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Abstract. Gradualizing System F has been widely discussed. A big challenge is
to preserve relational parametricity and/or the gradual guarantee. Most past work
has focused on the preservation of parametricity, but often without the gradual
guarantee. A few recent works satisfy both properties by giving up System F syn-
tax, or with some restrictions and the introduction of sophisticated mechanisms
in the dynamic semantics.
While parametricity is important for polymorphic languages, most mainstream
languages typically do not satisfy it, for a variety of different reasons. In this
paper, we explore the design space of polymorphic languages that satisfy the
gradual guarantee, but do not preserve parametricity. When parametricity is not
a goal, the design of polymorphic gradual languages can be considerably simpli-
fied. Moreover, it becomes easy to add features that are of practical importance,
such as mutable references. We present a new gradually typed polymorphic cal-
culus, called λG

gpr, with mutable references and with an easy proof of the gradual
guarantee. In addition, compared to other gradual polymorphism work, λG

gpr is
defined using a Type-Directed Operational Semantics (TDOS), which allows the
dynamic semantics to be defined directly instead of elaborating to a target cast
language. λG

gpr and all the proofs in this paper are formalized in Coq.
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1 Introduction

Statically typed languages can statically detect potential errors in programs, but must
necessarily be conservative and reject some well-behaved programs. With dynamically
typed languages, all programs are accepted, which offers a great amount of flexibility.
However, the accepted dynamic programs include programs with type errors, making
it harder to detect programs that are ill-behaved because of type errors. Considering
the weaknesses and advantages of static and dynamic type systems, many approaches
have proposed to integrate these two spectrums [1, 7, 8, 22, 35]. Gradual typing [31, 35]
provides a smooth integration of the two styles and has been under active research in
the programming languages community. In addition to the type soundness property, a
gradual language should behave as a static language if it is fully annotated. Conversely,
it should behave as a dynamic language for fully dynamic programs. Importantly, the
gradual guarantee [32] has been proposed to ensure a smooth transition between static
and dynamic typing.

The importance of System F as a foundation for programming languages with poly-
morphism naturally leads to the question of whether it is possible to gradualize it. Vari-
ous researchers have explored this question. In this line of research, a long-standing goal
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has been how to preserve relational parametricity [28]. Parametricity ensures a uniform
behavior for all instantiations of polymorphic functions, and is an important property of
System F. In addition it is also desirable to preserve the gradual guarantee [32], which
is recognized as an important property for gradual languages. Unlike System F, where
no dynamic mechanism is needed to ensure parametricity, with gradualized versions of
System F this is no longer the case. Ahmed et al. [3] showed that parametricity can be
enforced using a dynamic sealing mechanism at runtime. They prove parametricity, but
the gradual guarantee is not discussed. Igarashi et al. [17] improved on the dynamic
sealing approach and proposed a more efficient mechanism. While the gradual guar-
antee has been discussed, it was left as a conjecture. Toro et al. [37] even proved that
gradual guarantee and parametricity are incompatible. By giving up the traditional Sys-
tem F syntax, New et al. [24] proved the gradual guarantee and parametricity by using
user-provided sealing annotations, but this requires resorting to syntax that is not based
on System F. Finally, Labrada et al. [20] proved the gradual guarantee and parametricity
by inserting sealing with some restrictions. For instance, only base and variable types
can be used to instantiate type applications.

While parametricity is highly valued and it is guaranteed in practice in some func-
tional languages, many mainstream programming languages – such as Java, TypeScript
or Flow – do not have parametricity. In mainstream languages the value of paramet-
ric polymorphism, and its ability to express a whole family of functions in a reusable
and type-safe manner is certainly recognized. However, such languages are imperative
and come with a variety of programming language features (such as unrestricted forms
of mutable state, exceptions, parallelism and concurrency mechanisms, reflection, etc.)
that make it hard to apply reasoning principles known in functional programming. In
particular, most of those features are known to be highly challenging to deal with in the
presence of parametricity [2, 18, 23]. This makes it non-obvious how to design a lan-
guage with all those features, while preserving parametricity, in the first place. More-
over, preserving parametricity may require extra dynamic checks at runtime, which for
implementations where performance is a critical factor may discourage implementers
from doing such checks. Therefore all the aforementioned programming languages sup-
port System F like mechanisms to deal with polymorphism and benefit from the reuse
afforded by polymorphism. However, the reasoning principles that arise from polymor-
phism, such as parametricity is discarded, and parametricity is not enforced.

In particular, programming languages such as TypeScript or Flow, which support
some form of gradual/optional typing, and are widely used in practice, do not support
parametricity. Figure 1 encodes an example from Ahmed et al.’s work [3], which was
used to illustrate the parametricity challenge in gradual typing, in TypeScript and Flow.
In this program, the polymorphic function Ks has a polymorphic type: (X → Y → Y),
where X and Y are type variables. In a calculus with parametricity, we know that a
function with such type should always return the second argument or, in the presence
of runtime casts, return an error. In the program, Ks is as a function that casts a dynamic
constant function (K) that returns the first argument, which violates parametricity. When
the TypeScript and Flow programs are run the first argument 2 is returned, illustrating
that both languages do not enforce parametricity. In a gradual language with parametric-
ity the result that we would expect is an error. Furthermore, even if we turn to Typed
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function K(x:any, y:any): any {
return x;

}

function Ks<X, Y>(x: X, y: Y): Y {
let CAST = (K as any) as ((x:
X, y: Y) ⇒ Y);

return CAST(x, y);
}

function run() {
console.log(Ks<number,

number>(2,3));
}

(a) TypeScript code.

function K(x:any, y:any): any {
return x;

}

function Ks<X, Y>(x: X, y: Y): Y {
let CAST = ((K : any) : ((x:
X, y: Y) ⇒ Y));

return CAST(x, y);
}

function run() {
console.log(Ks (2,3));

}

(b) Flow code.

Fig. 1: Ahmed et al. [3] program for illustrating parametricity in TypeScript and Flow.

Racket [36], which is a well-established gradual language used in both gradual typing
research and in practice, the result is similar and 2 is returned:

(: K Any)
(define K ( λ (x) ( λ (y) x)))
(define Ks
(cast K (All (X Y) (→ X (→ Y Y)))))

((Ks 2) 3)

Therefore Typed Racket does not enforce parametricity either.
In this paper, we explore the more pragmatic design space of polymorphic gradual

languages with the gradual guarantee, but no parametricity. We believe that such de-
signs are relevant because many practical language designs do not support parametric-
ity, but support various other programming features instead. Dropping the requirement
for parametricity enables us to explore language designs with many relevant practi-
cal features, while being in line with current designs for existing practical gradually
typed languages. In particular, this paper studies the combination of parametric poly-
morphism, gradual typing and references. We show that, when parametricity is not a
goal, the design of gradually polymorphic languages can be simplified, making it easier
to add features such as references. Moreover, the gradual guarantee, which has shown
to be quite problematic in all existing calculi with gradual polymorphism, is simple to
achieve. We present a standard static calculus with polymorphism and mutable refer-
ences called λgpr. Then we introduce the gradual counterpart, called λG

gpr.
The approach that we follow to give the dynamic semantics to λG

gpr is to use the
recently proposed Type-Directed Operational Semantics TDOS [16, 42]. In contrast,
traditionally the semantics of a gradually typed language is defined by elaboration to
a target cast calculus such as the blame calculus [39]. In other words, the dynamic
semantics of the gradual source language is given indirectly by translating to the target



4 W. Ye, B. C. d. S. Oliveira

language. As Ye et al. [42] shows, TDOS avoids such indirection and uses bidirectional
typing and type annotations to enforce both implicit and explicit casting at runtime in
gradually typed languages.

In summary, we make the following contributions in this paper:

– The λG
gpr calculus: A gradual calculus with polymorphism and mutable references.

λG
gpr calculus is the gradual counterpart of the λgpr calculus. Both λG

gpr and λgpr are
shown to be type sound and deterministic.

– Gradual guarantee for λG
gpr. We prove the gradual guarantee for λG

gpr. The proof
is easy and quite simple, in contrast to previous work in gradual polymorphism,
where the gradual guarantee was a major obstacle.

– A TDOS extension. TDOS has been applied to gradual typing before [42]. How-
ever, the previous work on TDOS for gradual typing only works in a purely func-
tional, simply typed calculus. Our work shows that the TDOS approach can incor-
porate other features, including polymorphism and references.

