
Type-Directed Operational Semantics for Gradual
Typing
Wenjia Ye #

The University of Hong Kong, Hong Kong

Bruno C. d. S. Oliveira #

The University of Hong Kong, Hong Kong

Xuejing Huang #

The University of Hong Kong, Hong Kong

Abstract
The semantics of gradually typed languages is typically given indirectly via an elaboration into a cast
calculus. This contrasts with more conventional formulations of programming language semantics,
where the semantics of a language is given directly using, for instance, an operational semantics.

This paper presents a new approach to give the semantics of gradually typed languages directly.
We use a recently proposed variant of small-step operational semantics called type-directed operational
semantics (TDOS). In TDOS type annotations become operationally relevant and can affect the
result of a program. In the context of a gradually typed language, such type annotations are used to
trigger type-based conversions on values. We illustrate how to employ TDOS on gradually typed
languages using two calculi. The first calculus, called λBg, is inspired by the semantics of the blame
calculus, but it has implicit type conversions, enabling it to be used as a gradually typed language.
The second calculus, called λBr, explores a different design space in the semantics of gradually
typed languages. It uses a so-called blame recovery semantics, which enables eliminating some false
positives where blame is raised but normal computation could succeed. For both calculi, type safety
is proved. Furthermore we show that the semantics of λBg is sound with respect to the semantics
of the blame calculus, and that λBr comes with a gradual guarantee. All the results have been
mechanically formalized in the Coq theorem prover.

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engin-
eering → Object oriented languages; Software and its engineering → Polymorphism

Keywords and phrases Gradual Typing, Type Systems, Operational Semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.12

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.9

Funding This work has been sponsored by Hong Kong Research Grant Council projects number
17209519 and 17209520.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Gradual typing aims to provide a smooth integration between the static and dynamic
typing disciplines. In gradual typing a program with no type annotations behaves as a
dynamically typed program, whereas a fully annotated program behaves as a statically typed
program. The interesting aspect of gradual typing is that programs can be partially typed
in a spectrum ranging from fully dynamically typed into fully statically typed. Several
mainstream languages, including TypeScript [6], Flow [11] or Dart [8] enable forms of gradual
typing to various degrees. Much research on gradual typing has focused on the pursuit of
sound gradual typing, where certain type safety properties, and other properties about the
transition between dynamic and static typing, are preserved.

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Wenjia Ye, Bruno C. d. S. Oliveira, and Xuejing Huang;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 12; pp. 12:1–12:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wjye@cs.hku.hk
mailto:bruno@cs.hku.hk
mailto:xjhuang@cs.hku.hk
https://orcid.org/0000-0002-8496-491X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.4230/DARTS.7.2.9
https://doi.org/10.4230/DARTS.7.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Type-Directed Operational Semantics for Gradual Typing

The semantics of gradually typed languages is typically given indirectly via an elaboration
into a cast calculus. For instance the blame calculus [39,52], the threesome calculus [42] or
other cast calculi [15,20,23,37,39,49] are often used to give the semantics of gradually typed
languages. Since a gradual type system can accept programs with unknown types, run-time
checks are necessary to ensure type safety. Thus the job of the (type-directed) elaboration is
to insert casts that bridge the gap between known and unknown types. Then the semantics
of a cast calculus can be given in a conventional manner.

While elaboration is the most common approach to give the semantics for gradually
typed languages, it is also possible to have a direct semantics. In fact, a direct semantics
is more conventionally used to provide the meaning to more traditional forms of calculi or
programming languages. A direct semantics avoids the extra indirection of a target language
and can simplify the understanding of the language. Garcia et al. [17], as part of their
Abstracting Gradual Typing (AGT) approach, advocated and proposed an approach for giving
a direct semantics to gradually typed languages. They showed that the cast insertion step
provided by elaboration, which was until then seen as essential to gradual typing, could be
omitted. Instead, in their approach, they develop the dynamic semantics as proof reductions
over source language typing derivations.

This paper presents a different approach to give the semantics of gradually typed languages
directly. We use a recently proposed variant of small-step operational semantics [54] called
type-directed operational semantics (TDOS) [25]. For the most part developing a TDOS is
similar to developing a standard small step-semantics as advocated by Wright and Felleisen.
However, in TDOS type annotations become operationally relevant and can affect the result
of a program. While there have been past formulations of small-step semantics where type
annotations are also relevant [5, 14,18], the distinctive feature of TDOS is a so-called typed
reduction relation. Typed reduction further reduces values based on their types. While
typically values are the final result of a program, in TDOS typed reduction can further
transform them based on their run-time type. Thus typed reduction provides an operational
interpretation to type conversions in the language, similarly to coercions in coercion-based
calculi [23].

We illustrate how to employ TDOS on gradually typed languages using two calculi. The
first calculus, called λBg, is inspired by the semantics of a variant of the blame calculus
(λB) [52] by Siek et al. [39]. However, unlike the blame calculus, λBg allows implicit type
conversions, enabling it to be used as a gradually typed language. Gradually typed languages
can be built on top of λB using an elaboration from a source language into λB. In contrast
λBg can already act as a gradual language, without the need for an elaboration process.

The second calculus, called λBr, explores a different design space in the semantics of
gradually typed languages. It uses a so-called blame recovery semantics, which enables
eliminating some false positives where blame is raised but normal computation could succeed.
In the λB calculus, a lambda expression annotated with a chain of types is taken as a value.
This means that it accumulates the type annotations, and checks if there are errors only when
the function is applied to a value. This has some drawbacks. Perhaps most notably, and
widely discussed in the literature [16,24, 37,38, 42], is that the accumulation of annotations
affects space efficiency. Moreover, sometimes blame is raised quite conservatively, when a
program could successfully return a value. Of course, the blame calculus semantics is justified
by its origins on contracts and traditional casts (such as those commonly used in mainstream
languages like Java). In such settings all casts/contracts must be valid, and any violations
should raise blame.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:3

In the λBr calculus, the design choice that we make is to only raise blame if the initial
source type of the value and final target types are not consistent. Otherwise, even if
intermediate annotations trigger type conversions which would not be consistent, the final
result can still be a value provided that the initial source and final target types are themselves
consistent. This semantics differs from the blame calculus where intermediate types can
cause blame. Technically speaking we introduce a new saved expression/value, that is used
as an intermediate result during reduction. A saved value is generated whenever a conversion
between two inconsistent types is triggered. However, if later another type conversion is
applied to the value, then a saved value can recover from the brink of blame and be restored
as a conventional value, provided that the new target type is consistent with the type of
the saved value. A nice aspect of this semantics is that it avoids the accumulation of type
annotations, being more space efficient.

For both calculi type safety is proved. Furthermore we show that the semantics of λBg

is sound with respect to the semantics of the blame calculus, and that λBr comes with a
gradual guarantee [41]. All the results have been mechanically formalized in the Coq theorem
prover.

In summary, the contributions of this work are:
TDOS for gradual typing: We show that TDOS can be employed in gradually typed
languages. This enables simple, and concise specifications of the semantics of gradually
typed languages, without resorting to an intermediate cast calculus. A nice aspect of
TDOS is that it remains close to the simple and familiar small-step semantics approach
by Wright and Felleisen.
The λBg calculus provides a first concrete illustration of TDOS for gradual typing. It
follows closely the semantics of the blame calculus, but it allows implicit type conversions.
We show type-safety, determinism, as well as a soundness theorem that relates the
semantics of λBg to that of the blame calculus (ignoring blame labels).
The λBr calculus and blame recovery semantics. λBr explores the design space of
the semantics of gradual typing by using a blame recovery semantics. The key idea is
to only raise blame if the initial source type of the value and final target types are not
consistent. Furthermore, λBr comes with a gradual guarantee [41].
Coq Formalization: Both λBg and λBr, and all associated lemmas and theorems, have
been formalized in the Coq theorem prover. The Coq formalization can be found in the
supplementary materials of this paper:

https://github.com/YeWenjia/TypedDirectedGradualTyping

2 Overview

This section provides background on gradual typing and the blame calculus, and then
illustrates the key ideas of our work and the λBg and λBr calculi.

2.1 Background: Gradual Typing and the λB calculus
Traditionally, programming languages can be divided into statically typed languages and
dynamically typed languages. For a statically typed language, the type of every term must
be known. The language may support type inference, but it usually requires some type
annotations by the programmer, which bears some extra work for a programmer. However,
the benefit of static typing is that type-unsafe programs are rejected before they are executed.
On the other hand, in dynamically typed languages terms do not have static types and no

ECOOP 2021

https://github.com/YeWenjia/TypedDirectedGradualTyping

12:4 Type-Directed Operational Semantics for Gradual Typing

type annotations are needed. This waives the burden of a strict type discipline, at the cost
of type-safety.

Gradual typing [43] is like a bridge connecting the two styles. Gradual typing extends the
type system of static languages by allowing terms to have a dynamic type ⋆, which stands
for the possibility of being any type. A term with the unknown type ⋆ is not rejected in any
context by the type checker. Therefore, it can be viewed as in a dynamically typed language.
In a gradually typed language, programs can be completely statically typed, or completely
dynamically typed, or anything in between.

To cooperate with the very flexible ⋆ type, the common practice in gradual type systems
is to define a binary relation called type consistency. A term of type A can be assigned
type B if A and B are consistent (A ∼ B). With ⋆ defined to be consistent with any other
type, dynamic snippets can be embedded into the whole program without breaking the type
soundness property. Of course, the type soundness theorem is relaxed and tolerates some
kinds of run-time type errors. Besides type soundness, there are some other criteria for
gradual typing systems. One well-recognized standard is the gradual guarantee proposed by
Siek et al. [41].

Elaboration semantics of Gradual Typing and the λB calculus. The semantics of gradually
typed languages is usually given by an elaboration into a cast calculus. This approach has
been widely used since the original work on gradual typing by both Siek and Taha [43] and
Tobin-Hochstadt and Felleisen [49].

One of the most widely used cast calculus for the elaboration of gradually typed languages
is the blame calculus [39,52]. Figure 1 shows the definition of the blame calculus. Here we
base ourselves in a variant of the blame calculus by Siek et al. [39], but ignoring blame labels.
The blame calculus is the simply-typed lambda calculus extended with the dynamic type
(⋆) and the cast expression (t : A ⇒ B). Meta-variables G and H range over ground types,
which include Int and ⋆ → ⋆. The definition of values in the blame calculus contains some
interesting forms. In particular, casts (V : A → B ⇒ A′ → B′) and V : G ⇒ ⋆ are included.
Run-time type errors are denoted as blame. Besides the standard typing rules of the simply
typed lambda calculus, there is an additional typing rule for casts: if term t has type A

and A is consistent with B, a cast on t from A to B has type B. The consistency relation
for types states that every type is consistent with itself, ⋆ is consistent with all types, and
function types are consistent only when input types and output types are consistent with
each other. In the premise of rule bstepp-dyna, there is a function ug which says that type
A should be a function type consistent with ⋆ → ⋆, but not ⋆ → ⋆ itself.

