
Classless Java

Yanlin Wang Haoyuan Zhang
Bruno C. d. S. Oliveira

The University of Hong Kong
{ylwang,hyzhang,bruno}@cs.hku.hk

Marco Servetto
Victoria University of Wellington
marco.servetto@ecs.vuw.ac.nz

Abstract
This paper presents an OO style without classes, which we
call interface-based object-oriented programming (IB). This
style is a natural extension of closely related ideas such as
traits. To support state, IB uses abstract state operations. This
new way to deal with state allows flexibility not available
in class-based languages. In IB state can be type-refined
in subtypes. The combination of a purely IB style and
type-refinement enables powerful idioms using multiple
inheritance and state. To introduce IB to programmers we
created Classless Java: an embedding of IB directly into Java.
Classless Java uses annotation processing for code generation
and relies on new features of Java 8 for interfaces. The code
generation techniques used in Classless Java have interesting
properties, including guarantees that the generated code is
type-safe and good integration with IDEs. Usefulness of IB
and Classless Java is shown with examples and case studies.

1. Introduction
Object-oriented languages strive to offer great code reuse.
They couple flexibility and rigour, expressive power and
modular reasoning. Two main ideas emerged to this end:
prototype-based (PB) [24] and class-based languages such
as Java, C# or Scala. In prototype-based languages objects
inherit from other objects. Thus objects own both behaviour
and state (and objects are all you have). In class-based
languages an object is an instance of a specific class, and
classes inherit from other classes. Objects own state, while
classes contain behaviour and the structure of the state.

This paper presents a third alternative: the concept of
interface-based object-oriented programming languages (IB),
where objects implement interfaces directly. In IB interfaces
own the implementation for the behaviour, which is struc-
turally defined in their interface. Programmers do not define
objects directly but delegate the task to object interfaces,
whose role is similar to non-abstract classes in class-based
object-oriented programming languages (CB). Objects are
instantiated by static factory methods in object interfaces.

A key challenge in IB lies in how to model state, which
is fundamental to having stateful objects. All abstract op-
erations in an object interface are interpreted as abstract
state operations. The abstract state operations include vari-

ous common utility methods (such as getters and setters, or
clone-like methods). Objects are only responsible to define
the ultimate behaviour of a method. Anything related to state
is completely contained in the instances and does not leak
into the inheritance logic. In CB, the structure of the state
is fixed and can only grow by inheritance. In contrast, in IB
the state is never fixed, and methods such as abstract setters
and getters can always receive an explicit implementation
down in the inheritance chain, improving modularity and
flexibility. That is, the concept of abstract state is more fluid.

Object interfaces provide support for automatic type-
refinement. In contrast, in CB special care and verbose ex-
plicit type-refinement are required to produce code that deals
with subtyping adequately. We believe that such verbosity hin-
dered and slowed down the discovery of useful programming
patterns involving type-refinement. A recently discovered
solution [26] to the Expression Problem [25] in Java-like lan-
guages shows how easy it is to solve the problem using only
type-refinement. However it took nearly 20 years since the
formulation of the problem for that solution to be presented
in the literature. In IB, due to its emphasis on type-refinement,
that solution should have been more obvious.

One advantage of abstract state operations and type-
refinement is that it allows a new approach to type-safe covari-
ant mutable state. That is, in IB, it is possible to type-refine
mutable “fields” in subtypes. This is typically forbidden in
CB: it is widely known that naive type-refinement of mutable
fields is not type-safe. Although covariant refinement of mu-
table fields is supported by some type systems [7, 8, 10, 19],
this requires significant complexity and restrictions to ensure
that all uses of covariant state are indeed type-safe.

Another advantage of IB is the support for multiple inheri-
tance. The literature shows how easy it is to combine multiple
sources of pure behaviour using traits [21]. In Java multiple
interface inheritance has been supported since inception, and
Java 8 default methods [12] bring some of the advantages of
traits to Java. The literature [5, 15, 20] is also rich on how
hard it is to combine multiple sources of behaviour and state
with multiple implementation inheritance of classes. In IB
there is only multiple interface inheritance, yet programmers
can still use state via abstract state operations. IB enables
powerful idioms using multiple inheritance and state.

