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Abstract. Named and optional arguments are prevalent features in
many mainstream programming languages, enhancing code readability
and flexibility. Despite widespread use, their formalization has not been
extensively studied. This paper bridges this gap by presenting a type-
safe foundation for named and optional arguments using intersection and
union types. We begin by identifying a critical type-safety issue in pop-
ular static type checkers for Python and Ruby, particularly in handling
first-class named arguments in the presence of subtyping. Our solution
involves rewriting call sites to ensure type safety, which we formalize
through a translation into a core calculus called λiu. The type safety
of the translation is proven using the Coq proof assistant. The practi-
cal implementation of our approach in the CP language validates our
theoretical contributions. Furthermore, we informally discuss how our
approach could be adapted to encode named and optional arguments in
other existing languages.

1 Introduction

The λ-calculus, introduced by Alonzo Church [5], shows how to model compu-
tation solely with function abstraction and application. For example, natural
numbers, boolean values, pairs, and lists, as well as various operations on them,
can be represented by higher-order functions via Church encoding. In the λ-
calculus, a function only has one parameter and can only be applied to one
argument. Many programming languages in the ML family inherit this feature.
If more than one argument is desired in those languages, we need to create a
sequence of functions, each with a single argument, and perform an iteration of
applications. This idea is called currying. Currying brings brevity to functional
programming and naturally allows partial application, but it usually limits the
flexibility of function application. For example, we cannot pass arguments in a
different order nor omit some of them by providing default values. Both demands
are not rare in practical programming and can be met in a language that sup-
ports named and optional arguments. Named arguments also largely improve
the readability of function calls. For example, it is unclear which is the source
and which is the destination in copy(x, y), while copy(to: x, from: y) is
self-explanatory.
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def exp(x, base=math.e):
return base ** x

exp(10, 2) #= exp(x=10, base=2) = 1024
exp(base=2, x=10) #= 1024
exp(x=10) #= e^10

args = { "base": 2, "x": 10 }
exp(**args) #= exp(base=2, x=10) = 1024

(a) The Python way.

def exp(x:, base: Math::E)
base ** x

end
exp(10, 2) # ArgumentError!
exp(base: 2, x: 10) #= 1024
exp(x: 10) #= e^10

args = { base: 2, x: 10 }
exp(**args) #= 1024

(b) The Ruby way.

Fig. 1: Named arguments in Python and Ruby.

Named arguments are widely supported in mainstream programming lan-
guages, such as Python, Ruby, OCaml, C#, and Scala, just to name a few. The
earliest instance, to the best of our knowledge, is Smalltalk, where every method
argument must be associated with a keyword (i.e. an external name). In other
words, there are no positional arguments (i.e. arguments with no keywords) in
Smalltalk. The syntax of modern languages is usually less rigid, so program-
mers can choose whether to attach keywords to arguments or not. There are
two ways to reconcile positional and named arguments. One way, employed by
Python and shown in Fig. 1a, is to make parameter names in a function defi-
nition as non-mandatory keywords. Thus, every argument can be passed with
or without keywords by default. As shown in the Python code, exp(10, 2) is
equivalent to exp(x=10, base=2). To reconcile the two forms in the same call, a
restriction is imposed that all named arguments must follow positional ones. The
other way, shown in Fig. 1b and used in Ruby, is to strictly distinguish named
arguments from positional ones. When defining a Ruby function, a keyword pa-
rameter should always end with a colon even if it does not have a default value.
By this means, they are syntactically distinct from positional parameters, and
their keywords cannot be omitted in a function call. There is also a restriction
in Ruby that all named arguments must follow positional ones in both function
definitions and call sites. The two kinds of arguments are usually used in differ-
ent scenarios: positional arguments are used when the number of arguments is
small and the order is clear, while named arguments are used in more complex
cases especially when settings or configurations are involved.

More interestingly, named arguments are first-class values in Python and
Ruby: they can be assigned to a variable. As shown at the bottom of Fig. 1, the
variable args stores the two arguments named base and x, and we can later pass
it to exp by unpacking it with ** (sometimes called the splat operator). In fact,
args is a dictionary in Python and similarly a hash in Ruby. Thus, first-class
named arguments can be manipulated and passed around like standard data
structures. This feature is widely used in Python and Ruby.
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Table 1: Named arguments with different design choices in different languages.

Smalltalk Python Ruby Racket OCaml C# Scala Dart Swift
This
paper

Commutativity ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Optionality ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Currying ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Distinctness n.a.† ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

First-class value ✗ ✓ ✓ ✓✗‡ ✗ ✗ ✗ ✗ ✗ ✓

Static typing ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Soundness proof ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
† Smalltalk does not support positional arguments at all.

‡ Racket’s support for first-class named arguments is limited and forbids commutativity.

Including the distinctness and first-class values illustrated above, we have
identified five important design choices found in existing languages that support
named arguments:

1. Commutativity : whether the order of (actual) arguments can be different
from that of (formal) parameters originally declared.

2. Optionality : whether some arguments can be omitted in a function call if
their default values are predefined.

3. Currying : whether a function that takes more than one argument is always
converted into a chain of functions that each take a single argument.

4. Distinctness: whether named arguments are distinct from positional ones in
how they are defined and passed.

5. First-class value: whether named arguments are first-class values.

As shown in Table 1, the first two properties hold for most mainstream program-
ming languages, with Smalltalk and Swift being two exceptions. Commutativity
and optionality are so useful that we believe they should not be compromised.
Concerning the third point, OCaml is the only language that manages to rec-
oncile currying with commutativity, though at the cost of introducing a very
complicated core calculus. We agree that currying is very useful when we use
normal positional arguments, but we argue here that currying can be temporar-
ily dropped when we use named arguments because the most common use case
for named arguments is to represent a whole chunk of parameters like settings
or configurations. The fourth design, distinctness, is endorsed by Ruby, Racket,
OCaml, Dart, and Swift. It improves the readability of call sites to enforce key-
words whenever arguments are defined to be named. We advocate distinctness in
this paper also because it simplifies the language design and allows us to focus on
more important topics, especially type safety with first-class named arguments.

Although named arguments are ubiquitous, they have not attracted enough
attention in the research of programming languages. Among the few related pa-
pers, the work by Garrigue et al. [1,9,12] formalizes a label-selective λ-calculus
and eventually applies it to OCaml [11]. Another work by Rytz and Odersky [26]
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discusses the design of named and optional arguments in Scala, but it mainly
focuses on practical aspects. The core features of Scala are formalized in a fam-
ily of DOT calculi, but named arguments are never included. The support for
named arguments is implemented as macros in Racket [7]. So their extension
is more like userland syntactic sugar and requires no changes to the core com-
piler. Haskell does not support named arguments natively, but the paradigm of
named arguments as records is folklore. We will discuss OCaml, Scala, Racket,
and Haskell in detail in Section 5. In short, named arguments are implemented
in an ad-hoc manner and are not well founded from a type-theoretic perspective
in most languages, especially object-oriented ones. Only OCaml and this paper
provide soundness proofs for the feature of named arguments.

An important issue that has not been explored in the literature is the in-
teraction between subtyping and first-class named arguments. A naive design
can easily lead to a type-safety issue. We will show in Section 2.2 that the most
widely used optional type checker for Python, mypy [13], fails to detect a type-
unsafe use of first-class named arguments. The same issue also exists in Ruby
with Steep [16] or Sorbet [28]. It arises from subtyping hiding some arguments
from their static type and bypassing the type checking for optional arguments.
As a result, an optional argument may have an unexpected type at run time,
which leads to a runtime error.

In this paper, we present a type-safe foundation for named and optional
arguments. At the heart of our approach is the translation into a core calculus
called λiu, which features intersection and union types [2,6,8]. Our approach
supports first-class named arguments like Python and Ruby, but the type-safety
issue is addressed by us. The λiu calculus has been shown to be type-sound [23],
and we show that our translation from our source language into λiu is type-safe.
Thus, we establish the type safety of our approach. In addition, our design has
recently been incorporated into the CP language [33].

