ ⊢ [Γ]A ▷A′

1
→ A′

2
⊣ ∆ and ∆ −→ Ω′ and Ω −→ Ω′ and

A1 = [Ω′]A′
1
and A2 = [Ω′]A′

2
.

Finally here is the completeness theorem of the algorithmic typing:

Theorem 7.8 (Completeness of Algorithmic Typing). Given Γ −→ Ω and Γ ⊢ A, if [Ω]Γ ⊢ e : A
then there exist ∆, Ω′, A′ and e ′ such that ∆ −→ Ω′ and Ω −→ Ω′ and Γ ⊢ e ′ ⇒ A′ ⊣ ∆ and

A = [Ω′]A′ and ⌊e⌋ = ⌊e ′⌋.

8 SIMPLE EXTENSIONS AND VARIANTS
This section considers two simple variations on the presented system. The first variation extends

the system with a top type, while the second variation considers a more declarative formulation

using a subsumption rule.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:30 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

8.1 Top Types
We argued that our definition of consistent subtyping (Definition 4.1) generalizes the original

definition by Siek and Taha [2007]. We have shown its applicability to polymorphic types, for

which Siek and Taha [2007] approach cannot be extended naturally. To strengthen our argument,

we show how to extend our approach to Top types, which is also not supported by Siek and Taha

[2007] approach.

Consistent Subtyping with ⊤. In order to preserve the orthogonality between subtyping and

consistency, we require ⊤ to be a common supertype of all static types, as shown in rule S-Top.

This rule might seem strange at first glance, since even if we remove the requirement A static,
the rule still seems reasonable. However, an important point is that, because of the orthogonality

between subtyping and consistency, subtyping itself should not contain a potential information

loss! Therefore, subtyping instances such as ⋆ <: ⊤ are not allowed. For consistency, we add the

rule that ⊤ is consistent with ⊤, which is actually included in the original reflexive rule A ∼ A. For
consistent subtyping, every type is a consistent subtype of ⊤, for example, Int→ ⋆ ≲ ⊤.

A static

Ψ ⊢ A <: ⊤
S-Top ⊤ ∼ ⊤

Ψ ⊢ A ≲ ⊤
CS-Top

It is easy to verify that Definition 4.1 is still equivalent to that in Fig. 8 extended with rule CS-Top.

That is, T heorem 1 holds:

Proposition 8.1 (Extension with ⊤). Ψ ⊢ A ≲ B ⇔ Ψ ⊢ A <: C , C ∼ D, Ψ ⊢ D <: B, for some

C,D.

We extend the definition of concretization (Definition 4.3) with ⊤ by adding another equation

γ (⊤) = {⊤}. Note that Castagna and Lanvin [2017] also have this equation in their calculus. It is

easy to verify that Corollary 4.5 still holds:

Proposition 8.2 (Eqivalent to AGT on ⊤). A ≲ B if only if A <̃: B.

Siek and Taha’s Definition of Consistent Subtyping Does Not Work for ⊤. As with the analysis in

Section 4.2, Int→ ⋆ ≲ ⊤ only holds when we first apply consistency, then subtyping. However

we cannot find a type A such that Int → ⋆ <: A and A ∼ ⊤. The following diagram depicts the

situation:

∅ ⊤

Int→ ⋆ Int→ Int

<: <:

∼

∼

Additionally we have a similar problem in extending the restriction operator: non-structuralmasking

between Int→ ⋆ and ⊤ cannot be easily achieved.

Note that both the top and universally quantified types can be seen as special cases of intersection

types. Indeed, top is the intersection of the empty set, while a universally quantified type is

the intersection of the infinite set of its instantiations [Davies and Pfenning 2000]. Recall from

Section 4.3 that Castagna and Lanvin [2017] shows that consistent subtyping from AGT works well

for intersection types, and our definition coincides with AGT (Corollary 4.5 and Proposition 8.2).

We thus believe that our definition is compatible with conventional binary intersection types as

well. Yet, a rigorous formalization would be needed to substantiate this belief.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:31

8.2 A More Declarative Type System
In Section 5 we present our declarative system in terms of the matching and consistent subtyping

judgments. The rationale behind this design choice is that the resulting declarative system combines

subtyping and type consistency in the application rule, thusmaking it easier to design an algorithmic

system accordingly. Still, one may wonder if it is possible to design a more declarative specification.

For example, even though we mentioned that the subsumption rule is incompatible with consistent

subtyping, it might be possible to accommodate a subsumption rule for normal subtyping (instead

of consistent subtyping). In this section, we discuss an alternative for the design of the declarative

system.

Wrong Design. A naive design that does not work is to replace rule App in Fig. 9 with the following

two rules:

Ψ ⊢ e : A A <: B

Ψ ⊢ e : B
V-Sub

Ψ ⊢ e1 : A Ψ ⊢ e2 : A1 A ∼ A1 → A2

Ψ ⊢ e1 e2 : A2

V-App1

Rule V-Sub is the standard subsumption rule: if an expression e has type A, then it can be assigned

some type B that is a supertype of A. Rule V-App1 first infers that e1 has type A, and e2 has type A1,

then it finds some A2 so that A is consistent with A1 → A2.

There would be two obvious benefits of this variant if it did work: firstly this approach closely

resembles the traditional declarative type systems for calculi with subtyping; secondly it saves us

from discussing various forms of A in rule V-App1, leaving the job to the consistency judgment.

The design is wrong because of the information loss caused by the choice of A2 in rule V-App1.

Suppose we have Ψ ⊢ plus : Int→ Int→ Int, then we can apply it to 1 to get

Ψ ⊢ plus : Int→ Int→ Int Ψ ⊢ 1 : Int Int→ Int→ Int ∼ Int→ ⋆→ Int

Ψ ⊢ plus 1 : ⋆→ Int
V-App1

Further applying it to true we get

Ψ ⊢ plus 1⇒ ⋆→ Int Ψ ⊢ true : Bool ⋆→ Int ∼ Bool→ Int

Ψ ⊢ plus 1 true : Int
V-App1

which is obviously wrong! The type consistency in rule V-App1 causes information loss for both

the argument type A1 and the return type A2. The problem is that information of A2 can get lost

again if it appears in further applications. The moral of the story is that we should be very careful

when using type consistency. We hypothesize that it is inevitable to do case analysis for the type of

the function in an application (i.e., A in rule V-App1).

Proper Declarative Design. The proper design refines the first variant by using a matching

judgment to carefully distinguish two cases for the typing result of e1 in rule V-App1: (1) when it is

an arrow type, and (2) when it is an unknown type. This variant replaces rule App in Fig. 9 with

the following rules:

Γ ⊢ e : A A <: B

Γ ⊢ e : B
V-Sub

Ψ ⊢ e : A Ψ ⊢ A ▷ A1 → A2 Ψ ⊢ e2 : A3 A1 ∼ A3

Ψ ⊢ e1 e2 : A2

V-App2

Ψ ⊢ A1 → A2 ▷ A1 → A2 Ψ ⊢ ⋆ ▷ ⋆→ ⋆

Rule V-Sub is the same as in the first variant. In rule V-App2, we infer that e1 has type A, and use

the matching judgment to get an arrow type A1 → A2. Then we need to ensure that the argument

type A3 is consistent with (rather than a consistent subtype of) A1, and use A2 as the result type

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:32 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

of the application. The matching judgment only deals with two cases, as polymorphic types are

handled by rule V-Sub. These rules are closely related to the ones in Siek and Taha [2006] and Siek

and Taha [2007].

The more declarative nature of this system also implies that it is highly non-syntax-directed,

and it does not offer any insight into combining subtyping and consistency. We have proved in

Coq the following lemmas to establish soundness and completeness of this system with respect to

our original system (to avoid ambiguity, we use the notation ⊢m to indicate the more declarative

version):

Lemma 5 (Completeness of ⊢m). If Γ ⊢ e : A, then Γ ⊢m e : A.

Lemma 6 (Soundness of ⊢m). If Γ ⊢m e : A, then there exists some B, such that Γ ⊢ e : B and

Γ ⊢ B <: A.

9 RESTORING THE DYNAMIC GRADUAL GUARANTEE WITH TYPE PARAMETERS
In Section 5.2 we have seen an example where a single source expression could produce two

different target expressions with different runtime behaviors. As we explained, this is due to the

guessing nature of the declarative system, and, from the (source) typing point of view, no guessed

type is particularly better than any other. As a consequence, this breaks the dynamic gradual

guarantee as discussed in Section 5.3.

To alleviate this situation, we introduce static type parameters, which are placeholders for

monotypes, and gradual type parameters, which are placeholders for monotypes that are consistent

with the unknown type. The concept of static type parameters and gradual type parameters in the

context of gradual typing was first introduced by Garcia and Cimini [2015], and later played a central

role in the work of Igarashi et al. [2017]. In our type system, type parameters mainly help capture

the notion of representative translations, and should not appear in a source program. With them we

are able to recast the dynamic gradual guarantee in terms of representative translations, and to

prove that every well-typed source expression possesses at least one representative translation.

With a coherence conjecture regarding representative translations, the dynamic gradual guarantee

of our extended source language now can be reduced to that of λB, which, at the time of writing, is

still an open question.

9.1 Declarative Type System
The new syntax of types is given at the top of Fig. 17, with the differences highlighted. In addition

to the types of Fig. 4, we add static type parameters S, and gradual type parameters G. Both kinds

of type parameters are monotypes. The addition of type parameters, however, leads to two new

syntactic categories of types. Castable types C represent types that can be cast from or to ⋆. It
includes all types, except those that contain static type parameters. Castable monotypes t are those
castable types that are also monotypes.

Consistent Subtyping. The new definition of consistent subtyping is given at the bottom of Fig. 17,

again with the differences highlighted. Now the unknown type is only a consistent subtype of all

castable types, rather than of all types (rule cs-unknownLL), and vice versa (rule cs-unknownRR).

Moreover, the static type parameter S is a consistent subtype of itself (rule cs-spar), and similarly

for the gradual type parameter (rule cs-gpar). From this definition it follows immediately that ⋆ is

incomparable with types that contain static type parameters S, such as S → Int.

Typing and Translation. Given these extensions to types and consistent subtyping, the typing

process remains the same as in Fig. 9. To account for the changes in the translation, if we extend λB
with type parameters as in Garcia and Cimini [2015], then the translation remains the same as well.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:33

Types A,B ::= Int | a | A→ B | ∀a.A | ⋆ | S | G

Monotypes τ ,σ ::= Int | a | τ → σ | S | G

Castable Types C ::= Int | a | C1 → C2 | ∀a.C | ⋆ | G

Castable Monotypes t ::= Int | a | t1 → t2 | G

Ψ ⊢ A ≲ B (Consistent Subtyping)

a ∈ Ψ

Ψ ⊢ a ≲ a

cs-tvar

Ψ ⊢ Int ≲ Int
cs-int

Ψ ⊢ B1 ≲ A1 Ψ ⊢ A2 ≲ B2

Ψ ⊢ A1 → A2 ≲ B1 → B2

cs-arrow

Ψ, a ⊢ A ≲ B

Ψ ⊢ A ≲ ∀a. B
cs-forallR

Ψ ⊢ τ Ψ ⊢ A[a 7→ τ] ≲ B

Ψ ⊢ ∀a.A ≲ B

cs-forallL

Ψ ⊢ ⋆ ≲ C
cs-unknownLL

Ψ ⊢ C ≲ ⋆
cs-unknownRR

Ψ ⊢ S ≲ S
cs-spar

Ψ ⊢ G ≲ G
cs-gpar

Fig. 17. Syntax of types, and consistent subtyping in the extended declarative system.

9.2 Substitutions and Representative Translations
Aswementioned, type parameters serve as placeholders for monotypes. As a consequence, wherever

a type parameter is used, any suitable monotype could appear just as well. To formalize this

observation, we define substitutions for type parameters as follows:

Definition 9.1 (Substitution). Substitutions for type parameters are defined as:

(1) Let SS : S → τ be a total function mapping static type parameters to monotypes.

(2) Let SG : G → t be a total function mapping gradual type parameters to castable monotypes.

(3) Let SP = SG ∪ SS be a union of SS and SG mapping static and gradual type parameters

accordingly.

Note that since G might be compared with ⋆, only castable monotypes are suitable substitutes,

whereas S can be replaced by any monotypes. Therefore, we can substitute G for S, but not the

other way around.

Let us go back to our example and its two translations in Section 5.2. The problem with those

translations is that neither Int → Int nor Bool → Int is general enough. With type parameters,

however, we can state a more general translation that covers both through substitution:

f : ∀a.a → Int ⊢ (λx : ⋆. f x) : ⋆→ Int

⇝ (λx : ⋆. (⟨∀a.a → Int ↪→ G → Int⟩ f) (⟨⋆ ↪→ G⟩ x))

The advantage of type parameters is that they help reasoning about the dynamic semantics. Now

we are not limited to a particular choice, such as Int→ Int or Bool→ Int, which might or might

not emit a cast error at runtime. Instead we have a general choice G → Int.
What does the more general choice with type parameters tell us? First, we know that in this case,

there is no concrete constraint on a, so we can instantiate it with a type parameter. Second, the

fact that the general choice uses G rather than S indicates that any chosen instantiation needs to

be a castable type. It follows that any concrete instantiation will have an impact on the runtime

behavior; therefore it is best to instantiate a with ⋆. However, type inference cannot instantiate
a with ⋆, and substitution cannot replace G with ⋆ either. This means that we need a syntactic

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:34 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

refinement process of the translated programs in order to replace type parameters with allowed

gradual types.

Syntactic Refinement. We define syntactic refinement of the translated expressions as follows. As

S denotes no constraints at all, substituting it with any monotype would work. Here we arbitrarily

use Int. We interpret G as ⋆ since any monotype could possibly lead to a cast error.

Definition 9.2 (Syntactic Refinement). The syntactic refinement of a translated expression s is
denoted by ⌈s⌉, and defined as follows:

⌈Int⌉ = Int ⌈a⌉ = a
⌈A→ B⌉ = ⌈A⌉ → ⌈B⌉ ⌈∀a.A⌉ = ∀a.⌈A⌉
⌈⋆⌉ = ⋆ ⌈S⌉ = Int
⌈G⌉ = ⋆

Applying the syntactic refinement to the translated expression, we get

(λx : ⋆. (⟨∀a.a → Int ↪→ ⋆ → Int⟩ f) (⟨⋆ ↪→ ⋆ ⟩ x))

where two G are refined by ⋆ as highlighted. It is easy to verify that both applying this expression

to 3 and to true now results in a translation that evaluates to a value.

Representative Translations. To decide whether one translation is more general than the other,

we define a preorder between translations.

Definition 9.3 (Translation Pre-order). Suppose Ψ ⊢ e : A ⇝ s1 and Ψ ⊢ e : A ⇝ s2, we define
s1 ≤ s2 to mean s2 ≡α SP (s1) for some SP .

Proposition 9.4. If s1 ≤ s2 and s2 ≤ s1, then s1 and s2 are α-equivalent (i.e., equivalent up to

renaming of type parameters).

The preorder between translations gives rise to a notion of what we call representative translations:

Definition 9.5 (Representative Translation). A translation s is said to be a representative translation
of a typing derivation Ψ ⊢ e : A⇝ s if and only if for any other translation Ψ ⊢ e : A⇝ s ′ such
that s ′ ≤ s , we have s ≤ s ′. From now on we use r to denote a representative translation.

An important property of representative translations, which we conjecture for the lack of rigorous

proof, is that if there exists any translation of an expression that (after syntactic refinement)

can reduce to a value, so can a representative translation of that expression. Conversely, if a

representative translation runs into a blame, then no translation of that expression can reduce to a

value.

Conjecture 9.6 (Property of Representative Translations). For any expression e such that

Ψ ⊢ e : A⇝ s and Ψ ⊢ e : A⇝ r and ∀C. C : (Ψ ⊢B A) ⇝ (• ⊢B Int), we have

• If C{⌈s⌉} ⇓ n, then C{⌈r⌉} ⇓ n.
• If C{⌈r⌉} ⇓ blame, then C{⌈s⌉} ⇓ blame.

Given this conjecture, we can state a stricter coherence property (without the “up to casts” part)

between any two representative translations. We first strengthen Definition 5.1 following Ahmed

et al. [2017]:

Definition 9.7 (Contextual Approximation à la Ahmed et al. [2017]).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:35

Ψ ⊢ s1 ⪯ctx s2 : A ≜ Ψ ⊢B s1 : A ∧ Ψ ⊢B s2 : A ∧
for all C. C : (Ψ ⊢B A) ⇝ (• ⊢B Int) =⇒

(C{⌈s1⌉} ⇓ n =⇒ C{⌈s2⌉} ⇓ n) ∧
(C{⌈s1⌉} ⇓ blame =⇒ C{⌈s2⌉} ⇓ blame)

The only difference is that now when a program containing s1 reduces to a value, so does one

containing s2.
From Conjecture 9.6, it follows that coherence holds between two representative translations of

the same expression.

Corollary 9.8 (Coherence for Representative Translations). For any expression e such

that Ψ ⊢ e : A⇝ r1 and Ψ ⊢ e : A⇝ r2, we have Ψ ⊢ r1 ⋍ctx r2 : A.

We have proved that for every typing derivation, at least one representative translation exists.

Lemma 9.9 (Representative Translation for Typing). For any typing derivation Ψ ⊢ e : A
there exists at least one representative translation r such that Ψ ⊢ e : A⇝ r .

For our example, (λx : ⋆. (⟨∀a.a → Int ↪→ G → Int⟩ f) (⟨⋆ ↪→ G⟩ x)) is a representative

translation, while the other two are not.

9.3 Dynamic Gradual Guarantee, Reloaded
Given the above propositions, we are ready to revisit the dynamic gradual guarantee. The nice thing

about representative translations is that the dynamic gradual guarantee of our source language is

essentially that of λB, our target language. However, the dynamic gradual guarantee for λB is still

an open question. According to Igarashi et al. [2017], the difficulty lies in the definition of term

precision that preserves the semantics. We leave it here as a conjecture as well. From a declarative

point of view, we cannot prevent the system from picking undesirable instantiations, but we know

that some choices are better than the others, so we can restrict the discussion of dynamic gradual

guarantee to representative translations.

Conjecture 9.10 (Dynamic Gradual Guarantee in terms of Representative Translations).

Suppose e ′ ⊑ e ,

(1) If • ⊢ e : A ⇝ r , ⌈r⌉ ⇓ v , then for some B and r ′, we have • ⊢ e′ : B ⇝ r ′, and B ⊑ A, and
⌈r ′⌉ ⇓ v ′, and v ′ ⊑ v .

(2) If • ⊢ e′ : B⇝ r ′, ⌈r ′⌉ ⇓ v ′, then for someA and r , we have • ⊢ e : A⇝ r , and B ⊑ A. Moreover,

⌈r⌉ ⇓ v and v ′ ⊑ v , or ⌈r⌉ ⇓ blame.

For the example in Section 5.3, now we know that the representative translation of the right one

will evaluate to 1 as well.

(λf : ∀a.a → Int. λx : Int. f x) (λx . 1) 3 (λf : ∀a.a → Int. λx : ⋆. f x) (λx . 1) 3

More importantly, in what follows, we show that our extended algorithm is able to find those

representative translations.