– A mechanical formalization in the Coq theorem prover. All the calculi and
proofs in this paper have been mechanically formalized in the Coq theorem prover.
The Coq formalization can be found in the supplementary materials of this paper:

https://www.zenodo.org/badge/latestdoi/581421930

2 Overview

This section provides a background for gradual polymorphic calculi, calculi with grad-
ual references and the key ideas of our static system (λgpr) with polymorphism and
references and its gradual counterpart (λG

gpr).

2.1 Background

Gradual References. Mutable references read or write content into a memory cell.
A common set of operations is: allocating a memory cell (ref e); updating references
(e1 := e2) and reading the content from a reference (!e). Locations (o) point to the
memory cell. For a reference value ref 1, a new location (o) is generated and value 1
is stored in the cell at the location o. If 2 is assigned to this location o := 2, the cell
value is updated to 2. Later, when we read this cell (!o), 2 is returned. Siek et al. [31]
defined an invariant consistency relation for reference types. Reference types are only
consistent with themselves. For example:

(λx. (x := 2) : Ref ⋆→ Ref ⋆) (ref 1) – Rejected! Ref Int / Ref ⋆

Although the type Int is consistent with ⋆, it does not mean that Ref Int is consistent
with Ref ⋆. Therefore, the argument type is not consistent with the function input, and
the program is rejected. Herman et al. [14] proposed a gradually typed lambda source
language with references, which defines the dynamic semantics by elaborating to a co-
ercion calculus. The above program is allowed in their calculus. They define variant
consistency where if A is consistent with B then Ref A is consistent with Ref B. In their

https://www.zenodo.org/badge/latestdoi/581421930
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calculus, casts are combined to achieve space-efficiency. Furthermore, Siek et al. [33]
explored monotonic references with variant consistency. Their main consideration is
space efficiency. No runtime overhead is imposed in the statically typed part of pro-
grams. All the above works have not considered the gradual guarantee.

Toro and Tanter [38] showed how to employ the Abstracting Gradual Typing (AGT) [12]
methodology to design a gradually typed calculus with mutable references (λR̃EF). Their
dynamic semantics of the source language is defined by translating to an evidence base
calculus. They prove a bisimulation with the coercion calculus by Herman et al. [14].
λR̃EF is proved to satisfy the gradual guarantee. The consistency of λR̃EF is also variant.

Gradual Polymorphism. Gradual polymorphism is a popular topic. Researchers have
been working in this area for a long time. Prior work has focused on two key properties:
relational parametricity [28] and the gradual guarantee [32]. Relational parametricity
ensures that all instantiations to a polymorphic value behave uniformly. The gradual
guarantee ensures that less dynamic programs behave the same as more static programs.

Satisfying these two properties at once has shown to be problematic. Ahmed et
al. [3] showed that a naive combination of the unknown type ⋆ and type substitution
breaks relational parametricity. They show the problem using a simple expression with
two casts. To simplify the presentation, we ignore blame labels. Suppose that K⋆ =
⌈λx.λy.x⌉, the dynamically typed constant function, is cast to a polymorphic type:

K⋆ : ⋆⇒ ∀X.∀Y .X → Y → X K⋆ : ⋆⇒ ∀X.∀Y .X → Y → Y

The notation e : A ⇒ B, borrowed from the blame calculus [29], means cast expres-
sion e from type A to type B. The constant function K⋆ returns the first argument.
Considering relational parametricity, a value of type ∀X.∀Y .X → Y → X should
be a constant value which always returns the first argument. While a value of type
∀X.∀Y .X → Y → Y should return the second argument. Therefore, the first cast suc-
ceeds and the second cast should fail. However, if these two casts are applied to the
arguments in the usual way employing type substitutions, then we obtain the following:

(K⋆ : ⋆⇒ ∀X.∀Y .X → Y → X) Int Int 2 3
↪→∗ (K⋆ : ⋆⇒ Int→ Int→ Int)
↪→∗ 2

(K⋆ : ⋆⇒ ∀X.∀Y .X → Y → Y) Int Int 2 3
↪→∗ (K⋆ : ⋆⇒ Int→ Int→ Int)
↪→∗ 2

The second cast succeeds and returns the first argument, which breaks parametricity.
The reason for this behavior is that, after the type substitution, the polymorphic in-
formation is lost. Note that, as we have seen in Section 1, this is exactly how various
practical languages (TypeScript, Flow and Typed Racket) behave.

Much of the work on gradual polymorphism aims at addressing the above prob-
lem. That is, for the second cast we would like to obtain blame instead of 2, so that
parametricity is not violated. While the preservation of parametricity is a worthy goal,
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it typically requires substantial changes to a calculus to ensure its preservation, since
naive direct type substitutions do not work. Furthermore this also affects proofs, which
can become significantly more complicated due to the changes in the calculus. To ad-
dress this problem a well-known approach, originally proposed by Ahmed et al. [3], is to
employ dynamic sealing. With dynamic sealing we do not do the substitution directly
but record a fresh variable binding. However, even calculi that satisfy parametricity
have to compromise on the important gradual guarantee property, or System F syntax,
or be equiped with heavy forms of runtime evidence [20,37]. A thorough discussion of
various approaches is given in Section 6.

2.2 Key Ideas

Our key design decision is to give up support for parametricity in exchange for a simpler
calculus that is also easier to extend with other important practical features. In partic-
ular, in our work we illustrate how to obtain a polymorphic gradually typed calculus,
with gradual references and with the gradual guarantee. In contrast, none of the exist-
ing gradually polymorphic calculi supports references and the gradual guarantee is only
supported with restrictions [20]; or major modifications in the syntax and semantics of
the language [24]; or not supported/proved at all [3, 17, 37].

A direct semantics with a TDOS. Our gradually typed calculus λG
gpr has a direct seman-

tics by using a (TDOS) [15] approach. In λG
gpr, type annotations are operationally rele-

vant and they basically play a role similar to casts. Nevertheless, implicit casts should
also be enforced for a gradual calculus at runtime. Most previous work makes the im-
plicit casts explicit via the elaboration process. That is the reason why dynamic se-
mantics is not defined directly. We resort to bidirectional typing with inferred (⇒) and
checked (⇐) modes. Using the checking mode of bidirectional typing, the consistency
(∼) between values and the checked type is checked and enforced via an implicit cast.
At compile time, the flexible consistency relation allows more programs to be accepted,
while the checking mode signals casts that are needed at runtime. For example, in the
typing rule for applications.

Σ;Γ ⊢ e1 ⇒ A1 → A2 Σ;Γ ⊢ e2 ⇐ A1

Σ;Γ ⊢ e1 e2 ⇒ A2
Typ-app

The checking mode signals an implicit cast for the argument. The argument e2 is checked
to be consistent with the type A1 using the bidirectional subsumption rule:

Σ;Γ ⊢ e ⇒ B Γ ⊢ B ∼ A

Σ;Γ ⊢ e ⇐ A
Typ-sim

For instance, (λx. x : Int → Int) (True : ⋆) type-checks, but at run-time the invalid cast
to the value argument (True : ⋆) is detected and an error is reported.

Conservativity, no parametricity and direct substitutions. The λG
gpr calculus is a con-

servative extension of its static counterpart. Notably, our λG
gpr is a simple polymorphic
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calculus, without using mechanisms such as dynamic sealing and evidences. Instead,
since parametricity is not a goal, we can simply use direct type substitutions during
reduction as follows:

((ΛX. e : A) : ∀X. B) C ↪→ e[X 7→ C] : A[X 7→ C] : B[X 7→ C]

Our type application rule substitutes type directly unlike in previous work with dynamic
sealing where a fresh type name variable is generated and stored in a global or local
context. Dynamic sealing takes extra time and space. With a large enough number of
type applications, the space consumption may go unbounded.