1 2016/6/30



IB could be explained by defining a novel language, with
new syntax and semantics. However, this would incur a steep
learning curve. We take a different approach instead. For
the sake of providing a more accessible explanation, we
will embed our ideas directly into Java. Our IB embedding
relies on the new features of Java 8: interface static methods
and default methods, which allow interfaces to have method
implementations. In the context of Java, what we propose
is a programming style, where we never use classes (more
precisely, we never use the class keyword). We call this
restricted version of Java Classless Java.

Using Java annotation processors, we produce an imple-
mentation of Classless Java, which allows us to stick to pure
Java 8. By annotating the interfaces that represent object in-
terfaces with @Obj, code for interface instantiation and type
refinement can be automatically generated. Such code should
not be needed in the first place in a real IB language, and the
annotation processor allows us to transparently hide it from
Java programmers. The implementation works by perform-
ing AST rewriting, allowing most existing Java tools (such
as IDEs) to work out-of-the-box with our implementation.
Moreover, the implementation blends Java’s conventional CB
style and IB smoothly. As a result, we experiment object
interfaces with several interesting Java programs and conduct
various case studies. Finally, we also discuss the behaviour
of our @Obj annotation and its properties.

While the Java embedding has obvious advantages from
the practical point-of-view, it also imposes some limitations
that a new IB language would not have. Supporting proper
encapsulation is difficult in Java due to limitations of Java
interfaces. In particular in Java interfaces the visibility of all
methods is public. Thus modelling private state is difficult in
current Java 8. However, using existing design patterns [3]
we can emulate hiding methods from interfaces. Furthermore
Java 9 will allow private methods in interfaces [22].

In summary, the contributions of this paper are:

• IB and Object Interfaces: which enable powerful
programming idioms using multiple-inheritance, type-
refinement and abstract state operations.

• Classless Java: a practical realization of IB in Java. Class-
less Java is implemented using annotation processing, al-
lowing most tools to work transparently with our approach.
Existing Java projects can use our approach and still be
backward compatible with their clients, in a way that is
specified by our safety properties.

• Type-safe covariant mutable state: we show how the
combination of abstract state operations and type-refinement
enables a form of mutable state that can be covariantly
refined in a type-safe way.

• Applications and case studies: we illustrate the useful-
ness of IB through various examples and case studies. The
implementation, case studies, and an extended technical
report with a formal translation to Java are online:
https://github.com/YanlinWang/classless-java

2. A Running Example: Animals
This section illustrates how our programming style, supported
by @Obj, enables powerful programming idioms based on
multiple inheritance and type refinements. We propose a
standard example: Animals with a 2-dimensional Point2D

representing their location, subtypes Horses, Birds, and
Pegasus. Birds can fly, thus their locations need to be 3-
dimensional Point3Ds (field type refinement). We model
Pegasus (a well-known creature in Greek mythology) as
a kind of Animal with the skills of both Horses and Birds
(multiple inheritance). A simple class diagram illustrating the
basic system is given on the left side of Figure 1.

2.1 Simple Multiple Inheritance with Default Methods
Before modelling the complete animal system, we start with
a simple version without locations. This version serves the
purpose of illustrating how Java 8 default methods can already
model simple forms of multiple inheritance. Horse and Bird
are subtypes of Animal, with methods run() and fly(),
respectively. Pegasus can not only run but also fly! This is
the place where “multiple inheritance” is needed, because
Pegasus needs to obtain fly and run functionality from
both Horse and Bird. A first attempt to model the animal
system is given on the right side of Figure 1. Note that the
implementations of the methods run and fly are defined
inside interfaces, using default methods. Moreover, because
interfaces support multiple interface inheritance, the interface
for Pegasus can inherit behaviour from both Horse and Bird.
Although Java interfaces do not allow instance fields, no form
of state is needed so far to model the animal system.