9.4 Extended Algorithmic Type System
To understand the design choices involved in the new algorithmic system, we consider the following

algorithmic typing example:

f : ∀a. a→ Int,x : ⋆ ⊢ f x ⇒ Int ⊣ f : ∀a. a→ Int,x : ⋆, â

Compared with the declarative typing, where we have many choices (e.g., Int→ Int, Bool→ Int,
and so on) to instantiate ∀a. a → Int, the algorithm computes the instantiation â → Int with â

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:36 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Types A,B ::= Int | a | â | A→ B | ∀a.A | ⋆ | S | G

Monotypes τ ,σ ::= Int | a | â | τ → σ | S | G

Existential variables â ::= âS | âG
Castable Types C ::= Int | a | â | C1 → C2 | ∀a.C | ⋆ | G

Castable Monotypes t ::= Int | a | â | t1 → t2 | G

Algorithmic Contexts Γ,∆,Θ ::= • | Γ, x : A | Γ, a | Γ, â | Γ, âS = τ | Γ, âG = t | Γ,▶â
Complete Contexts Ω ::= • | Ω, x : A | Ω, a | Ω, âS = τ | Ω, âG = t | Ω,▶â

Fig. 18. Syntax of types, contexts and consistent subtyping in the extended algorithmic system.

unsolved in the output context. What can we know from the algorithmic typing? First we know

that, here â is not constrained by the typing problem. Second, and more importantly, â has been

compared with an unknown type (when typing (f x)). Therefore, it is possible to make a more

refined distinction between different kinds of existential variables. The first kind of existential

variables are those that indeed have no constraints at all, as they do not affect the dynamic semantics;

while the second kind (as in this example) are those where the only constraint is that the variable

was once compared with an unknown type [Garcia and Cimini 2015].

The syntax of types is shown in Fig. 18. A notable difference, apart from the addition of static and

gradual parameters, is that we further split existential variables â into static existential variables

âS and gradual existential variables âG . Depending on whether an existential variable has been

compared with⋆ or not, its solution space changes. More specifically, static existential variables can

be solved to a monotype τ , whereas gradual existential variables can only be solved to a castable

monotype t , as can be seen in the changes of algorithmic contexts and complete contexts. As a

result, the typing result for the above example now becomes

f : ∀a. a→ Int,x : ⋆ ⊢ f x ⇒ Int ⊣ f : ∀a. a→ Int,x : ⋆, âG

since we can solve any unconstrained âG to G, it is easy to verify that the resulting translation is

indeed a representative translation.

Our extended algorithm is novel in the following aspects. We naturally extend the concept

of existential variables [Dunfield and Krishnaswami 2013] to deal with comparisons between

existential variables and unknown types. Unlike Garcia and Cimini [2015], where they use an

extra set to store types that have been compared with unknown types, our two kinds of existential

variables emphasize the type distinction better, and correspond more closely to the two kinds of

type parameters, as we can solve âS to S and âG to G.

The implementation of the algorithm can be found in the supplementary materials.

Extended Algorithmic Consistent Subtyping. While the changes in the syntax seem negligible, the

addition of static and gradual type parameters changes the algorithmic judgments in a significant

way. We first discuss the algorithmic consistent subtyping, which is shown in Fig. 19. For notational

convenience, when static and gradual existential variables have the same rule form, we compress

them into one rule. For example, rule as-evar is really two rules Γ[âS] ⊢ âS ≲ âS ⊣ Γ[âS] and
Γ[âG] ⊢ âG ≲ âG ⊣ Γ[âG]; same for rules as-instL and as-instR.

Rules as-spar and as-gpar are direct analogies of rules cs-spar and cs-gpar. Though looking

simple, rules as-unknownLL and as-unknownRR deserve much explanation. To understand

what the output context contaminate(Γ,C) is for, let us first see why this seemingly intuitive rule

Γ ⊢ ⋆ ≲ C ⊣ Γ (like rule as-unknownL in the original algorithmic system) is wrong. Consider

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:37

Γ ⊢ A ≲ B ⊣ ∆ (Algorithmic Consistent Subtyping)

Γ[a] ⊢ a ≲ a ⊣ Γ[a]
as-tvar

Γ ⊢ Int ≲ Int ⊣ Γ
as-int

Γ[â] ⊢ â ≲ â ⊣ Γ[â]
as-evar

Γ ⊢ S ≲ S ⊣ Γ
as-spar

Γ ⊢ G ≲ G ⊣ Γ
as-gpar

Γ ⊢ ⋆ ≲ C ⊣ contaminate(Γ,C)
as-unknownLL

Γ ⊢ C ≲ ⋆ ⊣ contaminate(Γ,C)
as-unknownRR

Γ ⊢ B1 ≲ A1 ⊣ Θ Θ ⊢ [Θ]A2 ≲ [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2 ≲ B1 → B2 ⊣ ∆
as-arrow

Γ, a ⊢ A ≲ B ⊣ ∆, a,Θ

Γ ⊢ A ≲ ∀a. B ⊣ ∆
as-forallR

Γ,▶âS , âS ⊢ A[a 7→ âS] ≲ B ⊣ ∆,▶âS ,Θ

Γ ⊢ ∀a.A ≲ B ⊣ ∆
as-forallLL

â < fv(A) Γ[â] ⊢ â ⪅ A ⊣ ∆

Γ[â] ⊢ â ≲ A ⊣ ∆
as-instL

â < fv(A) Γ[â] ⊢ A ⪅ â ⊣ ∆

Γ[â] ⊢ A ≲ â ⊣ ∆
as-instR

Fig. 19. Extended algorithmic consistent subtyping

the judgment âS ⊢ ⋆ ≲ âS → âS ⊣ âS , which seems fine. If this holds, then – since âS is unsolved

in the output context – we can solve it to S for example (recall that âS can be solved to some

monotype), resulting in⋆ ≲ S → S. However, this is in direct conflict with rule cs-unknownLL in

the declarative system precisely because S → S is not a castable type! A possible solution would

be to transform all static existential variables to gradual existential variables within C whenever

it is being compared to ⋆: while âS ⊢ ⋆ ≲ âS → âS ⊣ âS does not hold, âG ⊢ ⋆ ≲ âG → âG ⊣ âG
does. While substituting static existential variables with gradual existential variables seems to be

intuitively correct, it is rather hard to formulate—not only do we need to perform substitution in C,
we also need to substitute accordingly in both the input and output contexts in order to ensure

that no existential variables become unbound. However, making such changes is at odds with the

interpretation of input contexts: they are “input”, which evolve into output contexts with more

variables solved. Therefore, in line with the use of input contexts, a simple solution is to generate a

new gradual existential variable and solve the static existential variable to it in the output context,

without touching C at all. So we have âS ⊢ ⋆ ≲ âS → âS ⊣ âG , âS = âG .
Based on the above discussion, the following defines contaminate(Γ,A):

Definition 9.11. contaminate(Γ,A) is defined inductively as follows

contaminate(•,A) = •

contaminate((Γ, x : A),A) = contaminate(Γ,A), x : A
contaminate((Γ, a),A) = contaminate(Γ,A), a
contaminate((Γ, âS),A) = contaminate(Γ,A), âG , âS = âG if âS occurs in A
contaminate((Γ, âS),A) = contaminate(Γ,A), âS if âS does not occur in A
contaminate((Γ, âG),A) = contaminate(Γ,A), âG
contaminate((Γ, â = τ),A) = contaminate(Γ,A), â = τ
contaminate((Γ,▶â),A) = contaminate(Γ,A),▶â

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:38 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Γ ⊢ â ⪅ A ⊣ ∆ (Instantiation I)

Γ ⊢ τ

Γ, âS , Γ
′ ⊢ âS ⪅ τ ⊣ Γ, âS = τ , Γ

′
instl-solveS

Γ ⊢ t

Γ, âG , Γ
′ ⊢ âG ⪅ t ⊣ Γ, âG = t , Γ′

instl-solveG

Γ[âS] ⊢ âS ⪅ ⋆ ⊣ Γ[âG , âS = âG]
instl-solveUS

Γ[âG] ⊢ âG ⪅ ⋆ ⊣ Γ[âG]
instl-solveUG

Γ[âS][b̂G] ⊢ âS ⪅ b̂G ⊣ Γ[âG , âS = âG][b̂G = âG]
instl-reachSG1

Γ[b̂S][âG] ⊢ âG ⪅ b̂S ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instl-reachSG2

Γ[â][b̂] ⊢ â ⪅ b̂ ⊣ Γ[â][b̂ = â]
instl-reachOther

Γ[â], b ⊢ â ⪅ B ⊣ ∆, b,Θ

Γ[â] ⊢ â ⪅ ∀b. B ⊣ ∆
instl-forallR

Γ[â2, â1, â = â1 → â2] ⊢ A1 ⪅ â1 ⊣ Θ Θ ⊢ â2 ⪅ [Θ]A2 ⊣ ∆

Γ[â] ⊢ â ⪅ A1 → A2 ⊣ ∆
instl-arr

Γ ⊢ A ⪅ â ⊣ ∆ (Instantiation II, excerpt)

Γ[â],▶b̂S
, b̂S ⊢ B[b 7→ b̂S] ⪅ â ⊣ ∆,▶b̂S

,Θ

Γ[â] ⊢ ∀b. B ⪅ â ⊣ ∆
instr-forallLL

Fig. 20. Instantiation in the extended algorithmic system

contaminate(Γ,A) solves all static existential variables found within A to fresh gradual existential

variables in Γ. Notice the case for contaminate((Γ, âS),A) is exactly what we have just described.

Rule as-forallLL is slightly different from rule as-forallL in the original algorithmic system

in that we replace a with a new static existential variable âS . Note that âS might be solved to a

gradual existential variable later. The rest of the rules are the same as those in the original system.

Extended Instantiation. The instantiation judgments shown in Fig. 20 also change significantly.

The complication comes from the fact that now we have two different kinds of existential variables,

and the relative order they appear in the context affects their solutions.

Rules instl-solveS and instl-solveG are the refinement to rule instl-solve in the original

system. The next two rules deal with situations where one side is an existential variable and the

other side is an unknown type. Rule instl-solveUS is a special case of rule as-unknownRR where

we create a new gradual existential variable âG and set the solution of âS to be âG in the output

context. Rule instl-solveUG is the same as rule instl-solveU in the original system and simply

propagates the input context. The next two rules instl-reachSG1 and instl-reachSG2 are a bit

involved, but they both answer to the same question: how to solve a gradual existential variable

when it is declared after some static existential variable. More concretely, in rule instl-reachSG1,

we feel that we need to solve b̂G to another existential variable. However, simply setting b̂G = âS
and leaving âS untouched in the output context is wrong. The reason is that b̂G could be a gradual

existential variable created by rule as-unknownLL/as-unknownRR and solving b̂G to a static

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:39

existential variable would result in the same problem as we have discussed. Instead, we create

another new gradual existential variable âG and set the solutions of both âS and b̂G to it; similarly in

rule instl-reachSG2. Rule instl-reachOther deals with the other cases (e.g., âS ⪅ b̂S , âG ⪅ b̂G
and so on). In those cases, we employ the same strategy as in the original system.

As for the other instantiation judgment, most of the rules are symmetric and thus omitted. The

only interesting rule is instr-forallLL, which is similar to what we did for rule as-forallLL.

Algorithmic Typing and Metatheory. Fortunately, the changes in the algorithmic bidirectional

system are minimal: we replace every existential variable with a static existential variable. Further-

more, we proved that the extended algorithmic system is sound and complete with respect to the

extended declarative system. The proofs can be found in the appendix.

Do We Really Need Type Parameters in the Algorithmic System? As we mentioned earlier, type

parameters in the declarative system are merely an analysis tool, and in practice, type parameters

are inaccessible to programmers. For the sake of proving soundness and completeness, we have to

endow the algorithmic system with type parameters. However, the algorithmic system already has

static and gradual existential variables, which can serve the same purpose. In that regard, we could

directly solve every unsolved static and gradual existential variable in the output context to Int and
⋆, respectively.

9.5 Restricted Generalization
In Section 5.2, we discussed the issue that the translation produces multiple target expressions due

to the different choices for instantiations, and those translations have different dynamic semantics.

Besides that, there is another cause for multiple translations: redundant generalization during

translation by rule gen. Consider the simple expression (λx : Int. x) 1, the following shows two

possible translations:

• ⊢ (λx : Int. x) 1 : Int⇝ (λx : Int. x) (⟨Int ↪→ Int⟩1)

• ⊢ (λx : Int. x) 1 : Int⇝ (λx : Int. x) (⟨∀a. Int ↪→ Int⟩(Λa. 1))

The difference comes from the fact that in the second translation, we apply rule genwhile typing 1 to

get • ⊢ 1 : ∀a. Int. As a consequence, the translation of 1 is accompanied by a cast from ∀a. Int to Int
since the former is a consistent subtype of the latter. This difference is harmless, because obviously

these two expressions will reduce to the same value in λB, thus preserving coherence (up to cast

error). While it is not going to break coherence, it does result in multiple representative translations

for one expression (e.g., the above two translations are both the representative translations).

There are several ways to make the translation process more deterministic. For example, we

can restrict generalization to happen only in let expressions and require let expressions to include

annotations, as let x : A = e1 in e2. Another feasible option would be to give a declarative, bidi-

rectional system as the specification (instead of the type assignment one), in the same spirit of

Dunfield and Krishnaswami [2013]. Then we can restrict generalization to be performed through

annotations in checking mode.

With restricted generalization, we hypothesize that now each expression has exactly one repre-

sentative translation (up to renaming of fresh type parameters). Instead of calling it a representative

translation, we can say it is a principal translation. Of course the above is only a sketch; we have

not defined the corresponding rules, nor studied metatheory.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:40 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

10 RELATEDWORK
Along the way we discussed some of the most relevant work to motivate, compare and promote

our gradual typing design. In what follows, we briefly discuss related work on gradual typing and

polymorphism.

Gradual Typing. The seminal paper by Siek and Taha [2006] is the first to propose gradual

typing, which enables programmers to mix static and dynamic typing in a program by providing a

mechanism to control which parts of a program are statically checked. The original proposal extends

the simply typed lambda calculus by introducing the unknown type ⋆ and replacing type equality

with type consistency. Casts are introduced to mediate between statically and dynamically typed

code. Later Siek and Taha [2007] incorporated gradual typing into a simple object oriented language,

and showed that subtyping and consistency are orthogonal – an insight that partly inspired our

work. We show that subtyping and consistency are orthogonal in a much richer type system

with higher-rank polymorphism. Siek et al. [2009] explores the design space of different dynamic

semantics for simply typed lambda calculus with casts and unknown types. In the light of the

ever-growing popularity of gradual typing, and its somewhat murky theoretical foundations, Siek

et al. [2015] felt the urge to have a complete formal characterization of what it means to be gradually

typed. They proposed a set of criteria that provides important guidelines for designers of gradually

typed languages. Cimini and Siek [2016] introduced the Gradualizer, a general methodology for

generating gradual type systems from static type systems. Later they also develop an algorithm

to generate dynamic semantics [Cimini and Siek 2017]. Garcia et al. [2016] introduced the AGT

approach based on abstract interpretation. As we discussed, none of these approaches instructed

us how to define consistent subtyping for polymorphic types.

There is some work on integrating gradual typing with rich type disciplines. Bañados Schwerter

et al. [2014] establish a framework to combine gradual typing and effects, with which a static

effect system can be transformed to a dynamic effect system or any intermediate blend. Jafery

and Dunfield [2017] present a type system with gradual sums, which combines refinement and

imprecision. We have discussed the interesting definition of directed consistency in Section 4.

Castagna and Lanvin [2017] develop a gradual type system with intersection and union types, with

consistent subtyping defined by following the idea of Garcia et al. [2016]. TypeScript [Bierman

et al. 2014] has a distinguished dynamic type, written any, whose fundamental feature is that any

type can be implicitly converted to and from any. Our treatment of the unknown type in Fig. 8 is

similar to their treatment of any. However, their type system does not have polymorphic types.

Also, Unlike our consistent subtyping which inserts runtime casts, in TypeScript, type information

is erased after compilation so there are no runtime casts, which makes runtime type errors possible.

Gradual Type Systems with Explicit Polymorphism. Morris [1973] dynamically enforces parametric

polymorphism and uses sealing functions as the dynamic type mechanism. More recent works

on integrating gradual typing with parametric polymorphism include the dynamic type of Abadi

et al. [1995] and the Sage language of Gronski et al. [2006]. None of these has carefully studied

the interaction between statically and dynamically typed code. Ahmed et al. [2011] proposed λB
that extends the blame calculus [Wadler and Findler 2009] to incorporate polymorphism. The key

novelty of their work is to use dynamic sealing to enforce parametricity. As such, they end up with

a sophisticated dynamic semantics. Later, Ahmed et al. [2017] prove that with more restrictions,

λB satisfies parametricity. Compared to their work, our type system can catch more errors earlier

since, as we argued, their notion of compatibility is too permissive. For example, the following is

rejected (more precisely, the corresponding source program never gets elaborated) by our type

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:41

system:

(λx : ⋆. x + 1) : ∀a.a → a ⇝ ⟨⋆→ Int ↪→ ∀a.a → a⟩ (λx : ⋆. x + 1)

while the type system of λB would accept the translation, though at runtime, the program would

result in a cast error as it violates parametricity. We emphasize that it is the combination of our

powerful type system together with the powerful dynamic semantics of λB that makes it possible

to have implicit higher-rank polymorphism in a gradually typed setting. Devriese et al. [2017]

proved that embedding of System F terms into λB is not fully abstract. Igarashi et al. [2017] also

studied integrating gradual typing with parametric polymorphism. They proposed System FG , a

gradually typed extension of System F, and System FC , a new polymorphic blame calculus. As

has been discussed extensively, their definition of type consistency does not apply to our setting

(implicit polymorphism). All of these approaches mix consistency with subtyping to some extent,

which we argue should be orthogonal. On a side note, it seems that our calculus can also be safely

translated to System FC . However we do not understand all the tradeoffs involved in the choice

between λB and System FC as a target.

Gradual Type Inference. Siek and Vachharajani [2008] studied unification-based type inference

for gradual typing, where they show why three straightforward approaches fail to meet their design

goals. One of their main observations is that simply ignoring dynamic types during unification

does not work. Therefore, their type system assigns unknown types to type variables and infers

gradual types, which results in a complicated type system and inference algorithm. In our algo-

rithm presented in Section 9, comparisons between existential variables and unknown types are

emphasized by the distinction between static existential variables and gradual existential variables.

By syntactically refining unsolved gradual existential variables with unknown types, we gain a

similar effect as assigning unknown types, while keeping the algorithm relatively simple. Garcia

and Cimini [2015] presented a new approach where gradual type inference only produces static

types, which is adopted in our type system. They also deal with let-polymorphism (rank 1 types).

They proposed the distinction between static and gradual type parameters, which inspired our

extension to restore the dynamic gradual guarantee. Although those existing works all involve

gradual types and inference, none of these works deal with higher-rank implicit polymorphism.

Higher-rank Implicit Polymorphism. Odersky and Läufer [1996] introduced a type system for

higher-rank implicit polymorphic types. Based on that, Peyton Jones et al. [2007] developed an

approach for type checking higher-rank predicative polymorphism. Dunfield and Krishnaswami

[2013] proposed a bidirectional account of higher-rank polymorphism, and an algorithm for imple-

menting the declarative system, which serves as the main inspiration for our algorithmic system.

The key difference, however, is the integration of gradual typing. As our work, those works are in a

predicative setting, since complete type inference for higher-rank types in an impredicative setting

is undecidable. Still, there are many type systems trying to infer some impredicative types, such

as MLF [Le Botlan and Rémy 2003, 2009; Rémy and Yakobowski 2008], the HML system [Leijen

2009], the FPH system [Vytiniotis et al. 2008] and so on. Those type systems usually end up with

non-standard System F types, and sophisticated forms of type inference.

11 CONCLUSION
In this paper, we have presented a generalized definition of consistent subtyping that works for

polymorphic types. Based on this new definition, we have developed GPC: a gradually typed

calculus with predicative implicit higher-rank polymorphism, and corresponding algorithms that

can be used to implement the calculus.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:42 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

As far as we know, our work is the first to integrate gradual typing with implicit (higher-rank)

polymorphism, which we believe is a major step towards gradualizing modern functional languages,

such as Haskell. Moreover, our extension with type parameters and the extensive discussion of

related properties (e.g., representative translations) provides insight into the dynamic semantics for

gradual languages with implicit polymorphism. With respect to the dynamic gradual guarantee,

we discuss an extension of the calculus with static and gradual type parameters. We propose a

variant of the dynamic gradual guarantee with representative translations. Then we show that our

calculus supports this property if: 1) λB does indeed have the dynamic gradual guarantee (which is

unknown at the time of writing); and 2) our coherence conjecture can be proved.