In summary, the contributions of this paper are:

– We identify a type-safety issue with first-class named arguments in the pres-
ence of subtyping and propose a solution based on call site rewriting.

– We demonstrate how a minimal language with named and optional argu-
ments can be translated to a core calculus with intersection and union types.

– We formalize the translation as an elaboration semantics and prove its type
safety using the Coq proof assistant.

– We validate our theoretical contributions by implementing our approach in
the CP language and showcasing a practical example.

– We conduct a survey of named arguments in existing programming languages
and discuss the best practice for named arguments as records in Haskell.

2 Named and Optional Arguments: The Bad Parts

Since named and optional arguments are not well studied in most languages,
the ad-hoc mechanisms employed in those languages may sometimes surprise
programmers or even cause safety issues.
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2.1 Gotcha! Mutable Default Arguments in Python

Let us consider a simple Python function that appends an element to a list. We
provide a default value for the list, which is an empty list:

def append(x, xs=[]):
xs.append(x)
return xs

append(1) #= [1]
append(2) #= [1, 2]

After calling append(1), we get the expected result [1]. However, continuing
to call append(2) gives us [1, 2] instead of [2]. This is because Python only
evaluates the default value once when the function is defined, so the same list ini-
tialized for xs is shared across different calls to append. When calling append(2),
the default value for xs is no longer an empty list but the list that has been mod-
ified by the previous call append(1).

This issue, while seemingly minor, highlights the importance of understand-
ing the semantics of default arguments. Our design strives to avoid such surprises,
following the principle of least astonishment, yet this is not our main focus. We
will discuss the more critical issue about type safety next.

2.2 Caution! Type Safety with First-Class Named Arguments

As we have shown in Fig. 1, quite a few languages, especially dynamically typed
ones like Python and Ruby, treat named arguments as first-class values. This
feature is particularly helpful for passing settings because they are usually stored
in a separate configuration file. We can read the settings from the file and pass
them as named arguments using the ** operator. For example, we can find such
code in Python to run a web server:

class App: # from a web server library
def run(self, host: str, port: int, debug: bool = False):

assert isinstance(debug, bool) # actual code omitted...

args = { "host": "0.0.0.0", "port": 80, "debug": True }
app.run(**args) #= app.run(host="0.0.0.0", port=80, debug=True)

Although Python is dynamically typed, there is continuous effort in the Python
community to improve the detection of type errors earlier in the development pro-
cess, primarily through static analysis. There is an optional static type checker
for Python called mypy [13]. In the example above, we make use of type hints,
introduced in Python 3.5, to specify the types of the parameters and the return
value of the run method. The type hints have no effect at run time but can be
used by external tools like mypy to statically check if the code is well-typed.
Perhaps surprisingly, the code above cannot pass mypy’s type checking, because
the type inferred for args (i.e. dict[str,object]) is not precise enough. The
type checker needs to know what keys args exactly has and what types the
values associated with those keys have, in order to make sure that **args is
compatible with the parameters of app.run.
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Fortunately, TypedDict is added in Python 3.8 to represent a specific set
of keys and their associated types. By default, every specified key is required,
except when it is marked as NotRequired, which is a type qualifier added in
Python 3.11. With TypedDict and NotRequired, we can now define a precise
dictionary type for args that passes mypy’s type checking:

class Args(TypedDict):
host: str
port: int
debug: NotRequired[bool]

args0: Args = { "host": "0.0.0.0", "port": 80, "debug": True }
app.run(**args0) # type-checks in mypy
args1: Args = { "host": "0.0.0.0", "port": 80 }
app.run(**args1) # type-checks in mypy, too

The mypy type checker will raise an error if we provide an argument with an
incompatible type, such as a string for the debug key:

class In(TypedDict):
host: str
port: int
debug: str

args2: In = { "host": "0.0.0.0", "port": 80, "debug": "Oops!" }
app.run(**args2) # TypeError: Argument "debug"
# has incompatible type "str"; expected "bool" [arg-type]

However, mypy’s type system is not completely type-safe. We can create a func-
tion f that takes a dictionary with three keys specified in type In and returns
a dictionary with only two keys specified in type Out. The function type-checks
in mypy because type In is compatible whenever type Out is expected. Roughly
speaking, it means that In is a subtype of Out. Then we can use f to forget the
debug key in the static type:

class Out(TypedDict):
host: str
port: int

def f(args: In) → Out: return args

args3 = f(args2) # still contains { "debug": "Oops!" }
app.run(**args3) # type-checks in mypy, but has a runtime error!

Here args3 has type Out without the debug key specified. From a static view-
point, args3 only has two keys host and port, which are compatible with the
parameters of app.run since debug is optional and has a default value. That is
why app.run(**args3) type-checks in mypy. However, at run time, the debug
key is still present in args3, so the string "Oops!" is passed as a named argument
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to app.run, which originally expects a boolean value. This results in a runtime
error since there is an assertion in app.run to ensure that debug is boolean.

This issue is not unique to Python and mypy. We have reproduced nearly
the same issue in Ruby with two popular type checkers, namely Steep [16] and
Sorbet [28], which is illustrated in Appendices A&B.

In conclusion, subtyping can lead to a fundamental type-safety issue when
dealing with first-class named and optional arguments. In essence, the following
subsumption chain is questionable:

{ host: str, port: int, debug: str }
<: { host: str, port: int }
<: { host: str, port: int, debug?: bool }

Following this chain bypasses mypy’s type compatibility checking for the debug
key. Next we will show how to break the chain and address the type-safety issue.

3 Our Type-Safe Approach

In this section, we informally present how we translate named and optional
arguments into a core language with intersection and union types, while retaining
type safety. We start by introducing the core language constructs that we need.
Then we illustrate our translation scheme by example and demonstrate how it
recovers type safety. After that, we showcase a practical example in the CP
language, which has incorporated our approach to support named and optional
arguments. Finally, we discuss how our translation scheme can be applied to
other languages.

3.1 Core Language

The core language features intersection and union types, which establish an
elegant duality in the type system. A value of the intersection type A ∧ B can
be assigned both A and B , whereas a value of the union type A ∨ B can be
assigned either A or B . Intersection and union types correspond to the logical
conjunction and disjunction respectively. Similar calculi are widely studied [2,6,8]
and provide a well-understood foundation for named and optional arguments.

Named Arguments as Intersections. Named arguments are translated to
multi-field records. However, the core language does not support multi-field
records directly. There are only single-field records in the core language, and
multiple fields are represented as intersections of single-field record types. For
example, {x : Z}∧{y : Z} represents a record type with two integer fields x and
y. With intersection types, width subtyping for record types comes for free, and
permutations of record fields are naturally allowed [24].

At the term level, a merge operator [6,23] (denoted by , in this paper) is used
to concatenate multiple single-field records to form multi-field records, reminis-
cent of Forsythe [24]. For example, {x = 1} , {y = 2} forms a two-field record
from two single-field records.
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Optional Arguments as Unions. Optional arguments are translated to nul-
lable types. A nullable type is not implicit in the core language but is represented
as a union with the null type [18]. For example, an optional integer argument
named z is translated to {z : Z ∨Null}.

At the term level, a type-based switch expression [8,23] is used to scru-
tinize a term of a union type, reminiscent of ALGOL 68 [32]. For example,
switch z caseZ ⇒ e1 caseNull ⇒ e2 returns e1 if z is an integer or e2 if null.

3.2 Translation by Example

Let us review the previous Python function in Section 2.1 that appends an
element to a list, which defaults to an empty list:

def append(x: int, xs: list[int] = []): ...

The function will be translated to a core function as follows:

append = λargs :{x : Z} ∧ {xs : [Z] ∨Null}.
let x = args.x in

let xs = switch args.xs as xs caseZ ⇒ xs caseNull ⇒ [ ] in

· · ·

Here we can see that the default value (i.e. the empty list) is not shared across
different calls to append because the default value is evaluated within the func-
tion body. Therefore, calling append(x=1) will consistently return [1] instead of
surprisingly modifying the default value. This design leads to less astonishment
and more predictable behavior.