The bottom of Figure 1 shows the reduction rules that we use in this paper. The dynamic
semantics of the λB calculus is standard for most rules. The semantics of casts include the
noteworthy parts. For first-order values, reduction is straightforward: a cast either succeeds
or it fails and raises blame. For example:

1 : Int ⇒ ⋆ : ⋆ ⇒ Int 7−→∗ 1
1 : Int ⇒ ⋆ : ⋆ ⇒ Bool 7−→∗ blame

For higher-order values such as functions, the semantics is more complex, since the casted
result cannot be immediately obtained. For example, if we cast from ⋆ → ⋆ to Int → Int,
we cannot judge the cast result immediately. So the checking process is deferred until the
function is applied to an argument. Rule bstepp-abeta shows that process: a function with
the cast is a value which does not reduce until it has been applied to a value.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:5

Syntax

Types A, B ::= Int | ⋆ | A → B

Ground types G, H ::= Int | ⋆ → ⋆

constant c ::= i | ...

T erms t ::= c | x | t : A ⇒ B | t1 t2 | λx : A.t

Result r ::= t | blame

V alues V, W ::= c | V : A → B ⇒ A′ → B′ | λx : A.t | V : G ⇒ ⋆

Context Γ ::= · | Γ, x : A

Frame F ::= [] t | V [] | [] : A ⇒ B

Γ ⊢ t : A (Additional Typing Rules)

btyp-cast
Γ ⊢ t : A A ∼ B

Γ ⊢ t : A ⇒ B : B

A ∼ B (Consistency of types)

S-i

Int ∼ Int

S-arr
A ∼ C B ∼ D

A → B ∼ C → D

S-dynl

⋆ ∼ A

S-dynr

A ∼ ⋆

t 7−→ r (Reduction for the λB Calculus)

bStepp-eval
t 7−→ t′

F. t 7−→ F. t′

bStepp-blame
t 7−→ blame

F. t 7−→ blame

bStepp-beta

(λx : A. t) V 7−→ t[x 7→ V]

bStepp-vany

(V : G ⇒ ⋆) : ⋆ ⇒ G 7−→ V

bStepp-dd

V : ⋆ ⇒ ⋆ 7−→ V

bStepp-dyna
ug(A, ⋆ → ⋆)

V : ⋆ ⇒ A 7−→ (V : ⋆ ⇒ ⋆ → ⋆) : ⋆ → ⋆ ⇒ A

bStepp-blamep
G ≁ H

(V : G ⇒ ⋆) : ⋆ ⇒ H 7−→ blame

bStepp-abeta

(V : A → B ⇒ A′ → B′) V 7−→ (V (V : A′ ⇒ A)) : B ⇒ B′

bStepp-lit

i : Int ⇒ Int 7−→ i

bStepp-anyd
ug(A, ⋆ → ⋆)

V : A ⇒ ⋆ 7−→ (V : A ⇒ ⋆ → ⋆) : ⋆ → ⋆ ⇒ ⋆

Figure 1 The λB Calculus (selected rules).

ECOOP 2021

12:6 Type-Directed Operational Semantics for Gradual Typing

2.2 Motivation for a Direct Semantics for Gradual Typing

In this paper we propose not to use an elaboration semantics into a cast calculus, but to use a
direct semantics for gradual typing instead. We are not the first to propose such an approach.
For instance, the AGT framework for gradual typing [17] also employs a direct semantics. In
that work the authors state that “developing dynamic semantics for gradually typed languages
has typically involved the design of an independent cast calculus that is peripherally related
to the source language”. They further argue that there is a gap between source gradually
typed languages, and the cast calculi that they target. In particular cast calculi admit “far
more programs than those in the image of the translation procedure”. We agree with such
arguments. In addition, as argued by Huang and Oliveira [25], there are some other reasons
why a direct semantics is beneficial over an elaboration semantics.

A direct semantics enables simple ways for programmers and tools to reason about the
behaviour of programs. For instance, with languages like Haskell it is quite common for
programmers to use equational reasoning. Such reasoning steps are directly justifiable from
the operational semantics of call-by-name/need languages. With a TDOS, we can easily (and
justifiably) employ similar steps to reason about your source language (say GTLC or λBg).
With a semantics defined via elaboration, however, that is not an easy thing because of the
indirect semantics. We refer readers to Huang and Oliveira’s work, which has an extensive
discussion about this point. Additionally, some tools, especially some debuggers or tools for
demonstrating how programs are computed, require a direct semantics, since those tools
need to show transformations that happen after some evaluation of the source program.

Another potential benefit of a direct semantics is simpler and shorter metatheory/imple-
mentation. For instance, with a direct semantics we can often save quite a few definition-
s/proofs, including a second type system, various definitions on well-formedness of terms,
substitution operations and lemmas, pretty printers, etc. Though these are not arguably
difficult, they do add up. Perhaps more importantly, some proofs can be simpler with a
direct semantics. For example, proving the gradual guarantee is typically simpler, since some
lemmas that are required with an elaboration semantics (for example, Lemma 6 in original
work on the refined criteria for gradual typing [41]) are not needed with a direct operational
semantics. Moreover only the precision relation for the source language is necessary.

2.3 λBg: A Gradually Typed Lambda Calculus

Since λB requires explicit casts whenever a term’s type is converted, it cannot be considered
a gradually typed calculus. For comparison, the application rule for typing in the Gradually
Typed Lambda Calculus (GTLC) [38,41,43]

Γ ⊢ e1 : T1 → T2 Γ ⊢ e2 : T3 T1 ∼ T3

Γ ⊢ e1 e2 : T2
GTLC-App

does not force the input term to have the same type as what the function expects. It just
checks the compatibility of the two terms’ types and can do implicit type conversions (casts)
automatically. In a cast calculus, similar flexibility only exists when the term is wrapped
with a cast, since the application rule strictly requires the argument type to be of the same
type of the input of the function type. In λB, for instance, the application rule is the same
as in the Simply Typed Lambda Calculus, requiring the argument type to be of the same
type of the input of the function type.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:7

Bi-directional type-checking for λBg. As a first step to adapt a λB-like calculus into a
source language for gradual typing, we turn to the bidirectional type checking [33]. Unlike in
GTLC or λB, a bidirectional typing judgement may be in one of the two modes: inference
or checking. In the former, a type is synthesized from the term. In the later, both the type
and the term are given as input, and the typing derivation examines whether the term can
be used under that type safely. In a typical bidirectional type system with subtyping, the
subsumption rule is only employed in the checking mode, allowing a term to be checked by a
supertype of its inferred type. That is to say, the checking mode is more relaxed than the
inference mode, which typically infers a unique type. With bidirectional type-checking the
application rule in such a system is not as strict as in the λB calculus, as the input term is
typed with a checking mode.

Implicit type conversion in function applications. By using bidirectional type checking,
we can type-check programs such as:

(λx.x) 1 Accepted!
(λx.not x) 1 Accepted!
(λx.not x : ⋆ → Bool) 1 Accepted!
(λx.x + 1 : Int → Int) 1 Accepted!

and also reject ill-typed programs:

(λx.not x : Bool → Bool) 1 Rejected!

Note that λBg supports annotation expressions of the form e : A. Thus, an expression
like λx.not x : Bool → Bool is a lambda expression (λx.not x) annotated with the type
Bool → Bool.

Explicit type conversion. Besides implicit conversions, programmers are able to trigger
type conversions in an explicit fashion by wrapping the term with a type annotation e : A,
where A denotes the target type. For instance, the two simple examples in λB in Section 2.1
can be encoded in λBg as:

1 : ⋆ : Int 7−→∗ 1
1 : ⋆ : Bool 7−→∗ blame

with similar results to the same programs in the λB calculus. Notice that, unlike λB, there
is no cast expression in λBg. Casts are triggered by type annotations. For instance, in the
first expression above (1 : ⋆ : Int), the first type annotation (⋆) triggers a cast from Int to ⋆.
The source type Int is the type of 1, whereas the target type ⋆ is specified by the annotation.
Then the second annotation Int will trigger a second cast, but now from ⋆ to Int.

Functions. One interesting change in the type system is that we handle lambdas by inference
mode rather than checking mode. Our rule for lambdas is:

Γ, x : A ⊢ e ⇐ B

Γ ⊢ λx. e : A → B ⇒ A → B
Typ-abs

If the programmer wants to have their function statically type checked, they can write down
the full annotations. Otherwise, the function can be left with no annotation, which will
be desugared into a lambda with type ⋆ → ⋆, similarly to what happens in the GTLC for
dynamically typed lambdas.

ECOOP 2021

12:8 Type-Directed Operational Semantics for Gradual Typing

2.4 Designing a TDOS for λBg

The most interesting aspect of λBg is its dynamic semantics. We discuss the key ideas next.

Background: Type-Directed Operational Semantics. A type-directed operational se-
mantics is helpful for language features whose semantics is type dependent. TDOS was
originally proposed for languages that have intersection types and a merge operator [25]. To
enable expressive forms of the merge operator the dynamic semantics has to account for the
types, just like the semantics of gradually typed languages. In many traditional operational
semantics type annotations are often ignored. In TDOS that is not the case, and the type
annotations are used at runtime to determine the result of reduction. A TDOS has two parts.
One part is similar to the traditional reduction rules, modulo some changes on type-related
rules, like beta reduction for application, and annotation elimination for values. The second
component of a TDOS is the typed reduction relation v 7−→A r. Typed reduction has a
value and a type as input and produces a value (when no run-time error is possible) as result.
The resulting value is transformed from the input value.

Typed Reduction for λBg. Due to consistency, run-time checking is needed in gradual
typing. The typed reduction relation v 7−→A r is used when run-time checks are needed.
Typed reduction compares the dynamic type of the input value with the target type. When
the type of the input value (v) is not consistent to the target type (A), blame is raised.
Otherwise, typed reduction adapts the value to suit the target type. Eventually, terms
become more and more precise. Two easy examples to show how typed reduction work are
shown next:

1 7−→Int 1
1 : ⋆ 7−→Bool blame

If we have an integer value 1 and we want to transform it with type Int, we simply return
the original value. In contrast, attempting to transform the value 1 : ⋆ under type Bool will
result in blame.