As future work, we want to investigate whether our notion of consistent subtyping has a more

fundamental conceptual explanation, for example, whether it coincides with AGT on polymorphic

types. It is also interesting to see whether our results can scale to real-world languages (e.g. Haskell)

and other programming language features, such as recursive types, union types and intersection

types. Recent work by Castagna and Lanvin [2017] on gradual typing with union and intersection

types in a simply typed setting may shed some light on this direction.

ACKNOWLEDGEMENTS
We thank Ronald Garcia, Dustin Jamner, and the anonymous reviewers for their helpful comments.

This work has been sponsored by the Hong Kong Research Grant Council projects number 17210617

and 17258816, and by the Research Foundation - Flanders.

REFERENCES
Martin Abadi, Luca Cardelli, Benjamin Pierce, and Didier Rémy. 1995. Dynamic Typing in Polymorphic Languages. Journal

of Functional Programming 5, 1 (1995), 111–130.

Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for All. In Proceedings of the 38th

Symposium on Principles of Programming Languages.

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for Free: Parametricity, With and

Without Types. In Proceedings of the 22nd International Conference on Functional Programming.

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2014. A Theory of Gradual Effect Systems. In Proceedings of the

19th International Conference on Functional Programming.

Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In Proceedings of the 28th European

Conference on Object-Oriented Programming.

Gavin Bierman, Erik Meijer, and Mads Torgersen. 2010. Adding Dynamic Types to C#. In Proceedings of the European

Conference on Object-Oriented Programming.

Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. 2016. Practical Optional Types for Clojure. In

Programming Languages and Systems.

Luca Cardelli. 1993. An implementation of FSub. Technical Report. Research Report 97, Digital Equipment Corporation

Systems Research Center.

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. Proc. ACM Program. Lang.

1, ICFP, Article 41 (Aug. 2017), 28 pages.

Alonzo Church. 1941. The calculi of lambda-conversion. Number 6. Princeton University Press.

Matteo Cimini and Jeremy G. Siek. 2016. The Gradualizer: A Methodology and Algorithm for Generating Gradual Type

Systems. In Proceedings of the 43rd Symposium on Principles of Programming Languages.

Matteo Cimini and Jeremy G. Siek. 2017. Automatically Generating the Dynamic Semantics of Gradually Typed Languages.

In Proceedings of the 44th Symposium on Principles of Programming Languages.

Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley, and Jonathan P Seldin. 1958. Combinatory logic. Vol. 1.

North-Holland Amsterdam.

Luis Damas and Robin Milner. 1982. Principal Type-schemes for Functional Programs (POPL ’82). 6.

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In Proceedings of the Fifth

ACM SIGPLAN International Conference on Functional Programming (ICFP ’00). ACM, New York, NY, USA, 198–208.

https://doi.org/10.1145/351240.351259

Dominique Devriese, Marco Patrignani, and Frank Piessens. 2017. Parametricity versus the universal type. Proceedings of

the ACM on Programming Languages 2, POPL (2017), 38.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/10.1145/351240.351259

Consistent Subtyping for All 39:43

Joshua Dunfield and Neelakantan R Krishnaswami. 2013. Complete and Easy Bidirectional Typechecking for Higher-Rank

Polymorphism. In International Conference on Functional Programming. https://arxiv.org/abs/1306.6032.

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42nd Symposium

on Principles of Programming Languages.

Ronald Garcia, Alison M Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In Proceedings of the 43rd Symposium on

Principles of Programming Languages.

Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N Freund, and Cormac Flanagan. 2006. Sage: Hybrid Checking for

Flexible Specifications. In Scheme and Functional Programming Workshop.

J. Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969),

29–60.

Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017. On Polymorphic Gradual Typing. In Proceedings of the 22nd

International Conference on Functional Programming.

Khurram A. Jafery and Joshua Dunfield. 2017. Sums of Uncertainty: Refinements Go Gradual. In Proceedings of the 44th

Symposium on Principles of Programming Languages. 14.

Mark P Jones. 2000. Type classes with functional dependencies. In European Symposium on Programming. Springer, 230–244.

Simon Peyton Jones, Mark Jones, and Erik Meijer. 1997. Type classes: exploring the design space. In Haskell workshop,

Vol. 1997.

Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly typed heterogeneous collections. In Proceedings of the 2004

ACM SIGPLAN workshop on Haskell. ACM, 96–107.

Didier Le Botlan and Didier Rémy. 2003. MLF: Raising ML to the Power of System F (ICFP ’03). 12.

Didier Le Botlan and Didier Rémy. 2009. Recasting MLF. Information and Computation 207, 6 (2009), 726–785.

Jukka Lehtosalo et al. 2006. Mypy. (2006). http://www.mypy-lang.org/

Daan Leijen. 2009. Flexible Types: Robust Type Inference for First-class Polymorphism (POPL ’09). 12.

Jacob Matthews and Amal Ahmed. 2008. Parametric polymorphism through run-time sealing or, theorems for low, low

prices!. In European Symposium on Programming. Springer, 16–31.

Conor McBride. 2002. Faking it Simulating dependent types in Haskell. Journal of functional programming 12, 4-5 (2002),

375–392.

John C Mitchell. 1990. Polymorphic Type Inference and Containment. In Logical foundations of functional programming.

James H. Morris, Jr. 1973. Types Are Not Sets. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages (POPL ’73). ACM, New York, NY, USA, 120–124. https://doi.org/10.1145/512927.512938

James Hiram Morris Jr. 1969. Lambda-calculus models of programming languages. Ph.D. Dissertation. Massachusetts Institute

of Technology.

Georg Neis, Derek Dreyer, and Andreas Rossberg. 2009. Non-parametric Parametricity. In Proceedings of the 14th ACM

SIGPLAN International Conference on Functional Programming (ICFP ’09). ACM, New York, NY, USA, 135–148. https:

//doi.org/10.1145/1596550.1596572

Martin Odersky and Konstantin Läufer. 1996. Putting Type Annotations to Work. In Proceedings of the 23rd Symposium on

Principles of Programming Languages.

Michel Parigot. 1992. Recursive programming with proofs. Theoretical Computer Science 94, 2 (1992), 335–356.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical Type Inference for Arbitrary-

Rank Types. Journal of Functional Programming 17, 1 (2007), 1–82.

Benjamin C Pierce. 2002. Types and programming languages.

Didier Rémy and Boris Yakobowski. 2008. From ML to MLF: Graphic Type Constraints with Efficient Type Inference (ICFP

’08). 12.

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Proceedings of the IFIP 9th World Computer

Congress.

John C. Reynolds. 1991. The Coherence of Languages with Intersection Types. In Proceedings of the International Conference

on Theoretical Aspects of Computer Software.

Jeremy Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the design space of higher-order casts. In European Symposium

on Programming. 17–31.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of the 2006 Scheme and

Functional Programming Workshop.

Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In European Conference on Object-Oriented Programming.

Jeremy G. Siek and Manish Vachharajani. 2008. Gradual Typing with Unification-based Inference. In Proceedings of the 2008

Symposium on Dynamic Languages.

Jeremy G. Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing. In

LIPIcs-Leibniz International Proceedings in Informatics.

Jeremy G. Siek and Philip Wadler. 2016. The Key to Blame: Gradual Typing Meets Cryptography (draft). (2016).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://arxiv.org/abs/1306.6032
http://www.mypy-lang.org/
https://doi.org/10.1145/512927.512938
https://doi.org/10.1145/1596550.1596572
https://doi.org/10.1145/1596550.1596572

39:44 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Julien Verlaguet. 2013. Facebook: Analyzing PHP statically. In Proceedings of Commercial Users of Functional Programming.

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for

Python. In Proceedings of the 10th Symposium on Dynamic languages.

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. 2008. FPH: First-class Polymorphism for Haskell (ICFP

’08). 12.

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Proceedings of the 18th European

Symposium on Programming Languages and Systems.

J.B. Wells. 1999. Typability and type checking in System F are equivalent and undecidable. Annals of Pure and Applied Logic

98, 1 (1999), 111 – 156. https://doi.org/10.1016/S0168-0072(98)00047-5

Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. Consistent Subtyping for All. In European Symposium on

Programming. 3–30.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/10.1016/S0168-0072(98)00047-5

Consistent Subtyping for All 39:45

A SOME PROOFS ABOUT THE DECLARATIVE SYSTEM
Lemma 5.2. If Ψ ⊢ e : A⇝ s1, and Ψ ⊢ e : A⇝ s2, then ⌊s1⌋ ≡α ⌊s2⌋.

Proof. By straightforward induction on the typing derivation. □

Lemma 5.3 (Coherence up to cast errors). For any expression e such that Ψ ⊢ e : A⇝ s1 and
Ψ ⊢ e : A⇝ s2, we have Ψ ⊢ s1 ⋍ctx s2 : A.

Proof. According to Lemma 5.2, after erasure of types and casts, C{s1} and C{s2} are equivalent.
So if C{s1} ⇓ n, it is impossible for C{s2} to reduce to a different integer according to the dynamic

semantics. □

Proposition 8.1 (Extension with ⊤). Ψ ⊢ A ≲ B ⇔ Ψ ⊢ A <: C , C ∼ D, Ψ ⊢ D <: B, for some

C,D.

Proof.

• From first to second: By induction on the derivation of consistent subtyping. We have extra

case rule CS-Top now, where B = ⊤. We can choose C = A, and D by replacing the unknown

types in C by Int. Namely, D is a static type, so by rule S-Top we are done.

• From second to first: By induction on the derivation of second subtyping. We have extra case

rule S-Top now, where B = ⊤, so A ≲ B holds by rule CS-Top.

□

Proposition 8.2 (Eqivalent to AGT on ⊤). A ≲ B if only if A <̃: B.

Proof.

• From left to right: By induction on the derivation of consistent subtyping. We have case

rule CS-Top now. It follows that for every static type A1 ∈ γ (A), we can derive A1 <: ⊤ by

rule S-Top. We have B1 = B = ⊤ and we are done.

• From right to left: By induction on the derivation of subtyping and inversion on the con-

cretization. We have extra case rule S-Top now, where B is ⊤. So consistent subtyping directly

holds.

□

Proposition 9.4. If s1 ≤ s2 and s2 ≤ s1, then s1 and s2 are α-equivalent (i.e., equivalent up to

renaming of type parameters).

Proof. Follows directly from the definition of Translation Pre-order. □

Definition A.1 (Measurements of Translation). There are three measurements of a translation s ,

(1) JsKE , the size of the expression
(2) JsKS , the number of distinct static type parameters in s
(3) JsKG , the number of distinct gradual type parameters in s

We use JsK to denote the lexicographical order of the triple (JsKE ,−JsKS,−JsKG).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:46 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Definition A.2 (Size of types).

JIntK = 1

JaK = 1

JA→ BK = JAK + JBK + 1
J∀a.AK = JAK + 1

J⋆K = 1

JSK = 1

JGK = 1

Definition A.3 (Size of expressions).

JxKE = 1

JnKE = 1

Jλx : A. sKE = JAK + JsKE + 1
JΛa. sKE = JsKE + 1
Js1 s2KE = Js1KE + Js2KE + 1

J⟨A ↪→ B⟩sKE = JsKE + JAK + JBK + 1

Lemma A.4. If Ψ ⊢ e : A⇝ s then JsKE ≥ JeKE .

Proof. Immediate by inspecting each typing rule. □

Corollary A.5. If Ψ ⊢ e : A⇝ s then JsK > (JeKE ,−JeKE ,−JeKE).

Proof. By Lemma A.4 and note that JsKE > JsKS and JsKE > JsKG □

Lemma A.6. JAK ≤ JSP (A)K.

Proof. By induction on the structure of A. The interesting cases are A = S and A = G. When

A = S, SP (A) = τ for some monotype τ and it is immediate that JSK ≤ Jτ K (note that JSK < JGK
by definition). □

Lemma A.7 (Substitution Decreases Measurement). If s1 ≤ s2, then Js1K ≤ Js2K; unless s2 ≤ s1
also holds, otherwise we have Js1K < Js2K.

Proof. Since s1 ≤ s2, we know s2 = SP (s1) for some SP . By induction on the structure of s1.

• Case s1 = λx : A. s . We have s2 = λx : SP (A). SP (s). By Lemma A.6 we have JAK ≤ JSP (A)K.
By i.h., we have JsK ≤ JSP (s)K. Therefore Jλx : A. sK ≤ Jλx : SP (A). SP (s)K.
• Case s1 = ⟨A ↪→ B⟩s . We have s2 = ⟨S

P (A) ↪→ SP (B)⟩SP (s). By Lemma A.6 we have

JAK ≤ JSP (A)K and JBK ≤ JSP (B)K. By i.h., we have JsK ≤ JSP (s)K. Therefore J⟨A ↪→ B⟩sK ≤
J⟨SP (A) ↪→ SP (B)⟩SP (s)K.
• The rest of cases are immediate.

□

Lemma 9.9 (Representative Translation for Typing). For any typing derivation Ψ ⊢ e : A
there exists at least one representative translation r such that Ψ ⊢ e : A⇝ r .

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:47

Proof. We already know that at least one translation s = s1 exists for every typing derivation. If

s1 is a representative translation then we are done. Otherwise there exists another translation s2
such that s2 ≤ s1 and s1 ≰ s2. By Lemma A.7, we have Js2K < Js1K. We continue with s = s2, and
get a strictly decreasing sequence Js1K, Js2K, By Corollary A.5, we know this sequence cannot

be infinite long. Suppose it ends at JsjK, by the construction of the sequence, we know that sj is a
representative translation of e. □

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:48 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

B THE EXTENDED ALGORITHMIC SYSTEM
B.1 Syntax

Expressions e ::= x | n | λx : A. e | λx . e | e1 e2 | e : A | let x = e1 in e2
Types A,B ::= Int | a | â | A→ B | ∀a.A | ⋆ | S | G
Monotypes τ ,σ ::= Int | a | â | τ → σ | S | G
Existential variables â ::= âS | âG
Castable Types C ::= Int | a | â | C1 → C2 | ∀a.C | ⋆ | G
Castable Monotypes t ::= Int | a | â | t1 → t2 | G
Algorithmic Contexts Γ,∆,Θ ::= • | Γ, x : A | Γ, a | Γ, â | Γ, âS = τ | Γ, âG = t | Γ,▶â
Complete Contexts Ω ::= • | Ω, x : A | Ω, a | Ω, âS = τ | Ω, âG = t | Ω,▶â

B.2 Type System

Γ ⊢ A ≲ B ⊣ ∆ (Algorithmic Consistent Subtyping)

Γ[a] ⊢ a ≲ a ⊣ Γ[a]
as-tvar

Γ[â] ⊢ â ≲ â ⊣ Γ[â]
as-evar

Γ ⊢ Int ≲ Int ⊣ Γ
as-int

Γ ⊢ B1 ≲ A1 ⊣ Θ Θ ⊢ [Θ]A2 ≲ [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2 ≲ B1 → B2 ⊣ ∆
as-arrow

Γ, a ⊢ A ≲ B ⊣ ∆, a,Θ

Γ ⊢ A ≲ ∀a. B ⊣ ∆
as-forallR

Γ,▶âS , âS ⊢ A[a 7→ âS] ≲ B ⊣ ∆,▶âS ,Θ

Γ ⊢ ∀a.A ≲ B ⊣ ∆
as-forallLL

Γ ⊢ S ≲ S ⊣ Γ
as-spar

Γ ⊢ G ≲ G ⊣ Γ
as-gpar

Γ ⊢ ⋆ ≲ C ⊣ contaminate(Γ,C)
as-unknownLL

Γ ⊢ C ≲ ⋆ ⊣ contaminate(Γ,C)
as-unknownRR

â < fv(A) Γ[â] ⊢ â ⪅ A ⊣ ∆

Γ[â] ⊢ â ≲ A ⊣ ∆
as-instL

â < fv(A) Γ[â] ⊢ A ⪅ â ⊣ ∆

Γ[â] ⊢ A ≲ â ⊣ ∆
as-instR

Γ ⊢ â ⪅ A ⊣ ∆ (Instantiation I)

Γ ⊢ τ

Γ, âS , Γ
′ ⊢ âS ⪅ τ ⊣ Γ, âS = τ , Γ

′
instl-solveS

Γ ⊢ t

Γ, âG , Γ
′ ⊢ âG ⪅ t ⊣ Γ, âG = t , Γ′

instl-solveG

Γ[âS] ⊢ âS ⪅ ⋆ ⊣ Γ[âG , âS = âG]
instl-solveUS

Γ[âG] ⊢ âG ⪅ ⋆ ⊣ Γ[âG]
instl-solveUG

Γ[âS][b̂G] ⊢ âS ⪅ b̂G ⊣ Γ[âG , âS = âG][b̂G = âG]
instl-reachSG1

Γ[b̂S][âG] ⊢ âG ⪅ b̂S ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instl-reachSG2

Γ[â][b̂] ⊢ â ⪅ b̂ ⊣ Γ[â][b̂ = â]
instl-reachOther

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:49

Γ[â2, â1, â = â1 → â2] ⊢ A1 ⪅ â1 ⊣ Θ Θ ⊢ â2 ⪅ [Θ]A2 ⊣ ∆

Γ[â] ⊢ â ⪅ A1 → A2 ⊣ ∆
instl-arr

Γ[â], b ⊢ â ⪅ B ⊣ ∆, b,Θ

Γ[â] ⊢ â ⪅ ∀b. B ⊣ ∆
instl-forallR

Γ ⊢ A ⪅ â ⊣ ∆ (Instantiation II)

Γ ⊢ τ

Γ, âS , Γ
′ ⊢ τ ⪅ âS ⊣ Γ, âS = τ , Γ

′
instr-solveS

Γ ⊢ t

Γ, âG , Γ
′ ⊢ t ⪅ âG ⊣ Γ, âG = t , Γ′

instr-solveG

Γ[âS] ⊢ ⋆ ⪅ âS ⊣ Γ[âG , âS = âG]
instr-solveUS

Γ[âG] ⊢ ⋆ ⪅ âG ⊣ Γ[âG]
instr-solveUG

Γ[âS][b̂G] ⊢ b̂G ⪅ âS ⊣ Γ[âG , âS = âG][b̂G = âG]
instr-reachSG1

Γ[b̂S][âG] ⊢ b̂S ⪅ âG ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instr-reachSG2

Γ[â][b̂] ⊢ b̂ ⪅ â ⊣ Γ[â][b̂ = â]
instr-reachOther

Γ[â2, â1, â = â1 → â2] ⊢ â1 ⪅ A1 ⊣ Θ Θ ⊢ [Θ]A2 ⪅ â2 ⊣ ∆

Γ[â] ⊢ A1 → A2 ⪅ â ⊣ ∆
instr-arr

Γ[â],▶b̂S
, b̂S ⊢ B[b 7→ b̂S] ⪅ â ⊣ ∆,▶b̂S

,Θ

Γ[â] ⊢ ∀b. B ⪅ â ⊣ ∆
instr-forallLL

Γ ⊢ e ⇒ A ⊣ ∆ (Inference)

(x : A) ∈ Γ

Γ ⊢ x ⇒ A ⊣ Γ
inf-var

Γ ⊢ n⇒ Int ⊣ Γ
inf-int

Γ ⊢ A Γ, b̂S , x : A ⊢ e ⇐ b̂S ⊣ ∆, x : A,Θ

Γ ⊢ λx : A. e ⇒ A→ b̂S ⊣ ∆
inf-lamann2

Γ, âS , b̂S , x : âS ⊢ e ⇐ b̂S ⊣ ∆, x : âS ,Θ

Γ ⊢ λx . e ⇒ âS → b̂S ⊣ ∆
inf-lam2

Γ ⊢ A Γ ⊢ e ⇐ A ⊣ ∆

Γ ⊢ e : A⇒ A ⊣ ∆
inf-anno

Γ ⊢ e1 ⇒ A ⊣ Θ1 Θ1 ⊢ [Θ1]A ▷A1 → A2 ⊣ Θ2 Θ2 ⊢ e2 ⇐ [Θ2]A1 ⊣ ∆

Γ ⊢ e1 e2 ⇒ A2 ⊣ ∆
inf-app

Γ ⊢ e1 ⇒ A ⊣ Θ1 Θ1, âS , x : A ⊢ e2 ⇐ âS ⊣ ∆, x : A,Θ2

Γ ⊢ let x = e1 in e2 ⇒ âS ⊣ ∆
inf-let2

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:50 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Γ ⊢ e ⇐ A ⊣ ∆ (Checking)

Γ, x : A ⊢ e ⇐ B ⊣ ∆, x : A,Θ

Γ ⊢ λx . e ⇐ A→ B ⊣ ∆
chk-lam

Γ, a ⊢ e ⇐ A ⊣ ∆, a,Θ

Γ ⊢ e ⇐ ∀a.A ⊣ ∆
chk-gen

Γ ⊢ e ⇒ A ⊣ Θ Θ ⊢ [Θ]A ≲ [Θ]B ⊣ ∆

Γ ⊢ e ⇐ B ⊣ ∆
chk-sub

Γ ⊢ A ▷A1 → A2 ⊣ ∆ (Algorithmic Matching)

Γ, âS ⊢ A[a 7→ âS] ▷A1 → A2 ⊣ ∆

Γ ⊢ ∀a.A ▷A1 → A2 ⊣ ∆
am-forallL

Γ ⊢ A1 → A2 ▷A1 → A2 ⊣ Γ
am-arr

Γ ⊢ ⋆ ▷ ⋆→ ⋆ ⊣ Γ
am-unknown

Γ[â] ⊢ â ▷ â1 → â2 ⊣ Γ[â1, â2, â = â1 → â2]
am-var

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:51

C DECIDABILITY
The decidability proofs mostly follow that of DK system. Whenever possible, we only show the

new cases; otherwise we provide full detailed proofs.