Since we translate named parameter types to record types, we correspond-
ingly translate named arguments to records. For example, the function call
append(x=1, xs=[0]) will be translated to append ({x = 1} , {xs = [0]}).

Rewriting Call Sites. More importantly, we also rewrite call sites to add null
values for absent optional arguments. For example, the function call append(x=1)
will be rewritten and translated to append ({x = 1} , {y = null}).

Dependent Default Values. Another advantage of our translation scheme is
that it naturally allows default values to depend on earlier arguments. Python
and Ruby do not support dependent default values, but this feature can be useful
in some practical scenarios. For example, when setting up I/O, we may want to
output error messages to the same stream as out by default:

def setIO(in_, out, err = out): ...

The variable out can be used in the default value of err because it has been
brought into scope by the previous let-in binding:

let out = args.out in

let err = switch args.err as err case IO ⇒ err caseNull ⇒ out in
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3.3 Recovering Type Safety

The type safety of our translation scheme is essentially guaranteed by call site
rewriting. Besides adding null values for absent optional arguments, we also
sanitize arguments to ensure that they are expected from the parameter list.
Since named arguments are first-class and can be passed as a variable, we may
not have literals like append(x=1, xs=[0]) but splats like append(**args). So
the matching between (formal) parameters and (actual) arguments is performed
based on their static types:

– If args has type {x : Z} ∧ {xs : [Z]}, the call site will be rewritten to
something equivalent to append(x=args.x, xs=args.xs).

– If args only has type {x : Z}, the call site will be rewritten to something
equivalent to append(x=args.x, xs=null).

For the append function, no other cases can pass the sanitization process.
Let us review the previous type-unsafe Python example in Section 2.2:

def f(args: In) → Out: return args
args = f({ "host": "0.0.0.0", "port": 80, "debug": "Oops!" })
app.run(**args) #= app.run(host="0.0.0.0", port=80, debug="Oops!")

Recall that args has type Out, which is similar to { host: str, port: int }.
The debug key is forgotten in the static type but is still present at run time.
It passes mypy’s type checking but raises a runtime error. In our translation
scheme, the call site will be rewritten to the following form based on the type of
args (i.e. Out):

app.run(host=args.host, port=args.port, debug=null)

Therefore, type safety is recovered in our translation scheme.

Takeaways. There are two important observations from our translation scheme:

1. { required: A, optional?: B } is not equivalent to { required: A }
because the former contains more information that prevents optional from
being associated with other types than B. In other words, the optional
argument can be absent, but if it is present, it must have type B.

2. Corresponding to the above observation at the type level, we explicitly pass
a null value as an optional argument if it is statically missing. The null value
fills the position of a potentially forgotten argument that may have a wrong
type. In other words, we implement the splat operator as per the static type
of named arguments.

3.4 Implementation in the CP Language

Our approach to named and optional arguments has been implemented in the
CP language, a statically typed language for compositional programming [33].
CP supports not only intersection and union types but also the merge operator
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-- from a SVG library in CP
SVG: { width: Int; height: Int } → [Element] → Graphic; -- <svg>
Rect: { x: Int; y: Int; width: Int; height: Int

; rx?: Int; ry?: Int; color?: String } → Element; -- <rect>
......
-- client code
fractal { level = 4; x: Int; y: Int; width: Int; height: Int } =

let args = { level = level-1; width = width/3; height = height/3 } in
let center = Rect (args,{ x = x + width/3; y = y + height/3

; color = "white" }) in
if level == 0 then [center]
else fractal (args,{ x = x; y = y })

++ fractal (args,{ x = x + width/3; y = y })
++ fractal (args,{ x = x + width*2/3; y = y })
++ fractal (args,{ x = x; y = y + height/3 })
++ [center]
++ fractal (args,{ x = x + width*2/3; y = y + height/3 })
++ fractal (args,{ x = x; y = y + height*2/3 })
++ fractal (args,{ x = x + width/3; y = y + height*2/3 })
++ fractal (args,{ x = x + width*2/3; y = y + height*2/3 });

init = { x = 0; y = 0; width = 600; height = 600; color = "black" };
main = SVG init ([Rect init] ++ fractal init);

Fig. 2: Sierpiński carpets implemented in the CP language.

and type-based switch expression. The implementation of named and optional
arguments in CP is a direct application of our translation scheme.

More interestingly, the sanitization process during call site rewriting comes
for free because CP employs a coercive semantics for subtyping [14]. For ex-
ample, a subtyping relation between { host: str, port: int, debug: str }
and { host: str, port: int } implies a coercion function from subtype to su-
pertype. In CP, such coercions are implicitly inserted to remove the forgotten
fields (e.g. debug in this case). Therefore, the only remaining work is to add null
values for absent optional arguments.

To demonstrate the use of named and optional arguments in CP, we show
a fractal example in Fig. 2, which is adapted from previous work on CP’s ap-
plication to embedded DSLs [29]. The code makes use of named and optional
arguments a lot, including both the SVG/Rect constructors from the library and
the fractal function defined by the client. For example, fractal has five named
arguments (level, x, y, width, and height), among which level is optional with
a default value of 4.

It is worth noting that named arguments are used as first-class values in the
CP code. On the first line of the fractal body, we store three fields level,
width, and height in a variable args, which are shared arguments for later
calls. When constructing the center rectangle, we merge args with three more
fields x, y, and color to form a full set of named arguments we need for the
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Rect constructor. When recursively calling fractal, we pass args merged with
different x and y values to draw the eight sub-copies. In the main function, we
also use a variable init to avoid repeating the same set of arguments for SVG,
Rect, and fractal calls. The ** operator is not needed in CP when passing
first-class named arguments. Note that the parameter lists of these three con-
structors/functions are not completely the same, but we can still use a larger set
of named arguments to cover all the cases. This is possible because CP allows
subtyping for named arguments while retaining type safety.

3.5 Applications to Other Languages

Although we base our translation scheme on a core language with intersection
and union types for type-theoretic solidness and elegance, it can work for a wider
range of languages. We discuss the alternatives to intersections and unions below.

Alternative to Intersections. Record types have existed long before intersec-
tion types were invented. In practice, multi-field records are rarely represented
as intersections of single-field records. For example, Software Foundations [22]
demonstrates how to directly model multi-field records and define depth, width,
and permutation subtyping without intersections, though their formalization is
more complex than ours.

There is a merge operator in our translation scheme, but we only use it
to construct multi-field records statically. Although the merge operator can be
powerful if we want to construct first-class named arguments at run time like in
CP, its absence does not disable our translation scheme. In other words, we only
assume a simplified version that does not merge terms dynamically.

Alternative to Unions. Nullable types are rarely represented as unions with
the null type too. For example, C#, Kotlin, and Dart support nullable types as
a primitive data structure. Putting a question mark behind any type makes it
nullable in these languages (e.g. int?).

No matter how a nullable type is represented, there is usually some ex-
pression that can check whether a nullable value is null or not. For example,
C# provides the is operator to examine the runtime type, which is gener-
ally known as type introspection and is similar to the type-based switch. C#
also provides the null coalescing operator ?? and simplifies the common pattern
switch e as x caseA ⇒ x caseNull ⇒ d as e??d for nullable values.

Dynamically Typed Languages. It may be surprising at first sight that
dynamically typed languages can benefit from our work with static typing, but
recall that the type-safety issue in Section 2.2 was found in Python. Nowadays,
popular dynamically typed languages have been retrofitted with gradual typing.
For example, Python has type hints and mypy [13], Ruby has RBS and Steep [16],
JavaScript gets typed by TypeScript [17], and Lua gets typed by Luau [25]. All of
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these typed versions support record-like and union types, and all except Python
also support intersection types. Our translation scheme can almost directly apply
to these languages. For a concrete example, we show how the aforementioned
exp function can be encoded in TypeScript:

function exp(args: { x: number } & { base: number|null }) {
let x = args.x;
let base = (typeof args.base === "number") ? args.base : Math.E;
return Math.pow(base, x);

}
exp({ base: 2, x: 10 }) //= 1024
exp({ x: 10, base: null }) //= e^10

The code is almost the same as in Section 3.2. Note that the typeof operator
is the standard way to perform type introspection in TypeScript, and the type
of args.base is refined from the number|null to number in the true-branch.
We assume the call sites have been rewritten in the code above. In this manner,
named and optional arguments can be added to TypeScript as syntactic sugar.