Instantiation To use Horse, Bird and Pegasus, some ob-
jects must be created first. A first problem with using inter-
faces to model the animal system is simply that interfaces
cannot be directly instantiated. Classes, such as:
class HorseImpl implements Horse {}
class BirdImpl implements Bird {}
class PegasusImpl implements Pegasus {}

are needed for instantiation. Now a Pegasus animal can be
created using the class constructor:
Pegasus p = new PegasusImpl();

There are some annoyances here. Firstly, the sole purpose of
the classes is to provide a way to instantiate objects. Although
(in this case) it takes only one line of code to provide each of
those classes, this code is essentially boilerplate code, which
does not add behavior to the system. Secondly, the namespace
gets filled with three additional types. For example, both
Horse and HorseImpl are needed: Horse is needed because
it needs to be an interface so that Pegasus can use multiple
inheritance; and HorseImpl is needed to provide object
instantiation. Note that, for this very simple animal system,
plain Java 8 anonymous classes can be used to avoid these
problems. We could have simply instantiated Pegasus using:
Pegasus p = new Pegasus() {}; // anonymous class

2 2016/6/30



interface Animal {} // no points yet!
interface Horse extends Animal {

default void run(){out.println("run!");}
}
interface Bird extends Animal {

default void fly(){out.println("fly!");}
}
interface Pegasus extends Horse, Bird {}

Figure 1. The animal system (left: complete structure, right: code for simplified animal system).

However, as we shall see, once the system gets a little more
complicated, the code for instantiation quickly becomes more
complex and verbose (even with anonymous classes).

2.2 Object Interfaces and Instantiation
To model the animal system with object interfaces all that a
user needs to do is to add an @Obj annotation to the Horse,
Bird, and Pegasus interfaces:
@Obj interface Horse extends Animal {
default void run() {out.println("running!");} }

@Obj interface Bird extends Animal {
default void fly() {out.println("flying!");} }

@Obj interface Pegasus extends Horse, Bird {}

The effect of the annotations is that a static factory method
called of is automatically added to the interfaces. With the
of method a Pegasus object is instantiated as follows:
Pegasus p = Pegasus.of();

The of method provides an alternative to a constructor, which
is missing from interfaces. The following code shows the
code corresponding to the Pegasus interface after the @Obj

annotation is processed:
interface Pegasus extends Horse, Bird {
// generated code not visible to users
static Pegasus of() { return new Pegasus() {}; }

}

Note that the generated code is transparent to users, who only
see the original code with the @Obj annotation. Compared
to the pure Java solution in Section 2.1, the solution using
object interfaces has the advantage of providing a direct
mechanism for object instantiation, which avoids adding
boilerplate classes to the namespace.

2.3 Object Interfaces with State
The animal system modelled so far is a simplified version
of the system presented in the left-side of Figure 1. The
example is still not sufficient to appreciate the advantages of
IB programming. Now we model the complete animal system
where an Animal includes a location representing its position
in space. We use 2D points to keep track of locations.

Point2D: simple immutable data with fields Points can
be modelled with interfaces. In IB state is accessed and
manipulated using abstract methods. The usual approach
to model points in Java is to use a class with fields for the
coordinates. In Classless Java interfaces are used instead:
interface Point2D { int x(); int y(); }

The encoding over Java is now inconvenient: creating a new
point object is cumbersome, even with anonymous classes:
Point2D p = new Point2D() {
public int x() {return 4;}
public int y() {return 2;}

}

However this cumbersome syntax is not required for every
object allocation. As programmers do, for ease or reuse, the
boring repetitive code can be encapsulated in a method. A
generalization of the of static factory method is appropriate:
interface Point2D { int x(); int y();
static Point2D of(int x, int y) {
return new Point2D() {
public int x(){return x;}
public int y(){return y;}

}; } }

Point2D with object interfaces This obvious “constructor”
code is generated by the @Obj annotation. By annotating the
interface Point2D, a variation of the shown static method of
will be generated, mimicking the functionality of a simple-
minded constructor. @Obj first looks at the abstract methods
and detects what the fields are, then generates an of method
with one parameter for each of them. We can just write:
@Obj interface Point2D { int x(); int y(); }