C.1 Decidability of Instantiation
Lemma C.1 (Left Unsolvedness Preservation). Let Γ = Γ0, â, Γ1. If Γ ⊢ â ⪅ A ⊣ ∆ or Γ ⊢ A ⪅

â ⊣ ∆, and b̂ ∈ unsolved(Γ0), then ∆ = (∆0, b̂,∆1) or ∆ = (∆0, b̂
′, b̂ = b̂ ′,∆1) where b̂

′
is a fresh

unsolved existential.

Proof. By induction on the given derivation. We show the new cases.

• Case

Γ0, âS , Γ1 ⊢ âS ⪅ ⋆ ⊣ Γ0, âG , âS = âG , Γ1
instl-solveUS

First notice that b̂ cannot be âG . Then to the left of âS , the contexts ∆ and Γ are the same Γ0.
• Case

Γ[âG] ⊢ âG ⪅ ⋆ ⊣ Γ[âG]
instl-solveUG

Immediate, since to the left of âG , the contexts ∆ and Γ are the same.

• Case

Γ[âS][b̂G] ⊢ âS ⪅ b̂G ⊣ Γ[âG , âS = âG][b̂G = âG]
instl-reachSG1

First notice that b̂ cannot be âG . Then to the left of âS , the contexts ∆ and Γ are the same.

• Case

Γ[b̂S][âG] ⊢ âG ⪅ b̂S ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instl-reachSG2

If b̂ , b̂S , immediate, since to the left of âG (b̂ cannot be b̂G), the contexts ∆ and Γ are the

same. Otherwise, b̂S ’s solution (i.e., b̂G) is a fresh unsolved existential that lies just before b̂S .
• Case instr-solveUS is similar to case instl-solveUS.

• Case instr-solveUG is similar to case instl-solveUG.

• Case instr-reachSG1 is similar to case instl-reachSG1.

• Case instr-reachSG2 is similar to case instl-reachSG2.

□

Lemma C.2 (Left Free Variable Preservation). Let Γ = Γ0, â, Γ1. If Γ ⊢ â ⪅ A ⊣ ∆ or Γ ⊢ A ⪅
â ⊣ ∆, and Γ ⊢ B and â < fv([Γ]B) and b̂ ∈ unsolved(Γ0) and b̂ < fv([Γ]B), then b̂ < fv([∆]B).

Proof. By induction on the given derivation. We show the new cases.

• Case

Γ[âS] ⊢ âS ⪅ ⋆ ⊣ Γ[âG , âS = âG]
instl-solveUS

Since ∆ differs from Γ only in solving âS to âG , and âG is fresh, applying ∆ to a type will not

introduce b̂. We have b̂ < fv([Γ]B), so b̂ < fv([∆]B).
• Case

Γ[âG] ⊢ âG ⪅ ⋆ ⊣ Γ[âG]
instl-solveUG

Immediate, since ∆ and Γ are the same.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:52 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

• Case

Γ[âS][b̂G] ⊢ âS ⪅ b̂G ⊣ Γ[âG , âS = âG][b̂G = âG]
instl-reachSG1

Since ∆ differs from Γ only in solving âS and b̂G to âG , and âG is fresh, applying ∆ to a type

will not introduce b̂. We have b̂ < fv([Γ]B), so b̂ < fv([∆]B).
• Case

Γ[b̂S][âG] ⊢ âG ⪅ b̂S ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instl-reachSG2

Since ∆ differs from Γ only in solving b̂S and âG to b̂G , and b̂G is fresh, applying ∆ to a type

will not introduce b̂. We have b̂ < fv([Γ]B), so b̂ < fv([∆]B).
• Case instr-solveUS is similar to case instl-solveUS.

• Case instr-solveUG is similar to case instl-solveUG.

• Case instr-reachSG1 is similar to case instl-reachSG1.

• Case instr-reachSG2 is similar to case instl-reachSG2.

□

Lemma C.3 (Instantiation Size Preservation). If Γ = Γ0, â, Γ1 and Γ ⊢ â ⪅ A ⊣ ∆ or Γ ⊢ A ⪅
â ⊣ ∆, and Γ ⊢ B and â < fv([Γ]B), then |[Γ]B | = |[∆]B |, where |C | is the plain size of C .

Proof. By induction on the given derivation. We show the new cases.

• Case

Γ[âS] ⊢ âS ⪅ ⋆ ⊣ Γ[âG , âS = âG]
instl-solveUS

Since ∆ differs Γ only in solving âS , and we know âS < fv([Γ]B), we have [∆]B = [Γ]B, so
|[Γ]B | = |[∆]B |.
• Case

Γ[âG] ⊢ âG ⪅ ⋆ ⊣ Γ[âG]
instl-solveUG

Immediate, since ∆ and Γ are the same.

• Case

Γ[âS][b̂G] ⊢ âS ⪅ b̂G ⊣ Γ[âG , âS = âG][b̂G = âG]
instl-reachSG1

Since ∆ differs Γ only in solving âS and b̂G , and we know âS < fv([Γ]B), even if b̂G occurs in

[Γ]B, its solution is again an existential variable, so the size does not change, so |[Γ]B | = |[∆]B |.
• Case

Γ[b̂S][âG] ⊢ âG ⪅ b̂S ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instl-reachSG2

Since ∆ differs Γ only in solving âG and b̂S , and we know âG < fv([Γ]B), even if b̂S occurs in

[Γ]B, its solution is again an existential variable, so the size does not change, so |[Γ]B | = |[∆]B |.
• Case instr-solveUS is similar to case instl-solveUS.

• Case instr-solveUG is similar to case instl-solveUG.

• Case instr-reachSG1 is similar to case instl-reachSG1.

• Case instr-reachSG2 is similar to case instl-reachSG2.

□

Theorem 6.1 (Decidability of Instantiation). If Γ = Γ0[â] and Γ ⊢ A such that [Γ]A = A and

â < fv(A) then:

(1) Either there exists ∆ such that Γ ⊢ â ⪅ A ⊣ ∆, or not.
(2) Either there exists ∆ such that Γ ⊢ A ⪅ â ⊣ ∆, or not.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:53

Proof. By induction on the derivation of Γ ⊢ A. We show the new cases.

• Case

Γ ⊢ ⋆
ad-unknown

By rule instl-solveUS or rule instl-solveUG.

• Case

Γ ⊢ S
ad-static

By rule instl-solveS.

• Case

Γ ⊢ G
ad-gradual

By rule instl-solveS or rule instl-solveG.

• Case

Γ0, âS , Γ1 ⊢ âG
ad-evar

If âG ∈ Γ0, then we have a derivation by rule instl-reachOther. If âG ∈ Γ1, then we have a

derivation by rule instl-reachSG1.

• Case

Γ0, âG , Γ1 ⊢ âS
ad-evar

If âS ∈ Γ0, then we have a derivation by rule instl-reachSG2. If âS ∈ Γ1, then we have a

derivation by rule instl-reachOther.

□

C.2 Decidability of Algorithmic Consistent Subtyping
Lemma C.4 (Monotypes Solve Variables). If Γ ⊢ â ⪅ τ ⊣ ∆ or Γ ⊢ τ ⪅ â ⊣ ∆, then if [Γ]τ = τ

and â < fv([Γ]τ), then |unsolved(Γ) | = |unsolved(∆) | + 1.

Proof. By induction on the given derivation. Since our syntax of monotypes differ from DK

only in having static and gradual parameters, we show only two affected cases.

• Case

Γ ⊢ τ

Γ, âS , Γ
′ ⊢ âS ⪅ τ ⊣ Γ, âS = τ , Γ

′
instl-solveS

It is immediate that |unsolved(Γ, âS , Γ
′) | = |unsolved(Γ, âS = τ , Γ

′) | + 1.
• Case

Γ ⊢ t

Γ, âG , Γ
′ ⊢ âG ⪅ t ⊣ Γ, âG = t , Γ′

instl-solveG

It is immediate that |unsolved(Γ, âG , Γ
′) | = |unsolved(Γ, âG = t , Γ′) | + 1.

□

LemmaC.5 (MonotypeMonotonicity). If Γ ⊢ τ1 ≲ τ2 ⊣ ∆ then |unsolved(∆) | ≤ |unsolved(Γ) |.

Proof. By induction on the derivation. We show the new cases.

• Case as-spar and as-gpar: In these rules, ∆ = Γ, so |unsolved(∆) | = |unsolved(Γ) |.

□

Lemma C.6 (Substitution Decreases Size). If Γ ⊢ A, then |Γ ⊢ [Γ]A| ≤ |Γ ⊢ A|.

Proof. By induction on |Γ ⊢ A|. We show the new cases.

• A = ⋆, or A = S, or A = G then [Γ]A = A. Therefore |Γ ⊢ [Γ]A| = |Γ ⊢ A|.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:54 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

□

Lemma C.7 (Monotype Context Invariance). If Γ ⊢ τ ≲ τ ′ ⊣ ∆ where [Γ]τ = τ and [Γ]τ ′ = τ ′

and |unsolved(Γ) | = |unsolved(∆) |, then ∆ = Γ.

Proof. By induction on the derivation. We show the new cases.

• Cases as-spar and as-gpar: In these rules, the output context is the same as the input context,

so the result is immediate.

• Case

â < fv(A) Γ[â] ⊢ â ⪅ A ⊣ ∆

Γ[â] ⊢ â ≲ A ⊣ ∆
as-instL

By Lemma C.4, |unsolved(∆) | < |unsolved(Γ[â]) |, which is contrary to what is given, so

this case is impossible.

• Case as-instR is similar to as-instL.

□

Theorem 6.3 (Decidability of Algorithmic Consistent Subtyping). Given a context Γ and

types A, B such that Γ ⊢ A and Γ ⊢ B and [Γ]A = A and [Γ]B = B, it is decidable whether there exists
∆ such that Γ ⊢ A ≲ B ⊣ ∆.

Proof. Let the judgment Γ ⊢ A ≲ B ⊣ ∆ be measured lexicographically by

(M1) the number of ∀-quantifiers in A and B;
(M2) the number of unknown types in A and B;
(M3) |unsolved(Γ) |: the number of unsolved existential variables in Γ;
(M4) |Γ ⊢ A| + |Γ ⊢ B |.

We focus on the interesting (and new) cases.

• Cases as-spar, as-gpar, as-unknownLL, and as-unknownRR have no premises.

• Case

Γ ⊢ B1 ≲ A1 ⊣ Θ Θ ⊢ [Θ]A2 ≲ [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2 ≲ B1 → B2 ⊣ ∆
as-arrow

We discuss each premise separately:

First premise: If A2 or B2 has a quantifier, then the first premise is smaller by (M1). Otherwise, if

A2 or B2 has a unknown type, then first premise is smaller by (M2). Otherwise, the first premise

shares the same input context as the conclusion, so it has the same (M3), but the types B1 and A1

are subterms of the conclusion’s types, so the first premise is smaller by (M4).

Second premise: If B1 or A1 has a quantifier, then the second premise is smaller by (M1) because

applying contexts will not introduce quantifiers. Otherwise, if B1 orA1 has a unknown type, then

the second premise is smaller by (M2) because applying contexts will not introduce unknown

types. Otherwise, at this point, we know B1 and A1 are monotypes, so by Lemma C.5 on the first

premise, we have |unsolved(Θ) | ≤ |unsolved(Γ) |.
– If |unsolved(Θ) | < |unsolved(Γ) |, then the second premise is smaller by (M3).

– If |unsolved(Θ) | = |unsolved(Γ) |, then we have the same (M3). By Lemma C.7 on the

first premise, we know Θ = Γ, so |Θ ⊢ [Θ]A2 | = |Γ ⊢ [Γ]A2 |. By Lemma C.6 we know

|Γ ⊢ [Γ]A2 | ≤ |Γ ⊢ A2 |. Therefore we have

|Θ ⊢ [Θ]A2 | ≤ |Γ ⊢ A2 |

Same for B2:

|Θ ⊢ [Θ]B2 | ≤ |Γ ⊢ B2 |

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:55

Therefore,

|Θ ⊢ [Θ]A2 | + |Θ ⊢ [Θ]B2 | ≤ |Γ ⊢ A2 | + |Γ ⊢ B2 | < |Γ ⊢ A1 → A2 | + |Γ ⊢ B1 → B2 |

and the second premise is smaller by (M4).

□

C.3 Decidability of Algorithmic Typing
Lemma 6.4 (Decidability of Algorithmic Matching). Given a context Γ and a type A it is

decidable whether there exist types A1, A2 and a context ∆ such that Γ ⊢ A ▷A1 → A2 ⊣ ∆.

Proof. Rules am-arr, am-unknown, and am-var do not have premises. For rule am-forall,

the size of A is decreasing in the premise. □

Theorem 6.5 (Decidability of Algorithmic Typing).

(1) Inference: Given a context Γ and a term e , it is decidable whether there exist a type A and a

context ∆ such that Γ ⊢ e ⇒ A ⊣ ∆.
(2) Checking: Given a context Γ, a term e and a type B such that Γ ⊢ B, it is decidable whether there

exists a context ∆ such that Γ ⊢ e ⇐ B ⊣ ∆.

Proof. We consider the following measure:〈
e,
⇒

|Γ ⊢ A|
〉

⇐,

and show every inference/checking premise is smaller than the conclusion.

• Rules inf-var and inf-int do not have premises.

• Rules inf-anno, inf-lamann, inf-lam, inf-let, and chk-lam all have strictly smaller e in
the premises.

• Rule inf-app: The first and third premises have strictly smaller e . The second (matching)

judgment is decidable by Lemma 6.4.

• Rule chk-gen: Both the premise and conclusion type the same term, and both are the checking

judgments. However |Γ, a ⊢ A| < |Γ ⊢ ∀a.A|, so the premise is smaller.

• Rule chk-sub: The first premise uses inference mode, so it is smaller. The second premise is

decidable by Theorem 6.3.

□

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:56 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

D PROPERTIES OF CONSISTENT SUBTYPING
Lemma 7 (Consistent Subtyping is Reflexive). If Ψ ⊢ A then Ψ ⊢ A ≲ A.

Lemma 8 (Monotype Eqality). If Ψ ⊢ τ ≲ σ then τ = σ .

Lemma D.1 (Invertibility). If Ψ ⊢ A ≲ ∀b. B then Ψ, b ⊢ A ≲ B.

Proof. By induction on the given derivation.

• Rules cs-arrow, cs-tvar, cs-int, cs-unknownRR, cs-spar, and cs-gpar are impossible

since the supertype is not a forall type.

• Case

Ψ, a ⊢ A ≲ B

Ψ ⊢ A ≲ ∀a. B
cs-forallR

The premise is exactly what we need.

• Case

Ψ ⊢ τ Ψ ⊢ A[a 7→ τ] ≲ B

Ψ ⊢ ∀a.A ≲ B

cs-forallL

where B = ∀b. B0. By i.h., we have Ψ, b ⊢ A[a 7→ τ] ≲ B0. By rule cs-forallL we have

Ψ, b ⊢ ∀a.A ≲ B0.

• Case

Ψ ⊢ ⋆ ≲ C
cs-unknownLL

where C = ∀b.C0. By rule cs-unknownLL we have Ψ, b ⊢ ⋆ ≲ C0.

□

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:57

E PROPERTIES OF CONTEXT EXTENSION
E.1 Syntactic Properties
Since the definition of the context extension judgment (Γ −→ ∆, Fig. 16) is exactly the same as that

of the DK system, we refer the reader to their technical report [Dunfield and Krishnaswami 2013]

for the proofs of the following syntactic properties of context extension.

Lemma E.1 (Reverse Declaration Order Preservation). If Γ −→ ∆ and a and b are both

declared in Γ and a is declared to the left of b in ∆, then a is declared to the left of b in Γ.

Lemma E.2 (Reflexivity). If Γ is well-formed then Γ −→ Γ.

Lemma E.3 (Transitivity). If Γ −→ ∆ and ∆ −→ Θ then Γ −→ Θ.

Definition E.4 (Softness). A context Θ is soft iff it consists only of â and â = τ declarations.

Lemma E.5 (Substitution Extension Invariance). IfΘ ⊢ A andΘ −→ Γ then [Γ]A = [Γ]([Θ]A)
and [Γ]A = [Θ]([Γ]A).

Lemma E.6 (Extension Order). We have the following:

(1) If ΓL, a, ΓR −→ ∆ then ∆ = (∆L, a,∆R) where ΓL −→ ∆L . Moreover, if ΓR is soft then ∆R is soft.

(2) If ΓL,▶â , ΓR −→ ∆ then ∆ = (∆L,▶â ,∆R) where ΓL −→ ∆L . Moreover, if ΓR is soft then ∆R is

soft.

(3) If ΓL, â, ΓR −→ ∆ then ∆ = (∆L,Θ,∆R) where ΓL −→ ∆L and Θ is either â or â = τ for some τ .
(4) If ΓL, â = τ , ΓR −→ ∆ then ∆ = (∆L, â = τ

′,∆R) where ΓL −→ ∆L and and [∆L]τ = [∆L]τ
′
.

(5) If ΓL, x : A, ΓR −→ ∆ then ∆ = (∆L, x : A′,∆R) where ΓL −→ ∆L and [∆L]A = [∆L]A
′
.

Moreover, ΓR is soft if and only if ∆R is soft.

Lemma E.7 (Solution Admissibility for Extension). If ΓL ⊢ τ then ΓL, â, ΓR −→ ΓL, â = τ , ΓR .

Lemma E.8 (Unsolved Variable Addition for Extension). We have that ΓL, ΓR −→ ΓL, â, ΓR

Lemma E.9 (Parallel Admissibility). If ΓL −→ ∆L and ΓL, ΓR −→ ∆L,∆R then:

(1) ΓL, â, ΓR −→ ∆L, â,∆R
(2) If ∆L ⊢ τ

′
then ΓL, â, ΓR −→ ∆L, â = τ

′,∆R .

(3) If ΓL ⊢ τ and ∆L ⊢ τ
′
and [∆L]τ = [∆L]τ

′
, then ΓL, â = τ , ΓR −→ ∆L, â = τ

′,∆R .