Although we have discussed several alternatives to intersection and union
types, we believe that if a language is designed from scratch, our approach is a
good choice. Intersection and union types not only subsume multi-field record
and nullable types but also provide a solid and elegant foundation for other ad-
vanced features, such as function overloading and heterogeneous data structures.
Castagna’s essay [3] is an excellent further reading on the beauty of programming
with intersection and union types.

4 Formalization

In this section, we formalize the translation of named and optional arguments as
an elaboration semantics. The target of elaboration is called λiu, and the source
is called Uaena. We prove that the source language with named and optional
arguments is type-safe via (1) the type soundness of the target calculus and (2)
the type soundness of elaboration. All the theorems are mechanically proven
using the Coq proof assistant.

4.1 The Target Calculus: λiu

λiu is an extension to the calculus in Chapter 5 of Rehman’s dissertation [23]
with null, single-field records, and let-in bindings. The addition of let-in bindings
is not essential because they can be desugared into lambda abstractions and
applications:

let x = e1 in e2 ≡ (λx. e2) e1

However, we still have let-in bindings for the sake of readability, and this form of
let-in bindings simplifies the rules of parameter elaboration (introduced later in
Fig. 5). Another difference is that the original calculus uses the locally nameless
representation [4] while ours directly uses names for bound variables.
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Our changes to Rehman’s calculus are relatively trivial, and we do not touch
the rules for intersection and union types. We will not discuss his design choices
in this paper, because our focus is on the type soundness with the addition of
Null and record types. We have proven in Coq that these extensions preserve
type soundness.

Syntax of λiu

Types A,B ::= ⊤ | ⊥ | Null | Z | A → B | {ℓ : A} | A ∧ B | A ∨ B

Expressions e ::= {} | null | n | x | λx :A. e :B | e1 e2 | {ℓ : A = e} | e.ℓ
| e1 , e2 | switch e0 as x caseA ⇒ e1 caseB ⇒ e2 | letin e

The types include the top type ⊤, the bottom type ⊥, the null type Null, the
integer type Z, function types A → B , record types {ℓ : A}, intersection types
A∧B , and union types A∨B . Null is a unit type that has only one value null.

The expressions include the empty record {}, the null value null, integer
literals n, variables x , lambda abstractions λx : A. e : B , function applications
e1 e2, record literals {ℓ : A = e}, record projections e.ℓ, merges e1 ,e2, type-based
switch expressions switch e0 as x caseA ⇒ e1 caseB ⇒ e2, and let-in bindings
letin e. The syntax of letin is as follows:

letin ::= let x = e in | letin1 ◦ letin2 | id

The composition of two let-in bindings is denoted by letin1◦ letin2, and an empty
binding is denoted by id.

Subtyping. Fig. 3 shows the subtyping rules of λiu. The rules are standard for
a type system with intersection and union types. Rule Sub-Top shows that the

A <: B (Subtyping)

Sub-Null

Null <: Null

Sub-Int

Z <: Z

Sub-Arrow
A2 <: A1 B1 <: B2

A1 → B1 <: A2 → B2

Sub-Rcd
A <: B

{ℓ : A} <: {ℓ : B}

Sub-And
A <: B A <: C

A <: B ∧ C

Sub-AndL
A <: C

A ∧ B <: C

Sub-AndR
B <: C

A ∧ B <: C

Sub-Or
A <: C B <: C

A ∨ B <: C

Sub-OrL
A <: B

A <: B ∨ C

Sub-OrR
A <: C

A <: B ∨ C

Sub-Top

A <: ⊤

Sub-Bot

⊥ <: A

Fig. 3: Subtyping of λiu.
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top type ⊤ is a supertype of any type, and rule Sub-Bot shows that the bottom
type ⊥ is a subtype of any type. Rules Sub-And, Sub-AndL, and Sub-AndR
handle the subtyping for intersection types, while rules Sub-Or, Sub-OrL, and
Sub-OrR are for union types. Rules Sub-Null and Sub-Rcd added by us are
straightforward. We prove that the subtyping relation is reflexive and transitive.

Theorem 1 (Subtyping Reflexivity). ∀A,A <: A.

Theorem 2 (Subtyping Transitivity). If A <: B and B <: C , then A <: C .

Typing. Fig. 4 shows the typing rules of λiu. The empty record {} has the top
type ⊤, as shown in rule Typ-Top. Rule Typ-Merge is the introduction rule for
intersection types. Merging two functions is used for function overloading, and
merging two records is used for record concatenation. Rule Typ-Switch is the
elimination rule for union types. The type-based switch expression scrutinizes
an expression having a union of the two scrutinizing types (i.e. e0 : A ∨ B).
This premise ensures the exhaustiveness of the cases in the switch. The as-
variable x is refined to type A in e1 and to type B in e2. Rules Typ-Null,

Typing contexts Γ ::= · | Γ, x : A

Γ ⊢ e : A (Typing)

Typ-Top

Γ ⊢ {} : ⊤

Typ-Null

Γ ⊢ null : Null

Typ-Int

Γ ⊢ n : Z

Typ-Var
x : A ∈ Γ

Γ ⊢ x : A

Typ-Abs
Γ, x : A ⊢ e : B

Γ ⊢ (λx :A. e :B) : A → B

Typ-App
Γ ⊢ e1 : A → B

Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B

Typ-Rcd
Γ ⊢ e : A

Γ ⊢ {ℓ : A = e} : {ℓ : A}

Typ-Prj
Γ ⊢ e : {ℓ : A}
Γ ⊢ e.ℓ : A

Typ-Let
Γ ⊢ letin ⊣ Γ ′

Γ ′ ⊢ e : A

Γ ⊢ letin e : A

Typ-Merge
Γ ⊢ e1 : A
Γ ⊢ e2 : B

Γ ⊢ e1 , e2 : A ∧ B

Typ-Switch
Γ ⊢ e0 : A ∨ B
Γ, x : A ⊢ e1 : C
Γ, x : B ⊢ e2 : C

Γ ⊢ switch e0 as x caseA ⇒ e1 caseB ⇒ e2 : C

Typ-Sub
Γ ⊢ e : A A <: B

Γ ⊢ e : B

Fig. 4: Typing of λiu.
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Typ-Rcd, and Typ-Prj added by us are straightforward. Rule Typ-Let uses
an auxiliary judgment Γ ⊢ letin ⊣ Γ ′ (defined in Appendix C) to obtain the
typing context for the body of the let-in binding. For example, if e1 has type A,
then let x = e1 in e2 adds x : A to the typing context before type-checking e2.

Dynamic Semantics. We have a small-step operational semantics for λiu. The
judgment e −→ e ′ means that e reduces to e ′ in one step, and e −→∗ e ′ is for
multi-step reduction. We extend the original dynamic semantics by adding rules
for records and projections. Similarly to the applicative dispatch for function
applications in the original calculus, we add a relation called projective dispatch
for record projections. For example, ({x = 1} , {y = 2}).x reduces to {x = 1}.x
via projective dispatch to select the needed field.

Since the dynamic semantics of λiu is independent of the elaboration from
Uaena to λiu, we omit the rules here but leave them in Appendix D. Note
that the operational semantics is not commonplace in that it is type-directed
and non-deterministic. Please refer to Rehman’s dissertation [23] for detailed
explanations.

Theorem 3 (Progress). If · ⊢ e : A, then either e is a value or ∃e ′, e −→ e ′.

Theorem 4 (Preservation). If · ⊢ e : A and e −→ e ′, then · ⊢ e ′ : A.

Putting progress and preservation together, we conclude that λiu is type-sound:
a well-typed term can never reach a stuck state.