A field or factory parameter is generated for every abstract
method that takes no parameters. An example of using
Point2D, where we “clone” an existing point but use 42 as
the x-coordinate, is:
Point2D p = Point2D.of(42,myPoint.y());

with- methods in object interfaces The pattern of creating
a new object by reusing most information from an old object
is very common when programming with immutable data-
structures. As such, it is supported by @Obj as with- methods:
@Obj interface Point2D {

int x(); int y(); // getters
// with- methods
Point2D withX(int val);
Point2D withY(int val);

}

Using with- methods, the point p can also be created by:
Point2D p = myPoint.withX(42);

If there is a large number of fields, with- methods will save
programmers from writing large amounts of tedious code
that simply copies field values. Moreover, if the programmer
wants a different implementation, he may provide an alterna-
tive implementation using default methods. For example:
@Obj interface Point2D {

3 2016/6/30



int x(); int y();
default Point2D withX(int val){ /*myCode*/ }
Point2D withY(int val); }

is expanded into
interface Point2D {

int x(); int y();
default Point2D withX(int val){ /*myCode*/ }
Point2D withY(int val);
static Point2D of(int _x, int _y){
return new Point2D(){
int x=_x; int y=_y;
public int x(){return x;}
public int y(){return y;}
public Point2D withY(int val){
return of(x(),val);} }; } }

Only code for methods needing implementation is generated.
Thus, programmers can easily customize the behaviour for
their special needs. Also, since @Obj interfaces offer the of

factory method, only interfaces where all the abstract methods
can be synthesized can be object interfaces. A non-@Obj
interface is like an abstract class in Java.

Animal and Horse: simple mutable data with fields 2D
points are mathematical entities, thus we choose an im-
mutable data structure to model them. Animals are real world
entities, and when an animal moves, it is the same animal
with a different location. We model this with mutable state.
interface Animal {
Point2D location();
void location(Point2D val); }

Here we declare an abstract getter and a setter for the
mutable “field” location. Without the @Obj annotation, there
is no convenient way to instantiate Animal. For Horse, the
@Obj annotation is used and an implementation of run()
is defined using a default method. The implementation of
run() further illustrates the convenience of with- methods:
@Obj interface Horse extends Animal {
default void run() {
location(location().withX(location().x()+20));}}

Creating and using Horse is quite simple:
Point2D p = Point2D.of(0, 0);
Horse horse = Horse.of(p);
horse.location(p.withX(42));

Note how the of, withX and location methods (generated
automatically) give a basic interface for dealing with animals.

In summary, state (mutable or not) in object interfaces
relies on a notion of abstract state, and state is not directly
available to programmers. Instead programmers use methods,
called abstract state operations, to interact with state.

2.4 Object Interfaces and Subtyping
Birds are Animals, but while Animals only need 2D locations,
Birds need 3D locations. Therefore when the Bird interface
extends the Animal interface, the notion of points needs to
be refined. Such kind of refinement is challenging in typical
class-based approaches. Fortunately, with object interfaces,
we are able to provide a simple and effective solution.

Unsatisfactory class-based solutions to field type refine-
ment In Java if we want to define an animal class with
a field we have a set of unsatisfactory options in front of us:
• Define a Point3D field in Animal: this is bad since all

animals would require more than needed. Also it requires
adapting the old code to accommodate for new evolutions.

• Define a Point2D field in Animal and define an extra int z

field in Bird. This solution is very ad-hoc, requiring to
basically duplicate the difference between Point2D and
Point3D inside Bird. The most dramatic criticism is that
it would not scale to a scenario when Bird and Point3D

are from different programmers.
• Redefine getters and setters in Bird, always put Point3D

objects in the field and cast the value out of the Point2D

field to Point3D when implementing the overridden
getter. This solution scales to the multiple programmers
approach, but requires ugly casts and can be implemented
in a wrong way leading to bugs.
We may be tempted to assume that a language extension

is needed. Instead, the restriction of (object) interfaces to
have no fields enlightens us that another approach is possible;
often in programming languages “freedom is slavery”.

Field type refinement with object interfaces Object inter-
faces address the challenge of type-refinement as follows:
• by covariant method overriding, the return type of
location() is refined to Point3D;

• by overloading, a new setter for location is defined with a
more precise type;

• a default setter implementation with the old signature is
provided.