Lemma E.10 (Parallel Extension Solution). If ΓL, â, ΓR −→ ∆L, â = τ ′,∆R and ΓL ⊢ τ and

[∆L]τ = [∆L]τ
′
, then ΓL, â = τ , ΓR −→ ∆L, â = τ

′,∆R .

Lemma E.11 (Drop Variable for Extension). If Γ, â −→ ∆ then Γ −→ ∆.

Lemma E.12 (Finishing Types). If Ω ⊢ A and Ω −→ Ω′ then [Ω]A = [Ω′]A.

Lemma E.13 (Finishing completions). If Ω −→ Ω′ then [Ω]Ω = [Ω′]Ω′.

Lemma E.14 (Confluence of Completeness). If ∆1 −→ Ω and ∆2 −→ Ω then [Ω]∆1 = [Ω]∆2.

Lemma E.15 (Variable Preservation). If (x : A) ∈ ∆ or (x : A) ∈ Ω and ∆ −→ Ω then

(x : [Ω]A) ∈ [Ω]∆.

Lemma E.16 (Softness Goes Away). If ∆,Θ −→ Ω,ΩZ where ∆ −→ Ω and Θ is soft, then

[Ω,ΩZ](∆,Θ) = [Ω]∆.

Lemma E.17 (Stability of Complete Contexts). If Γ −→ Ω then [Ω]Γ = [Ω]Ω.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:58 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

E.2 Instantiation Extends
Lemma E.18 (Instantiation Extension). If Γ ⊢ â ⪅ A ⊣ ∆ or Γ ⊢ A ⪅ â ⊣ ∆ then Γ −→ ∆.

Proof. By induction on the given instantiation derivation.

• Rules instl-solveS, instl-solveG, instl-reachOther, instr-solveS, instr-solveG, and

instr-reachOther are immediate from Lemma E.7.

• Case

Γ[âS] ⊢ âS ⪅ ⋆ ⊣ Γ[âG , âS = âG]
instl-solveUS

By Lemma E.8 we have Γ[âS] −→ Γ[âG , âS]. By Lemma E.7 we have Γ[âG , âS] −→ Γ[âG , âS =
âG]. By Lemma E.3 we have Γ[âS] −→ Γ[âG , âS = âG].
• Case

Γ[âG] ⊢ âG ⪅ ⋆ ⊣ Γ[âG]
instl-solveUG

Immediate by Lemma E.2.

• Case

Γ[âS][b̂G] ⊢ âS ⪅ b̂G ⊣ Γ[âG , âS = âG][b̂G = âG]
instl-reachSG1

By Lemma E.8 we have Γ[âS][b̂G] −→ Γ[âG , âS][b̂G]. By applying Lemma E.7 twice, we

have Γ[âG , âS][b̂G] −→ Γ[âG , âS = âG][b̂G = âG]. By Lemma E.3 we have Γ[âS][b̂G] −→

Γ[âG , âS = âG][b̂G = âG].
• Case

Γ[b̂S][âG] ⊢ âG ⪅ b̂S ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instl-reachSG2

Same as the case for rule instl-reachSG1.

• Case

Γ[â2, â1, â = â1 → â2] ⊢ A1 ⪅ â1 ⊣ Θ Θ ⊢ â2 ⪅ [Θ]A2 ⊣ ∆

Γ[â] ⊢ â ⪅ A1 → A2 ⊣ ∆
instl-arr

By applying Lemma E.8 twice, we have Γ[â] −→ Γ[â2, â1, â]. By Lemma E.7 we have

Γ[â2, â1, â] −→ Γ[â2, â1, â = â1 → â2]. By i.h., we have Γ[â2, â1, â = â1 → â2] −→ Θ
and Θ −→ ∆. By Lemma E.3 we have Γ[â] −→ ∆.
• Case

Γ[â], b ⊢ â ⪅ B ⊣ ∆, b,Θ

Γ[â] ⊢ â ⪅ ∀b. B ⊣ ∆
instl-forallR

By i.h., we have Γ[â], b −→ ∆, b,Θ. By Lemma E.6 (1), we have Γ[â] −→ ∆.
• Case

Γ[âS] ⊢ ⋆ ⪅ âS ⊣ Γ[âG , âS = âG]
instr-solveUS

Same as the case for rule instl-solveUS.

• Case

Γ[âG] ⊢ ⋆ ⪅ âG ⊣ Γ[âG]
instr-solveUG

Same as the case for rule instl-solveUG.

• Case

Γ[âS][b̂G] ⊢ b̂G ⪅ âS ⊣ Γ[âG , âS = âG][b̂G = âG]
instr-reachSG1

Same as the case for rule instl-reachSG1.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:59

• Case

Γ[b̂S][âG] ⊢ b̂S ⪅ âG ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instr-reachSG2

Same as the case for rule instl-reachSG1.

• Case

Γ[â2, â1, â = â1 → â2] ⊢ â1 ⪅ A1 ⊣ Θ Θ ⊢ [Θ]A2 ⪅ â2 ⊣ ∆

Γ[â] ⊢ A1 → A2 ⪅ â ⊣ ∆
instr-arr

Same as the case for rule instl-arr.

• Case

Γ[â],▶b̂S
, b̂S ⊢ B[b 7→ b̂S] ⪅ â ⊣ ∆,▶b̂S

,Θ

Γ[â] ⊢ ∀b. B ⪅ â ⊣ ∆
instr-forallLL

By i.h., we have Γ[â],▶b̂ , b̂S −→ ∆,▶b̂ ,Θ. By Lemma E.6(2) we have Γ[â] −→ ∆.

□

E.3 Consistent Subtyping Extends
Lemma E.19. If Γ ⊢ A then Γ −→ contaminate(Γ,A).

Proof. By induction on the structure of Γ. The only interesting case is when Γ = Γ′, âS .
By Definition 9.11, we have contaminate((Γ′, âS),A) = contaminate(Γ′,A), âG , âS = âG . By
i.h., we have Γ′ −→ contaminate(Γ′,A). By definition of context extension we have Γ′, âS −→
contaminate(Γ′,A), âS . By LemmaE.8we have contaminate(Γ′,A), âS −→ contaminate(Γ′,A), âG , âS .
By LemmaE.7we have contaminate(Γ′,A), âG , âS −→ contaminate(Γ′,A), âG , âS = âG . By LemmaE.3

we have Γ′, âS −→ contaminate(Γ′,A), âG , âS = âG . □

Lemma E.20 (Consistent Subtyping Extension). If Γ ⊢ A ≲ B ⊣ ∆ then Γ −→ ∆.

Proof. By induction on the derivation of consistent subtyping.

• Rules as-tvar, as-evar, as-int, as-spar, and as-gpar are immediate from Lemma E.2.

• Case

Γ ⊢ B1 ≲ A1 ⊣ Θ Θ ⊢ [Θ]A2 ≲ [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2 ≲ B1 → B2 ⊣ ∆
as-arrow

By i.h., we have Γ −→ Θ and Θ −→ ∆. By Lemma E.3, we have Γ −→ ∆.
• Case

Γ, a ⊢ A ≲ B ⊣ ∆, a,Θ

Γ ⊢ A ≲ ∀a. B ⊣ ∆
as-forallR

By i.h., we have Γ, a −→ ∆, a,Θ. By Lemma E.6 (1), we have Γ −→ ∆.
• Case

Γ,▶âS , âS ⊢ A[a 7→ âS] ≲ B ⊣ ∆,▶âS ,Θ

Γ ⊢ ∀a.A ≲ B ⊣ ∆
as-forallLL

By i.h., we have Γ,▶â , âS −→ ∆,▶â ,Θ. By Lemma E.6 (2), we have Γ −→ ∆.
• Case

Γ ⊢ ⋆ ≲ C ⊣ contaminate(Γ,C)
as-unknownLL

Immediate by Lemma E.19.

• Case

Γ ⊢ C ≲ ⋆ ⊣ contaminate(Γ,C)
as-unknownRR

Immediate by Lemma E.19.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:60 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

• Rules as-instL and as-instR are immediate.

□

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:61

F SOUNDNESS OF CONSISTENT SUBTYPING
Definition F.1 (Filling). The filling of a context |Γ | solves all unsolved variables:

| • | = •

|Γ, x : A| = |Γ |, x : A

|Γ, a| = |Γ |, a

|Γ, â = τ | = |Γ |, â = τ

|Γ, â | = |Γ |, â = Int

|Γ,▶â | = |Γ |,▶â

Lemma F.2 (Substitution Stability). For any well-formed complete context (Ω,ΩZ), if Ω ⊢ A
then [Ω]A = [Ω,ΩZ]A.

Proof. By induction on ΩZ . If ΩZ = •, the result is immediate. Otherwise use the i.h. and the

fact that Ω ⊢ A implies fv(A) ∩ dom(ΩZ) = ∅. □

Lemma F.3 (Filling Completes). If Γ −→ Ω and (Γ,Θ) is well-formed, then Γ,Θ −→ Ω, |Θ|.

Proof. By induction on Θ, following Definition F.1 and applying the rules for context extension.

□

Theorem 7.2 (Instantiation Soundness). Given ∆ −→ Ω and [Γ]A = A and â < fv(A):

(1) If Γ ⊢ â ⪅ A ⊣ ∆ then [Ω]∆ ⊢ [Ω]â ≲ [Ω]A.
(2) If Γ ⊢ A ⪅ â ⊣ ∆ then [Ω]∆ ⊢ [Ω]A ≲ [Ω]â.

Proof. By induction on the given instantiation derivation.

• Case

Γ ⊢ τ

Γ, âS , Γ
′ ⊢ âS ⪅ τ ⊣ Γ, âS = τ , Γ

′
instl-solveS

Immediate from Lemma 7.

• Case

Γ ⊢ t

Γ, âG , Γ
′ ⊢ âG ⪅ t ⊣ Γ, âG = t , Γ′

instl-solveG

Immediate from Lemma 7.

• Case

Γ[âS] ⊢ âS ⪅ ⋆ ⊣ Γ[âG , âS = âG]
instl-solveUS

We know [Ω]âS = t for some castable monotype t , and t ∈ C. By rule cs-unknownRR, we

have [Ω](Γ[âS]) ⊢ t ≲ ⋆
• Case

Γ[âG] ⊢ âG ⪅ ⋆ ⊣ Γ[âG]
instl-solveUG

Similar to the case for rule instl-solveUS.

• Case

Γ[âS][b̂G] ⊢ âS ⪅ b̂G ⊣ Γ[âG , âS = âG][b̂G = âG]
instl-reachSG1

We know [Ω]âS = [Ω]âG = t and [Ω]b̂G = [Ω]âG = t for some castable monotype t . By

Lemma 7 we have [Ω](Γ[âS][b̂G]) ⊢ t ≲ t .

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:62 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

• Case

Γ[b̂S][âG] ⊢ âG ⪅ b̂S ⊣ Γ[b̂G , b̂S = b̂G][âG = b̂G]
instl-reachSG2

Similar to the case for rule instl-reachSG1.

• Case

Γ[â][b̂] ⊢ â ⪅ b̂ ⊣ Γ[â][b̂ = â]
instl-reachOther

Let ∆ = Γ[â][b̂], we have [Ω]â = τ and [Ω]b̂ = [Ω]â = τ for some monotype τ . By Lemma 7

we have [Ω]∆ ⊢ τ ≲ τ .
• Case

Γ[â2, â1, â = â1 → â2] ⊢ A1 ⪅ â1 ⊣ Θ Θ ⊢ â2 ⪅ [Θ]A2 ⊣ ∆

Γ[â] ⊢ â ⪅ A1 → A2 ⊣ ∆
instl-arr

Let Γ1 = Γ[â2, â1, â = â1 → â2]:

Θ ⊢ â2 ⪅ [Θ]A2 ⊣ ∆ Premise

Θ −→ ∆ By Lemma E.18

∆ −→ Ω Given

Θ −→ Ω By Lemma E.3

Γ1 ⊢ A1 ⪅ â1 ⊣ Θ Given

[Ω]∆ ⊢ [Ω]A1 ≲ [Ω]â1 By i.h. and Lemma E.14

Θ ⊢ â2 ⪅ [Θ]A2 ⊣ ∆ Premise

[Ω]∆ ⊢ [Ω]â2 ≲ [Ω]([Θ]A2) By i.h.

Θ −→ ∆ Above

[Ω]∆ ⊢ [Ω]â2 ≲ [Ω]A2 By Lemma E.5

[Ω]∆ ⊢ [Ω]â1 → [Ω]â2 ≲ [Ω]A1 → [Ω]A2 By rule cs-arrow

[Ω]∆ ⊢ [Ω]â ≲ [Ω](A1 → A2) By def. of substitution

• Case

Γ[â], b ⊢ â ⪅ B ⊣ ∆, b,Θ

Γ[â] ⊢ â ⪅ ∀b. B ⊣ ∆
instl-forallR

∆, b,Θ −→ Ω, b, |Θ| By Lemma F.3

Γ[â], b ⊢ â ⪅ B ⊣ ∆, b,Θ Given

[Ω, b, |Θ|](∆, b,Θ) ⊢ [Ω, b, |Θ|]â ≲ [Ω, b, |Θ|]B By i.h.

[Ω, b, |Θ|](∆, b,Θ) ⊢ [Ω, b]â ≲ [Ω, b]B Free variables in â and B are declared in (Ω, b)
[Ω, b](∆, b) ⊢ [Ω, b]â ≲ [Ω, b]B By context partitioning and thinning

[Ω]∆, b ⊢ [Ω]â ≲ [Ω]B By context substitution

[Ω]∆ ⊢ [Ω]â ≲ ∀b. [Ω]B By rule cs-forallR

[Ω]∆ ⊢ [Ω]â ≲ [Ω](∀b. B) By def. of substitution

• Case

Γ[â],▶b̂S
, b̂S ⊢ B[b 7→ b̂S] ⪅ â ⊣ ∆,▶b̂S

,Θ

Γ[â] ⊢ ∀b. B ⪅ â ⊣ ∆
instr-forallLL

∆,▶b̂ ,Θ −→ Ω,▶b̂ , |Θ| By Lemma F.3

Γ[â],▶b̂ , b̂S ⊢ B[b 7→ b̂S] ⪅ â ⊣ ∆,▶b̂ ,Θ Premise

[Ω,▶b̂ , |Θ|](∆,▶b̂ ,Θ) ⊢ [Ω,▶b̂ , |Θ|](B[b 7→ b̂S]) ≲ [Ω,▶b̂ , |Θ|]â By i.h.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:63

[Ω]∆ ⊢ ([Ω]B)[b 7→ [Ω,▶b̂ , |Θ|]b̂S] ≲ [Ω]â By distributivity of substitution

[Ω]∆ ⊢ [Ω,▶b̂ , |Θ|]b̂S Follows from def. of context application

[Ω]∆ ⊢ ∀b. [Ω]B ≲ [Ω]â By rule cs-forallL and [Ω,▶b̂ , |Θ|]b̂S is a monotype

[Ω]∆ ⊢ [Ω](∀b. B) ≲ [Ω]â By def. of substitution

• The rest of the cases are similar to the above cases.

□

Theorem 7.3 (Soundness of Algorithmic Consistent Subtyping). If Γ ⊢ A ≲ B ⊣ ∆ where

[Γ]A = A and [Γ]B = B and ∆ −→ Ω then [Ω]∆ ⊢ [Ω]A ≲ [Ω]B.

Proof. By induction on the derivation of consistent subtyping.

• Case

Γ[a] ⊢ a ≲ a ⊣ Γ[a]
as-tvar

a ∈ Γ[a] Given

a ∈ [Ω](Γ[a]) Follows from def. of context application

[Ω](Γ[a]) ⊢ a ≲ a By rule cs-tvar

[Ω](Γ[a]) ⊢ [Ω]a ≲ [Ω]a By def. of substitution

• Case

Γ[â] ⊢ â ≲ â ⊣ Γ[â]
as-evar

[Ω]â defined Follows from def. of context application

[Ω]∆ ⊢ [Ω]â Follows from ∆ = [Γ]â
[Ω]∆ ⊢ [Ω]â ≲ [Ω]â By Lemma 7

• Case

Γ ⊢ Int ≲ Int ⊣ Γ
as-int

Immediate.

• Case

Γ ⊢ B1 ≲ A1 ⊣ Θ Θ ⊢ [Θ]A2 ≲ [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2 ≲ B1 → B2 ⊣ ∆
as-arrow

Γ ⊢ B1 ≲ A1 ⊣ Θ Premise

∆ −→ Ω Given

Θ −→ Ω By Lemma E.3

[Ω]Θ ⊢ [Ω]B1 ≲ [Ω]A1 By i.h.

[Ω]∆ ⊢ [Ω]B1 ≲ [Ω]A1 By Lemma E.14

Θ ⊢ [Θ]A2 ≲ [Θ]B2 ⊣ ∆ Premise

[Ω]∆ ⊢ [Ω]([Θ]A2) ≲ [Ω]([Θ]B2) By i.h.

[Ω]([Θ]A2) = [Ω]A2 By Lemma E.5

[Ω]([Θ]B2) = [Ω]B2 By Lemma E.5

[Ω]∆ ⊢ [Ω]A2 ≲ [Ω]B2 By above equalities

[Ω]∆ ⊢ [Ω]A1 → [Ω]A2 ≲ [Ω]B1 → [Ω]B2 By rule cs-arrow

[Ω]∆ ⊢ [Ω](A1 → A2) ≲ [Ω](B1 → B2) By def. of substitution

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:64 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

• Case

Γ, a ⊢ A ≲ B ⊣ ∆, a,Θ

Γ ⊢ A ≲ ∀a. B ⊣ ∆
as-forallR

Γ, a −→ ∆, a,Θ By Lemma E.20

Θ is soft By Lemma E.6 (1) where ΓR = •
∆ −→ Ω Given

∆, a,Θ︸ ︷︷ ︸
∆′

−→ Ω, a, |Θ|︸ ︷︷ ︸
Ω′

By Lemma F.3

Γ, a ⊢ A ≲ B ⊣ ∆, a,Θ Given

[Ω′]∆′ ⊢ [Ω′]A ≲ [Ω′]B By i.h.

[Ω′]A = [Ω, a]A By Lemma F.2

[Ω′]B = [Ω, a]B By Lemma F.2

[Ω′]∆′ = [Ω, a](∆, a) By Lemma E.16

[Ω, a](∆, a) ⊢ [Ω, a]A ≲ [Ω, a]B By above equalities

[Ω]∆, a ⊢ [Ω]A ≲ [Ω]B By def. of substitution

[Ω]∆ ⊢ [Ω]A ≲ ∀a. [Ω]B By rule cs-forallR

[Ω]∆ ⊢ [Ω]A ≲ [Ω](∀a. B) By def. of substitution

• Case

Γ,▶âS , âS ⊢ A[a 7→ âS] ≲ B ⊣ ∆,▶âS ,Θ

Γ ⊢ ∀a.A ≲ B ⊣ ∆
as-forallLL

Let Ω′ = Ω,▶âS , |Θ|
∆ −→ Ω Given

∆,▶âS ,Θ −→ Ω′ By Lemma F.3

Γ,▶âS , âS ⊢ A[a 7→ âS] ≲ B ⊣ ∆,▶âS ,Θ Premise

[Ω′](∆,▶âS ,Θ) ⊢ [Ω
′
](A[a 7→ âS]) ≲ [Ω′]B By i.h.

[Ω′]B = [Ω, a]B By Lemma F.2

[Ω](∆,▶âS ,Θ) ⊢ [Ω
′
]A[a 7→ [Ω′]âS] ≲ [Ω]B By distributivity of substitution

[Ω](∆,▶âS ,Θ) ⊢ [Ω
′
]âS Follows from def. of context application

[Ω](∆,▶âS ,Θ) ⊢ ∀a. [Ω
′
]A ≲ [Ω]B By rule cs-forallL

[Ω]∆ ⊢ ∀a. [Ω]A ≲ [Ω]B By context partitioning

[Ω]∆ ⊢ [Ω](∀a.A) ≲ [Ω]B By def. of substitution

• Case

Γ ⊢ S ≲ S ⊣ Γ
as-spar

Immediate from rule cs-spar.