Corollary 1 (Type Soundness). If · ⊢ e : A and e −→∗ e ′, then either e ′ is
a value or ∃e ′′, e ′ −→ e ′′.

4.2 The Source Calculus: Uaena

Uaena (Unnamed Arguments Extended with Named Arguments) is a minimal
calculus with named and optional arguments. Although the calculus is small,
named arguments are supported as first-class values and can be passed to or
returned by a function. Besides functions with named arguments, Uaena also
supports normal functions with positional arguments. The two kinds of functions
are distinguished in the syntax, as seen in Ruby, Racket, OCaml, etc.

Syntax of Uaena

Types A,B ::= Z | (A) → B | {P} → B | {K}
Named parameter types P ::= · | P; ℓ : A | P; ℓ? : A
Named argument types K ::= · | K; ℓ : A
Expressions ϵ ::= n | x | λ(x :A). ϵ | λ{ρ}. ϵ | ϵ1 ϵ2 | {κ}
Named parameters ρ ::= · | ρ; ℓ : A | ρ; ℓ = ϵ

Named arguments κ ::= · | κ; ℓ = ϵ
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The types include the integer type Z, normal function types (A) → B, func-
tion types with named parameters {P} → B, and (first-class) named argument
types {K}. The expressions include integer literals n, variables x , normal lambda
abstractions λ(x : A). ϵ, lambda abstractions with named parameters λ{ρ}. ϵ,
function applications ϵ1 ϵ2, and (first-class) named arguments {κ}.

A named parameter type P can be required (ℓ : A) or optional (ℓ? : A). If a
named parameter is optional, its default value must be provided in the function
definition. For example, λ{x : Z; y = 0}. x + y has type {x : Z; y? : Z} → Z.
A function with named parameters can only be applied to named arguments,
which are basically a list of key-value pairs. For example, the previous function
can be applied to {x = 1; y = 2} or {x = 1} or a variable having a compatible
type. The variable case demonstrates the first-class nature of named arguments
in Uaena.

Careful readers may notice that a named argument type can also serve as the
parameter of a normal function. This also demonstrates the first-class nature of
named arguments. But note that a normal function that takes named arguments
is different from a function with named parameters. Consider the following two
functions, the former of which is a function with named parameters and the
latter is a normal function:

(λ{x : Z; y = 0}. x + y) : {x : Z; y? : Z} → Z

(λ(args : {x : Z; y : Z}). args) : ({x : Z; y : Z}) → {x : Z; y : Z}

Although both functions can be applied to {x = 1; y = 2}, there are two
main differences between them. First, optional parameters cannot be defined in
a normal function. So we cannot provide y = 0 as a default value in the second
function. Second, x and y are not brought into the scope of the function body in
a normal function. So the only accessible variable is args in the second function.

Elaboration. The type-directed elaboration from Uaena to λiu is defined at the
top of Fig. 5. ∆ ⊢ ϵ : A ⇝ e means that the source expression ϵ has type A and
elaborates to the target expression e under the typing context ∆. Rules Ela-Abs
and Ela-App for normal functions are straightforward. In rule Ela-NAbs for
functions with named parameters, besides inferring the type of the function body
ϵ and elaborating it to e, we generate let-bindings for the named parameters,
which is delegated to the auxiliary judgment ∆ ⊢x ρ : P ⇝ letin ⊣ ∆′. In
rule Ela-NApp, there is also an auxiliary judgment ∆ ⊢e P ⋄ K ⇝ e ′ that
rewrites call sites according to the parameter and argument types. Rules Ela-
NEmpty and Ela-NField are used to elaborate named arguments.

Named Parameter Elaboration. As shown at the bottom of Fig. 5, ∆ ⊢x ρ :
P ⇝ letin ⊣ ∆′ means that the named parameter ρ is inferred to have type P
and elaborates to a series of let-in bindings letin, given that the named param-
eters correspond to the target bound variable x . In the meanwhile, the typing
context ∆ is extended with the types of the named parameters to form ∆′. ∆′ is
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Typing contexts ∆ ::= · | ∆, x : A

∆ ⊢ ϵ : A ⇝ e (Elaboration)

Ela-Int

∆ ⊢ n : Z ⇝ n

Ela-Var
x : A ∈ ∆

∆ ⊢ x : A ⇝ x

Ela-Abs
∆, x : A ⊢ ϵ : B ⇝ e

∆ ⊢ λ(x :A). ϵ : (A) → B ⇝ λx : |A|. e : |B|

Ela-App
∆ ⊢ ϵ1 : (A) → B ⇝ e1

∆ ⊢ ϵ2 : A ⇝ e2

∆ ⊢ ϵ1 ϵ2 : B ⇝ e1 e2

Ela-NAbs
∆ ⊢x ρ : P ⇝ letin ⊣ ∆′

∆′ ⊢ ϵ : B ⇝ e

∆ ⊢ λ{ρ}. ϵ : {P} → B ⇝ λx : |P|. letin e : |B|

Ela-NApp
∆ ⊢ ϵ1 : {P} → B ⇝ e1

∆ ⊢ ϵ2 : {K} ⇝ e2
∆ ⊢e2 P ⋄ K ⇝ e ′

2

∆ ⊢ ϵ1 ϵ2 : B ⇝ e1 e
′
2

Ela-NEmpty

∆ ⊢ {·} : {·} ⇝ {}

Ela-NField
∆ ⊢ {κ} : {K} ⇝ e ′

∆ ⊢ ϵ : A ⇝ e

∆ ⊢ {κ; ℓ = ϵ} : {K; ℓ : A} ⇝ e ′ , {ℓ : |A| = e}

∆ ⊢x ρ : P ⇝ letin ⊣ ∆′ (Named parameter elaboration)

PEla-Empty

∆ ⊢x · : · ⇝ id ⊣ ∆

PEla-Required
∆ ⊢x ρ : P ⇝ letin ⊣ ∆′

∆ ⊢x (ρ; ℓ : A) : (P; ℓ : A) ⇝ letin ◦ let ℓ = x .ℓ in ⊣ ∆′, ℓ : A

PEla-Optional
∆ ⊢x ρ : P ⇝ letin ⊣ ∆′

∆′ ⊢ ϵ : A ⇝ e

∆ ⊢x (ρ; ℓ = ϵ) : (P; ℓ? : A)
⇝ letin ◦ let ℓ = switch x .ℓas y case |A| ⇒ y caseNull ⇒ e in ⊣ ∆′, ℓ : A

Fig. 5: Type-directed elaboration from Uaena to λiu.
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∆ ⊢e P ⋄ K ⇝ e ′ (Call site rewriting)

PMat-Empty

∆ ⊢e · ⋄K ⇝ {}

PMat-Required
K :: ℓ ⇒ A

∆ ⊢e P ⋄ K ⇝ e ′

∆ ⊢e (P; ℓ : A) ⋄ K ⇝ e ′ , {ℓ : |A| = e.ℓ}

PMat-Present
K :: ℓ ⇒ A

∆ ⊢e P ⋄ K ⇝ e ′

∆ ⊢e (P; ℓ? : A) ⋄ K ⇝ e ′ , {ℓ : |A| ∨Null = e.ℓ}

PMat-Absent
K :: ℓ ⇏

∆ ⊢e P ⋄ K ⇝ e ′

∆ ⊢e (P; ℓ? : A) ⋄ K ⇝ e ′ , {ℓ : |A| ∨Null = null}

Fig. 6: Type-directed call site rewriting in Uaena.

used for typing the body of the function with named parameters. Rule PEla-
Required simply generates let ℓ = x .ℓ in, while rule PEla-Optional gener-
ates let ℓ = switch x .ℓas y case |A| ⇒ y caseNull ⇒ e in to provide a default
value e for the Null case.