Typed reduction takes place in other reduction rules such as the beta reduction rule and
the annotation elimination rule for values:

Step-beta
v 7−→A v′

(λx. e : A → B) v 7−→ e[x 7→ v′] : B

Step-annov
not (value (v : A))

v 7−→A r

v : A 7−→ r

Take another example to illustrate the behavior of typed reduction in beta reduction:

(λx.x : Bool → Bool) (1 : ⋆)

If we would perform substitution directly, as conventionally done in beta-reduction, we would
not check if there are run-time errors, for which blame should be raised. Since the typing
rule for the argument of application is in checking mode, we need to check if the type of the
argument is consistent with the target type. Therefore the argument must be further reduced
with typed reduction under the expected type of the function input. When we check that
the type Int is not consistent with Bool, blame is raised. However, if we take the example:

(λx.x + 1 : Int → Int) (1 : ⋆)

then the value 1 is substituted in the function body and the result is 2. The details of
reduction and typed reduction in λBg will be discussed in Section 3.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:9

2.5 λBr: Gradual Typing with a Blame Recovery Semantics
An alternative semantics for Gradual Typing. In λBr we explore an alternative semantics
for gradual typing that we call blame recovery semantics. The main idea is to only raise
blame when the initial (source) type and the final target types in a chain of type annotations
are inconsistent. Intermediate inconsistent types will not lead to blame. Thus the blame
recovery semantics can be viewed as being more liberal with respect to raising blame. We
illustrate the difference next, with 2 programs that raise blame in λBg, but would successfully
compute a value in λBr:

(λx.x : Int → Int : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆) 1 7−→∗ blame {Examples in λBg }
(λx.x : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆ : Int → Int) 1 7−→∗ blame

(λx.x : Int → Int : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆) 1 7−→∗ 1 : Int {Same examples in λBr }
(λx.2 : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆ : Int → Int) 1 7−→∗ 2 : Int

For the above two examples, the function being applied is wrapped on a chain of annotations
that contain the inconsistent types Int → Int and Bool → Bool. Therefore, in λBg blame
is raised in both cases. However, in λBr, because ⋆ → ⋆ is consistent with Int → Int, the
annotation chain of functions is eliminated, then beta reduction applies, and it successfully
reduces to an integer value.

Space Efficiency. Besides the different semantics with respect to the λBg and λB calculi,
an interesting aspect of this alternative semantics is better space efficiency. Unlike the blame
calculus or λBg, where functions with an arbitrary number of annotations are values, that
is not the case in λBr. Because of the blame recovery semantics it is possible to discard
intermediate types when reducing expressions with chains of annotations. Instead of wrappers
for higher-order casts, function values have just 2 annotations. Some concrete examples for
higher-order casts (functions) are:

(λx. x : Int → Int) : ⋆ → ⋆ : Int → Int 7−→∗ (λx. x : Int → Int) : Int → Int
(λx. x : Int → Int) : ⋆ → ⋆ : Bool → Bool 7−→∗ [λx.x : Int → Int]Bool→Bool

(λx. x : Int → Int) : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆ 7−→∗ λx. x : Int → Int : ⋆ → ⋆

For the first example, because the source type Int → Int is consistent with the target type
Int → Int, the intermediate types are ignored and the resulting value is (λx. x : Int → Int) :
Int → Int. For the second example, because the source type Int → Int is not consistent
with the target type Bool → Bool, instead of raising blame immediately, the source type
will be stored in a saved value: [λx. x : Int → Int]Bool→Bool. Later, if the saved value is
applied to an argument, blame will be raised, since a saved value is denoting that the
function has inconsistent source and target types. The third example, is similar to the
second example except that there is an extra final target type ⋆ → ⋆. Thus, since the
initial source type Int → Int is consistent with the final target type ⋆ → ⋆ the final value is
(λx. x : Int → Int) : ⋆ → ⋆. The above examples illustrate that at most there will be 2 type
annotations in values. In contrast, for the blame calculus, the three examples are values
where all the annotations are accumulated.

Saved Expressions. To realize the blame recovery semantics we introduce saved expres-
sions/values, which are used to signal potential blame. A saved value is generated whenever

ECOOP 2021

12:10 Type-Directed Operational Semantics for Gradual Typing

some target type arising from an annotation is inconsistent with the current value. If further
annotations are processed after a saved value is generated, recovery from blame is possible.
Take the third example above again. The full reduction steps for that example are:

(λx. x : Int → Int) : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆

7−→ [λx.x : Int → Int]Bool→Bool : ⋆ → ⋆

7−→ λx. x : Int → Int : ⋆ → ⋆

An intermediate saved value is generated, but because there is still one more consistent
annotation (⋆ → ⋆), the value is recovered from the saved expression, revoking the potential
reason to raise blame.

Blame in λB and λBr. While λBr has a different semantics from λB (and λBg), the
semantics of the two calculi is still closely related. In particular, with respect to blame, a
program that does not raise blame in λBg or λB will also not raise blame in λBr. Achieving
this goal is not simple, because of the semantics of the blame calculus and λBg for higher-order
casts. For instance, consider the following λBg program:

((λx. x : (Bool → Bool) → (Bool → Bool)) : ⋆ → ⋆ : (Int → Int) → (Int → Int)) (λx. x : Int → Int)

In this well-typed program the lambda expression being applied has inconsistent type
annotations. However, because in the blame calculus and λBg the semantics of higher-order
casts is lazy, this program will not raise blame. Instead, it eventually reduces to:

(λx. x : Int → Int) : Int → Int : ⋆ → ⋆ : Bool → Bool : Bool → Bool : ⋆ → ⋆ : Int → Int

which is another lambda expression (arising from the argument) with inconsistent type
annotations.

In λBr the applied lambda expression in the original program would first be reduced to:

[λx. x : (Bool → Bool) → (Bool → Bool)](Int→Int)→(Int→Int)

To achieve the same semantics as λBg or λB, the design of λBr has to include rules that
can still perform beta-reduction for saved values being applied. In particular, λBr has the
following rule :

v 7−→A1,⋆,A2 v′

([λx. e : A1 → B1]A2→B2) v 7−→ e[x 7→ v′] : B1 : ⋆ : B2
VStep-apps

With such a rule, the program above is reduced in λBr as follows:

[λx.x : (Bool → Bool) → (Bool → Bool)](Int→Int)→(Int→Int)(λx. x : Int → Int)
7−→∗ (λx. x : Int → Int) : Int → Int

3 The λBg Calculus: Syntax, Typing and Semantics

In this section, we will introduce the gradually typed λBg calculus. The semantics of
the λBg calculus follows closely the semantics of the λB cast calculus, and it employs a
type-directed operational semantics [25] to have a direct operational semantics. λBg uses
bidirectional type-checking [33]. We prove a soundness result between the semantics of the
λBg and λB calculi (ignoring blame labels), as well as the usual type soundness property.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:11

Syntax

Types A, B ::= Int | ⋆ | A → B

Ground types G ::= Int | ⋆ → ⋆

Constants c ::= i | ...

T erms e ::= c | x | e : A | e1 e2 | λx.e : A → B

Result r ::= e | blame

V alues v ::= c | v : A → B | λx.e : A → B | v : ⋆

Context Γ ::= · | Γ, x : A

Frame F ::= [] e | v [] | [] : A

Typing modes ⇔ ::= ⇒|⇐
Syntactic sugar λx.e ≡ λx.e : ⋆ → ⋆

value e (Well-formed values for λBg calculus)

value-c

value c

value-anno

value λx. e : A → B

value-fanno
⌉v⌈= C → D

value v : A → B

value-dyn
Ground ⌉v⌈
value v : ⋆

Figure 2 Syntax and well-formed values for the λBg calculus.

3.1 Syntax
The syntax of λBg calculus is shown in Figure 2.

Types and Ground types. Meta-variables A and B range over types. There is a basic type:
the integer type Int. The calculus also has function types A → B, and dynamic types ⋆.
The type ⋆ is used to denote the dynamic type which is unknown. Just like in λB calculus,
ground types include Int and ⋆ → ⋆.

Constants, Expressions and Results. Meta-variable c ranges over constants. Each constant
is assigned a unique type. The constants include integers (i) of type Int. Expressions
range over by the meta-variable e. There are some standard constructs which include:
constants (c);variables (x); annotated expressions (e : A); application expressions (e1e2) and
lambda abstractions (λx.e : A → B). Note that lambda abstractions have the function type
annotation A → B, meaning that the input type is A and the output type is B. Similarly to
GTLC, lambdas without type annotations are just sugar for a lambda with the annotation
⋆ → ⋆. Results (r) include all expressions and blame, which is used to denote cast-errors at
run-time. Finally, note that, in our Coq formalization, constants such as addition of integers
are implemented, but omitted here for simplicity of presentation.

Value and Contexts. The meta-variable v ranges over values. Values include constants (c);
lambda abstractions (λx.e : A → B) and a special value with the syntax v : A → B. Note
that, similarly to λB, not all syntactic values are well-formed values. The value predicate,
at the bottom of Figure 2, defines well-formed values. Lambda expressions annotated with a
function type are values (rule value-anno). A value v with a function type annotation is

ECOOP 2021

12:12 Type-Directed Operational Semantics for Gradual Typing

a value if the dynamic type of the value is also a function type (rule value-fanno). The
expression of v : ⋆ is a value only when the type of v is a ground type (rule value-dyn).
Constants are also values. Note that ⌉v⌈ denotes the dynamic type of a value, and is defined
as:

▶ Definition 1 (Dynamic type). ⌉v⌈ denotes the dynamic type of the value v.

⌉i⌈ = Int
⌉λx. e : A → B⌈ = A → B

⌉v : A⌈ = A

The dynamic type is the most specific type of a value among all the other types. Finally,
typing contexts are standard. Γ is used to track the bound variables x with their type A.

Frame and Typing modes. The meta-variable F ranges over frames [39] which is a form of
evaluation contexts [31]. The frame is mostly standard, though it is perhaps noteworthy that
it includes annotated expressions. ⇔ is used to represent the two modes of the bidirectional
typing judgment. The ⇒ mode is the synthesis (inference) mode and ⇐ mode is the checking
mode.

3.2 Typing

We use bidirectional typing for our typing rules. The typing judgment is represented as
Γ ⊢ e ⇔ A, which means that the expression e could be inferred or checked by the type A

under the typing environment Γ. We ignore the highlighted parts, and explain them later in
Section 3.4.

Typing Relation. The typing relation of the λBg calculus is shown in Figure 3. Most of
the rules in inference mode follow the λB calculus’s type system. The typing for constants
(rule Typ-c) recovers the type of the constants using the definition of dynamic types. The
rule Typ-var for variables is standard. For lambda expressions, the λBg calculus is different
from the λB calculus: in the λBg calculus the type of a lambda expression is given. Thus
the body of the lambda expression is checked with a target type that should be consistent to
the type of the lambda body. For applications e1 e2, the rule is standard for bi-directional
type-checking: the type of e1 is inferred, and the type of e2 is checked against the domain type
of e1. The rule for annotations (rule Typ-anno) is also standard, inferring the annotated
type, while checking the expression in the against the annotated type. All the consistency
checks happen in the subsumption rule (rule Typ-sim). However, it is important to notice
that since the subsumption rule is in checking mode, all consistency checks can only happen
when typing is invoked in the checking mode.