• Case

Γ ⊢ G ≲ G ⊣ Γ
as-gpar

Immediate from rule cs-gpar.

• Case

Γ ⊢ ⋆ ≲ C ⊣ contaminate(Γ,C)
as-unknownLL

Immediate from rule cs-unknownLL.

• Case

Γ ⊢ C ≲ ⋆ ⊣ contaminate(Γ,C)
as-unknownRR

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:65

Immediate from rule cs-unknownRR.

• Case

â < fv(A) Γ[â] ⊢ â ⪅ A ⊣ ∆

Γ[â] ⊢ â ≲ A ⊣ ∆
as-instL

Γ[â] ⊢ â ⪅ A ⊣ ∆ Premise

[Ω]∆ ⊢ [Ω]â ≲ [Ω]A By Theorem 7.2

• Case

â < fv(A) Γ[â] ⊢ A ⪅ â ⊣ ∆

Γ[â] ⊢ A ≲ â ⊣ ∆
as-instR

Similar to the case for rule as-instL.

□

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:66 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

G SOUNDNESS OF TYPING
Note:We use ♦ to improve readability when the conclusion has several parts.

Lemma G.1 (Matching Extension). If Γ ⊢ A ▷A1 → A2 ⊣ ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Case

Γ, âS ⊢ A[a 7→ âS] ▷A1 → A2 ⊣ ∆

Γ ⊢ ∀a.A ▷A1 → A2 ⊣ ∆
am-forallL

By i.h., we have Γ, âS −→ ∆. By Lemma E.11, we have Γ −→ ∆.
• Case

Γ ⊢ A1 → A2 ▷A1 → A2 ⊣ Γ
am-arr

Immediate by Lemma E.2.

• Case

Γ ⊢ ⋆ ▷ ⋆→ ⋆ ⊣ Γ
am-unknown

Immediate by Lemma E.2.

• Case

Γ[â] ⊢ â ▷ â1 → â2 ⊣ Γ[â1, â2, â = â1 → â2]
am-var

By applying Lemma E.8 twice, we have Γ[â] −→ Γ[â1, â2, â]. By Lemma E.7, we have

Γ[â1, â2, â] −→ Γ[â1, â2, â = â1 → â2]. By Lemma E.3, we have Γ[â] −→ Γ[â1, â2, â =
â1 → â2].

□

Lemma G.2 (Typing Extension). If Γ ⊢ e ⇒ A ⊣ ∆ or Γ ⊢ e ⇐ A ⊣ ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Case

(x : A) ∈ Γ

Γ ⊢ x ⇒ A ⊣ Γ
inf-var

Immediate by Lemma E.2.

• Case

Γ ⊢ n⇒ Int ⊣ Γ
inf-int

Immediate by Lemma E.2.

• Case

Γ, âS , b̂S , x : âS ⊢ e ⇐ b̂S ⊣ ∆, x : âS ,Θ

Γ ⊢ λx . e ⇒ âS → b̂S ⊣ ∆
inf-lam2

By i.h., we have Γ, âS , b̂S , x : âS −→ ∆, x : âS ,Θ. By Lemma E.6, we have Γ, âS , b̂S −→ ∆. By

definition, we have Γ −→ Γ, âS , b̂S . By Lemma E.3 we have Γ −→ ∆.
• Case

Γ ⊢ A Γ, b̂S , x : A ⊢ e ⇐ b̂S ⊣ ∆, x : A,Θ

Γ ⊢ λx : A. e ⇒ A→ b̂S ⊣ ∆
inf-lamann2

By i.h., we have Γ, b̂S , x : A −→ ∆, x : A,Θ. By Lemma E.6, we have Γ −→ ∆.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:67

• Case

Γ ⊢ e1 ⇒ A ⊣ Θ1 Θ1 ⊢ [Θ1]A ▷A1 → A2 ⊣ Θ2 Θ2 ⊢ e2 ⇐ [Θ2]A1 ⊣ ∆

Γ ⊢ e1 e2 ⇒ A2 ⊣ ∆
inf-app

By i.h., we have Γ −→ Θ1, Θ2 −→ ∆. By Lemma G.1, we have Θ1 −→ Θ2. By Lemma E.3 , we

have Γ −→ ∆.
• Case

Γ ⊢ A Γ ⊢ e ⇐ A ⊣ ∆

Γ ⊢ e : A⇒ A ⊣ ∆
inf-anno

By i.h., we have Γ −→ ∆.
• Case

Γ, a ⊢ e ⇐ A ⊣ ∆, a,Θ

Γ ⊢ e ⇐ ∀a.A ⊣ ∆
chk-gen

By i.h., we have Γ, a −→ ∆, a,Θ. By Lemma E.6 we have Γ −→ ∆.
• Case

Γ, x : A ⊢ e ⇐ B ⊣ ∆, x : A,Θ

Γ ⊢ λx . e ⇐ A→ B ⊣ ∆
chk-lam

By i.h., we have Γ, x : A −→ ∆, x : A,Θ. By Lemma E.6 we have Γ −→ ∆.
• Case

Γ ⊢ e ⇒ A ⊣ Θ Θ ⊢ [Θ]A ≲ [Θ]B ⊣ ∆

Γ ⊢ e ⇐ B ⊣ ∆
chk-sub

By i.h., we have Γ −→ Θ. By Lemma E.20 we have Θ −→ ∆. By Lemma E.3 we have Γ −→ ∆.

□

Theorem G.3 (Matching Soundness). If Γ ⊢ A ▷ A1 → A2 ⊣ ∆ where [Γ]A = A and ∆ −→ Ω
then [Ω]∆ ⊢ [Ω]A ▷ [Ω]A1 → [Ω]A2.

Proof. By induction on the given derivation.

• Case

Γ, âS ⊢ A[a 7→ âS] ▷A1 → A2 ⊣ ∆

Γ ⊢ ∀a.A ▷A1 → A2 ⊣ ∆
am-forallL

Γ, âS ⊢ A[a 7→ âS] ▷A1 → A2 ⊣ ∆ Premise

∆ −→ Ω Given

[Ω]∆ ⊢ [Ω](A[a 7→ âS]) ▷ [Ω]A1 → [Ω]A2 By i.h.

[Ω]∆ ⊢ [Ω]A[a 7→ [Ω]âS] ▷ [Ω]A1 → [Ω]A2 By distributivity of substitution

[Ω]∆ ⊢ [Ω]âS Follows from def. of context application

[Ω]∆ ⊢ ∀a. [Ω]A ▷ [Ω]A1 → [Ω]A2 By rule m-forall

[Ω]∆ ⊢ [Ω](∀a.A) ▷ [Ω]A1 → [Ω]A2 By def. of substitution

• Case

Γ ⊢ A1 → A2 ▷A1 → A2 ⊣ Γ
am-arr

Immediate from rule m-arr.

• Case

Γ ⊢ ⋆ ▷ ⋆→ ⋆ ⊣ Γ
am-unknown

Immediate from rule m-unknown.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:68 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

• Case

Γ[â] ⊢ â ▷ â1 → â2 ⊣ Γ[â1, â2, â = â1 → â2]
am-var

∆ −→ Ω Given

[Ω]â = [Ω]â1 → [Ω]â2 By def. of context application

[Ω]∆ ⊢ [Ω]â1 → [Ω]â2 ▷ [Ω]â1 → [Ω]â2 By rule m-arr

□

Theorem 7.4 (Soundness of Algorithmic Typing). Given ∆ −→ Ω:

(1) If Γ ⊢ e ⇒ A ⊣ ∆ then ∃e′ such that [Ω]∆ ⊢ e′ : [Ω]A and ⌊e⌋ = ⌊e′⌋.
(2) If Γ ⊢ e ⇐ A ⊣ ∆ then ∃e′ such that [Ω]∆ ⊢ e′ : [Ω]A and ⌊e⌋ = ⌊e′⌋.

Proof. By induction on the given derivation.

• Case

(x : A) ∈ Γ

Γ ⊢ x ⇒ A ⊣ Γ
inf-var

(x : A) ∈ Γ Premise

(x : A) ∈ ∆ ∆ = Ω
∆ −→ Ω Given

(x : [Ω]A) ∈ [Ω]Γ By Lemma E.15

♦ [Ω]Γ ⊢ x : [Ω]A By rule var

♦ ⌊x⌋ = ⌊x⌋ By def. of erasure

• Case

Γ ⊢ n⇒ Int ⊣ Γ
inf-int

♦ [Ω]Γ ⊢ n : Int By rule int

♦ ⌊n⌋ = ⌊n⌋ By def. of erasure

• Case

Γ ⊢ A Γ, b̂S , x : A ⊢ e ⇐ b̂S ⊣ ∆, x : A,Θ

Γ ⊢ λx : A. e ⇒ A→ b̂S ⊣ ∆
inf-lamann2

Γ, âS , x : A −→ ∆, x : A,Θ By Lemma G.2

Θ is soft By Lemma E.6 where ΓR = •
∆ −→ Ω Given

∆, x : A,Θ︸ ︷︷ ︸
∆′

−→ Ω, x : A, |Θ|︸ ︷︷ ︸
Ω′

By Lemma F.3

Γ, x : A ⊢ e ⇒ B ⊣ ∆, x : A,Θ Premise

[Ω′]∆′ ⊢ e′ : [Ω′]b̂S By i.h.

⌊e⌋ = ⌊e ′⌋ above

[Ω′]b̂S = [Ω, x : A]b̂S = [Ω]b̂S By Lemma F.2 and def. of substitution

[Ω′]∆′ = [Ω]∆, x : [Ω]A By Lemma E.16 and def. of context substitution

[Ω]∆, x : [Ω]A ⊢ e′ : [Ω]b̂S By above equalities

[Ω]∆ ⊢ λx : [Ω]A. e′ : [Ω]A→ [Ω]b̂S By rule lamann

[Ω]A = A Type annotations cannot contain evars

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:69

[Ω]∆ ⊢ λx : A. e′ : [Ω]A→ [Ω]b̂S By above equality

♦ [Ω]∆ ⊢ λx : A. e′ : [Ω](A→ b̂S) By def. of substitution

♦ ⌊λx : A. e′⌋ = λx . ⌊e ′⌋ = λx . ⌊e⌋ = ⌊λx : A. e⌋ By def. of erasure

• Case

Γ, â, b̂, x : â ⊢ e ⇐ b̂ ⊣ ∆, x : â,Θ

Γ ⊢ λx . e ⇒ â → b̂ ⊣ ∆
inf-lam

Γ, âS , b̂S , x : âS −→ ∆, x : âS ,Θ By Lemma G.2

Γ, âS , b̂S −→ ∆ By Lemma E.6

Θ is soft Above

∆ −→ Ω Given

∆, x : âS −→ Ω, x : [Ω]âS By def

∆, x : âS ,Θ︸ ︷︷ ︸
∆′

−→ Ω, x : [Ω]âS , |Θ|︸ ︷︷ ︸
Ω′

By Lemma F.3

Γ, âS , b̂S , x : âS ⊢ e ⇐ b̂S ⊣ ∆, x : âS ,Θ Premise

[Ω′]∆′ ⊢ e′ : [Ω′]b̂S By i.h.

⌊e⌋ = ⌊e′⌋ Above

[Ω′]b̂S = [Ω]b̂S By def. of context substitution

[Ω′]∆′ = [Ω]∆, x : [Ω]âS By def. of context substitution

[Ω]∆, x : [Ω]âS ⊢ e
′
: [Ω]b̂S By above equalities

[Ω]âS is a monotype Ω is predicative

[Ω]∆ ⊢ λx . e′ : [Ω]âS → [Ω]b̂S By rule lam

♦ [Ω]∆ ⊢ λx . e′ : [Ω](âS → b̂S) By def. of substitution

♦ ⌊λx . e⌋ = λx . ⌊e⌋ = λx . ⌊e ′⌋ = ⌊λx . e ′⌋ By def. of erasure

• Case

Γ ⊢ e1 ⇒ A ⊣ Θ1 Θ1 ⊢ [Θ1]A ▷A1 → A2 ⊣ Θ2 Θ2 ⊢ e2 ⇐ [Θ2]A1 ⊣ ∆

Γ ⊢ e1 e2 ⇒ A2 ⊣ ∆
inf-app

∆ −→ Ω Given

Θ1 −→ Ω By Lemmas G.1 to E.3

Γ ⊢ e1 ⇒ A ⊣ Θ1 Premise

[Ω]Θ1 ⊢ e
′
1
: [Ω]A By i.h.

⌊e′
1
⌋ = ⌊e1⌋ above

[Ω]Θ1 = [Ω]∆ By Lemma E.14

[Ω]∆ ⊢ e′
1
: [Ω]A By above equality

Θ2 ⊢ e2 ⇐ [Θ2]A1 ⊣ ∆ Premise

[Ω]∆ ⊢ e′
2
: [Ω]A1 By i.h.

⌊e′
2
⌋ = ⌊e2⌋ Above

Θ1 ⊢ [Θ1]A ▷A1 → A2 ⊣ Θ2 Premise

[Ω]Θ2 ⊢ [Ω]([Θ1]A) ▷ [Ω]A1 → [Ω]A2 By Theorem G.3

[Ω]Θ2 = [Ω]∆ By Lemma E.14

[Ω]([Θ1]A) = [Ω]A By Lemma E.5

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:70 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

[Ω]∆ ⊢ [Ω]A ▷ [Ω]A1 → [Ω]A2 By above equalities

[Ω]∆ ⊢ [Ω]A1 ≲ [Ω]A1 By Lemma 7

♦ [Ω]∆ ⊢ e′
1
e
′
2
: [Ω]A2 By rule app

♦ ⌊e ′
1
e ′
2
⌋ = ⌊e ′

1
⌋ ⌊e ′

2
⌋ = ⌊e1⌋ ⌊e2⌋ = ⌊e1 e2⌋ By def. of erasure

• Case

Γ ⊢ A Γ ⊢ e ⇐ A ⊣ ∆

Γ ⊢ e : A⇒ A ⊣ ∆
inf-anno

Γ ⊢ e ⇐ A ⊣ ∆ Premise

♦ [Ω]∆ ⊢ e′ : [Ω]A By i.h.,

⌊e⌋ = ⌊e′⌋ Above

♦ ⌊e : A⌋ = ⌊e⌋ = ⌊e ′⌋ By above equality and the def. of erasure

• Case

Γ, a ⊢ e ⇐ A ⊣ ∆, a,Θ

Γ ⊢ e ⇐ ∀a.A ⊣ ∆
chk-gen

∆ −→ Ω Given

∆, a −→ Ω, a By def

Γ, a −→ ∆, a,Θ By Lemma G.2

Θ is soft By Lemma E.6

∆, a,Θ︸ ︷︷ ︸
∆′

−→ Ω, a, |Θ|︸ ︷︷ ︸
Ω′

By Lemma F.3

Γ, a ⊢ e ⇐ A ⊣ ∆, a,Θ Premise

[Ω′]∆′ ⊢ e′ : [Ω′]A By i.h.,

♦ ⌊e⌋ = ⌊e′⌋ Above

[Ω′]A = [Ω]A By Lemma F.2

[Ω′]∆′ = [Ω]∆, a By Lemma E.16 and def. of context substitution

[Ω]∆, a ⊢ e′ : [Ω]A By above equalities

[Ω]∆ ⊢ e′ : ∀a. [Ω]A By rule gen

♦ [Ω]∆ ⊢ e′ : [Ω](∀a.A) By def. of substitution

• Case

Γ, x : A ⊢ e ⇐ B ⊣ ∆, x : A,Θ

Γ ⊢ λx . e ⇐ A→ B ⊣ ∆
chk-lam

∆ −→ Ω Given

∆, x : A −→ Ω, x : [Ω]A By def

Γ, x : A −→ ∆, x : A,Θ By Lemma G.2

Θ is soft By Lemma E.6

∆, x : A,Θ︸ ︷︷ ︸
∆′

−→ Ω, x : [Ω]A, |Θ|︸ ︷︷ ︸
Ω′

By Lemma F.3

Γ, x : A ⊢ e ⇐ B ⊣ ∆, x : A,Θ Premise

[Ω′]∆′ ⊢ e′ : [Ω′]B By i.h.,

⌊e⌋ = ⌊e′⌋ Above

[Ω′]B = [Ω]B By Lemma F.2

[Ω′]∆′ = [Ω]∆, x : [Ω]A By Lemma E.16 and def. of context substitution

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:71

[Ω]∆, x : [Ω]A ⊢ e′ : [Ω]B By above equalities

[Ω]∆ ⊢ λx : [Ω]A. e′ : [Ω]A→ [Ω]B By rule lamann

♦ [Ω]∆ ⊢ λx : [Ω]A. e′ : [Ω](A→ B) By def. of substitution

♦ ⌊λx . e⌋ = λx . ⌊e⌋ = λx . ⌊e ′⌋ = ⌊λx : [Ω]A. e′⌋ By the def. of erasure

• Case

Γ ⊢ e ⇒ A ⊣ Θ Θ ⊢ [Θ]A ≲ [Θ]B ⊣ ∆

Γ ⊢ e ⇐ B ⊣ ∆
chk-sub

Θ ⊢ [Θ]A ≲ [Θ]B ⊣ ∆ Premise

Θ −→ ∆ By Lemma E.20

∆ −→ Ω Given

Θ −→ Ω By Lemma E.3

Γ ⊢ e ⇒ A ⊣ Θ Premise

[Ω]Θ ⊢ e′ : [Ω]A By i.h.,

⌊e⌋ = ⌊e′⌋ Above

[Ω]Θ = [Ω]∆ By Lemma E.14

[Ω]∆ ⊢ e′ : [Ω]A By above equality

[Ω]∆ ⊢ [Ω]([Θ]A) ≲ [Ω]([Θ]B) By Theorem 7.3

[Ω]([Θ]A) = [Ω]A By Lemma E.5

[Ω]([Θ]B) = [Ω]B By Lemma E.5

[Ω]∆ ⊢ [Ω]A ≲ [Ω]B By above equalities

♦ [Ω]∆ ⊢ (e ′ : [Ω]B) : [Ω]B By def. annotation

♦ ⌊(e ′ : [Ω]B)⌋ = ⌊e ′⌋ = ⌊e⌋ By def. erasure

□

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:72 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

H COMPLETENESS OF CONSISTENT SUBTYPING
Theorem 7.5 (InstantiationCompleteness). Given Γ −→ Ω andA = [Γ]A and â < unsolved(Γ)

and â < fv(A):

(1) If [Ω]Γ ⊢ [Ω]â ≲ [Ω]A then there are ∆,Ω′ such that Ω −→ Ω′ and ∆ −→ Ω′ and Γ ⊢ â ⪅
A ⊣ ∆.

(2) If [Ω]Γ ⊢ [Ω]A ≲ [Ω]â then there are ∆,Ω′ such that Ω −→ Ω′ and ∆ −→ Ω′ and Γ ⊢ A ⪅
â ⊣ ∆.

Proof. By mutual induction on the given derivation.