Call Site Rewriting. As shown in Fig. 6, ∆ ⊢e P ⋄ K ⇝ e ′ means that if the
parameter type P is compatible with the argument type K, the target expression
e, which corresponds to the named arguments, will be rewritten to e ′. The
compatibility check is based on the parameter type P. Rule PMat-Required
handles the case where the argument is required, while rules PMat-Present
and PMat-Absent handle the cases where the optional argument with a specific
type is present and where the optional argument is absent, respectively. The
remaining case, where the optional argument is present but associated with a
wrong type, is prohibited and cannot elaborate to any term. We have two more
auxiliary judgments K :: ℓ ⇒ A and K :: ℓ ⇏ to indicate that the argument type
K contains a field ℓ with type A or K does not contain ℓ, whose definitions can
be found in Appendix E.

Type Translation. As we have informally mentioned in Section 3.1, we trans-
late named parameters to intersection types and optional parameters to union
types. The rules for | · | can be found in Appendix F. Having defined the trans-
lation, we can prove the soundness of call site rewriting and elaboration.

Theorem 5 (Soundness of Call Site Rewriting). If ∆ ⊢e P ⋄ K ⇝ e ′ and
|∆| ⊢ e : |K|, then |∆| ⊢ e ′ : |P|.
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Theorem 6 (Soundness of Elaboration). If ∆ ⊢ ϵ : A ⇝ e, then |∆| ⊢
e : |A|.

With the two theorems above and the type soundness of λiu, we can conclude
that Uaena is type-safe.

5 Discussion and Related Work

In this section, we first discuss OCaml, the only language we know of that has
well-studied support for named and optional arguments, though its mechanism
does not go well with higher-order functions. Then we briefly show how named
arguments are handled very differently in Scala and Racket. After that, we il-
lustrate how named arguments can be encoded as records in Haskell while not
natively supported. Finally, we discuss two more approaches we find in record
calculi [19,20]. We will also explain why all these approaches have drawbacks.

5.1 OCaml

OCaml did not support named arguments originally. Nevertheless, Garrigue et
al. [1,9,12] conducted research on the label-selective λ-calculus and implemented
it in OLabl [10], which extends OCaml with labeled and optional arguments,
among others. All features of OLabl were merged into OCaml 3, despite subtle
differences [11].

Here is an example of the exponential function defined in a labeled style:

let exp ?(base = Float.exp 1.0) x = base ** x
(* val exp : ?base:float → float → float *)
exp 10.0 (*= e^10. *)
exp 10.0 ~base:2.0 (*= 1024. *)
(exp 10.0) ~base:2.0 (* TypeError! *)

In the definition of exp, base is an optional labeled parameter while x is a
positional parameter. Changing x into a second labeled parameter will trigger
an unerasable-optional-argument warning because OCaml expects that there
should be a positional parameter after all optional parameters. This expectation
is at the heart of how OCaml resolves the ambiguity introduced by currying.

For example, consider the function application exp 10.0. Is it a partially
applied function or a fully applied one using the default value of base? Both
interpretations are possible, but OCaml considers it to be a full application be-
cause the trailing positional argument x is given. The presence of the positional
argument is used to indicate that the optional arguments before it can be re-
placed by their default values. However, this design may confuse users since
(exp 10.0) ~base:2.0 will raise a type error but exp 10.0 ~base:2.0 will
not. Partial application does not lead to an equivalent program in such situa-
tions.
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Option Types. In OCaml, an optional argument is internally represented as
an option type, which comprises two constructors: None and Some. Here is an
equivalent definition for exp:

let exp ?(base : float option) x =
let base = match base with

| None → Float.exp 1.0
| Some b → b in

base ** x
(* val exp : ?base:float → float → float *)
exp 10.0 (*> exp 10.0 ~base:None *)
exp 10.0 ~base:2.0 (*> exp 10.0 ~base:(Some 2.0) *)

This encoding is similar to union types, but it depends on the option type in
the standard library. Unfortunately, this specific kind of option is not a built-in
type in many mainstream languages, especially in those languages that do not
support algebraic data types.

Higher-Order Functions. A surprising gotcha in OCaml is that the commu-
tativity breaks down when we pass a function with labeled arguments to another
function. Real World OCaml [15] gives the following example:

let apply1 f (fst,snd) = f ~fst ~snd
(* val apply1 : (fst:’a → snd:’b → ’c) → ’a * ’b → ’c *)
let apply2 f (fst,snd) = f ~snd ~fst
(* val apply2 : (snd:’a → fst:’b → ’c) → ’b * ’a → ’c *)
let divide ~fst ~snd = fst / snd
(* val divide : fst:int → snd:int → int *)
apply1 divide (48,3) (*= 16 *)
apply2 divide (48,3)
(* TypeError: "divide" has type fst:int → snd:int → int

but was expected of type snd:’a → fst:’b → ’c *)

Normally, the order of named arguments does not matter in OCaml, so it type-
checks whether we call divide ~fst ~snd or divide ~snd ~fst. However, or-
der matters when we pass divide to a higher-order function. That is why
apply1 divide type-checks while apply2 divide does not. It turns out that
the OCaml way of handling labeled arguments does not go well with other fea-
tures like higher-order functions. Our approach scales better in this regard and
the commutativity still holds in higher-order contexts via intersection subtyping.

In short, OCaml has a very powerful label-selective core calculus that rec-
onciles commutativity and currying, but it is quite complicated and may hinder
its integration with other language features. Another thing worth mentioning is
that labeled arguments in OCaml are not first-class values, so they cannot be
assigned to a variable or passed around by functions. In contrast to OCaml, our
approach supports first-class named arguments and targets a minimal core cal-
culus with intersection and union types, which is compatible with many popular
languages like Python, Ruby, JavaScript, etc.
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5.2 Scala

Rytz and Odersky [26] described the design of named and default arguments
in Scala. Like in Python, parameter names in a method definition are non-
mandatory keywords in Scala, and thus every argument can be passed with or
without keywords. Furthermore, the parameter names are not part of the public
interface of a method. This design is partly due to the backward compatibility
with earlier versions of Scala, so the addition of named arguments will not break
any existing code. As a result of the conservative treatment, named arguments
are not first-class values in Scala and cannot be defined in an anonymous func-
tion. In short, named arguments are more like syntactic sugar in Scala and do
not interact with the type system.

Below we show an example in Scala. In order to let the default value of c
depend on a and b, we make the function partly curried:

def f(a: Int, b: Int)(c: Int = a+b) = c
f(b = 1+1, a = 1)()

The code will be translated to equivalent code without keywords or defaults:

def f(a: Int, b: Int)(c: Int) = c
def f$default$3(a: Int, b: Int): Int = a+b
{

val x$1 = 1+1
val x$2 = 1
val x$3 = f$default$3(x$2, x$1)
f(x$2, x$1)(x$3)

}

There are two things to note here. First, a new function f$default$3 is gen-
erated for the default value of c, taking two parameters a and b. Second, the
call site is translated to a series of variable assignments for each argument and a
keyword-free call to f with arguments reordered. The whole call site is wrapped
in a block to avoid polluting the namespace.

In conclusion, named arguments in Scala are handled in a very different way
from OCaml and our approach. The Scala way is more syntactic than type-
theoretic, so it is hard to do an apples-to-apples comparison with our approach.

5.3 Racket

Flatt and Barzilay [7] introduced keyword and optional arguments into Racket,
which was known as PLT Scheme at that time. A keyword is prefixed with
#: in syntax and is implemented as a new built-in type in Racket. Keyword
arguments are supported by replacing define, lambda, and the core application
form with newly defined macros that recognize keyword-argument forms. Here
is an example of a function f with three keyword arguments a, b, and c, among
which c is optional and defaults to a+b:
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(define (f #:a a #:b b #:c [c (+ a b)]) c)
(f #:b (+ 1 1) #:a 1)

The function call with keywords seems hard to implement because it just lists the
function and arguments in juxtaposition. In fact, an application form in Racket
implicitly calls #%app in its lexical scope, so the support for keyword arguments
is done by supplying an #%app macro. A new keyword-apply function is also
defined to accept keyword arguments as first-class values. For example, we can
rewrite the function call above as follows1:

(keyword-apply f ’(#:a #:b) ‘(1 ,(+ 1 1)) ’());OK!
(keyword-apply f ’(#:b #:a) ‘(,(+ 1 1) 1) ’());Contract violation!