Gradual guarantee and references. Furthermore, λG
gpr is mechanically formalized and

shown to have the gradual guarantee. Our application of the eager semantics and the
choice of value forms for λG

gpr simplify the gradual guarantee. To prove the gradual
guarantee we need a precision (⊑) relation. The gradual guarantee theorem needs to
ensure that if the more static program does not go wrong, then the less static program
should not go wrong as well. The precision relation is used to relate two programs,
which have different type information. Type precision compares the amount of static
type information for programs and types. A type is more precise than another if it is
more static. The unknown type (⋆) is the least precise type, since we do not have any
static information about that type. Let’s consider two programs:

λx. 1 : Int→ Int

λx. 1 : ⋆→ ⋆

The first one is more precise than the second one because the second program is fully
dynamic. The value forms of λG

gpr are annotated and include terms such as i : Int and
(λx. e : A → B) : C. The simplicity of the proof of the gradual guarantee is greatly
related to the choice of representation of values. In λG

gpr, the gradual guarantee theorem
can be formalized in a simple way with a lemma similar to a lemma proposed by Garcia
et al. [12]. The lemma states that if e1 is more precise than e2 and e1 takes a step to e′1
then e2 takes a step to e′2 and e′1 is more precise than e′2. With this lemma, we can infer
that two expressions related by precision have the same behavior. Thus, this lemma is
enough to obtain the dynamic gradual guarantee. Notably, λG

gpr is extended with mu-
table references using a form of variant consistency [14, 38]. This is in contrast to the
previously discussed gradually polymorphic calculi where references are not supported.

3 The λgpr Calculus: Syntax, Typing and Semantics

In this section, we will introduce the λgpr calculus, which is a calculus with references
and polymorphism. λgpr calculus is an extended version of System F with references and
is the static calculus that serves as a foundation for the gradual calculus in Section 4.

3.1 Syntax

The syntax of the λgpr calculus is shown in Figure 2.
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Syntax

Types A, BF Int | A→ B | X | ∀X. A | Unit | Ref A
Expressions eF x | i | λx : A. e | e : A | e1 e2 | ΛX. e | e A |!e | e1 := e2 | ref e | unit | o
Values vF i | ΛX. e | λx : A. e | unit | o
Contexts ΓF · | Γ, x : A | Γ,X
Stores µF · | µ, o = v
Locations Σ F · | Σ, o : A
Frame F F v □ | □ e | □ A |! □ | v1 := □ | □ := e2 | ref □ | □ : A

Fig. 2: λgpr syntax

Types. Meta-variables A, B range over types. Types include base types (Int), function
types (A → B), type variables (X), polymorphic types (∀X. A), the unit type Unit and
reference types Ref A, which denotes a reference with type A.

Expressions. Meta-variables e range over expressions. Most of the expressions are
standard: variables (x), integers (i), annotations (e : A), applications (e1 e2), type ap-
plications (e A), dereferences (!e), assignments e1 := e2, references (ref e), unit (unit),
locations o, lambda abstractions (λx : A. e) (which are annotated with input type A),
and type abstractions (ΛX. e).

Values. Meta-variables v range over values. A raw value is either an integer (i), a type
abstraction (ΛX. e), a lambda abstraction (λx : A. e), a unit (unit) or a location (o).

Contexts, stores, locations and frames. The type context Γ tracks the bound variables
x with their types and the bound type variables X. Typing location Σ tracks the bound
locations o with their types, while the store µ tracks locations with their stored val-
ues during the reduction process. Frames (F) include applications, type applications,
dereferences, assignments and references.

3.2 Type System

Before introducing the type system, we show the well-formedness of types at the top of
Figure 3. The well-formedness of types ensures that there are no free type variables and
that each type variable is bound in the contexts.

Typing relation. The typing relation of λgpr is shown at the bottom of Figure 3. The type
system essentially includes the usual System F rules, except that they also propagate the
location typing context (Σ). Reference locations o are stored in the location typing con-
text Σ (rule styp-loc). The bound type of locations indicates the type of stored values.
For instance, o points to 1 stored in a memory cell. The integer type for 1 is tracked by
the location o in the location typing context Σ. Other rules related to references such as
assignments (rule styp-assign), references (rule styp-ref) and dereferences (rule styp-
deref) are standard. Annotation expressions (e : A) are not necessary for the static
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Γ ⊢ A (Well-formedness of types)

TW-int

Γ ⊢ Int

TW-unit

Γ ⊢ Unit

TW-var
X ∈ Γ

Γ ⊢ X

TW-arr
Γ ⊢ A Γ ⊢ B

Γ ⊢ A→ B

TW-all
Γ,X ⊢ A

Γ ⊢ ∀X. A

TW-ref
Γ ⊢ A

Γ ⊢ Ref A

Σ;Γ ⊢s e : A (Typing rules for expressions)

STyp-lit

Σ;Γ ⊢s i : Int

STyp-unit

Σ;Γ ⊢s unit : Unit

STyp-var
x : A ∈ Γ

Σ;Γ ⊢s x : A

STyp-loc
o : A ∈ Σ

Σ;Γ ⊢s o : Ref A

STyp-ref
Σ;Γ ⊢s e : A

Σ;Γ ⊢s ref e : Ref A

STyp-deref
Σ;Γ ⊢s e : Ref A

Σ;Γ ⊢s!e : A

STyp-assign
Σ;Γ ⊢s e1 : Ref A
Σ;Γ ⊢s e2 : A

Σ;Γ ⊢s e1 := e2 : Unit

STyp-abs
Σ;Γ, x : A ⊢s e : B

Σ;Γ ⊢s λx : A. e : A→ B

STyp-app
Σ;Γ ⊢s e1 : A1 → A2

Σ;Γ ⊢s e2 : A1

Σ;Γ ⊢s e1 e2 : A2

STyp-anno
Σ;Γ ⊢s e : A

Σ;Γ ⊢s (e : A) : A

STyp-tabs
Σ;Γ,X ⊢s e : A

Σ;Γ ⊢s ΛX. e : ∀X. A

STyp-tapp
Γ ⊢ A Σ;Γ ⊢s e : ∀X. B

Σ;Γ ⊢s e A : B[X 7→ A]

Fig. 3: The type system of λgpr calculus.

system where the annotated types are syntactically equal (rule styp-anno), but they will
play an important role in the gradual system and are included here.
Definition 1 defines well-formed stores (µ) with respect to the typing locations Σ, using
the typing relation:

Definition 1 (Well-formedness of the store with respect to Σ).

Σ ⊢ µ ≡ i f dom(µ) = dom(Σ) and Σ; · ⊢ µ(o) : Σ(o), f or every o ∈ µ

A store is well-formed with the typing location if the store and the typing location
contain the same domains. For each location, which is in the store, the bounded value
µ(o) can be inferred with the type bound in the typing location (Σ(o)).

3.3 Dynamic Semantics

The operational semantics for the λgpr calculus is shown in Figure 4 (we ignore the
gray parts for now). µ; e ↪→ µ′; e′ represents the reduction rules, which states that e
with store µ reduces to e′ with the updated store µ′. The reduction rules of λgpr are
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µ; e ↪→s µ
′; e′ (Operational semantics)

step-eval
µ; e ↪→s µ

′; e′

µ; F[e] ↪→s µ
′; F[e′]

step-annov

µ; v : A : A ↪→s µ; v : A

step-assign

µ; o := v ↪→s µ[o 7→ v]; unit

step-tap

µ; ((ΛX. e) : ∀X. A ) A ↪→s µ; (e[X 7→ A]) : (A[X 7→ A])

step-deref
o = v ∈ µ

µ; !o ↪→s µ; v : A

step-beta

µ; ((λx : A. e) : A→ B ) v ↪→s µ; e[x 7→ v] : B : B

step-refv
o < µ

µ; ref v ↪→s µ, o = v; o

Fig. 4: Reduction rules for λgpr.

straightforward. A reference value is bound in the store by a fresh location as shown
in rule step-refv. The dereference rule extracts the bound value of the location in the
store (rule step-deref). Rule step-eval evaluates the frames. Let’s see how the example
o1 := (ΛX. (λx : X. x) !o2) Int with the existing store o1 = 1, o2 = 2 reduces. 2 is
read from store o1 = 1, o2 = 2. After the type substitution, 2 is substituted into the
lambda. Then 2 is used to update the store pointed by o1. Finally, the store becomes
o1 = 2, o2 = 2. The detailed steps are as follows:

o1 = 1, o2 = 2; o1 := (ΛX. (λx : X. x) !o2) Int

↪→ {by rule Step-eval, rule Step-deref }
o1 = 1, o2 = 2; o1 := (ΛX. (λx : X. x) 2) Int

↪→ {by rule Step-tap }
o1 = 1, o2 = 2; o1 := (λx : Int. x) 2

↪→ {by rule Step-beta}
o1 = 1, o2 = 2; o1 := 2

↪→ {by rule Step-assign}
o1 = 2, o2 = 2; unit

Theorem 1 shows that the λgpr calculus is deterministic:

Theorem 1 (Determinism of λgpr). If Σ; · ⊢s e : A, Σ ⊢ µ, µ; e ↪→s µ1; e1 and µ; e ↪→s

µ2; e2 then e1 = e2 and µ1 = µ2.