(1) We have [Ω]Γ ⊢ [Ω]â ≲ [Ω]A. We case analyze the shape of A.
• Case A = ⋆, â = âS :

[Ω]Γ ⊢ [Ω]âS ≲ [Ω]⋆ Given

[Ω]⋆ = ⋆
[Ω]Γ ⊢ [Ω]âS ≲ ⋆ By above equality

âS < unsolved(Γ) Given

Γ = ΓL, âS , ΓR Above

ΓL, âS , ΓR −→ Ω Given

Ω = ΩL, âS = t ,ΩR By Lemma E.6 and Ω is complete and [Ω]âS ∈ C
ΓL −→ ΩL Above

Let ∆ = ΓL, âG , âS = âG , ΓR
and Ω′ = ΩL, âG = t , âS = t ,ΩR

♦ Γ ⊢ âS ⪅ ⋆ ⊣ ∆ By rule instl-solveUS

♦ ∆ −→ Ω′ By Lemmas E.9 and E.10

♦ Ω −→ Ω′ By Lemmas E.7 and E.8

• Case A = ⋆, â = âG :

[Ω]Γ ⊢ [Ω]âG ≲ [Ω]⋆ Given

[Ω]⋆ = ⋆
[Ω]Γ ⊢ [Ω]âG ≲ ⋆ By above equality

âG < unsolved(Γ) Given

Γ = Γ0[âG] Above

Let ∆ = Γ0[âG] and Ω′ = Ω
♦ Γ ⊢ âG ⪅ ⋆ ⊣ ∆ By rule instl-solveUG

♦ ∆ −→ Ω′ Given

♦ Ω −→ Ω′ By Lemma E.2

• Case A = b̂G , â = âS :

[Ω]Γ ⊢ [Ω]âS ≲ [Ω]b̂G Given

[Ω]Γ ⊢ τ ≲ t Let [Ω]âS = τ and [Ω]b̂G = t and Ω is predicative

τ = t By Lemma 8

[Γ]b̂G = b̂G Given

b̂G ∈ unsolved(Γ) Above

Now consider whether âS is declared to the left of b̂G .

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:73

– Case Γ = Γ0, âS , Γ1, b̂G , Γ2

Let ∆ = Γ0, âG , âS = âG , Γ1, b̂G = âG , Γ2
♦ Γ ⊢ âS ⪅ b̂G ⊣ ∆ By rule instl-reachSG1

Γ −→ Ω Given

Ω = Ω0, âS = t ,Ω1, b̂G = t ,Ω2 By Lemma E.6

Let Ω′ = Ω0, âG = t , âS = t ,Ω1, b̂G = t ,Ω2

♦ Ω −→ Ω′ By Lemmas E.7 and E.8

♦ ∆ −→ Ω′ By Lemmas E.9 and E.10

– Case Γ = Γ0, b̂G , Γ1, âS , Γ2

Let ∆ = Γ0, b̂G , Γ1, âS = b̂G , Γ2
♦ Γ ⊢ âS ⪅ b̂G ⊣ ∆ By rule instl-reachOther

♦ ∆ −→ Ω By Lemma E.10

♦ Ω −→ Ω By Lemma E.2

• Case A = b̂S is similar to the above case.

• Case A = a:

[Ω]Γ ⊢ [Ω]â ≲ [Ω]a Given

[Ω]Γ ⊢ [Ω]â ≲ a From [Ω]a = a

[Ω]â = a By inversion of rule cs-tvar

a is declared to the left of â in Ω Ω is well-formed

Γ −→ Ω Given

a is declared to the left of â in Γ By Lemma E.1

Let Γ = Γ0[a][â]
Let ∆ = Γ0[a][â = a]

♦ Γ ⊢ â ⪅ a ⊣ ∆ By rule instl-solveS or rule instl-solveG

♦ ∆ −→ Ω By Lemma E.10

♦ Ω −→ Ω By Lemma E.2

• Case A = A1 → A2:

[Ω]Γ ⊢ [Ω]â ≲ [Ω]A1 → [Ω]A2 Given

[Ω]â = τ1 → τ2 Ω is predicative

[Ω]Γ ⊢ [Ω]A1 ≲ τ1 By inversion of rule cs-arrow

[Ω]Γ ⊢ τ2 ≲ [Ω]A2 Above

Γ = Γ0[â] From â ∈ unsolved(Γ)
Γ0[â] −→ Γ0[â2, â1, â = â1 → â2]︸ ︷︷ ︸

Γ1

Γ −→ Ω Given

Ω = Ω0[â = τ0] From â ∈ unsolved(Γ)
Ω0[â = τ0] −→ Ω0[â2 = τ2, â1 = τ1, â = â1 → â2]︸ ︷︷ ︸

Ω1

[Ω]Γ = [Ω1]Γ1 By Lemma E.13

[Ω]A1 = [Ω1]A1 By Lemma E.12

τ1 = [Ω1]â1 From def. of Ω1

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:74 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

[Ω1]Γ1 ⊢ [Ω1]A1 ≲ [Ω1]â1 By above equalities

Γ1 ⊢ A1 ⪅ â1 ⊣ ∆2 By i.h.

∆2 −→ Ω2 and Ω1 −→ Ω2 Above

[Ω]Γ = [Ω2]Γ2 By Lemma E.13

[Ω]A2 = [Ω2]A2 = [Ω2]([∆2]A2) By Lemma E.12

τ2 = [Ω2]â2 By Ω1 −→ Ω2

[Ω2]∆2 ⊢ [Ω2]â2 ≲ [Ω2]([∆2]A2) By above equalities

∆2 ⊢ â2 ⪅ [∆2]A2 ⊣ ∆ By i.h.

Ω2 −→ Ω′ Above

♦ ∆ −→ Ω′ Above

♦ Γ0[â] ⊢ â ⪅ A1 → A2 ⊣ ∆ By rule instl-arr

♦ Ω −→ Ω′ By Lemma E.3

• Case A = Int:

[Ω]Γ ⊢ [Ω]â ≲ [Ω]Int Given

[Ω]Int = Int
[Ω]Γ ⊢ [Ω]â ≲ Int By above equality

[Ω]â = Int Ω is predicative

â ∈ unsolved(Γ) Given

Γ = Γ0[â] Above

Let ∆ = Γ0[â = Int] and Ω′ = Ω
Γ0[â] ⊢ â ⪅ Int ⊣ ∆ By rule instl-solveS or rule instl-solveG

Γ −→ Ω Given

Γ0[â = Int] −→ Ω By Lemma E.10

• Case A = ∀b. B:

[Ω]Γ ⊢ [Ω]â ≲ ∀b. [Ω]B Given

[Ω]â cannot be a quantifier Ω is predicative

[Ω]Γ, b ⊢ [Ω]â ≲ [Ω]B By inversion of rule cs-forallR

[Ω]Γ, b = [Ω, b](Γ, b) By def. of context substitution

[Ω]â = [Ω, b]â By def. of substitution

[Ω]B = [Ω, b]B By def. of substitution

[Ω, b](Γ, b) ⊢ [Ω, b]â ≲ [Ω, b]B By above equalities

Γ, b ⊢ â ⪅ B ⊣ ∆0 By i.h.

∆0 −→ Ω′ Above

Ω, b −→ Ω′ Above

♦ Ω −→ Ω′ By Lemma E.11

Γ, b −→ ∆0 By Lemma E.18

∆0 = ∆, b,∆′ By Lemma E.6

Γ −→ ∆ Above

♦ ∆ −→ Ω′

♦ Γ ⊢ â ⪅ ∀b. B ⊣ ∆ By rule instl-forallR

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:75

(2) Now we have [Ω]Γ ⊢ [Ω]A ≲ [Ω]â. These cases are mostly symmetric. The one exception is

when A = ∀b. B.
• Case A = ∀b. B:

[Ω]Γ ⊢ ∀b. [Ω]B ≲ [Ω]â Given

[Ω]â cannot be a quantifier Ω is predicative

[Ω]Γ ⊢ τ By inversion of rule cs-forallL

[Ω]Γ ⊢ ([Ω]B)[b 7→ τ] ≲ [Ω]â Above

[Ω]Γ = [Ω,▶b̂S
, b̂S = τ](Γ,▶b̂S

, b̂S) By def. of context application

([Ω]B)[b 7→ τ] = [Ω,▶b̂S
, b̂S = τ](B[b 7→ b̂S]) by def. of substitution

[Ω]â = [Ω,▶b̂S
, b̂S = τ]â By def. of substitution

[Ω,▶b̂S
, b̂S = τ](Γ,▶b̂S

, b̂S) ⊢ [Ω,▶b̂S
, b̂S = τ](B[b 7→ b̂S]) ≲ [Ω, b̂S = τ]â By above equalities

Γ,▶b̂S
, b̂S ⊢ B[b 7→ b̂S] ⪅ â ⊣ ∆ By i.h.

Γ,▶b̂S
, b̂S −→ ∆ By Lemma E.18

∆ = ∆L,▶b̂S
,∆R By Lemma E.6

Γ −→ ∆L Above

Ω,▶b̂S
, b̂S = τ −→ Ω′ Above

Ω′ = ΩL,▶b̂S
,ΩR By Lemma E.6

♦ Ω −→ ΩL Above

♦ ∆L −→ ΩL Lemma E.3

♦ Γ ⊢ ∀b. B ⪅ â ⊣ ∆L By rule instr-forallLL

□

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:76 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers
[
Γ
]
B

∀
b
.B
′

∫
a

b̂
⋆

B
1
→

B
2

S
G

[
Γ
]
A

∀
a
.A
′

1
(
B
p
o
l
y
)

2
.P
o
l
y

2
.P
o
l
y

2
.P
o
l
y

1
(
B
u
n
k
n
o
w
n
)

2
.P
o
l
y

2
.P
o
l
y

2
.P
o
l
y

∫
1
(
B
p
o
l
y
)

2
.I
n
t
s

I
m
p
o
s
s
i
b
l
e

2
.B
E
x
.I
n
t

1
(
B
u
n
k
n
o
w
n
)

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

a
1
(
B
p
o
l
y
)

I
m
p
o
s
s
i
b
l
e

2
.U
V
a
r
s

2
.B
E
x
.U
V
a
r

1
(
B
u
n
k
n
o
w
n
)

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

â
1
(
B
p
o
l
y
)

2
.A
E
x
.I
n
t

2
.A
E
x
.U
V
a
r

2
.A
E
x
.S
a
m
e
E
x

1
(
B
u
n
k
n
o
w
n
)

2
.A
E
x
.A
r
r
o
w

2
.A
E
x
.S

2
.A
E
x
.G

2
.A
E
x
.O
t
h
e
r
E
x

⋆
1
(
B
p
o
l
y
)

2
.U
n
k
n
o
w
n

2
.U
n
k
n
o
w
n

2
.U
n
k
n
o
w
n

1
(
B
u
n
k
n
o
w
n
)

2
.U
n
k
n
o
w
n

I
m
p
o
s
s
i
b
l
e

2
.U
n
k
n
o
w
n

A
1
→

A
2

1
(
B
p
o
l
y
)

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

2
.B
E
x
.A
r
r
o
w

1
(
B
u
n
k
n
o
w
n
)

2
.A
r
r
o
w
s

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

S
1
(
B
p
o
l
y
)

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

2
.B
E
x
.S

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

2
.S

I
m
p
o
s
s
i
b
l
e

G
1
(
B
p
o
l
y
)

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

2
.B
E
x
.G

1
(
B
u
n
k
n
o
w
n
)

I
m
p
o
s
s
i
b
l
e

I
m
p
o
s
s
i
b
l
e

2
.G

Ta
bl
e
31
.
Li
st
of

ca
se
s

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:77

Theorem 7.6 (Generalized Completeness of Consistent Subtyping). If Γ −→ Ω and Γ ⊢ A
and Γ ⊢ B and [Ω]Γ ⊢ [Ω]A ≲ [Ω]B then there exist ∆ and Ω′ such that ∆ −→ Ω′ and Ω −→ Ω′ and
Γ ⊢ [Γ]A ≲ [Γ]B ⊣ ∆.

Proof. By induction on the given declarative derivation. We list all the possible cases in Table 31.

We first split on[Γ]B.

• Case 1 (B poly) : [Γ]B is polymorphic: [Γ]B = ∀b. B′:

B = ∀b. B0 Γ is predicative

B′ = [Γ]B0 Γ is predicative

[Ω]B = ∀b. [Ω]B0 By def. of substitution

[Ω]Γ ⊢ [Ω]A ≲ [Ω]B Premise

[Ω]Γ ⊢ [Ω]A ≲ ∀b. [Ω]B0 By above equality

[Ω]Γ, b ⊢ [Ω]A ≲ [Ω]B0 By Lemma D.1

[Ω]Γ, b = [Ω, b](Γ, b) By def. of substitution

[Ω]A = [Ω, b]A By def. of substitution

[Ω]B = [Ω, b]B By def. of substitution

[Ω, b](Γ, b) ⊢ [Ω, b]A ≲ [Ω, b]B0 By above equalities

Γ, b ⊢ [Γ, b]A ≲ [Γ, b]B0 ⊣ ∆
′

By i.h.

∆′ −→ Ω′
0

Above

Ω, b −→ Ω′
0

Above

Γ, b ⊢ [Γ]A ≲ [Γ]B0 ⊣ ∆
′

By def. of substitution

Γ, b −→ ∆′ By Lemma E.18

∆′ = ∆, b,Θ By Lemma E.6

Γ −→ ∆ Above

∆, b,Θ −→ Ω′
0

By ∆′ −→ Ω′
0
and above equality

Ω′
0
= Ω′, b,ΩR By Lemma E.6

♦ ∆ −→ Ω′ Above

Ω, b −→ Ω′, b,ΩR By above equality

♦ Ω −→ Ω′ By Lemma E.6

Γ, b ⊢ [Γ]A ≲ [Γ]B0 ⊣ ∆, b,Θ By above equality

Γ ⊢ [Γ]A ≲ ∀b. [Γ]B0 ⊣ ∆ By rule as-forallR

♦ Γ ⊢ [Γ]A ≲ ∀b. B′ ⊣ ∆ By above equality

• Case 1 (B unknown) : [Γ]B = ⋆:

[Ω]B = ⋆
[Ω]Γ ⊢ [Ω]A ≲ ⋆ Given

[Ω]A ∈ C Above

Γ −→ Ω Given

[Γ]A ∈ C Above

Γ ⊢ [Γ]A ≲ ⋆ ⊣ contaminate(Γ, [Γ]A) By rule as-unknownRR

There exists Ω′ such that contaminate(Γ, [Γ]A) −→ Ω′ and Ω −→ Ω′

• Case 2.*: [Γ]B is not polymorphic. We split on the form of [Ω]A.

– Case 2.Poly : [Ω]A is polymorphic: [Γ]A = ∀a.A′:

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:78 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

A = ∀a.A0 Γ is predicative

A′ = [Γ]A0 Γ is predicative

[Ω]A = ∀a. [Ω]A0 By def. of substitution

[Ω]Γ ⊢ [Ω]A ≲ [Ω]B Premise

[Ω]Γ ⊢ ∀a. [Ω]A0 ≲ [Ω]B By above equality

[Ω]Γ ⊢ ([Ω]A0)[a 7→ τ] ≲ [Ω]B By inversion on rule cs-forallL

[Ω]Γ ⊢ τ Above

[Ω]Γ = [Ω, â = τ](Γ, â) By def. of substitution

([Ω]A0)[a 7→ τ] = [Ω, â = τ](A0[a 7→ â]) By def. of substitution

[Ω]B = [Ω, â = τ]B By def. of substitution

[Ω, â = τ](Γ, â) ⊢ [Ω, â = τ](A0[a 7→ â]) ≲ [Ω, â = τ]B By above equalities

Γ, â ⊢ [Γ, â](A0[a 7→ â]) ≲ [Γ, â]B ⊣ ∆ By i.h.

♦ ∆ −→ Ω′ Above

Ω, â = τ −→ Ω′ Above

♦ Ω −→ Ω′ By Lemma E.11

[Γ, â](A0[a 7→ â]) = ([Γ]A0)[a 7→ â] By def. of substitution

[Γ, â]B = [Γ]B By def. of substitution

Γ, â ⊢ ([Γ]A0)[a 7→ â] ≲ [Γ]B ⊣ ∆ By above equality

Γ ⊢ ∀a. ([Γ]A0) ≲ [Γ]B ⊣ ∆ By rule as-forallLL

♦ Γ ⊢ ∀a.A′ ≲ [Γ]B ⊣ ∆ By above equality

– Case 2.Unknown : [Γ]A = ⋆:

[Ω]A = ⋆ Obviously, what else?

[Ω]Γ ⊢ ⋆ ≲ [Ω]B Given

[Ω]B ∈ C Above

Γ −→ Ω Given

[Γ]B ∈ C Above

Γ ⊢ ⋆ ≲ [Γ]B ⊣ contaminate(Γ, [Γ]B) By rule as-unknownLL

There exists Ω′ such that contaminate(Γ, [Γ]B) −→ Ω′ and Ω −→ Ω′

– Case 2.AEx.* : [Γ]A is an existential variable: [Γ]A = â. We split on the form of [Γ]B.

∗ Case 2.AEx.SameEx . [Γ]B is the same existential variable [Γ]B = â:

Γ ⊢ â ≲ â ⊣ Γ By rule as-evar

♦ Γ ⊢ [Γ]A ≲ [Γ]B ⊣ Γ By above equality

♦ ∆ −→ Ω ∆ = Γ
♦ Ω −→ Ω′ By Lemma E.2 and Ω′ = Ω

∗ Case 2.AEx.OtherEx . [Γ]B is a different existential variable [Γ]B = b̂ where b̂ , â:

[Ω]A = [Ω]([Γ]A) = [Ω]â By Lemma E.5

[Ω]B = [Ω]([Γ]B) = [Ω]b̂ By Lemma E.5

[Ω]Γ ⊢ [Ω]A ≲ [Ω]B Given

[Ω]Γ ⊢ [Ω]â ≲ [Ω]b̂ By above equalities

Γ ⊢ â ⪅ b̂ ⊣ ∆ By Theorem 7.5

♦ ∆ −→ Ω′ Above

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:79

♦ Ω −→ Ω′ Above

Γ ⊢ â ≲ b̂ ⊣ ∆ By rule as-instL

♦ Γ ⊢ [Γ]A ≲ [Γ]B ⊣ ∆ By above equalities

∗ Case 2.AEx.Int . We have [Γ]B = Int:

Γ −→ Ω Given

[Ω]B = Int = [Ω]Int By def. of substitution

[Ω]A = [Ω]([Γ]A) = [Ω]â By Lemma E.5

[Ω]Γ ⊢ [Ω]A ≲ [Ω]B Given

[Ω]Γ ⊢ [Ω]â ≲ [Ω]Int By above equalities

Γ ⊢ â ⪅ Int ⊣ ∆ By Theorem 7.5

♦ ∆ −→ Ω′ Above

♦ Ω −→ Ω′ Above

Γ ⊢ â ≲ Int ⊣ ∆ By rule as-instL

♦ Γ ⊢ [Γ]A ≲ [Γ]B ⊣ ∆ By above equalities

∗ Case 2.AEx.UVar . We have [Γ]B = b. Similar to Case 2.AEx.Int .

∗ Case 2.AEx.Arrow . [Γ]B = B1 → B2. We prove â < fv([Γ]B). Suppose for a contra-

diction, that â ∈ fv([Γ]B), then â must be a subterm of [Γ]B, so is [Ω]â a subterm of

[Ω]([Γ]B). The latter is equal to [Ω]B, so [Ω]â is a subterm of [Ω]B. Since [Γ]B = B1 → B2,

then [Ω]B must have the form B′
1
→ B′

2
. Therefore [Ω]â must occur in either B′

1
or B′

2
.

But we have [Ω]Γ ⊢ [Ω]â ≲ [Ω]B. That is , [Ω]â cannot be a subterm of [Ω]B. This is a
contradiction.

â < fv([Γ]B) Proved above

Γ −→ Ω Given

[Ω]B = [Ω]([Γ]B) By Lemma E.5

[Ω]Γ ⊢ [Ω]â ≲ [Ω]B Given

[Ω]Γ ⊢ [Ω]â ≲ [Ω]([Γ]B) By above equality

Γ ⊢ â ⪅ [Γ]B ⊣ ∆ By Theorem 7.5

♦ ∆ −→ Ω′ Above

♦ Ω −→ Ω′ Above

Γ ⊢ â ≲ [Γ]B ⊣ ∆ By rule cs-instL

♦ Γ ⊢ [Γ]A ≲ [Γ]B ⊣ ∆ By above equalities

∗ Case 2.AEx.S and 2.AEx.S . Similar to Case 2.AEx.Int .