Note that we need to separate keywords and corresponding arguments into two
lists. The third list is for positional arguments, so it is empty in this case. We
cannot list keywords in arbitrary order: a contract violation will be signaled un-
less the keywords are sorted in alphabetical order. In other words, commutativity
is lost for first-class keyword arguments in Racket.

In Typed Racket [31], Racket’s gradually typed sister language, f can be
typed as (→∗ (#:a Number #:b Number) (#:c Number) Number). The first
list contains the required arguments (#:a and #:b), and the second list con-
tains the optional ones (#:c). However, Typed Racket does not provide a typed
version of keyword-apply, and it is unclear how to properly type it.

In conclusion, Racket supports keyword and optional arguments in a unique
way via its powerful macro system. However, the support for first-class keyword
arguments is very limited and cannot easily transfer to a type-safe setting.

5.4 Haskell

Unlike the aforementioned languages, Haskell does not support named arguments
natively. However, the paradigm of named arguments as records has long existed
in the Haskell community. Although we have to uncurry a function to have all
parameters labeled in a record, it is clearer and more human-readable, especially
when different parameters have the same type. For example, in the web server
library warp [27], various server settings are bundled in the data type Settings,
as shown in Fig. 7a. It is obvious how named arguments correspond to record
fields, but it needs some thought on how to encode default values for optional
arguments. The simplest approach, also used by warp, is to define a record
defaultSettings, as shown in Fig. 7b. Users can update whatever fields they
want to change while keeping others. For example, we update settingsPort
and settingsHost while keeping the rest unchanged in Fig. 7c. Finally, we call
the library function runSettings with the updated settings to run a server.

Such an approach works fine here but still has two drawbacks. The first
issue is the dependency on defaultSettings. It is awkward for users to look
for a record containing particular default values, especially when there are a

1 ’ is quote, ‘ is quasiquote, and , is unquote in Racket.
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data Settings = Settings
{ settingsPort :: Port
, settingsHost :: HostPreference
, settingsTimeOut :: Int
, ...
}

(a) Record type.

defaultSettings = Settings
{ settingsPort = 3000
, settingsHost = "*4"
, settingsTimeout = 30
, ...
}

(b) Default values.

runSettings :: Settings → Application → IO ()
runSettings = ...

main :: IO ()
main = runSettings settings app

where settings = defaultSettings { settingsPort = 4000
, settingsHost = "*6" }

(c) Updating some settings before running a server application.

Fig. 7: Named arguments as records in Haskell.

few similar records in a library. A better solution is to change the parameter of
runSettings from a complete Settings to a function that updates Settings:

runSettings’ :: (Settings → Settings) → Application → IO ()
runSettings’ update = runSettings (update defaultSettings)

main :: IO ()
main = runSettings’ update app

where update settings = settings { settingsPort = 4000
, settingsHost = "*6" }

With the new interface, users do not need to look for default values anymore.
However, this design still has a second drawback: all arguments must have default
values. Usually, we do not consider every argument to be optional. For example,
we may want to require users to fill in settingsPort. A workaround employed
by SqlBackend in the library persistent [21] is to have another function that asks
for required arguments and supplements default values for optional arguments:

{-# language DuplicateRecordFields, RecordWildCards #-}

data ReqSettings = ReqSettings { settingsPort :: Port }

mkSettings :: ReqSettings → Settings
mkSettings ReqSettings {..} =

Settings { settingsHost = "*4", settingsTimeout = 30, .. }
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Best Practice. Although mkSettings resolves the second issue, there is a re-
gression concerning the first issue: users have to look for mk* functions now.
Fortunately, we can harmonize both design patterns to develop a third approach:

{-# language DuplicateRecordFields, RecordWildCards #-}

data OptSettings = OptSettings { settingsHost :: HostPreference
, settingsTimeOut :: Int }

runSettings’’ :: (OptSettings → Settings) → Application → IO ()
runSettings’’ update = runSettings (update defaultSettings)

where defaultSettings = OptSettings { settingsHost = "*4"
, settingsTimeout = 30 }

main :: IO ()
main = runSettings’’ update app

where update OptSettings {..} =
Settings { settingsPort = 4000, settingsHost = "*6", .. }

This last approach is probably the best practice in Haskell, though it is already
quite complicated and requires two GHC language extensions. Of course, there
could be other approaches to encoding named and optional arguments in Haskell.
Users could get confused about the various available design patterns. This is
largely due to lack of language-level support. We believe it is better for a language
to natively support named and optional arguments.

Sidenote. The design pattern of named arguments as records can also be found
in other functional languages like Standard ML, Elm, and PureScript, just to
name a few. It is worth mentioning that these languages have first-class support
for record types, so no separate type declarations are needed like in Fig. 7a.
However, they still suffer from lack of native support for optional arguments.

5.5 Record Calculi

Ohori discussed how to model optional arguments in the future work of his
seminal paper on compiling a polymorphic record calculus [19]. He proposed to
extend a record calculus with optional-field selection (e.ℓ ? d) which behaves
like e.ℓ if ℓ is present in the record e or evaluates to d otherwise. However, his
proposal is subject to a similar type-safety issue as mypy. The static type of
e can easily lose track of the optional field ℓ and fail to ensure that e.ℓ has
the same type as d at run time. Since Ohori did not explicitly mention how to
type-check optional-field selection, we cannot make any firm conclusion about
the type safety of his proposal.

Osinski also discussed the support for optional arguments in Section 3.5 of his
dissertation on compiling record concatenation [20]. His approach is based on row
polymorphism and makes use of a sort of predicate on rows: row1 ▶ row2, which
means that row1 consists of all the fields in row2. With this predicate, a function
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has type ∀ρ. rowo ▶ ρ ⇒ {rowr, ρ} → τ if the required and optional arguments
are denoted by rowr and rowo, respectively. Roughly speaking, it means the
parameter has a type between {rowr} and {rowr, rowo}. At the term level, he
introduced a compatible concatenation operator |&|, which allows overlapping
fields with the same types and prefers the fields on the right-hand side when
overlapping occurs. An example of their translation is as follows:

fun add { x, y = 0 } = ...
(* is translated to *)
fun add r = let r’ = { y = 0 } |&| r in

let x = r’.x in let y = r’.y in ...

His approach is free from the type-safety issue, though based on a more sophis-
ticated row-polymorphic system. There are two sorts of predicates and three
variants of record concatenation operators in his calculus, for example, demon-
strating some sophistication of his calculus.

It is worth noting that neither Ohori’s nor Osinski’s calculus supports sub-
typing. This is a significant limitation since subtyping is a common feature in
many popular languages, especially object-oriented languages.

6 Conclusion

The benefits from named arguments are twofold. On the one hand, argument
keywords serve as extra documentation at the language level. On the other hand,
they lay the foundation for supporting commutativity and optionality.

Named and optional arguments are widely supported in mainstream pro-
gramming languages but are hardly formalized. Our approach is inspired by
existing mechanisms in OCaml and Haskell but further considers the interac-
tion between first-class named arguments and subtyping. Static type checkers
for Python and Ruby both suffer from a type-safety issue in this regard. We
show that λiu can serve as a type-safe core calculus with compact support for
intersection and union types.

We hope that this paper will call more attention to the foundation for named
and optional arguments and inspire future language developers to consider po-
tential type-safety issues more carefully in their designs.

Future Work. A natural extension of our work is to support omitting key-
words if the order of arguments is not changed from how they are defined. In
other words, this is a version without the property of distinctness as classified
in Table 1. The syntactic approach employed by Scala can be a good reference.
Another interesting direction is to evaluate our approach in a more practical
setting, for example, by typing popular libraries like TensorFlow, where named
and optional arguments are ubiquitous, and dependent default values can help
simplify the functions and avoid some ill-defined parameter combinations.