Furthermore, the preservation Theorem 2 and progress Theorem 3 of λgpr calculus are
shown below:

Theorem 2 (Type Preservation of λgpr). If Σ; · ⊢s e : A, Σ ⊢ µ and µ; e ↪→s µ
′; e′ then

Σ′; · ⊢s e′ : A, Σ′ ⊢ µ′ and Σ′ ⊇ Σ.

Theorem 3 (Progress of λgpr). If Σ; · ⊢s e : A then e is a value or ∃e′µ′, µ; e ↪→s µ
′; e′.
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Typing modes ⇔F ⇒|⇐

Σ;Γ ⊨s e ⇔ A (Typing rules for expressions)

sty-lit

Σ;Γ ⊨s i ⇒ Int

sty-unit

Σ;Γ ⊨s unit ⇒ Unit

sty-var
x : A ∈ Γ

Σ;Γ ⊨s x ⇒ A

sty-loc
o : A ∈ Σ

Σ;Γ ⊨s o ⇒ Ref A

sty-ref
Σ;Γ ⊨s e ⇒ A

Σ;Γ ⊨s ref e ⇒ Ref A

sty-deref
Σ;Γ ⊨s e ⇒ Ref A

Σ;Γ ⊨s!e ⇒ A

sty-assign
Σ;Γ ⊨s e1 ⇒ Ref A
Σ;Γ ⊨s e2 ⇐ A

Σ;Γ ⊨s e1 := e2 ⇒ Unit

sty-abs
Σ;Γ, x : A ⊨s e ⇒ B

Σ;Γ ⊨s λx : A. e ⇒ A→ B

sty-app
Σ;Γ ⊨s e1 ⇒ A1 → A2

Σ;Γ ⊨s e2 ⇐ A1

Σ;Γ ⊨s e1 e2 ⇒ A2

sty-anno
Σ;Γ ⊨s e ⇐ A

Σ;Γ ⊨s e : A ⇒ A

sty-eq
Σ;Γ ⊨s e ⇒ A

Σ;Γ ⊨s e ⇐ A

sty-tabs
Σ;Γ,X ⊨s e ⇒ A

Σ;Γ ⊨s ΛX. e ⇒ ∀X. A

sty-tapp
Γ ⊢ A

Σ;Γ ⊨s e ⇒ ∀X. B

Σ;Γ ⊨s e A ⇒ B[X 7→ A]

Fig. 5: Bidirectional typing for the λgpr calculus.

3.4 Bidirectional Typing

We also present a set of bidirectional typing rules (shown in Figure 5) for λgpr. Although
bidirectional typing is not essential for λgpr, it is used later for the gradual typing criteria
proofs. The typing judgment is represented as Σ;Γ ⊢ e ⇔ A. The expression e is
inferred (⇒) or checked (⇐) by type A under the typing context Γ and location typing
context Σ. Typing modes (⇔) contain the inference mode (⇒) and checking mode (⇐),
which are shown at the top of Figure 5. One extra rule is rule sty-eq, which switches
modes. We proved that the two type systems are equivalent:

Lemma 1 (Typing Equivalence for λgpr). Σ;Γ ⊢s e : A iff Σ;Γ ⊨s e ⇔ A.

4 The λG
gpr Calculus

This section introduces the λG
gpr calculus, which gradualizes the λgpr calculus. Normally,

a gradually typed lambda calculus (GTLC) does not define the operational semantics
directly, but is elaborated to a cast calculus. λG

gpr instead defines the dynamic semantics
directly using the TDOS approach [15]. λG

gpr is proved to be type sound and it has a
gradual guarantee. The calculus does not have parametricity, enabling simplifications
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Syntax

Types A, BF Int | A→ B | X | ∀X. A | Unit | Ref A | ⋆
Expressions eF x | i | e : A | e1 e2 | e A |!e | e1 := e2 | ref e | unit | o | ΛX. e : A | λx. e : A→ B
Results rF e | blame
Raw Values uF i | ΛX. e : A | λx. e : A→ B | unit | o
Values vF u : A
Contexts ΓF · | Γ, x : A | Γ,X
Stores µF · | µ, o = v
Location Σ F · | Σ, o : A
Frame F F v □ | □ e | □ A |!□ | v1 := □ | □ := e2 | ref □

Γ ⊢ A ∼ B (Consistency)

S-unit

Γ ⊢ Unit ∼ Unit

S-var
Γ ⊢ X

Γ ⊢ X ∼ X

S-z

Γ ⊢ Int ∼ Int

S-dynl
Γ ⊢ A

Γ ⊢ ⋆ ∼ A

S-dynr
Γ ⊢ A

Γ ⊢ A ∼ ⋆

S-arr
Γ ⊢ A1 ∼ B1

Γ ⊢ A2 ∼ B2

Γ ⊢ A1 → A2 ∼ B1 → B2

S-forall
Γ,X ⊢ A ∼ B

Γ ⊢ ∀X. A ∼ ∀X. B

S-ref
Γ ⊢ A ∼ B

Γ ⊢ Ref A ∼ Ref B

Fig. 6: λG
gpr syntax and consistency.

in the calculus, and the addition of features such as gradual references, which none of
the previous gradual calculi with polymorphism support.

4.1 Static Semantics

Syntax, type well-formedness and consistency. Figure 6 shows the syntax and consis-
tency of the λG

gpr calculus. The gray parts are the same as λgpr. The λG
gpr calculus extends

types with the unknown type ⋆ with respect to λgpr. Because of the power of the un-
known type ⋆, dynamic type checking is required and run-time errors may be raised.
Therefore, in addition to expressions, λG

gpr has the run-time error blame. Because of
the run-time checking requirement for the gradual typing system, we need annotations
for type abstractions and lambda abstractions. Furthermore, due to the imprecision of
the unknown type ⋆, values are also annotated. Otherwise, examples such as 1 : ⋆ are
troublesome. Because of the value forms, annotations are not included in frames, unlike
in the λgpr calculus. We will explain the details later.

Well-formed types are extended with the following rule for the unknown type ⋆:

Γ ⊢ ⋆

Notably, instead of syntactic equality, a more general relation called consistency (Γ ⊢
A ∼ B) is defined in λG

gpr. Every well-formed type is consistent with itself. The unknown
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Σ;Γ ⊢ e ⇔ A (Typing rules for expressions)

Typ-lit

Σ;Γ ⊢ i ⇒ Int

Typ-unit

Σ;Γ ⊢ unit ⇒ Unit

Typ-var
x : A ∈ Γ

Σ;Γ ⊢ x ⇒ A

Typ-loc
o : A ∈ Σ

Σ;Γ ⊢ o ⇒ Ref A

Typ-ref
Σ;Γ ⊢ e ⇒ A

Σ;Γ ⊢ ref e ⇒ Ref A

Typ-deref
A1 ▷ Ref A
Σ;Γ ⊢ e ⇒ A1

Σ;Γ ⊢!e ⇒ A

Typ-assign
A1 ▷ Ref A
Σ;Γ ⊢ e1 ⇒ A1

Σ;Γ ⊢ e2 ⇐ A

Σ;Γ ⊢ e1 := e2 ⇒ Unit

Typ-abs
Σ;Γ, x : A ⊢ e ⇐ B

Σ;Γ ⊢ λx. e : A→ B ⇒ A→ B

Typ-app
A ▷ A1 → A2

Σ;Γ ⊢ e1 ⇒ A
Σ;Γ ⊢ e2 ⇐ A1

Σ;Γ ⊢ e1 e2 ⇒ A2

Typ-anno
Σ;Γ ⊢ e ⇐ A

Σ;Γ ⊢ e : A ⇒ A

Typ-sim
Γ ⊢ A ∼ B
Σ;Γ ⊢ e ⇒ A

Σ;Γ ⊢ e ⇐ B

Typ-tabs
Σ;Γ,X ⊢ e ⇐ A

Σ;Γ ⊢ ΛX. e : A ⇒ ∀X. A

Typ-tapp
Γ ⊢ A Σ;Γ ⊢ e ⇒ A1

A1 ▷ ∀X. B

Σ;Γ ⊢ e A ⇒ B[X 7→ A]

A ▷ A1 → A2 A ▷ ∀X. A1 A ▷ Ref A1

A→ B ▷ A→ B ∀X. A ▷ ∀X. A Ref A ▷ Ref A

⋆ ▷ ⋆→ ⋆ ⋆ ▷ ∀X. ⋆ ⋆ ▷ Ref ⋆

Fig. 7: The type system for the λG
gpr calculus.

type is consistent with any other well-formed type. Structural types such as functions,
references and polymorphic types are consistent if their type sub-components are con-
sistent. Note that for two reference types, consistency is variant: if A and B are consis-
tent then Ref A and Ref B are consistent. Unlike invariant consistency [31], type A and
B do not have to be the same. As usual, consistency is reflexive and symmetric, but not
transitive. We use the following abbreviation for consistency: A ∼ B ≡ · ⊢ A ∼ B.