Thus the code for the Bird interface is:
@Obj interface Bird extends Animal {
Point3D location(); void location(Point3D val);
default void location(Point2D val) {
location(location().with(val));

}
default void fly() {
location(location().withX(
location().x() + 40));

}
}

From the type perspective, the key is the covariant method
overriding of location(). However, from the semantics
perspective the key is the implementation for the setter
with the old signature (location(Point2D)). The key to the
setter implementation is a new type of with method, called a
(functional) property updater.

Point3D and property updaters The Point3D interface is
defined as follows:
@Obj interface Point3D extends Point2D {

int z();
Point3D withZ(int z);
Point3D with(Point2D val); }

Point3D includes a with method, taking a Point2D as an
argument. Other wither methods (such as withX) functionally
update a field one at a time. This can be inefficient, and

4 2016/6/30



interface Point3D extends Point2D {
int z(); Point3D withZ(int val);
Point3D with(Point2D val);
// generated code
Point3D withX(int val);
Point3D withY(int val);
public static Point3D of(int _x, int _y, int _z){
int x=_x; int y=_y; int z=_z;
return new Point3D(){
public int x(){return x;}
public int y(){return y;}
public int z(){return z;}
public Point3D withX(int val){
return Point3D.of(val, this.y(), this.z());

}
public Point3D withY(int val){
return Point3D.of(this.x(), val, this.z());

}
public Point3D withZ(int val){
return Point3D.of(this.x(), this.y(), val);

}
public Point3D with(Point2D val){
if(val instanceof Point3D)
return (Point3D)val;

return Point3D.of(val.x(), val.y(), this.z());
}

}; } }

Figure 2. Generated boilerplate code.

sometimes hard to maintain. Often we want to update multiple
fields simultaneously, for example using another object as
source. Following this idea, the method with(Point2D) is an
example of a (functional) property updater: it takes a certain
type of object and returns a copy of the current object where
all the fields that match fields in the parameter object are
updated to the corresponding value in the parameter. The idea
is that the result should be like this, but modified to be as
similar as possible to the parameter.

With the new with method we may use the information for
z already stored in the object to forge an appropriate Point3D

to store. Note how all the information about what fields sit
in Point3D and Point2D is properly encapsulated in the with

method, and is transparent to the implementer of Bird.
Property updaters never break class invariants, since they

internally call operations that were already deemed safe by
the programmer. For example a list object would not offer a
setter for its size field (which should be kept hidden), thus a
property updater would not attempt to set it.
Generated boilerplate To give an idea of how much code
@Obj is generating, we show the generated code for Point3D
in Figure 2. Writing such code by hand is error-prone. For
example a distracted programmer may swap the arguments of
calls to Point3D.of. Note how with- methods are automati-
cally refined in their return types, so that code like:
Point3D p = Point3D.of(1,2,3); p = p.withX(42);

will be accepted. If the programmer wishes to suppress this
behavior and keep the signature as it was, it is sufficient to
redefine the with- methods in the new interface repeating the
old signature. Again, the philosophy is that if the programmer
provides something directly, @Obj does not touch it. The cast

in with(Point2D) is trivially safe because of the instanceof

test. The idea is that if the parameter is a subtype of the
current exact type, then we can just return the parameter, as
something that is just “more” than this.

Summary of operations in Classless Java In summary, ob-
ject interfaces provide support for different types of abstract
state operations: four field-based state operations; and func-
tional updaters. Object instantiation is directly supported by
of factory methods. Figure 3 summarizes the six operations
supported by @Obj. The field-based abstract state operations
are determined by naming conventions and the types of the
methods. Fluent setters are a variant of conventional setters,
and are discussed in more detail in Section 4.2.