Two important properties of the typing relation is that it computes dynamic types for the
inference mode, and if an expression e can be checked with type A, then e can be inferred
with some type B:

▶ Lemma 2 (Dynamic Types). For any value v, if · ⊢ v ⇒ A then ⌉v⌈= A.

▶ Lemma 3 (Checking to inference mode). If Γ ⊢ e ⇐ A then ∃B, Γ ⊢ e ⇒ B.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:13

Γ ⊢ e ⇔ A ⇝ t (Typing of λBg)

Typ-c

Γ ⊢ c ⇒ ⌉c⌈ ⇝ c

Typ-var
x : A ∈ Γ

Γ ⊢ x ⇒ A ⇝ x

Typ-abs
Γ, x : A ⊢ e ⇐ B ⇝ t

Γ ⊢ λx. e : A → B ⇒ A → B ⇝ λx:A. t

Typ-app
Γ ⊢ e1 ⇒ A → B ⇝ t1

Γ ⊢ e2 ⇐ A ⇝ t2

Γ ⊢ e1 e2 ⇒ B ⇝ t1 t2

Typ-anno
Γ ⊢ e ⇐ A ⇝ t

Γ ⊢ e : A ⇒ A ⇝ t

Typ-sim
Γ ⊢ e ⇒ A ⇝ t

A ∼ B

Γ ⊢ e ⇐ B ⇝ t : A ⇒ B

Figure 3 Type system of the λBg calculus.

v 7−→A r (Typed Reduction for λBg calculus)

TReduce-abs
⌉v⌈= C → D

C → D ∼ A → B

v 7−→A→B v : A → B

TReduce-v
Ground ⌉v⌈
v 7−→⋆ v : ⋆

TReduce-lit

i 7−→Int i

TReduce-dd

v : ⋆ 7−→⋆ v : ⋆

TReduce-anyd
FLike ⌉v⌈

v 7−→⋆ v : ⋆ → ⋆ : ⋆

TReduce-dyna
FLike A ⌉v⌈∼ A

v : ⋆ 7−→A v : A

TReduce-vany

v : ⋆ 7−→⌉v⌈ v

TReduce-blame
⌉v⌈≁ A

v : ⋆ 7−→A blame

Figure 4 Typed Reduction for the λBg calculus.

Consistency. Consistency plays an important role in a gradually type lambda calculus.
Consistency acts as a relaxed equality relation. The consistency relation is the same as λB,
and is already shown in Figure 1. In consistency, the reflexivity and symmetry properties
hold. However, it is well-known that consistency is not a transitive relation. If consistency
were transitive then every type would be consistent with any other type [43].

3.3 Dynamic Semantics
The dynamic semantics of λBg employs a type-directed operational semantics (TDOS) [25].
In TDOS, besides the usual reduction relation, there is a special typed reduction relation for
values that is used to further reduce values based on the type of the value. Typed reduction
is used by the TDOS reduction relation. In a gradually typed calculus with TDOS the typed
reduction relation plays a role analogous to various cast-related reduction rules in a cast
calculus. We first introduce typed reduction and then move on to the definition of reduction.

Typed Reduction. We reduce a value under a certain type using the typed reduction
relation. The form of the typed reduction relation is v 7−→A r, which means that a value v

annotated with A reduces under type A to a result r. Note that the result r produced by
typed reduction can only be a value or blame. Blame is raised during typed reduction if

ECOOP 2021

12:14 Type-Directed Operational Semantics for Gradual Typing

we try to reduce the value under a type that is not consistent with the type of the value.
For instance trying to reduce the value 1 : ⋆ under the type Bool will raise blame. Thus,
it should be clear that typed reduction mimics the behavior of casts in cast calculi like the
λB calculus. In the λB calculus, in a cast t : B ⇒ A, t should be a cast from a source type
B to a target type A. Using typed reduction, the type A is the target type, whereas the
dynamic type of v is the source type.

Figure 4 shows the rules of typed reduction. Rule TReduce-abs and rule TReduce-v
just add a type annotation to the value. In rule TReduce-abs the dynamic type of the
value is a function type, thus v annotated with A → B is a value. In rule TReduce-v, v : ⋆

is also a value when the dynamic type of v is a ground type. Rule TReduce-lit is for
integer values: an integer i being reduced under the integer type results in the same integer
i. A value v : ⋆ type-reduced under ⋆ returns the original value as well (rule TReduce-dd).
In rule TReduce-anyd, the premise is that the dynamic type of v should be a function-like
type (FLike). The definition of FLike, which plays a role analogous to ug(A, ⋆ → ⋆) in λB,
is:

FLike A ::= A ̸= ⋆ ∧ A ̸= ⋆ → ⋆ ∧ A ∼ ⋆ → ⋆

If a type A is FLike then it is not the type ⋆ and the type ⋆ → ⋆, but should be consistent
with ⋆ → ⋆. In other words, the dynamic type of v should be any function type A → B except
for ⋆ → ⋆. In the end v is type-reduced under type ⋆ and returns the value v : ⋆ → ⋆ : ⋆.
In rule TReduce-vany, v : ⋆ is type-reduced under the dynamic type of v, returning v

and dropping the annotation ⋆. In rule TReduce-blame, if the dynamic type of v is
not consistent to the type A that we are type-reducing, then blame is raised. Finally, in
rule TReduce-dyna, a value v : ⋆ being type-reduced under type A (where A is function-like
and the dynamic type of v is consistent with A) results in v : A. That is the annotation ⋆

gets replaced by the function type A.

Properties of Typed Reduction. Some properties of typed reduction of λBg calculus are
shown next:

▶ Lemma 4 (Typed reduction preserves well-formedness of values). If value v and v 7−→A v′

then value v′.

▶ Lemma 5 (Preservation of Typed Reduction). If · ⊢ v ⇐ B and v 7−→A v′ then · ⊢ v′ ⇒ A.

▶ Lemma 6 (Progress of Typed Reduction). If · ⊢ v ⇐ A then ∃v′, v 7−→A v′ or v 7−→A

blame.

▶ Lemma 7 (Determinism of Typed Reduction). If · ⊢ v ⇐ B, v 7−→A r1 and v 7−→A r2
then r1 = r2.

▶ Lemma 8 (Typed Reduction Respects Consistency). If v 7−→A v′ then ⌉v⌈∼ A.

According to Lemma 4, if the result of a value type-reduced under a type A is not blame,
then it should be a well-formed value. Lemma 5 shows that the target type A is preserved
after typed reduction: if a value v is type-reduced by A, the result type of v′ is of type
A. Note that this lemma (and some others) have a premise that ensures that the value
under typed reduction must be well-typed under some type B. That is, the lemma only
holds for well-typed values (which are the only ones that we care about). Lemma 6 shows
that if a value v is well-typed with A, then type-reducing the value will either return a

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:15

e 7−→ r (Small-step Semantics)

Step-eval
e 7−→ e′

F. e 7−→ F. e′

Step-blame
e 7−→ blame

F. e 7−→ blame

Step-beta
v 7−→A v′

(λx. e : A → B) v 7−→ e[x 7→ v′] : B

Step-betap
v 7−→A blame

(λx. e : A → B) v 7−→ blame

Step-annov
not (value (v : A))

v 7−→A r

v : A 7−→ r

Step-abeta
value (v1 : A → B)

v2 7−→A v′
2

(v1 : A → B) v2 7−→ (v1 v′
2) : B

Step-abetap
value (v1 : A → B)

v2 7−→A blame

(v1 : A → B) v2 7−→ blame

Figure 5 Semantics of λBg.

well-formed value or blame. The typed reduction relation is deterministic for well-typed
values (Lemma 7): if a well-typed value v is type-reduced by type A, the result will be unique.
Finally, if v is type-reduced by A, the dynamic type of v should be consistent with type A

(Lemma 8). Most of these lemmas are proved by induction on typed reduction relation.

Reduction. The reduction rules are shown in Figure 5. Rule Step-eval and rule Step-
blame are standard evaluation context reduction rules. Rule Step-beta is the beta reduction
rule. Importantly, note that typed reduction under type A is needed for v: that is we type-
reduce value v to v′ and replace the bound variable x in e by v′. Rule Step-betap applies
when v type-reducing under type A raises blame. Rule Step-annov states that v type-
reduces under type A to return r. Rule Step-abeta says v2 type-reduces by type A to get
v′

2 and v1 will erase the annotation. The expression v1 v′
2 in the result is annotated with type

B. Rule Step-abetap covers the case when v2 type-reducing under type A raises blame.

Determinism. The operational semantics of λBg is deterministic: a well-typed expression
reduces to a unique result. Theorem 9 is proved using Lemma 7.

▶ Theorem 9 (Determinism of λBg calculus). If · ⊢ e ⇐ A, e 7−→ r1 and e 7−→ r2 then
r1 = r2.

Type Safety. The λBg calculus is type safe. Theorem 10 says that if an expression is
well-typed with type A, the type will be preserved after the reduction. Progress is given
by Theorem 11. A well-typed expression e is either a value or there exists an expression e′

which e could reduce to, or e reduces to blame.

▶ Theorem 10 (Type Preservation of λBg Calculus). If · ⊢ e ⇔ A and e 7−→ e′ then
· ⊢ e′ ⇔ A.

▶ Theorem 11 (Progress of λBg Calculus). If · ⊢ e ⇔ A then e is a value or ∃e′, e 7−→ e′

or e 7−→ blame.

ECOOP 2021

12:16 Type-Directed Operational Semantics for Gradual Typing

3.4 Soundness to λB

The judgment Γ ⊢ e ⇔ A ⇝ t , shown in Figure 3 has an elaboration step from λBg

expressions to λB expressions in the gray portion of the judgement. This elaboration step is
used to prove a soundness result between the semantics of λBg and λB. A first property,
given by Theorem 12, is that the elaboration is type-safe. Theorem 13 and Theorem 14 show
the soundness property between the dynamic semantics of λBg and λB. The soundness
result is proved using the auxiliary lemmas 15 and 16.

▶ Theorem 12 (Type-Safety of Elaboration). If Γ ⊢ e ⇔ A ⇝ t then Γ ⊢ t : A.

▶ Theorem 13 (Soundness of λBg calculus semantics with respect to λB calculus semantics).
If · ⊢ e ⇔ A ⇝ t and e 7−→ e′ then ∃t′, t 7−→∗ t′ and · ⊢ e′ ⇔ A ⇝ t′ .