Typing relation. Bidirectional typing is used to design the type system. Bidirectional
typing is not essential for λgpr but it is necessary for λG

gpr. Annotation expressions (e : A)
and the checking mode (⇐) signal the use of casts (explicitly or implicitly) at run-time.

The typing rules of the λG
gpr calculus are shown in Figure 7. They are almost the same

as λgpr’s type system. For rule Typ-app, rule Typ-tapp, rule Typ-assign and rule Typ-
deref, the unknown type ⋆ can be matched with, respectively, a dynamic function type
(⋆ → ⋆), a dynamic polymorphic type (∀X. ⋆) and a dynamic reference type (Ref ⋆).
In a system with gradual typing and the unknown type ⋆ we always have to consider
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cases where the type may be unknown. For instance in an application e1 e2, e1 can
infer a function type as usual, but it can also infer type ⋆ and still be well-typed. So, a
matching function (A ▷ B) is needed to account for both possibilities. The table at the
bottom of Figure 7 shows the definition of the matching functions A ▷ B. Note that we
overload the notation, but there are 3 different matching functions, in each column of
the table, that are employed by the rules correspondingly. For example, rule Typ-deref
employs the matching function in the third column of the table. The first row in the table
depicts the form of the matching function, while the other two rows give its definition.

The checking mode rule Typ-sim is generalized to check if the inferred type A and
checked type B are consistent. Note that rule Typ-sim is the only rule in the checked
mode and, as such, does not overlap with anything else. Moreover, all the rules in the
inference mode are syntax directed. Therefore, the rules are basically directly imple-
mentable, as usual for bidirectional type-checking rules. Note that in λG

gpr annotation
expressions combined with consistency play an important role, where more programs
are allowed. For instance, (λx. ((x : ⋆) 1) : Bool → ⋆) True is accepted, but raises a
blame error at run-time. Note that dynamically typed lambdas λx.e are syntactic sugar
for λx.e : ⋆→ ⋆. The use of this syntactic sugar enables us to encode the dynamically
typed lambda calculus (DTLC) [4] easily in λG

gpr.
Definition 2 shows dynamic type checking for raw and annotated values, which

is done at run-time. Dynamic type checking for values exploits the annotations that
are present at run-time, and does not make use of the typing relation. Dynamic type
checking is essentially a constant time operation, with little cost (note that the function
is not recursive).

Definition 2 (Dynamic type). |u|µ = A and |v|µ = A denote the dynamic type of the raw
and annotated values.

|i|µ = Int

|(λx. e : A→ B)|µ = A→ B

|(ΛX. e : A)|µ = ∀X. A

|unit|µ = Unit

|o|µ = Ref |v|µ when o = v ∈ µ

|(u : A)|µ = A

|u|µ = A states that the dynamic type of the raw value u is A under store µ. Notably,
for locations o, the dynamic type is defined by the dynamic type of the bounded values
in the store. Other rules are straightforward. Lemma 2 shows that if a raw value can be
inferred with type A, then its dynamic type is type A as well.

Lemma 2 (Synthesis of Dynamic Types). For any raw value u, if Σ ⊢ µ and Σ; · ⊢
u ⇒ A then |u|µ = A.

As in λgpr, a term typed using the inference mode is guaranteed to infer a unique
type. In addition, Lemma 3 shows that each well-typed term can be checked.

Lemma 3 (Synthesis principality). If Σ;Γ ⊢ e ⇒ A then exists B, Σ;Γ ⊢ e ⇐ B and
Γ ⊢ A ∼ B.
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µ; v ↪→A µ
′; r (Casting for values)

casting-sim
|u|µ ∼ B

µ; u : A ↪→B µ; u : B

casting-nsim
¬|u|µ ∼ B

µ; u : A ↪→B µ; blame

µ; v ↪→B,A µ
′; r (Double casting)

TLists-baseb
µ; v ↪→A µ; blame

µ; v ↪→B,A µ; blame

TLists-cons
µ; v ↪→A µ; v′

µ; v′ ↪→B µ; r

µ; v ↪→B,A µ; r

Fig. 8: Casting for values

4.2 Dynamic Semantics

The dynamic semantics contains two parts. The first part is casting, which casts a value
to another value with a target type. In casting the dynamic type of the value is the source
type. The second part is the reduction rules.

Casting. Figure 8 shows the casting rules of the λG
gpr calculus. µ; v ↪→A µ; r repre-

sents casting values v by type A under store µ. The dynamic type of the raw values
u is checked to be consistent with type A or not. If two types are consistent, then the
intermediate type can be removed and the raw values are annotated with target types.
Otherwise, a run-time error is raised. For example when 1 : ⋆ is cast by type Bool, the
dynamic type of 1 is Int, which is not consistent with Bool, and blame is raised. While in
1 : ⋆ cast by type Int, the type Int is consistent with type Int. Thus, type ⋆ is erased and
1 is annotated with type Int. Since a location o is a raw value, if we want to obtain the
dynamic type of the location, we should obtain it from the store µ. Therefore, casting
uses the store. Casting by two types is shown at the bottom of Figure 8. It simply casts
the types one by one, using the basic casting relation.

Reduction. The reduction rules of λG
gpr calculus are shown in Figure 9. Raw values

are reduced to become values, which are annotated by the dynamic type of the raw
values with rule step-u. Due to this rule, annotations are not included in the frame. An-
notated expressions are further dealt by rule step-anno and rule step-annop. From the
typing rules of rules Typ-app, Typ-tapp, Typ-assign, and Typ-deref, type ⋆ is allowed
to match, respectively, a dynamic function, a polymorphic function or a reference type.
Moreover, we know that ⋆ is consistent with any type. Therefore, we should check
whether the internal values cannot match with the wanted type structure. For example,
ill-formed applications ((1 : ⋆) 2) where the internal value (1) is not an lambda abstrac-
tion. There are similar examples for type applications and assignments: (1 : ⋆) Bool
and (True : ⋆) := 2 where 1 is not a type abstraction and True is not a location. Using
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µ; e ↪→ µ′; r (Operational semantics)

vstep-eval
µ; e ↪→ µ′; e′

µ; F[e] ↪→ µ′; F[e′]

vstep-blame
µ; e ↪→ µ′; blame

µ; F[e] ↪→ µ′; blame

vstep-annop
µ; e ↪→ µ′; blame

µ; e : A ↪→ µ′; blame

vstep-beta
A ▷ A2 → B2

µ; v ↪→A1 ,A2 µ; v′

µ; ((λx. e : A1 → B1) : A) v ↪→ µ; e[x 7→ v′] : B1 : B2

vstep-assignd
µ; v1 ↪→Ref ⋆ µ; blame

µ; v1 := v2 ↪→ µ; blame

vstep-annov
µ; v ↪→A µ; r

µ; v : A ↪→ µ; r

vstep-betap
A ▷ A2 → B2

µ; v ↪→A1 ,A2 µ; blame

µ; ((λx. e : A1 → B1) : A) v ↪→ µ; blame

vstep-betad
µ; v1 ↪→⋆→⋆ µ; blame

µ; v1 v2 ↪→ µ; blame

vstep-tap
B ▷ ∀X. B2

µ; ((ΛX. e : A) : B) C ↪→ µ; e[X 7→ C] : A[X 7→ C] : B2[X 7→ C]

vstep-tapd
µ; v ↪→∀X. ⋆ µ; blame

µ; v B ↪→ µ; blame

vstep-refv
o < µ

µ; ref v ↪→ µ, o = v; o

vstep-deref
o = v ∈ µ A1 ▷ Ref A

µ; !(o : A1) ↪→ µ; v : A

vstep-derefp
µ; v ↪→Ref ⋆ µ; blame

µ; !v ↪→ µ; blame

vstep-assign
|o|µ = A1 A ▷ Ref A2

µ; v2 ↪→A1 ,A2 µ; v′2
µ; (o : A) := v2 ↪→ µ[o 7→ v′2]; unit

vstep-assignp
|o|µ = A1 A ▷ Ref A2

µ; v2 ↪→A1 ,A2 µ; blame

µ; (o : A) := v2 ↪→ µ; blame

vstep-u
|u|µ = A

µ; u ↪→ µ; u : A

vstep-anno
¬value e : A
µ; e ↪→ µ′; e′

µ; e : A ↪→ µ′; e′ : A

Fig. 9: Reduction rules for λG
gpr.