Data Availability. The Coq formalization for this paper is available [30].
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A Type-Safety Issue in Ruby with Steep

# rbs_inline: enabled

class App
# @rbs host: String
# @rbs port: Integer
# @rbs debug: bool
def run(host:, port:, debug: false)

if debug != true && debug != false
raise "Argument debug is not Boolean!"

end
end

end
app = App.new

# @type var args0: { host: String, port: Integer, debug: bool }
args0 = { host: "0.0.0.0", port: 80, debug: true }
app.run(**args0) # OK!

# @type var args1: { host: String, port: Integer }
args1 = { host: "0.0.0.0", port: 80 }
app.run(**args1) # OK!

# @type var args2: { host: String, port: Integer, debug: String }
args2 = { host: "0.0.0.0", port: 80, debug: "Oops!" }
# app.run(**args2) # TypeError: ArgumentTypeMismatch!

class App
# @rbs args: { host: String, port: Integer, debug: String }
# @rbs return: { host: String, port: Integer }
def f(args) = args

end

# @type var args3: { host: String, port: Integer }
args3 = app.f(args2)
app.run(**args3) # Type-checks in Steep, but has a runtime error:

# Argument debug is not Boolean!
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B Type-Safety Issue in Ruby with Sorbet

# typed: true
require "sorbet-runtime"

class App
extend T::Sig

sig {params(host: String, port: Integer, debug: T::Boolean).void}
def run(host:, port:, debug: false)

if debug != true && debug != false
raise "Argument debug is not Boolean!"

end
end

end
app = App.new

args0 = { host: "0.0.0.0", port: 80, debug: true }
app.run(**args0) # OK!

args1 = { host: "0.0.0.0", port: 80 }
app.run(**args1) # OK!

args2 = { host: "0.0.0.0", port: 80, debug: "Oops!" }
# app.run(**args2) # TypeError: Expected T::Boolean

# but found String("Oops!") for argument debug!

class App
sig do

params(args: { host: String, port: Integer, debug: String })
.returns({ host: String, port: Integer })

end
def f(args) = args

end

args3 = app.f(args2)
app.run(**args3)
# This call passes Sorbet’s static type checking,
# but the Sorbet runtime raises a dynamic type error in App#f:
# Return value expected type {host: String, port: Integer},
# but got type {host: String, port: Integer, debug: String}!
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C Typing of let-in bindings in λiu

Γ ⊢ letin ⊣ Γ ′ (Let-in binding)

LB-Let
Γ ⊢ e : A

Γ ⊢ let x = e in ⊣ Γ, x : A

LB-Comp
Γ ⊢ letin1 ⊣ Γ ′

Γ ′ ⊢ letin2 ⊣ Γ ′′

Γ ⊢ letin1 ◦ letin2 ⊣ Γ ′′

LB-Id

Γ ⊢ id ⊣ Γ

D Dynamic Semantics of λiu

Values v ::= {} | null | n | λx :A. e :B | {ℓ : A = v} | v1 , v2
Evaluation contexts E ::= [ · ] | E e | v E | {ℓ : A = E} | E .ℓ | E , e | v , E

| switchE as x caseA ⇒ e1 caseB ⇒ e2 | E : A

e −→ e ′ (Small-step operational semantics)

Step-App
v −→A v ′

(λx :A. e :B) v −→ ([v ′/x ] e) : B

Step-Prj
v −→A v ′

{ℓ : A = v}.ℓ −→ v ′

Step-AppDispatch
v1 , v2 • v −→ e ′

(v1 , v2) v −→ e ′

Step-PrjDispatch
v1 , v2 • ℓ −→ e ′

(v1 , v2).ℓ −→ e ′

Step-SwitchL
v −→A v ′

switch v as x caseA ⇒ e1 caseB ⇒ e2 −→ [v ′/x ] e1

Step-Anno
v −→A v ′

v : A −→ v ′

Step-SwitchR
v −→B v ′

switch v as x caseA ⇒ e1 caseB ⇒ e2 −→ [v ′/x ] e2

Step-Ctx
e −→ e ′

E [e] −→ E [e ′]
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Ordinary types A◦, B◦ ::= Null | Z | A → B | {ℓ : A}

v −→A v ′ (Type casting)

Cast-Top

v −→⊤ {}

Cast-Null

null −→Null null

Cast-Int

n −→Z n

Cast-Arrow
A1 → B1 <: A2 → B2

λx :A1. e :B1 −→A2→B2 λx :A1. e :B2

Cast-Rcd
{ℓ : A} <: {ℓ : B}

{ℓ : A = v} −→{ℓ:B} {ℓ : B = v}

Cast-Merge
v −→A v1
v −→B v2

v −→A∧B v1 , v2

Cast-MergeL
v1 −→A◦ v ′

1

v1 , v2 −→A◦ v ′
1

Cast-MergeR
v2 −→B◦ v ′

2

v1 , v2 −→B◦ v ′
2

Cast-OrL
v −→A v ′

v −→A∨B v ′

Cast-OrR
v −→B v ′

v −→A∨B v ′

v1 , v2 • v −→ e (Applicative dispatch)

AD-Left
⌊v⌋ <: ⌊v1⌋λ

¬(⌊v⌋ <: ⌊v2⌋λ)
v1 , v2 • v −→ v1 v

AD-Right
⌊v⌋ <: ⌊v2⌋λ

¬(⌊v⌋ <: ⌊v1⌋λ)
v1 , v2 • v −→ v2 v

AD-Both
⌊v⌋ <: ⌊v1⌋λ
⌊v⌋ <: ⌊v2⌋λ

v1 , v2 • v −→ v1 v , v2 v

v1 , v2 • ℓ −→ e (Projective dispatch)

PD-Left
⌊v1⌋ <: {ℓ : ⊤}

¬(⌊v2⌋ <: {ℓ : ⊤})
v1 , v2 • ℓ −→ v1.ℓ

PD-Right
⌊v2⌋ <: {ℓ : ⊤}

¬(⌊v1⌋ <: {ℓ : ⊤})
v1 , v2 • ℓ −→ v2.ℓ

PD-Both
⌊v1⌋ <: {ℓ : ⊤}
⌊v2⌋ <: {ℓ : ⊤}

v1 , v2 • ℓ −→ v1.ℓ , v2.ℓ

⌊v⌋ Dynamic type

⌊{}⌋ ≡ ⊤ ⌊null⌋ ≡ Null ⌊n⌋ ≡ Z ⌊λx :A. e :B⌋ ≡ A → B

⌊{ℓ : A = v}⌋ ≡ {ℓ : A} ⌊v1 , v2⌋ ≡ ⌊v1⌋ ∧ ⌊v2⌋

⌊v⌋λ Input type

⌊λx :A. e :B⌋λ ≡ A ⌊v1 , v2⌋λ ≡ ⌊v1⌋λ ∨ ⌊v2⌋λ ⌊. . .⌋λ ≡ ⊥
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E Label Lookup in Uaena Argument Types

K :: ℓ ⇒ A (Successful lookup)

LU-Present
K :: ℓ ⇏

(K; ℓ : A) :: ℓ ⇒ A

LU-Absent
ℓ′ ̸= ℓ K :: ℓ ⇒ A
(K; ℓ′ : B) :: ℓ ⇒ A

K :: ℓ ⇏ (Failed lookup)

LD-Empty

· :: ℓ ⇏

LD-Absent
ℓ′ ̸= ℓ K :: ℓ ⇏
(K; ℓ′ : A) :: ℓ ⇏

F Type Translation from Uaena to λiu

|A| Type translation

|Z| ≡ Z |(A) → B| ≡ |A| → |B| |{P} → B| ≡ |P| → |B| |{K}| ≡ |K|

|P| Parameter type translation

| · | ≡ ⊤ |P; ℓ : A| ≡ |P| ∧ {ℓ : |A|} |P; ℓ? : A| ≡ |P| ∧ {ℓ : |A| ∨Null}

|K| Argument type translation

| · | ≡ ⊤ |K; ℓ : A| ≡ |K| ∧ {ℓ : |A|}

|∆| Typing context translation

| · | ≡ · |∆, x : A| ≡ |∆|, x : |A|
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