▶ Theorem 14 (Soundness of λBg calculus semantics with respect to λB calculus semantics).
If · ⊢ e ⇔ A ⇝ t and e 7−→ blame then t 7−→∗ blame.

▶ Lemma 15 (Soundness of Typed Reduction λBg calculus with respect to λB calculus
semantics). If · ⊢ v : A ⇒ A ⇝ t and v 7−→A v′ then ∃t′, t 7−→∗ t′ and · ⊢ v′ ⇒ A ⇝ t′ .

▶ Lemma 16 (Soundness of Typed Reduction λBg calculus with respect to λB calculus
semantics). If · ⊢ v : A ⇒ A ⇝ t and v 7−→A blame then t 7−→∗ blame.

4 The λBr Calculus and the Blame Recovery Semantics

In this section, we will introduce a gradually typed calculus with a blame recovery semantics.
The idea of the blame recovery semantics is essentially to ignore intermediate inconsistent
types in annotations. Thus, if blame arises from intermediate type annotations, but later the
final source type is found to be consistent to the final target type then blame is not raised. A
nice aspect of the blame recovery semantics is that it avoids accumulating type annotations,
leading to a more space-efficient representation of values. The details of syntax, typing and
semantics of λBr calculus are shown below.

4.1 Syntax
The syntax of the λBr calculus is shown in Figure 6.

Types. Types are the same as in λBg. A type is either a integer type Int, a function type
A → B or a dynamic type ⋆.

Expressions and Results. For expressions and results, λBr extends λBg with two expression
forms: base expressions and saved expressions. Base expressions (ss) include annotated
lambda expressions and integers (i). Saved expressions ([s]A→B) store a lambda expression
and a type A → B which is not consistent with the type of the lambda expression. The
lambda expressions stored in saved expressions are denoted as s. In our Coq formalization,
addition is also implemented and omitted here for simplicity of presentation.

Values. As in λBg, v denotes values, which are base expressions ss or saved forms annotated
with a type. Thus i : A and λx. e : A → B : C are examples of such expressions. Notably, in
contrast with λBg, λBr’s notion of (well-formed) values is purely syntactic: no additional
constraints (besides) syntax are needed. Moreover, it should be noted that in λBr values
have a bounded number of annotations (up-to 2 for lambda and saved values), unlike the
λBg calculus.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:17

Types A, B, C ::= Int | A → B | ⋆

Saved Forms s ::= λx.e : A → B

Base Expressions ss ::= s | i

Expressions e ::= x | e : A | e1 e2 | ss | [s]C→D

Results r ::= e | blame

V alue v ::= ss : A | [s]A
Contexts Γ ::= · | Γ, x : A

Frame F ::= v [] | [] e

Typing modes ⇔ ::= ⇒|⇐
Syntactic sugar λx.u ≡ λx.e : ⋆ → ⋆

Figure 6 Syntax of the λBr calculus (syntax that is the same as λBg in lighter gray).

Γ ⊢ e ⇔ A (New Typing Rules)

Etyp-save
· ⊢ s ⇒ C → D

A → B ≁ C → D

Γ ⊢[s]A→B ⇒ A → B

Figure 7 Type system of the λBr calculus. Only new typing rules are shown. All other typing
rules are the same as Figure 3.

Contexts, Frame and Typing modes. Typing environments and typing modes are just the
same as in the λBg calculus. Compared to the λBg calculus, annotation contexts are not in
the frame. This change is because in the λBg calculus we accumulate the annotations, but
in the λBr calculus we employ a blame recovery semantics. If annotated expressions were
formulated in the frame, we could not formulate a rule that recovers a saved value.

4.2 Typing

As the λBg calculus, bidirectional typing is used. Most of the rules are standard and the
same as those used by the λBg calculus in Figure 3. The only novel rule is rule Etyp-save,
which states that saved forms s should be well-typed with type C → D, and the type A → B

in the saved expression [s]A→B is not consistent with type C → D. The context is empty
because we only use saved expressions as intermediate results during reduction and such
results must be closed.

Dynamic type for the λBr calculus. As in the λBg calculus, dynamic types play an
important role in the calculus. ⌉v⌈ denotes the dynamic type of v, and ⌉ss⌈ denotes the
dynamic type of ss. We need both dynamic types for values and base expressions ss, and we
can define dynamic types easily as follows:

ECOOP 2021

12:18 Type-Directed Operational Semantics for Gradual Typing

v 7−→A r (Typed Reduction for λBr)

TReducev-sim
⌉ss⌈∼ B

ss : A 7−→B ss : B

TReducev-i
Int ≁ B

i : A 7−→B blame

TReducev-simp
⌉s⌈≁ B → C

s : A 7−→B→C [s]B→C

TReducev-save
⌉s⌈≁ C → D

[s]A→B 7−→C→D [s]C→D

TReducev-savep
⌉s⌈∼ C

[s]A→B 7−→C s : C

TReducev-p

(λx. e : A → B) : C 7−→Int blame

v 7−→Ā r (Multi-typed Reduction for λBg)

TLists-nil

v 7−→· v

TLists-baseb
v 7−→A blame

v 7−→Ā,A blame

TLists-cons
v 7−→A v′ v′ 7−→Ā r

v 7−→Ā,A r

Figure 8 Typed Reduction for the λBr Calculus.

▶ Definition 17 (Dynamic type). ⌉ss⌈ returns the dynamic type of the base expressions ss.
⌉v⌈ returns the dynamic type of the value v.

⌉i⌈ = Int
⌉λx. e : A → B⌈ = A → B

⌉s : A⌈ = A

⌉[s]A⌈ = A

Two lemmas about dynamic types and a typing lemma about checking mode are:

▶ Lemma 18 (Dynamic Types of Values). If · ⊢ v ⇒ A then ⌉v⌈= A.

▶ Lemma 19 (Dynamic Types of Base Expressions). If · ⊢ ss ⇒ A then ⌉ss⌈= A.

▶ Lemma 20 (Checked expressions can be inferred). If Γ ⊢ e ⇐ A then ∃B, Γ ⊢ e ⇒ B.

4.3 Dynamic Semantics
As in the λBg calculus, typed reduction is used in the semantics to get a direct operational
semantics. Interestingly, the calculus uses not only typed reduction with single type, but
also typed reduction for a collection of types.

Typed Reduction. The typed reduction rules are shown in Figure 8. Rule TReducev-sim
shows that ss : A type-reduces by type B to ss : B, if the type of ss is consistent with type
B. If the type of ss is not consistent with type B, the cases for integer (i) and lambda
(λx. e : A → B), which are included in ss, are different. For i : A, rule TReducev-i
shows that if type B is not consistent with Int, it raises blame. For a value of the form
(λx. e : A1 → B1) : A, if the type used for typed reduction is a function type B → C,
then the value reduces to [λx. e : A1 → B1]B→C using rule TReducev-simp. However

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:19

rule TReducev-p says that if the type used for typed reduction is Int, then blame is raised.
Rule TReducev-savep says that if the dynamic type of a saved form in [s]A→B is consistent
with C, then we can recover and return s : C. Otherwise, if the dynamic type of the saved
form s is also not consistent with C → D, then [s]A→B type-reduces to another saved value
[s]C→D as shown by rule TReducev-save.

An Example. Lets take an example to explain behavior of typed reduction with blame
recovery semantics. Suppose that we take a chain of annotations (λx. x : Int → Int) : Int →
Int : ⋆ : Bool → Bool : ⋆. Firstly, the dynamic type of λx. x : Int → Int is consistent with type
⋆ and the intermediate type Int → Int is erased. Then the dynamic type of λx. x : Int → Int
is not consistent with Bool → Bool. While reducing such an expression, an intermediate
saved expression [λx. x : Int → Int]Int→Int is generated. However, the saved expression would
later be recovered because the final type annotation ⋆ is consistent with the dynamic type of
the value.

The typed reduction (and reduction) steps to reduce such an expression are shown next:

(λx. x : Int → Int) : Int → Int : ⋆ : Bool → Bool : ⋆

7−→ {by step-annov and typed reduction under ⋆}
(λx. x : Int → Int) : ⋆ : Bool → Bool : ⋆

7−→ {by step-annov and typed reduction under Bool → Bool}
([λ.x : Int → Int]Bool→Bool) : ⋆

7−→ {by step-annov and typed reduction under ⋆}
(λx. x : Int → Int) : ⋆

Typed Reduction Properties. Typed reduction for the λBr calculus has some interesting
properties. The most interesting property is transitivity of typed reduction, which may come
as a surprise since the consistency relation is not transitive, and typed reduction for λBg is
not transitive either. The transitivity lemma (Lemma 21) says that typed reduction is the
same no matter whether it is type-reduced directly or indirectly via some intermediate type.

▶ Lemma 21 (Transitivity of typed reduction). If v 7−→A v1, and v1 7−→B v2 then v 7−→B v2.

Lets take an example, firstly using the typed reduction of λBg:

1) λx. x : Int → Int : Int → Int 7−→⋆→⋆ λx. x : Int → Int : Int → Int : ⋆ → ⋆

2) λx. x : Int → Int : Int → Int : ⋆ → ⋆

7−→Bool→Bool λx. x : Int → Int : Int → Int : ⋆ → ⋆ : Bool → Bool

3) λx. x : Int → Int : Int → Int ̸7−→Bool→Bool λx. x : Int → Int : Int → Int : ⋆ → ⋆ : Bool → Bool

The three typed reductions correspond to the two premises and the conclusion in the
transitivity lemma. The last typed reduction does not hold, and is a counter-example to
transitivity of typed reduction in λBg. Although Int → Int is consistent with ⋆ → ⋆ and
⋆ → ⋆ is consistent with Bool → Bool, Int → Int is not consistent with Bool → Bool. Since
transitivity does not hold in type consistency and the annotations are accumulated in λBg,
the transitivity of typed reduction does not hold in λBg. However in λBr, the annotations
are not accumulated and saved expressions are used to save the source type, so the transitivity

ECOOP 2021

12:20 Type-Directed Operational Semantics for Gradual Typing

of typed reduction holds. The following three typed reductions illustrate what happens for
the above example in λBr:

1) λx. x : Int → Int : Int → Int 7−→⋆→⋆ λx. x : Int → Int : ⋆ → ⋆

2) λx. x : Int → Int : ⋆ → ⋆ 7−→Bool→Bool [λx.x : Int → Int]Bool→Bool

3) λx. x : Int → Int : Int → Int 7−→Bool→Bool [λx.x : Int → Int]Bool→Bool

Additionally, typed reduction has several of the other properties for typed reduction
shown in Section 3:

▶ Lemma 22 (Preservation of Typed Reduction). If · ⊢ v ⇐ B and v 7−→A v′ then
· ⊢ v′ ⇒ A.