rules vstep-betad, vstep-tapd, vstep-derefp, and vstep-assignd, we cast the value to
the corresponding dynamic types and filter out programs with errors. To apply a value
to a functional value (rules vstep-beta and vstep-betap), the argument type must be
consistent with function input types A2. Moreover, the expected substituted value type
is A1. Thus, the argument value should be cast by A2 and A1, which may return a blame
error. To preserve the type, the substituted body is annotated with B1 and B2. When a
value v is annotated with a type A, the type of the value must be consistent with type A,
and run-time checking is needed to validate consistency (rule vstep-annov). A reference
value ref v is bound in the store with a fresh location o (rule vstep-refv). To obtain a
value from the store by the location, from the last expression we use rule vstep-deref.
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Note that in the typing rule for references:

Σ; · ⊢ o : A1 ⇒ A1 A1 ▷ Ref A

Σ; · ⊢!(o : A1) ⇒ A
Typ-deref

The expected type is A but the bound value type is consistent with A. Thus we annotate
v using type A. When assigning a value to replace the bound value in the reference using
rules vstep-assign and vstep-assignp :

A ▷ Ref A2 Σ; · ⊢ o : A ⇒ A Σ; · ⊢ v2 ⇐ A

Σ; · ⊢ (o : A) := v2 ⇒ Unit
Typ-assign

The bound value by location o has type A1, while the type of v2 is consistent with type
A2 and A2 is consistent with A1. The expected type to be replaced is type A1, therefore
v2 is cast by type A1 and A2. Note that the cast result can be blamed. If a type is applied
to a polymorphic value, from the last expression (rule vstep-tap):

B ▷ ∀X. B2 Σ; · ⊢ (ΛX. e : A) : B ⇒ B

Σ; · ⊢ ((ΛX. e : A) : B) C ⇒ B2[X 7→ C]
Typ-tapp

The expected type is (B2[X 7→ C]) but the substituted expression (e[X 7→ C] : A[X 7→
C]) has type (A[X 7→ C]), so it is annotated with type (B2[X 7→ C]).

Properties of λG
gpr. λ

G
gpr is deterministic (Theorem 4) and type sound (Theorem 5 and

Theorem 6).

Theorem 4 (Determinism of λG
gpr). If Σ; · ⊢ e ⇔ A, µ; e ↪→ µ1; r1 and µ; e ↪→ µ2; r2

then r1 = r2 and µ1 = µ2.

Theorem 5 (Type Preservation of λG
gpr). If Σ; · ⊢ e ⇔ A, Σ ⊢ µ, and µ; e ↪→ µ′; e′

then Σ′; · ⊢ e′ ⇔ A, Σ′ ⊢ µ′ and Σ′ ⊇ Σ.

Theorem 6 (Progress of λG
gpr). If Σ; · ⊢ e ⇔ A then e is a value or ∃r µ′, µ; e ↪→ µ′; r.

4.3 Gradual Typing Criteria

Siek et al. [31,32] proposed a set of criteria for gradual typing system. At the end of the
spectrum, a fully annotated gradually typed program should behave as a statically typed
program. Conversely, a gradually typed program without annotations should behave as
a dynamic program. Siek et al. proposed the gradual guarantee, which states that having
annotations that are more/less precise should not change the behavior of the programs.
Here we show that λG

gpr has the gradual guarantee.
To prove the gradual guarantee, we define the precision for types, expressions and

stores. At the top of Figure 10 is type precision A ⊑ B, which states that type A is
more precise than B. The unknown type ⋆ is less precise than any other types. Each
type is more precise than itself. The precision of functions, polymorphic functions and
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A ⊑ B (Type Precision)

tp-unit

Unit ⊑ Unit

tp-var

X ⊑ X

tp-z

Int ⊑ Int

tp-dyn

A ⊑ ⋆

tp-arr
A1 ⊑ B1 A2 ⊑ B2

A1 → A2 ⊑ B1 → B2

tp-forall
A ⊑ B

∀X. A ⊑ ∀X. B

tp-ref
A ⊑ B

Ref A ⊑ Ref B

e1 ⊑ e2 (Expression Precision)

ep-lit

i ⊑ i

ep-var

x ⊑ x

ep-unit

unit ⊑ unit

ep-o

o ⊑ o

ep-ref
e1 ⊑ e2

ref e1 ⊑ ref e2

ep-deref
e1 ⊑ e2

!e1 ⊑!e2

ep-abs
e1 ⊑ e2

A1 ⊑ A2 B1 ⊑ B2

λx. e1 : A1 → B1 ⊑ λx. e2 : A2 → B2

ep-app
e1 ⊑ e3 e2 ⊑ e4

e1 e2 ⊑ e3 e4

ep-assign
e1 ⊑ e3 e2 ⊑ e4

e1 := e2 ⊑ e3 := e4

ep-anno
e1 ⊑ e2 A1 ⊑ A2

e1 : A1 ⊑ e2 : A2

ep-tabs
e1 ⊑ e2 A1 ⊑ A2

ΛX. e1 : A1 ⊑ ΛX. e2 : A2

ep-tapp
e1 ⊑ e2 A1 ⊑ A2

e1 A1 ⊑ e2 A2

µ1 ⊑ µ2 (Store Precision)

sp-nil

· ⊑ ·

sp-empty
µ1 ⊑ µ2 v1 ⊑ v2

µ1, o = v1 ⊑ µ2, o = v2

Fig. 10: Precision Relation.

reference types holds, if the precision of their sub-components holds. Note that the
precision of function types is ”covariant” in the argument types since to compare the
precision of the two programs:

λx. 1 : Int→ Int

λx. 1 : ⋆→ Int

we should just say that the first one is more precise than the second one because the
input type of the second one is fully dynamic. Expression precision is shown in the
middle of Figure 10. The rules can mostly be derived from the type precision. Each
expression is in a precision relation with itself. Structural expressions are in a precision
relation if their sub-expressions are related. Lastly, store precision, shown at the bottom
of Figure 10, shows that precision holds if the precision of values in the store holds.
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µ; e ↪→s∗ µ
′; e′ (Operational semantics)

Step-eval
µ; e ↪→s∗ µ

′; e′

µ; F[e] ↪→s∗ µ
′; F[e′]

Step-annov

µ; u : A : A ↪→s∗ µ; u : A

Step-assign

µ; o := v ↪→s∗ µ[o 7→ v]; unit

Step-tap

µ; ((ΛX. e : A) : ∀X. A) A ↪→s∗ µ; e[X 7→ A] : A[X 7→ A]

Step-deref
o = v ∈ µ

µ; !o ↪→s∗ µ; v : A

Step-beta

µ; ((λx. e : A→ B) : A→ B) v ↪→s∗ µ; e[x 7→ v] : B : B

Step-refv
o < µ

µ; ref v ↪→s∗ µ, o = v; o

Step-u
|u|µ = A

µ; u ↪→s∗ µ; u : A

Step-anno
¬value e : A
µ; e ↪→s∗ µ

′; e′

µ; e : A ↪→s∗ µ
′; e′ : A

Fig. 11: Reduction rules for λgpr.

Static criteria. We show that the full static type system of λG
gpr is equivalent to the

λgpr calculus (Theorem 7). We use s to denote a relation from the static system in case
of ambiguity. Theorem 8 shows the static gradual guarantee of λG

gpr. If a more precise
program is well-typed then a less precise program should be well-typed with a less
precise type.

Theorem 7 (Equivalence for λgpr (statics)). If ·; · ⊨s e ⇔ A if and only if ·; · ⊢ e ⇔ A.

Theorem 8 (Static Gradual Guarantee). If e1 ⊑ e2, ·; · ⊢ e1 ⇔ A then ·; · ⊢ e2 ⇔ B
and A ⊑ B.

Dynamic criteria. Theorem 9 says that fully static programs of λG
gpr calculus behaves in

the same as the λgpr at run-time. To make the proofs easier, the reduction rules of λgpr

calculus have extra annotations to follow λG
gpr (we denoted as s∗). It means that there

are extra identical annotations, as shown in the gray parts of Figure 4. However, these
annotations are identical and they can be removed without affecting the final reduction
result. In addition, as in λG

gpr: values have annotations; raw values should step to be
annotated values; and annotations are not included in Frames. This requires a few extra
rules, which are shown in Figure 11.