– Case 2.BEx.* . [Γ]A is not polymorphic and [Γ]B is an existential variable: [Γ]B = b̂. We

split on the form of [Γ]A.

∗ Case 2.BEx.Int . Similar to Case 2.AEx.Unit .

∗ Case 2.BEx.UVar . Similar to Case 2.AEx.UVar .

∗ Case 2.BEx.Arrow . Similar to Case 2.AEx.Arrow .

∗ Case 2.BEx.S . Similar to Case 2.AEx.S .

∗ Case 2.BEx.G . Similar to Case 2.AEx.G .

We use the second part of Theorem 7.5 and apply rule as-instR.

– Case 2.Ints . [Γ]A = [Γ]B = Int:

♦ Γ ⊢ Int ≲ Int ⊣ Γ By rule as-int

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:80 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Γ −→ Ω Given

♦ ∆ −→ Ω′ ∆ = Γ
♦ Ω −→ Ω′ By Lemma E.2 and Ω′ = Ω

– Case 2.UVars . [Γ]A = [Γ]B = a:

♦ Γ ⊢ a ≲ a ⊣ Γ By rule as-tvar

Γ −→ Ω Given

♦ ∆ −→ Ω′ ∆ = Γ
♦ Ω −→ Ω′ By Lemma E.2 and Ω′ = Ω

– Case 2.Arrows . Let [Γ]A = A1 → A2 and [Γ]B = B1 → B2:

Γ −→ Ω Given

[Ω]A = [Ω]([Γ]A) = [Ω]A1 → [Ω]A2 By Lemma E.5

[Ω]B = [Ω]([Γ]B) = [Ω]B1 → [Ω]B2 By Lemma E.5

[Ω]Γ ⊢ [Ω]A ≲ [Ω]B Given

[Ω]Γ ⊢ [Ω]B1 ≲ [Ω]A1 Premise

Γ ⊢ [Γ]B1 ≲ [Γ]A1 ⊣ Θ By i.h.

Θ −→ Ω0 Above

Ω −→ Ω0 Above

Γ −→ Ω0 By Lemma E.3

[Ω]Γ = [Ω0]Θ By Lemma E.14

[Ω]A2 = [Ω0]([Γ]A2) By Lemma E.5

[Ω]B2 = [Ω0]([Γ]B2) By Lemma E.5

[Ω]Γ ⊢ [Ω]A2 ≲ [Ω]B2 Premise

[Ω0]Θ ⊢ [Ω0]([Γ]A2) ≲ [Ω0]([Γ]B2) By above equalities

Θ ⊢ [Θ]([Γ]A2) ≲ [Θ]([Γ]B2) ⊣ ∆ By i.h.

♦ ∆ −→ Ω′ Above

Ω0 −→ Ω′ Above

♦ Γ ⊢ [Γ](A1 → A2) ≲ [Γ](B1 → B2) ⊣ ∆ By rule as-arrow

♦ Ω −→ Ω′ By Lemma E.3

– Case 2.S : [Γ]A = [Γ]B = S.

♦ Γ ⊢ S ≲ S ⊣ Γ By rule as-spar

Γ −→ Ω Given

♦ ∆ −→ Ω′ ∆ = Γ
♦ Ω −→ Ω′ By Lemma E.2 and Ω′ = Ω

– Case 2.G . Similar to Case 2.S .

□

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:81

I COMPLETENESS OF TYPING
Theorem 7.7 (Matching Completeness). Given Γ −→ Ω and Γ ⊢ A, if [Ω]Γ ⊢ [Ω]A ▷ A1 → A2

then there exist ∆, Ω′, A′
1
and A′

2
such that Γ ⊢ [Γ]A ▷A′

1
→ A′

2
⊣ ∆ and ∆ −→ Ω′ and Ω −→ Ω′ and

A1 = [Ω′]A′
1
and A2 = [Ω′]A′

2
.

Proof. By induction on the given derivation. We split on [Γ]A.

• [Γ]A = ∀a.A′:

A = ∀a.A0 Γ is predicative

A′ = [Γ]A0 Γ is predicative

[Ω]A = ∀a. [Ω]A0 By def. of substitution

[Ω]Γ ⊢ [Ω]A ▷ A1 → A2 Given

[Ω]Γ ⊢ ∀a. [Ω]A0 ▷ A1 → A2 By above equality

[Ω]Γ ⊢ ([Ω]A0)[a 7→ τ] ▷ A1 → A2 By inversion

[Ω]Γ ⊢ τ Above

Γ −→ Ω Given

Γ, âS −→ Ω, âS By def. of context extension

[Ω]Γ = [Ω, âS = τ](Γ, âS) By def. of context application

([Ω]A0)[a 7→ τ] = [Ω, âS = τ](A0[a 7→ âS]) By def. of substitution

[Ω, âS = τ](Γ, âS) ⊢ [Ω, âS = τ](A0[a 7→ âS]) ▷ A1 → A2 By above equalities

Γ, âS ⊢ [Γ, âS](A0[a 7→ âS]) ▷A
′
1
→ A′

2
⊣ ∆ By i.h.

♦ ∆ −→ Ω′ and Ω, âS = τ −→ Ω′ Above

♦ A1 = [Ω′]A′
1
and A2 = [Ω′]A′

2
Above

[Γ, âS](A0[a 7→ âS]) = ([Γ]A0)[a 7→ âS] By def. of substitution

Γ, âS ⊢ ([Γ]A0)[a 7→ âS] ▷A
′
1
→ A′

2
⊣ ∆ By above equality

Γ ⊢ ∀a. [Γ]A0 ▷A
′
1
→ A′

2
⊣ ∆ By rule am-forallL

[Γ]A = ∀a.A′ = ∀a. [Γ]A0 By above equalities

♦ Γ ⊢ [Γ]A ▷A′
1
→ A′

2
⊣ ∆ Above

• [Γ]A = A′
1
→ A′

2
:

[Ω]A = [Ω]([Γ]A) = [Ω]A′
1
→ [Ω]A′

2
By Lemma E.5

[Ω]Γ ⊢ [Ω]A′
1
→ [Ω]A′

2
▷ A1 → A2 Given

Let ∆ = Γ and Ω′ = Ω
♦ [Ω]A′

1
= A1 and [Ω]A′

2
= A2

♦ Γ ⊢ A′
1
→ A′

2
▷A′

1
→ A′

2
⊣ Γ By rule am-arr

♦ ∆ −→ Ω′ Given Γ −→ Ω
♦ Ω −→ Ω′ By Lemma E.2

• [Γ]A = ⋆:

[Ω]A = [Ω]([Γ]A) = ⋆ By Lemma E.5

[Ω]Γ ⊢ ⋆ ▷ A1 → A2 Given

Let ∆ = Γ and Ω′ = Ω
♦ A1 = ⋆ and A2 = ⋆
♦ Γ ⊢ ⋆ ▷ ⋆→ ⋆ ⊣ Γ By rule am-unknown

♦ ∆ −→ Ω′ Given Γ −→ Ω
♦ Ω −→ Ω′ By Lemma E.2

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:82 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

• [Γ]A = â:

Γ = Γ0[â] Since â ∈ unsolved(Γ)
[Ω]A = [Ω]([Γ]A) = [Ω]â By Lemma E.5

[Ω]Γ ⊢ [Ω]â ▷ A1 → A2 Given

[Ω]â = τ1 → τ2 and A1 = τ1 and A2 = τ2 Ω is predicate

Ω = Ω0[â = τ
′
] and [Ω]τ ′ = τ1 → τ2 Above

Let ∆ = Γ0[â1, â2, â = â1 → â2]
Let Ω′ = Ω0[â1 = τ1, â2 = τ2, â = â1 → â2]

♦ ∆ −→ Ω′ By Lemma E.9 twice

♦ Ω −→ Ω′ By Lemma E.10 and Lemma E.9

♦ Γ0[â] ⊢ â ▷ â1 → â2 ⊣ ∆ By rule am-var

♦ A1 = τ1 = [Ω′]â1 and A2 = τ2 = [Ω′]â2 Above

□

Theorem 7.8 (Completeness of Algorithmic Typing). Given Γ −→ Ω and Γ ⊢ A, if [Ω]Γ ⊢ e : A
then there exist ∆, Ω′, A′ and e ′ such that ∆ −→ Ω′ and Ω −→ Ω′ and Γ ⊢ e ′ ⇒ A′ ⊣ ∆ and

A = [Ω′]A′ and ⌊e⌋ = ⌊e ′⌋.

Proof. By induction on the given derivation.

• Case

(x : A) ∈ [Ω]Γ

[Ω]Γ ⊢ x : A

var

(x : A) ∈ [Ω]Γ Premise

Γ −→ Ω Given

(x : A′) ∈ Γ where [Ω]A′ = [Ω]A From def. of context application

Let ∆ = Γ and Ω′ = Ω.
♦ Γ −→ Ω Given

♦ Ω −→ Ω By Lemma E.2

♦ Γ ⊢ x ⇒ A′ ⊣ Γ By rule inf-var

♦ [Ω]A′ = [Ω]A = A A is well-formed in [Ω]Γ
♦ ⌊x⌋ = ⌊x⌋ By def. of erasure

• Case

[Ω]Γ ⊢ n : Int
int

Let A′ = Int and ∆ = Γ and Ω′ = Ω.
♦ Γ −→ Ω Given

♦ Ω −→ Ω By Lemma E.2

♦ Γ ⊢ n⇒ Int ⊣ Γ By rule inf-int

♦ [Ω]Int = Int
♦ ⌊n⌋ = ⌊n⌋ By def. of erasure

• Case

[Ω]Γ, x : A ⊢ e : B

[Ω]Γ ⊢ λx : A. e : A→ B

lamann

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:83

Let Ω0 = Ω, x : A.
[Ω0](Γ, x : A) = [Ω]Γ, x : A From def. of context application

[Ω0](Γ, x : A) ⊢ e : B By above equality and premise

Γ, x : A ⊢ e ′ ⇒ B0 ⊣ ∆0 By i.h.

∆0 −→ Ω′ Above

Ω0 −→ Ω′ Above

B = [Ω′]B0 Above

⌊e⌋ = ⌊e ′⌋ Above

Γ, x : A −→ ∆0 By Lemma G.2

∆0 = ∆1, x : A′,∆2 By Lemma E.6

[∆1]A = [∆1]A
′

Above

Γ −→ ∆1 Above

A = [∆1]A
′ A has no evar

Γ, x : A ⊢ e ′ ⇒ B0 ⊣ ∆1, x : A,∆2 By above equalities

Γ, x : A ⊢ e ′ ⇐ B0 ⊣ ∆1, x : A,∆2 By rule chk-sub

∆1, x : A′,∆2 −→ Ω′ By above equalities

Ω′ = Ω1, x : A′′,Ω2 By Lemma E.6

[Ω1]A
′ = [Ω1]A

′′
Above

♦ ∆1 −→ Ω1 Above

Ω, x : A −→ Ω1, x : A′′,Ω2 By above equalities

♦ Ω −→ Ω1 By Lemma E.6

Γ ⊢ λx . e ′ ⇐ A→ B0 ⊣ ∆1 rule chk-lam

♦ Γ ⊢ (λx . e ′) : A→ B0 ⇒ A→ B0 ⊣ ∆1 rule inf-anno

♦ [Ω1](A→ B0) = A→ [Ω′]B0 = A→ B From above equality

♦ ⌊λx : A. e⌋ = λx . ⌊e⌋ = λx . ⌊e ′⌋ = ⌊(λx . e ′) : A→ B0⌋ By def. of erasure

• Case

[Ω]Γ ⊢ e1 : A [Ω]Γ ⊢ A ▷ A1 → A2 [Ω]Γ ⊢ e2 : A3 [Ω]Γ ⊢ A3 ≲ A1

[Ω]Γ ⊢ e1 e2 : A2

app

[Ω]Γ ⊢ e1 : A Premise

Γ −→ Ω Given

Γ ⊢ e ′
1
⇒ A′ ⊣ Θ1 By i.h.

Θ1 −→ Ω′
0

Above

Ω −→ Ω′
0

Above

A = [Ω′
0
]A′ Above

⌊e1⌋ = ⌊e
′
1
⌋ Above

[Ω]Γ ⊢ A ▷ A1 → A2 Premise

[Ω]Γ = [Ω]Ω By Lemma E.17

= [Ω′
0
]Ω′

0
By Lemma E.13

= [Ω′
0
]Γ By Lemma E.17

= [Ω′
0
]Θ1 By Lemma E.14

[Ω′
0
]Θ1 ⊢ [Ω

′
0
]A′ ▷ A1 → A2 By above equalities

Θ1 ⊢ [Θ1]A
′ ▷A′

1
→ A′

2
⊣ Θ2 By Theorem 7.7

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:84 Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers

Θ2 −→ Ω′ Above

Ω′
0
−→ Ω′ Above

A1 = [Ω′]A′
1

Above

A2 = [Ω′]A′
2

Above

[Ω]Γ ⊢ e2 : A3 Premise

[Ω]Γ = [Ω]Ω By Lemma E.17

= [Ω′]Ω′ By Lemma E.13

= [Ω′]Γ By Lemma E.17

= [Ω′]Θ2 By Lemma E.14

[Ω′]Θ2 ⊢ e2 : A3 By above equality

Θ2 ⊢ e
′
2
⇒ A′

3
⊣ Θ3 By i.h.

Θ3 −→ Ω′
1

Above

Ω′ −→ Ω′
1

Above

A3 = [Ω′
1
]A′

3
Above

⌊e2⌋ = ⌊e
′
2
⌋ Above

[Ω]Γ ⊢ A3 ≲ A1 Premise

[Ω]Γ = [Ω]Ω By Lemma E.17

= [Ω′
1
]Ω′

1
By Lemma E.13

= [Ω′
1
]Γ By Lemma E.17

= [Ω′
1
]Θ3 By Lemma E.14

A3 = [Ω′
1
]A′

3
Above

A1 = [Ω′]A′
1
= [Ω′

1
]A′

1
By Lemma E.12

[Ω′
1
]Θ3 ⊢ [Ω

′
1
]A′

3
≲ [Ω′

1
]A′

1
By above equalities

Θ3 ⊢ [Θ3]A
′
3
≲ [Θ3]A

′
1
⊣ ∆ By Theorem 7.6

[Θ3]A
′
1
= [Θ3]([Θ2]A1) By Lemma E.5

Θ2 ⊢ e
′
2
⇐ [Θ2]A

′
1
⊣ ∆ By rule chk-sub

♦ ∆ −→ Ω′
2

Above

Ω′
1
−→ Ω′

2
Above

♦ Γ ⊢ e ′
1
e ′
2
⇒ A′

2
⊣ ∆ By rule inf-app

♦ A2 = [Ω′]A′
2
= [Ω′

2
]A′

2
Lemma E.12

♦ Γ −→ Ω′
2

By Lemma E.3

♦ ⌊e1 e2⌋ = ⌊e1⌋ ⌊e2⌋ = ⌊e
′
1
⌋ ⌊e ′

2
⌋ = ⌊e ′

1
e ′
2
⌋ By def. of erasure

• Case

[Ω]Γ, x : τ ⊢ e : B

[Ω]Γ ⊢ λx . e : τ → B

lam

[Ω]Γ, x : τ ⊢ e : B Given

[Ω]Γ, x : τ = [Ω, x : τ](Γ, x : τ) By def. of context substitution

[Ω, x : τ](Γ, x : τ) ⊢ e : B By above equality

Γ, x : τ ⊢ e ′ ⇒ B′ ⊣ ∆′ By i.h.,

∆′ −→ Ω′ Above

Ω, x : τ −→ Ω′ Above

B = [Ω′]B′ Above

⌊e⌋ = ⌊e ′⌋ Above

Γ, x : τ −→ ∆′ By Lemma G.2

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Consistent Subtyping for All 39:85

∆′ = ∆, x : τ ,Θ By Lemma E.6

Γ, x : τ ⊢ e ′ ⇒ B′ ⊣ ∆, x : τ ,Θ By above equality

♦ Γ ⊢ λx : τ . e ′ ⇒ τ → B′ ⊣ ∆ By rule inf-lamann

♦ ∆ −→ Ω′ By context extension

♦ Ω −→ Ω′ By context extension

♦ τ → B = τ → [Ω′]B′ = [Ω′](τ → B′) By def. of substitution

♦ ⌊λx . e⌋ = λx . ⌊e⌋ = λx . ⌊e ′⌋ = ⌊λx : τ . e ′⌋ By def. of erasure

• Case

[Ω]Γ, a ⊢ e : A

[Ω]Γ ⊢ e : ∀a.A
gen

[Ω]Γ, a ⊢ e : A Given

[Ω]Γ, a = [Ω, a](Γ, a) By def. of context substitution

[Ω, a](Γ, a) ⊢ e : A By above equality

Γ, a ⊢ e ′ ⇒ A′ ⊣ ∆′ By i.h.,

∆′ −→ Ω′ Above

Ω, a −→ Ω′ Above

A = [Ω′]A′ Above

♦ ⌊e⌋ = ⌊e ′⌋ Above

Γ, a −→ ∆′ By Lemma G.2

∆′ = ∆, a,Θ By Lemma E.6

♦ ∆ −→ Ω′ By context extension

♦ Ω −→ Ω′ By context extension

Γ, a ⊢ e ′ ⇒ A′ ⊣ ∆, a,Θ By above equality

∆, a,Θ ⊢ [∆, a,Θ]A′ ≲ [∆, a,Θ]A′ ⊣ ∆, a,Θ By reflexivity of consistent subtyping

Γ, a ⊢ e ′ ⇐ A′ ⊣ ∆, a,Θ By rule chk-sub

Γ ⊢ e ′ ⇐ ∀a.A′ ⊣ ∆ By rule chk-gen

♦ Γ ⊢ e ′ : ∀a.A′ ⇒ ∀a.A′ ⊣ ∆ By rule inf-anno

♦ ∀a.A = ∀a.[Ω′]A′ = [Ω′](∀a.A′) By def. of substitution

□

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

	Abstract
	1 Introduction
	2 Background
	2.1 Gradual Subtyping
	2.2 The Odersky-Läufer Type System

	3 Motivation and Applications
	3.1 Motivation: Gradually Typed Higher-Rank Polymorphism
	3.2 Application: Efficient (Partly) Typed Encodings of ADTs

	4 Revisiting Consistent Subtyping
	4.1 Consistency and Subtyping
	4.2 Towards Consistent Subtyping
	4.3 Abstracting Gradual Typing
	4.4 Directed Consistency
	4.5 Consistent Subtyping Without Existentials

	5 Gradually Typed Implicit Polymorphism
	5.1 Typing in Detail
	5.2 Type-directed Translation
	5.3 Correctness Criteria

	6 Algorithmic Type System
	6.1 Algorithmic Consistent Subtyping
	6.2 Instantiation
	6.3 Algorithmic Typing
	6.4 Decidability

	7 Soundness and Completeness
	7.1 Context Extension
	7.2 Soundness
	7.3 Completeness

	8 Simple Extensions and Variants
	8.1 Top Types
	8.2 A More Declarative Type System

	9 Restoring the Dynamic Gradual Guarantee with Type Parameters
	9.1 Declarative Type System
	9.2 Substitutions and Representative Translations
	9.3 Dynamic Gradual Guarantee, Reloaded
	9.4 Extended Algorithmic Type System
	9.5 Restricted Generalization

	10 Related Work
	11 Conclusion
	References
	A Some Proofs about the Declarative System
	B The Extended Algorithmic System
	B.1 Syntax
	B.2 Type System

	C Decidability
	C.1 Decidability of Instantiation
	C.2 Decidability of Algorithmic Consistent Subtyping
	C.3 Decidability of Algorithmic Typing

	D Properties of Consistent Subtyping
	E Properties of Context Extension
	E.1 Syntactic Properties
	E.2 Instantiation Extends
	E.3 Consistent Subtyping Extends

	F Soundness of Consistent Subtyping
	G Soundness of Typing
	H Completeness of Consistent Subtyping
	I Completeness of Typing