▶ Lemma 23 (Progress of Typed Reduction). If · ⊢ v ⇐ A then ∃v′, v 7−→A v′.

▶ Lemma 24 (Determinism of Typed Reduction). If · ⊢ v ⇐ B, v 7−→A r1 and v 7−→A r2
then r1 = r2.

Multi-Typed Reduction. The bottom of Figure 8 shows multi-typed reduction. If a value
v is multi-type reduced with an empty type collection, then the original v is returned as
shown in rule TLists-nil. Rule TLists-baseb states that value v multi-type reducing
with a type collection (Ā, A) raises blame when v type-reduced under type A raises blame.
Rule TLists-cons says that value v multi-type reducing with a type collection (Ā, A) returns
r if v type-reduces under type A return v′ and further reduction of v′ under Ā returns r.

Reduction. Figure 9 shows the reduction rules of the λBr calculus. Rule vstep-eval and
rule vstep-blame are standard rules. Annotation expressions are not in the frame because
we aim at having a blame recovery semantics. Rule vstep-annop and rule vstep-anno are
standard rules. Rule vstep-abs and rule vstep-i add an extra annotation with the dynamic
type to produce a value. In rule vstep-annov if v type-reduces to v′ under type A then
v : A reduces to v′.

There are four rules related to beta-reduction. Rule vstep-beta is the main form of
beta-reduction. However, the argument v needs to first be (multi)type reduced with the
input types, and the annotations with the output types are added in the final expression. If
the multi-typed reduction of v raise blame, then the final result is also blame as shown in
rule vstep-betap. Rule vstep-apps is another form of beta-reduction that recovers the
lambda expression in the saved value when the argument value v successfully type-reduces
to another value. Importantly, because the dynamic type of the lambda expression and the
saved value are inconsistent, an intermediate type ⋆ is added in between the inputs/output
types in both multi-typed reduction and the annotations for the resulting expression. The
reason why ⋆ is needed in multi-typed reduction is that without ⋆, the result of typed
reduction would not be well-typed. Take an example where v is 1 : ⋆ and we are multi-type
reducing using the inconsistent types (Bool, Int). The final value 1 : Bool is not well-typed:

1 : ⋆ 7−→Bool,Int 1 : Int 7−→Bool 1 : Bool 1 : Bool is not well-typed!

When the multi-typed reduction of v raises blame, the final result is blame as shown in
rule vstep-appsp. Note that an alternative to rule vstep-apps and rule vstep-appsp
is to have a rule that always raises blame for any saved expression being applied. Such
alternative rule would be significantly simpler, but would raise blame in some cases where

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:21

e 7−→ r (Small-step Semantics for the λBr calculus)

vstep-eval
e 7−→ e′

F. e 7−→ F. e′

vstep-blame
e 7−→ blame

F. e 7−→ blame

vstep-annop
e 7−→ blame

¬(value e : A)
e : A 7−→ blame

vstep-annov
v 7−→A v′

v : A 7−→ v′

vstep-apps
v 7−→A1,⋆,A2 v′

([λx. e : A1 → B1]A2→B2) v 7−→ e[x 7→ v′] : B1 : ⋆ : B2

vstep-anno
e 7−→ e′

¬(value e : A)
e : A 7−→ e′ : A

vstep-appsp
v 7−→A1,⋆,A2 blame

([λx. e : A1 → B1]A2→B2) v 7−→ blame

vstep-abs

λx. e : A → B 7−→ (λx. e : A → B) : A → B

vstep-beta
v 7−→A1,A2 v′

((λx. e : A1 → B1) : A2 → B2) v 7−→ e[x 7→ v′] : B1 : B2

vstep-i

i 7−→ i : Int

vstep-betap
v 7−→A1,A2 blame

((λx. e : A1 → B1) : A2 → B2) v 7−→ blame

Figure 9 Semantics of the λBr Calculus.

the blame calculus or λBg do not. The more complex rules vstep-apps and vstep-appsp
are necessary to ensure that blame is not raised when a analogous program in λBg would not
raise blame. The last example in Section 2 shows this situation and illustrates the benefit of
having rule vstep-apps to respect the blame semantics of λBg.

One important property is that the reduction relation is deterministic:

▶ Theorem 25 (Determinism of λBr calculus). If · ⊢ e ⇐ A, e 7−→ r1 and e 7−→ r2 then
r1 = r2.

Type Safety. Another important property is that the λBr calculus is type safe. Theorem
26 says that if an expression is well-typed with type A, the type will be preserved after the
reduction. Progress is shown by Theorem 27. A well-typed expression e will be a value or
there exists an expression e′ which e could reduce to e′ or e could raise blame.

▶ Theorem 26 (Type Preservation of λBr Calculus). If · ⊢ e ⇔ A and e 7−→ e′ then
· ⊢ e′ ⇔ A.

▶ Theorem 27 (Progress of λBr Calculus). If · ⊢ e ⇔ A then e is a value or ∃e′, e 7−→ e′

or e 7−→ blame.

Less blame. λBr raises blame strictly less often than λBg. As we have seen in Section 2
we can find programs that raise blame in λBg, but will result in values in λBr. Moreover we
have proved the following theorem:

ECOOP 2021

12:22 Type-Directed Operational Semantics for Gradual Typing

| i | = i
| λx. e : A → B | = λx. | e | : A → B

| e : A | = | e | : A

| e1 e2 | = | e1 | | e2 |
| [s]A→B | = | s | : ⋆ → ⋆ : A → B

Figure 10 Translating λBr expressions to λBg.

▶ Theorem 28 (Conformance to the blame semantics of λBg). If · ⊢ | e | ⇔g A and e 7−→r

blame then | e | 7−→g∗ blame.

which states that if a λBr expression e reduces to blame, and the corresponding λBg

expression |e| is well-typed, then reducing |e| also raises blame. Note that in the theorem,
for disambiguation, we annotate the relations with g or r to clarify which calculus does the
relation belong to. In other words a program that results in blame in λBr will also result in
blame in λBg. Moreover, because of the soundness lemma between λBg and λB, λBr also
raises blame less often than λB.

To prove Theorem 28 we need a translation function between λBr expressions and λBg

expressions. In λBr, we have saved expressions/values, while there is no such expression
in λBg. The translation function is shown in Figure 10. For instance, the λBr expression
[λx. x : Bool → Bool]Int→Int would translate to (λx. x : Bool → Bool) : ⋆ → ⋆ : Int → Int in
λBg.

4.4 Gradual Guarantee
Siek et al. [41] suggested that a calculus for gradual typing should also enjoy the gradual
guarantee, which ensures that programs can smoothly move from being more/less dynamically
typed into more/less statically typed.

Precision. The top of Figure 11 shows the precision relation on types. A ⊑ B means
that A is more precise than B. Every type is more precise than type ⋆. A function type
A1 → B1 is more precise than A2 → B2 if type A1 is more precise then A2 and type B1 is
more precise than B2. The bottom of Figure 11 shows the precision relation of expressions.
e1 ⊑ e2 means that e1 is more precise than e2. The precision relation of expressions is derived
from the precision relation of types. Every expression has a precision relation with itself.
λx. e1 : A1 → B1 is more precise than λx. e2 : A2 → B2 if e1 is more precise than e2 and the
types are in the precision relation. For application expressions, precision holds if e1 ⊑ e2
holds and e′

1 ⊑ e′
2 holds. For annotated expressions e1 : A is more precise than e2 : B if e1

is more precise than e2 and A is more precise than B. For saved expressions, the precision
relation is similar to annotation expressions.

Notably, a saved expression [s1]A→B is more precise than an expression s2 : C → D if s1
is more and precise than s2 and the type A → B is more precise than C → D (rule ep-sa).
Lets take an example, to see the use of such precision rule. The expression (λx. x : Int →
Int) : ⋆ → ⋆ : Bool → Bool is more precise than (λx. x : Int → Int) : ⋆ → ⋆ : ⋆ → ⋆ by
rule ep-anno. According to the reduction rules, (λx. x : Int → Int) : ⋆ → ⋆ : Bool → Bool

reduces to [λx. x : Int → Int]Bool→Bool, while (λx. x : Int → Int) : ⋆ → ⋆ : ⋆ → ⋆ reduces
to (λx. x : Int → Int) : ⋆ → ⋆. In addition, e1 : ⋆ : A is more precise than e2 : B if e1
is more precise than e2 and type A is more precise than B by rule ep-annol. As an
example to illustrate the usefulness of this rule the expression (λx. x : Int → Int) : ⋆ →

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:23

A ⊑ B (Precision relation for types)

tp-i

Int ⊑ Int

tp-dyn

A ⊑ ⋆

tp-abs
A1 ⊑ A2 B1 ⊑ B2

(A1 → B1) ⊑ (A2 → B2)

e1 ⊑ e2 (Precision relation for expressions)

ep-refl

e ⊑ e

ep-abs
e1 ⊑ e2

A1 ⊑ A2 B1 ⊑ B2

λx. e1 : A1 → B1 ⊑ λx. e2 : A2 → B2

ep-app
e1 ⊑ e′

1 e2 ⊑ e′
2

(e1 e2) ⊑ (e′
1 e′

2)

ep-anno
A ⊑ B e1 ⊑ e2

e1 : A ⊑ e2 : B

ep-save
A ⊑ C

B ⊑ D s1 ⊑ s2

[s1]A→B ⊑ [s2]C→D

ep-sa
A ⊑ C

B ⊑ D s1 ⊑ s2

[s1]A→B ⊑ s2 : C → D

ep-annol
A ⊑ B e1 ⊑ e2

e1 : ⋆ : A ⊑ e2 : B

ep-saver
A ⊑ C

B ⊑ D e1 ⊑ s2

e1 : ⋆ : A → B ⊑ [s2]C→D

Figure 11 Precision relations.

⋆ : ⋆ : Bool → Bool is more precise than (λx. x : Int → Int) : ⋆ → ⋆ : Bool → Bool. The
expression (λx. x : Int → Int) : ⋆ → ⋆ : ⋆ : Bool → Bool reduces to (λx. x : Int → Int) : ⋆ :
Bool → Bool while (λx. x : Int → Int) : ⋆ → ⋆ : Bool → Bool would reduce to a saved value
[λx. x : Int → Int]Bool→Bool. Rule ep-saver shows the precision relation of these two results.
Rule ep-saver says that e2 : ⋆ : A → B is more precise than [s2]C→D while e1 is more
precise than s2 and type A → B is more precise than C → D.