Notably, λG
gpr has the dynamic gradual guarantee (Theorem 10). The proof is simple

in comparison to the original proof by Siek et al. [32]. This simple theorem is formalized
following the work of Garcia et al. [12]. It says that if a more precise program with a
more precise store can reduce, then the less precise program with a less precise store can
also reduce. Furthermore, their resulting programs and stores should keep the precision
relation.



20 W. Ye, B. C. d. S. Oliveira

Theorem 9 (Equivalence for λgpr (dynamic)). ∀ ·; · ⊨s e ⇔ A,

– If µ; e ↪→s∗ µ
′; e′ then µ; e ↪→ µ′; e′.

– If µ; e ↪→ µ′; e′ then µ; e ↪→s∗ µ
′; e′.

Theorem 10 (Dynamic Gradual Guarantee). If e1 ⊑ e2 , µ1 ⊑ µ2, ·; · ⊢ e1 ⇔ A,
·; · ⊢ e2 ⇔ B and µ1; e1 ↪→ µ

′
1; e′1 then there exists e′2 and µ′2 such that µ2; e2 ↪→ µ

′
2; e′2

, e′1 ⊑ e′2 and µ′1 ⊑ µ
′
2.

5 Discussion

In this section, we briefly discuss alternative designs and possible extensions.

Preserving relational parametricity. An alternative design is to have a directed seman-
tics gradual polymorphism calculi, which preserves parametricity. We employ the eager
semantics similar to the AGT methodology, which is applied in the GSF calculus. Toro
et al. [37] analyzed the following example to show how parametricity is broken by the
naive use of the dynamic sealing in the eager semantics:

(ΛX.(λx : X.let y : ⋆ = x in let z : ⋆ = y in z + 1)) Int 1

The polymorphic function with type (∀X.X → ⋆) breaks parametricity, which should
be detected at run-time and raise an error. However, the application of the function
reduces to 2. A fresh name variable α is generated and is bounded to the type Int.
Variable x to y is flowing from type Int to type α; y to z is flowing from type ⋆ to
type ⋆; and x to z is flowing from Int to ⋆. Any of these type flows are safe. Thus the
reason for the loss of parametricity is related to the loss of precise type information.
Consequently, dynamic sealing is not enough to enforce relational parametricity. For
the above example, GSF detects the error by the refining evidences such as (⟨αE1 , αE2⟩).
Importantly in the type flow from y to z, more precise types (Int and αInt) instead of
⋆ and ⋆ are obtained, so when moving from x to z the type changes from Int to αInt.
When doing the addition, the run-time error is detected since the flow from αInt to Int
is not defined. A potential approach for us is to use tracked types (A<B1,B2>), which are
similar to the refined evidences in the GSF calculus. Because λG

gpr is a source language,
we do not have evidences, thus a possible approach is to record information in types.
For the above example, tracked types can track the unknown type with more precise
types from y to z to be Int and αInt which is ⋆(Int,αInt) and then from x to z to be ⋆(Int,αInt)

as the refined evidences and a run-time error is detected when doing the addition.

A space-efficient gradual polymorphic calculus. Ozaki et al. [27] explored the space
efficiency problem in the gradual polymorphic calculus. They extended the coercion
calculus (λC) [29] with parametric polymorphism (called λC∀). Dynamic sealing was
applied in λC∀ to enforce relational parametricity. Consequently, a sequence of coer-
cions is allowed and they showed that it cannot be normalized to a smaller coercion.
In other words, the size of sequences is unbounded. Notably, they stated and proved
that λC∀ cannot be space-efficient when dynamic sealing is supported. Furthermore,
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they conjectured that the gradual polymorphic calculus with dynamic sealing cannot
become space-efficient. Our λG

gpr calculus substitutes types directly, as the traditional
semantics without employing dynamic sealing. Moreover, the eager semantics is ap-
plied. Thus we believe that it is possible for our λG

gpr calculus to be a space-efficient
gradual polymorphic calculus. Two tentative and promising rules are as follows:

A ∼ C

e : A : B : C ↪→ e : A : C

¬A ∼ C

e : A : B : C ↪→ blame

With the above two rules, annotations are removed or an error is raised, to achieve
the space-efficient goal. Surprisingly, with these two rules, it seems possible to have a
space-efficient gradual references calculus naturally. We intend to explore this in the
future.

Implicit polymorphic references. Implicit (higher-rank) polymorphism [10, 19, 26] is
pervasive in theoretic and practical programming languages. Existing gradual polymor-
phic calculi are mainly explicitly polymorphic. One exception is the work of Xie et
al. [41]. Explicit polymorphism means that polymorphic types are not related to any of
its instantiated types but in implicit polymorphism, they are related. Xie et al. [41] de-
signed a source gradual implicit polymorphism calculus with consistent subtyping but
their dynamic semantics is defined by translating to the well-known polymorphic blame
calculus (λB∀) [3] without the proof of the dynamic gradual guarantee. A possible ex-
tension of Xie et al.’s work is to support implicit polymorphism with a direct dynamic
semantics, and to explore the dynamic gradual guarantee and parametricity properties.
However, it is well-known that a naive combination of implicit polymorphism and ref-
erences lead to an unsound language. A possible solution is to limit polymorphism to
syntactic let-bound values as adopted by Standard ML [40].

Alternative forms of values. In our calculus, all values are annotated, such as 1 : Int or
(λx. x : Int → Int) : Int → Int. This introduces some overhead as some annotations are
redundant. We can have an alternative and workable form of values as follows:

vF u | u : ⋆ | (ΛX. e : A) : ∀X. B | (λx. e : A1 → B1) : A2 → B2

The above value form removes redundant annotations such as integers (1 : Int). This is
good for performance, but it would make the proof of dynamic gradual guarantee harder.
However, the resulting calculus with fewer annotations should have an equivalent se-
mantics to our calculus, and would be a better candidate for guiding an implementation.

6 Related Work

Gradual typing. Gradual typing is a term coined by Siek et al. [31]. The unknown type
?, which we represent as ⋆, is the new notion introduced to a gradual type system to
integrate dynamic and static typing. By using the unknown type ⋆, equality on types
is lifted to consistency. Any type is consistent with type ⋆. Therefore, run-time type
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checking is needed for a gradually typed lambda calculus. Traditionally, the dynamic
semantics of a gradual language is defined by elaborating to a target language, which
includes cast calculi [3, 11, 29, 34, 39] and coercion calculi [13, 14, 27, 29, 30].

Garcia et al. [12] proposed the abstracting gradual typing (AGT) approach, which
allows for deriving a gradual type system by lifting the static type system. They argue
about the weakness of elaborating to a target language, and did not resort to a tar-
get language in their calculus by using intrinsic terms. Our λG

gpr defines the dynamic
semantics directly without using intrinsic terms, but employing instead an approach
based on type-directed operational semantics (TDOS). Type directed operational se-
mantics (TDOS) was proposed by Huang et al. [15] to design calculi with the merge
operator and intersection types. Ye et al. [42] explored the use of the TDOS in gradual
typing. In TDOS, type annotations are relevant at runtime and can affect the semantics,
unlike many traditional calculi where types are not runtime relevant. With a TDOS we
can design a gradually typed calculus without elaboration to a cast calculus, since the
semantics can be given directly. Our λG

gpr employs the eager semantics for higher-order
values following an approach similar to AGT. Ye et al. only consider a TDOS for a sim-
ply typed, purely functional language. Our work shows that the TDOS approach can be
extended to important features, such as polymorphism and references.

Gradual typing with references. Many languages with static and dynamic typing, em-
ploying some form of optional typing, support references. These include Flow [8],
Dart [6] and TypeScript [5]. However for optional typing, the run-time checking is not
performed for fully dynamic programs, leading to unsoundness with respect to the static
type system. In the work of Siek et al. [31], he already considered mutable references,
but in a very simple setting without annotation expressions. Furthermore, the gradually
typed lambda calculus is elaborated to a target language to define the dynamic seman-
tics. Herman et al. [14] designed a coercion calculus with references, which is space
efficient. A gradualizer, introduced by Cimini and Siek [9], can derive a gradual static
type system and cast insertion with references systematically. Toro et al. [38] designed
source gradual typing system with references λR̃EF and a corresponding target language
λϵ

R̃EF
using the Abstracting Gradual Typing (AGT) methodology. They designed the

λϵ
R̃EF

as a space-efficient calculus and proved the gradual guarantee. Our λG
gpr is the first

polymorphic gradually typed language with references.