Static Gradual Guarantee. Theorem 29 shows that the static criteria of the gradual
guarantee holds for the λBr calculus. It says that if e is more precise than e′, e has type A

and e′ is has type B, then type A is more precise than B.

▶ Theorem 29 (Static Gradual Guarantee of λBr Calculus). If e ⊑ e′, · ⊢ e ⇒ A and
· ⊢ e′ ⇒ B then A ⊑ B.

Dynamic Gradual Guarantee. The λBr calculus has a dynamic gradual guarantee. Here
we formulate a theorem for the dynamic gradual guarantee. Theorem 31 shows that if e1 is
more precise than e2, e1 and e2 are well-typed, and if e1 reduces to e′

1, then e2 reduces (in
multiple steps) to e′

2. Note that e′
1 is guaranteed to be more precise than e′

2. Theorem 31 is
similar to the one formalized in the AGT approach [17]. A small difference is that we use
a multi-step relation in the conclusion because in the precision relation we have rules like
rule ep-annol. If we have that 1 : ⋆ : Int is more precise than 1 : ⋆, then 1 : ⋆ : Int needs
to reduce to 1 : Int while 1 : ⋆ is already a value for which no step is required. Theorem 32
is derived easily from Theorem 31. The auxiliary Lemma 30, which shows the property of
dynamic gradual guarantee for typed reduction, is helpful to prove Theorem 32.

ECOOP 2021

12:24 Type-Directed Operational Semantics for Gradual Typing

▶ Lemma 30 (Dynamic Gradual Guarantee for Typed Reduction). If v1 ⊑ v2 , · ⊢ v1 ⇐ A,
· ⊢ v2 ⇐ B , A ⊑ B and v1 7−→A v′

1 then ∃v′
2, v2 7−→A v′

2 and v′
1 ⊑ v′

2.

▶ Theorem 31 (Dynamic Gradual Guarantee). If e1 ⊑ e2 , · ⊢ e1 ⇔ A, · ⊢ e2 ⇔ B and
e1 7−→ e′

1 then ∃e′
2, e2 7−→∗ e′

2 and e′
1 ⊑ e′

2.

▶ Theorem 32 (Dynamic Gradual Guarantee). If e1 ⊑ e2 , · ⊢ e1 ⇔ A, · ⊢ e2 ⇔ B and
e1 7−→∗ v1 then ∃v2, e2 7−→∗ v2 and v1 ⊑ v2.

5 Related Work

This section discusses related work. We focus on gradual typing criteria, cast calculi, gradually
typed calculi, the AGT approach and typed operational semantics.

Gradual Typing Languages and Criteria. There is a growing number of research work
focusing on combining static and dynamic typing [2, 7, 22, 29, 30, 34, 45, 46, 48, 53]. Many
mainstream programming languages have some form of integration between static and
dynamic typing. These include TypeScript [6], Dart [8], Hack [51], Cecil [10], Bigloo [35],
Visual Basic.NET [30], ProfessorJ [20], Lisp [44], Dylan [36] and Typed Racket [50].

Much work in the research literature of gradual typing focuses on the pursuit of sound
gradual typing. In sound gradual typing the idea is that some form of type-safety should
still be preserved. This often requires some dynamic checks that arise from static type
information. Furthermore, gradually typed languages should provide a smooth integration
between dynamic and static typing. For instance, one of the criteria for gradual typing is
that a program that has static types should behave equivalently to a standard statically
typed program [43]. Siek et al. [41], proposed the gradual guarantee to clarify the kinds of
guarantees expected in gradually typed languages. The principle of the gradual guarantee
is that static and dynamic behavior changes by changing type annotations. For the static
(gradual) guarantee, the type of a more precise term should be more precise than the type of
a less precise term. For the dynamic (gradual) guarantee, any program that runs without
errors should continue to do so with less precise types.

Cast calculi. Due to the unknown type and consistency of the gradual typing, more
programs are accepted by a gradual type system compared to their analogous static type
system. Therefore, some runtime checks are required at run-time to ensure type-safety. The
most common approach to give the semantics to a gradually typed language is by translating
to a cast calculus, which has a standard dynamic semantics. The process of the translation
to cast calculi involves inserting casts whenever type consistency holds.

There are several varieties of cast calculi. Findler and Felleisen [15] introduced assertion-
based contracts for higher-order functions. Based on mirrors and contracts, Gray et al. [20]
shown a new model to implement Java and Scheme. Henglein’s dynamically typed λ-
calculus [23] is an extention of the statically typed λ-calculus with a dynamic type and
explicit dynamic type coercions. Tobin-Hochstadt and Felleisen [49] presented a framework
of interlanguage migration, which ensures type-safety.

Wadler and Findler [52] introduced the blame calculus. The blame comes from Findler
and Felleisen’s contracts and tracks the locations where cast errors happen using blame
labels. Siek et al. [37] explored the design space of higher-order casts. For first-order casts
(casts on base types), the semantics is straightforward. But there are issues for higher-order
casts (functions): a higher-order cast is not checked immediately. For higher-order casts,

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:25

checking is deferred until the function is applied to an argument. After application, the cast
is checked against the argument and return value. A cast is used as a wrapper and splitted
until the wrapped function is applied to an argument. Wrappers for higher-order casts can
lead to unbounded space consumption [24].

There are some different designs for the dynamic semantics for casts calculi in the
literature. Herman et al. [24] and Wadler et al. [52] use a lazy error detection strategy. With
this strategy, run-time type checking is not performed when a higher-order cast is applied
to a value. Instead, lazy error detection coerces the arguments of a function to the target
type, and checking is only done when the argument is applied. Siek et al. [43] use a different
strategy where checking higher-order casts is performed immediately when the source type is
the dynamic type (⋆). Otherwise, the later strategy is the same as lazy error detection. In
the λBr calculus, we introduce the blame recovery semantics, which is essentially to ignore
intermediate type annotations in a chain of type annotations for higher-order functions. The
idea is to only raise blame if the initial source type of the value and final target types are not
consistent. Otherwise, even if intermediate annotations trigger type conversions, which would
not be consistent, the final result can still be a value provided that the initial source and final
target types are themselves consistent. This alternative approach has a bounded number of
annotations, which avoids the accumulation of type annotations (up-to 2 for higher-order
values).

Siek and Wadler [42] introduced threesomes, where a cast consists of three types instead
of two types (twosomes) of the blame calculus. The threesome calculus is proved to be
equivalent to blame calculus and a coercion-based calculus without blame labels but with
space efficiency. The three types in a threesome contain the source, intermediate and target
types. The intermediate type is computed by the greatest lower bound of all the intermediate
types. For example, in a chain of casts:

1 : Int ⇒ ⋆ : ⋆ ⇒ Int : Int ⇒ Int

the source type and target are both Int and the intermediate type is computed to be the
greatest lower bound of ⋆ and Int, resulting in Int. Compared to our λBr calculus, function
values are twosomes (borrowing Siek and Wadler’s terminology). Instead of accumulating
annotations, and computing the intermediate types, we simply discard them.

Like λBr, Castagna and Lanvin [9] propose a calculus that discards annotations for
higher-order functions. However their semantics is different. The key difference is that in
their semantics intermediate casts are discarded after consistency checks are performed. This
means that programs such as (here using our notation):

λx. x : Int → Int : Int → Int : ⋆ → ⋆ : Bool → Bool : ⋆ → ⋆

will raise CastErrors (i.e. blame), whereas in λBg, λB and λBr that is not the case. Indeed
one of the design principles of λBr is that we do not raise blame when λBg (and λB) does
not (see also Theorem 28). Saved expressions are the key to avoiding raising blame too early
(or at all) in λBr, and are generated when Castagna and Lanvin’s calculus would generate
blame for higher-order casts. Greenberg [21] introduced similar semantics to Castagna and
Lanvin [9]. Blame is also raised in the above example. As λBr, the intermediate consistent
type for a higher-order function will be eliminated in Greenberg [21]. While in Castagna and
Lanvin [9]’s work, the consistent intermediate type will be stored.

Finally, various cast calculi have been extended with various of features of practical interest.
For instance, Ahmed et al. [3] extended the blame calculus to incorporate polymorphism,
based on the dynamic sealing proposed by Matthews et al. [28] and Neis et al. [32].

ECOOP 2021

12:26 Type-Directed Operational Semantics for Gradual Typing

Gradually Typed Calculi. A gradually typed lambda calculus (GTLC) should support both
fully static typed and fully dynamic typed, as well as partially typed ones. Siek and Taha
[43] introduced gradual typing with the notion of unknown types ⋆ and type consistency.
To support object-oriented languages, Siek and Taha [38] extended the work of Abadi and
Cardelli [1] and introduced gradual typing for objects. The semantics of both gradually
typed calculi are indirectly defined by typed-directed translation to an intermediate language
(a cast calculi). Cast calculi are independent from the GTLC, having their own type systems
and operational semantics. The only tie between them is type-directed translation from the
source gradually typed language to the cast calculus. In λBg and λBr, by using TDOS, the
semantics of a GTLC is given directly without translating to any other calculus.

Because runtime checking is needed by a gradually typed language, function types
dynamically generate function proxies at runtime in most of gradually typed languages.
Therefore the number of proxies in unbound. Herman et al. [24] implemented gradual typing
based on coercions and combined adjacent coercions. Thus, space consumption has been
limited and the type system was proved to be type-safe. Addressing the space consumption
issues of gradual typing has been an ongoing research effort for gradual typing, with many
works on the area [16, 24, 37, 42]. The blame recovery semantics circumvents some of the
space consumption issues by employing a different semantics.

Abstracting Gradual Typing (AGT). Garcia et al. [17] introduce the abstracting gradual
typing (AGT) approach, following an idea by Schwerter [4]. An externally justified cast
calculus is not required in AGT. Instead the runtime checks are deduced by the evidence for
the consistency judgement. For the static semantics, AGT uses techniques from abstract
interpretation to lift terms of the static system to gradual terms. A concretization function
is used to lift gradual types to static type sets. After that, a gradual type system can be
derived according to the static type system. The gradual type system keeps type safety, and
enjoys the criteria of Siek et al. [41]. For the dynamic semantics, the semantics is introduced
by reasoning about consistency relations. Gradual typing derivations are represented as
intrinsically typed terms [12], which correspond to typing derivations directly.

Similarly to the AGT approach, by using TDOS for the dynamic semantics and a bi-
directional type system, we can design a gradually typed language with a direct semantics.
While related by the fact that both the AGT approach and TDOS provide means to obtain
direct operational semantics for gradually typed languages, the two approaches have different
and perhaps complementary goals. The goals of TDOS are more modest than those of AGT,
which aims at deriving various definitions for gradually types languages in a systematic
manner. In contrast TDOS and our work have no such goals. Our main aim is to adapt the
standard and well-known techniques from small-step semantics, into the design of gradually
typed languages. We expect that the familiarity and simplicity of the TDOS approach would
be a strength, whereas the AGT approach requires some more infrastructure, but the payoff
is that many definitions can then be derived. For future work, it would be interesting to
see whether it is possible to combine ideas from both approaches. Perhaps having much of
the AGT infrastructure, but with an alternative model for the dynamic semantics based on
TDOS.