Existing gradual polymorphic calculi. In the following we summarize some of the
solutions to the problem of preserving parametricity and gradual guarantee in gradual
polymorphic calculi and the changes that these solutions entail.

Dynamic sealing. Ahmed et al. [3] solved the problem in Section 2 by using dynamic
sealing, inspired by the work of Matthews et al. [21]. They proposed the polymorphic
blame calculus [3] (we present it as λB∀), which is a widely used cast calculus with
dynamic sealing. The most interesting construct of λB∀ is the named type binding νX :=
A.t, which is introduced to record the instantiated type of a type variable. The programs
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in Section 2 behave as expected in λB∀:

(K⋆ : ⋆⇒ ∀X.∀Y .X → Y → X) Int Int 2 3
↪→∗ νY := Int.νX := Int.(2 : X ⇒ ⋆ : ⋆⇒ X)
↪→∗ 2

(K⋆ : ⋆⇒ ∀X.∀Y .X → Y → Y) Int Int 2 3
↪→∗ νY := Int.νX := Int.(2 : X ⇒ ⋆ : ⋆⇒ Y)
↪→∗ blame

The first program succeeds and returns the first argument. While the second program
fails, since the polymorphic information is recorded as X := Int and Y := Int in type
bindings and the original type variable names are preserved in the casts. Notably, for
higher-order values, λB∀ follows the lazy semantics as the blame calculus [29,39]. That
is, for a function value, the checking is delayed until an argument value is applied. This,
unfortunately results in unbounded space consumption for higher-order casts [13, 14].

As Xie et al. [41] pointed out, the compatibility relation of λB∀ mixes explicit and
implicit polymorphism to some extent, since they employ the following rule:

A[X 7→ ⋆] ≺ B

∀X. A ≺ B

This compatibility rule of λB∀ allows ∀X.X → X to be compatible with any static
instantiated types such as Int → Int and Bool → Bool. These types are not related in
System F so λB∀ is not a conservative extension of System F. The gradual guarantee
has not been discussed in λB∀, but they show the parametricity property.

The FG and FC calculi. Igarashi et al. [17] improved on λB∀. They designed a source
calculus (FG) and a target calculus (FC), which is a conservative extension of System
F. The dynamic semantics of FG is indirect and defined by translation to FC . FG does
not relate ∀X.X → X with static instantiations, but only with the dynamic instantiation
⋆ → ⋆. The type ⋆ → ⋆ is called quasi-polymorphic, since it is an instantiation of
∀X.X → X similarly to what happens with implicit polymorphism. However, a type
such as Int → Int is not quasi-polymorphic. Instead of binding types locally by (νX :=
A.t), they made the type bindings global. Their reduction form Σ ▷ f ↪→ Σ′ ▷ f ′ is
augmented with a store, which records the bounded type variables X := A. The above
example reduces in FC as follows.

Σ ▷ (K⋆ : ⋆⇒ ∀X.∀Y .X → Y → X) Int Int 2 3
↪→∗ Σ ▷ (ΛX.ΛY.K⋆ : ⋆⇒ X → Y → X) Int Int 2 3
↪→∗ Σ, X := Int,Y := Int ▷ (K⋆ : ⋆⇒ X → Y → X) Int 2 3
↪→∗ 2

Furthermore, they argue that type bindings generated locally lead to run-time overheads.
Their observation is that type bindings are not required for every substitution, but only
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for casts with the dynamic type (⋆). Therefore they employ two kinds of type vari-
ables, which are distinguished by labels. One kind is static type variables (X::S) and the
other kind is gradual type variables (X::G). Type application for static type abstraction
does not generate type bindings, which are only generated for gradual type abstractions.
Parametricity and the static gradual guarantee are proved, although the proofs are not
mechanized. However, the dynamic gradual guarantee is left as conjecture. In addition
their static gradual guarantee is proved with some constraints in the type precision rela-
tion. In their precision, ∀X.X → X is more precise than ∀X.X → ⋆ but not ∀X. ⋆→ X.

The GSF calculus. Toro et al. [37] presented the gradual polymorphic calculus (named
GSF), which employs the Abstracting Gradual Typing (AGT) methodology. In AGT,
casting of higher-order values is eager compared to λB∀ and FC . This avoids the prob-
lem of space consumption although, as New et al. [25] pointed out, the η principle
(which ensures V ≡ λx.V x in the call-by-value languages) is broken. To preserve para-
metricity, global dynamic sealing, which does not distinguish between static and grad-
ual variables, is used. They also refine the presentation of evidence, which witnesses
the consistency judgement, ensuring that it holds. Instead of simple evidences such as
(⟨α, Int⟩), they employ sealing evidences (⟨αE , Int⟩). GSF satisfies parametricity but not
the gradual guarantee. Importantly, they proved that the gradual guarantee is incompat-
ible with parametricity.

Parametricity with the Gradual Guarantee. To achieve both parametricity and the grad-
ual guarantee, New et al. [24] designed PolyGv calculus which gave up the syntax of
System F and the users are required to provide different sealing options. They intro-
duced the sealed syntax as sealX M which explicitly seals terms. With the user-defined
syntax, the gradual guarantee and parametricity are proved. More recently, Labrada et
al. [20] improve on GSF. They do not change the syntax of System F but insert plausible
sealing forms during the elaboration from a gradual source language which is named
Funk to a target cast calculus. They proved the gradual guarantee and parametricity for
the target language, but for the source language (Funk), the gradual guarantee comes
with a restriction for type applications, which can only be instantiated with base and
variable types. Some of the main theorems are proved in Agda.

Summary. In order to keep parametricity we need several compromises. For instance,
we need to use a dynamic sealing mechanism instead of direct type substitution causing
extra space and time consumption. In many of the earlier calculi, the gradual guaran-
tee is not obtained. In the later calculi, the gradual guarantee is either restricted or we
need to give up the syntax of System F. Traditionally, many works on gradual typing
are based on two different calculi: a source gradually typed language, and a target cast/-
coercion calculus where casts/coercions are explicit. The dynamic semantics is defined
by elaborating the source language to the target calculus. In other words, the semantics
of the gradually typed language is given indirectly via a second, target language. All
previously discussed works follow this indirect way to give the semantics to a gradually
typed source language.

Furthermore, none of the gradually typed polymorphic calculi supports references.
However, even for a static polymorphic calculus extended with mutable references ob-
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λB∀ FG GSF PolyGv Funk λG
gpr

2011 2017 2019 2020 2022 present work

Direct Substitution × × × × × ✓

System F extension × ✓ ✓ × ✓ ✓

Direct Semantics × × × × × ✓

Parametricity ✓ ✓ ✓ ✓ ✓ ×

Gradual Guarantee × × × ✓ ✓ - ✓

Semantics Lazy Lazy Eager Lazy Eager Eager

Mechanized Proofs × × × × ✓ - ✓

References × × × × × ✓

Table 1: Comparison among gradual polymorphism calculi. A × denotes no. A ✓ de-
notes yes while ✓ -denotes partial yes.

taining parametricity is highly non-trivial. As Ahmed et al. [2] stated: ”combing muta-
ble references with polymorphism can be extremely tricky.” From the analysis of Jaber
and Tzevelekos [18], we know that naively moving from a polymorphic calculus to
incorporate with mutable references, breaks parametricity. The reason is that common
references can be instantiated with differently typed variables. Therefore, extending a
gradual polymorphic calculus with the mutable references is non-trivial, and none of
the existing gradual languages with polymorphism support references.

Table 1 summarizes several features and differences in existing gradually polymor-
phic calculi.

7 Conclusion

In this paper, we design a static system λgpr with polymorphism and references and its
gradual counterpart λG

gpr. λ
G
gpr has a direct semantics without resorting to a cast calculi.

In λG
gpr, the gradual guarantee is proved but we give up parametricity. In exchange, our

calculus can be simplified, since sophisticated mechanisms such as dynamic sealing are
not needed. Our calculus follows the original semantics of System F, based on direct
type substitutions, avoiding extra space and time complexity that is necessary by mech-
anisms such as dynamic sealing. In the future, we could try to find out if there is a way
to keep both gradual guarantee and relational parametricity for the source language, or
explore more efficient formulations of λG

gpr.
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