Typed Operational Semantics. In this paper, we use the type-directed operational semantics
(TDOS) approach [25]. TDOS was originally used to describe the semantics of languages
with intersection types and a merge operator. Like gradual typing, such features require a
type-dependent semantics. In TDOS type annotations become operationally relevant and

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:27

can affect the result of a program. Typed reduction is the distinctive feature in TDOS. Typed
reduction is used to provide an operational interpretation to type conversions in the language,
similarly to coercions in coercion-based calculi [23]. Our work shows that TDOS enables a
direct semantics for gradual typing. In this paper, we explored two possible semantics for
gradual typing: one following a semantics similar to the blame calculus, and another with a
novel blame recovery semantics. One interesting aspect of the blame recovery semantics is
that it avoids some space costs that arise in some cast calculi, while being relatively simple.

There are other variants of operational semantics that make use of type annotations.
Types are used in Goguen’s typed operational semantics [18] reductions, similarly to TDOS.
Typed operational semantics has been applied to various calculi, including simply typed
lambda calculi [19], calculi with dependent types [14] and higher-order subtyping [13].
An extensive overview of related work on type-dependent semantics is given by Huang and
Oliveira [25].

6 Conclusion

In this work we proposed an alternative approach to give a direct semantics to gradually
typed languages without an intermediate cast calculus. Our approach is based on TDOS [25].
TDOS is a variant of small-step semantics where type annotations are operationally relevant
and a special relation, called typed reduction, gives an interpretation to such type annotations
at runtime. We believe that TDOS can be a valuable technique for language designers of
gradually typed languages, giving them a simple and direct way to express the semantics of
their language.

We presented two gradually typed lambda calculi: λBg and λBr. The λBg semantics
is sound to the semantics of λB. The λBr calculus explores the large design space in the
semantics of gradually typed languages with a new semantics that we call blame recovery
semantics. This new semantics is more liberal than the semantics of the blame calculus,
while still ensuring type-safety and a form of the gradual guarantee.

There is much to be done for future work. Obviously, to prove that TDOS is a worthy
alternative to existing cast calculi or other approaches for the semantics of gradually typed
languages, many more features should be developed with TDOS. Cast calculi have been
shown to support a wide range of features, including blame tracking [52], polymorphism [3],
subtyping [38] and various other features [26,40,47]. We hope to explore this in the future.
Another important line for future work is to see whether the blame recovery semantics
provides relevant space efficiency benefits in practice. This would require a well-engineered
compiler for gradual typing. Perhaps trying to modify the Grift compiler [27] would be a
first step on this direction. Empirical validation and case studies would be necessary.

References

1 Martin Abadi and Luca Cardelli. A theory of objects. Springer Science & Business Media,
2012.

2 Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing in
a statically typed language. ACM transactions on programming languages and systems
(TOPLAS), 13(2):237–268, 1991.

3 Amal Ahmed, Robert Bruce Findler, Jeremy G Siek, and Philip Wadler. Blame for all.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 201–214, 2011.

ECOOP 2021

12:28 Type-Directed Operational Semantics for Gradual Typing

4 Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. A theory of gradual effect
systems. In Proceedings of the 19th ACM SIGPLAN international conference on Functional
programming, pages 283–295, 2014.

5 Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti
Venneri. Java & lambda: a featherweight story. Logical Methods in Computer Science, 14(3),
2018.

6 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In European
Conference on Object-Oriented Programming, pages 257–281. Springer, 2014.

7 John Tang Boyland. The problem of structural type tests in a gradual-typed language.
Foundations of Object-Oriented Langauges, 2014.

8 Gilad Bracha. The Dart programming language. Addison-Wesley Professional, 2015.
9 Giuseppe Castagna and Victor Lanvin. Gradual typing with union and intersection types.

Proceedings of the ACM on Programming Languages, 1(ICFP):1–28, 2017.
10 Craig Chambers. The cecil language, specification and rationale, 1993.
11 Avik Chaudhuri. Flow: a static type checker for javascript. SPLASH-I In Systems, Program-

ming, Languages and Applications: Software for Humanity, 2015.
12 Alonzo Church. A formulation of the simple theory of types. The journal of symbolic logic,

5(2):56–68, 1940.
13 Adriana Compagnoni and Healfdene Goguen. Typed operational semantics for higher-order

subtyping. Information and Computation, 184(2):242–297, 2003.
14 Yangyue Feng and Zhaohui Luo. Typed operational semantics for dependent record types.

arXiv preprint arXiv:1103.3321, 2011.
15 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In

Proceedings of the seventh ACM SIGPLAN international conference on Functional programming,
pages 48–59, 2002.

16 Ronald Garcia. Calculating threesomes, with blame. In Proceedings of the 18th ACM SIGPLAN
international conference on Functional programming, pages 417–428, 2013.

17 Ronald Garcia, Alison M Clark, and Éric Tanter. Abstracting gradual typing. ACM SIGPLAN
Notices, 51(1):429–442, 2016.

18 Healfdene Goguen. A typed operational semantics for type theory, 1994.
19 Healfdene Goguen. Typed operational semantics. In International Conference on Typed

Lambda Calculi and Applications, pages 186–200. Springer, 1995.
20 Kathryn E Gray, Robert Bruce Findler, and Matthew Flatt. Fine-grained interoperability

through mirrors and contracts. ACM SIGPLAN Notices, 40(10):231–245, 2005.
21 Michael Greenberg. Space-efficient manifest contracts. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 181–194,
2015.

22 Lars T Hansen. Evolutionary programming and gradual typing in ecmascript 4 (tutorial).
Lars, 2007.

23 Fritz Henglein. Dynamic typing: Syntax and proof theory. Science of Computer Programming,
22(3):197–230, 1994.

24 David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. Higher-
Order and Symbolic Computation, 23(2):167, 2010.

25 Xuejing Huang and Bruno C d S Oliveira. A type-directed operational semantics for a
calculus with a merge operator. In 34th European Conference on Object-Oriented Programming
(ECOOP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

26 Lintaro Ina and Atsushi Igarashi. Gradual typing for generics. In Proceedings of the 2011 ACM
international conference on Object oriented programming systems languages and applications,
pages 609–624, 2011.

27 Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G Siek. Efficient gradual typing.
arXiv preprint arXiv:1802.06375, 2018.

W. Ye, B. C. d. S. Oliveira, and X. Huang 12:29

28 Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-time sealing. In
European Symposium on Programming (ESOP), pages 16–31. Citeseer, 2008.

29 Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language programs.
ACM SIGPLAN Notices, 42(1):3–10, 2007.

30 Erik Meijer and Peter Drayton. Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages. In OOPSLA’04 Workshop on
Revival of Dynamic Languages. Citeseer, 2004.

31 Andrew Myers. CS 6110 Lecture 8 Evaluation Contexts , Semantics by Translation, 2013.
32 Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity. ACM

Sigplan Notices, 44(9):135–148, 2009.
33 Benjamin C Pierce and David N Turner. Local type inference. ACM Transactions on

Programming Languages and Systems (TOPLAS), 22(1):1–44, 2000.
34 Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual type inference.

ACM SIGPLAN Notices, 47(1):481–494, 2012.
35 Manuel Serrano and Pierre Weis. Bigloo: a portable and optimizing compiler for strict

functional languages. In International Static Analysis Symposium, pages 366–381. Springer,
1995.

36 Andrew Shalit. The Dylan reference manual: the definitive guide to the new object-oriented
dynamic language. Addison Wesley Longman Publishing Co., Inc., 1996.

37 Jeremy Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order
casts. In European Symposium on Programming, pages 17–31. Springer, 2009.

38 Jeremy Siek and Walid Taha. Gradual typing for objects. In European Conference on
Object-Oriented Programming, pages 2–27. Springer, 2007.

39 Jeremy Siek, Peter Thiemann, and Philip Wadler. Blame and coercion: together again for the
first time. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 425–435, 2015.

40 Jeremy G Siek and Manish Vachharajani. Gradual typing with unification-based inference. In
Proceedings of the 2008 symposium on Dynamic languages, pages 1–12, 2008.

41 Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. Refined criteria
for gradual typing. In 1st Summit on Advances in Programming Languages (SNAPL 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

42 Jeremy G Siek and Philip Wadler. Threesomes, with and without blame. ACM Sigplan Notices,
45(1):365–376, 2010.

43 G Siek Jeremy and Taha Walid. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

44 Guy Steele. Common LISP: the language. Elsevier, 1990.
45 T Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.

Chaperones and impersonators: run-time support for reasonable interposition. ACM SIGPLAN
Notices, 47(10):943–962, 2012.

46 Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-
Yves Strub, and Gavin Bierman. Gradual typing embedded securely in javascript. ACM
SIGPLAN Notices, 49(1):425–437, 2014.

47 Asumu Takikawa, T Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Mat-
thias Felleisen. Gradual typing for first-class classes. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications, pages 793–810,
2012.

48 Satish Thatte. Quasi-static typing. In Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 367–381, 1989.

49 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to pro-
grams. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 964–974, 2006.

ECOOP 2021

12:30 Type-Directed Operational Semantics for Gradual Typing

50 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed scheme.
ACM SIGPLAN Notices, 43(1):395–406, 2008.

51 Julien Verlaguet. Facebook: Analyzing php statically. Commercial Users of Functional
Programming (CUFP), 13, 2013.

52 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In European
Symposium on Programming, pages 1–16. Springer, 2009.

53 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In
European Conference on Object-Oriented Programming, pages 459–483. Springer, 2011.

54 Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

	1 Introduction
	2 Overview
	2.1 Background: Gradual Typing and the lambda B calculus
	2.2 Motivation for a Direct Semantics for Gradual Typing
	2.3 lambda B^{g}: A Gradually Typed Lambda Calculus
	2.4 Designing a TDOS for lambda B^{g}
	2.5 lambda B^{r}: Gradual Typing with a Blame Recovery Semantics

	3 The lambda B^{g} Calculus: Syntax, Typing and Semantics
	3.1 Syntax
	3.2 Typing
	3.3 Dynamic Semantics
	3.4 Soundness to lambda B

	4 The lambda B^{r} Calculus and the Blame Recovery Semantics
	4.1 Syntax
	4.2 Typing
	4.3 Dynamic Semantics
	4.4 Gradual Guarantee

	5 Related Work
	6 Conclusion