2.5 Advanced Multiple Inheritance
Finally, defining Pegasus is as simple as we did in the simpli-
fied (and stateless) version on the right of Figure 1. Note how
even the non-trivial pattern for field type refinement is trans-
parently composed, and Pegasus has a Point3D location.
@Obj interface Pegasus extends Horse, Bird {}

3. Bridging between IB and CB in Java
Creating a new language/extension would be an elegant way
to illustrate the point of IB. However, significant amounts of
engineering would be needed to build a practical language
and achieve a similar level of integration and tool support as
Java. To be practical, we have instead implemented @Obj as
an annotation in Java 8, and a compilation agent. That is, the
Classless Java style of programming is supported by library.

Disciplined use of Classless Java (avoiding class declara-
tions as done in Section 2) illustrates what pure IB is like.
However, using @Obj, CB and IB programming can be mixed
together, harvesting the practical convenience of using ex-
isting Java libraries, the full Java language and IDE support.
The key to our implementation is compilation agents, which
allow us to rewrite the Java AST just before compilation. We
discuss the advantages and limitations of our approach.

3.1 Compilation Agents
Java supports compilation agents, where Java libraries can
interact with the Java compilation process, acting as a man in
the middle between the generation of AST and bytecode.

This process is facilitated by frameworks like Lom-
bok [30]: a Java library that aims at reducing Java boilerplate
code via annotations. @Obj was created using Lombok. Fig-
ure 4 [16] illustrates the flow of the @Obj annotation. First
Java source code is parsed into an abstract syntax tree (AST).
The AST is then captured by Lombok: each annotated node
is passed to the corresponding (Eclipse or Javac) handler. The
handler is free to modify the information of the annotated
node, or even inject new nodes (like methods, inner classes,
etc). Finally, the Java compiler works on the modified AST
to generate bytecode.

5 2016/6/30



Operation Example Description

State operations
(for a field x)

“fields”/getters int x() Retrieves value from field x.
withers Point2D withX(int val) Clones object; updates field x to val.
setters void x(int val) Sets the field x to a new value val.
fluent setters Point2D x(int val) Sets the field x to val and returns this.

Other operations
factory methods static Point2D of(int _x,int _y) Factory method (generated).
functional updaters Point3D with(Point2D val) Updates all matching fields in val.

Figure 3. Abstract state operations for a field x, together with other operations, supported by the @Obj annotation.

Figure 4. The flow chart of @Obj annotation processing.

Advantages of Lombok The Lombok compilation agent
has advantages with respect to alternatives like pre-processors,
or other Java annotation processors. Lombok offers in Java an
expressive power similar to that of Scala/Lisp macros; except,
for the syntactic convenience of quote/unquote templating.
Direct modification of the AST Lombok alters the gener-
ation process of the class files, by directly modifying the
AST. Neither the source code is modified nor new Java files
are generated. Moreover, and probably more importantly,
Lombok supports generation of code inside a class/inter-
face, which conventional Java annotation processors, such as
javax.annotation, do not support.
Modularity While general preprocessing acts across mod-
ule boundaries, compilation agents act modularly on each
class/compilation unit. It makes sense to apply the transfor-
mations to one class/interface at a time, and only to annotated
classes/interfaces. This allows library code to be reused with-
out being reprocessed or recompiled, making our approach
100% compatible with existing Java libraries, which can be
used and extended normally.
Tool support Features written in Lombok integrate and are
supported directly in the language and are also supported
by most tools. In Figure 5, @Obj generates an of method
in Point2D, and of, withX, withY methods in Point3D. In
Eclipse, the processing is performed transparently and the
information of the interface from compilation is captured in
the “Outline” window. This includes all the methods inside
the interface, including the generated ones. Moreover, as a
useful IDE feature, the auto-completion also works for these
newly generated methods.

3.2 @Obj AST Reinterpretation
Of course, careless reinterpretation of the AST could still be
surprising for badly designed rewritings. @Obj reinterprets the
syntax with the sole goal of enhancing and completing code:
we satisfy the behaviour of abstract methods; add method

implementations; and refine return types. We consider this to
be quite easy to follow and reason about, since it is similar to
what happens in normal inheritance. Refactoring operations
like renaming and moving should work transparently in
conjunction with our annotation, since they rely on the overall
type structure of the class, which we do not arbitrarily modify
but just complete.

Thus, in addition to the advantages of Lombok, Class-
less Java offers more advantages with respect to arbitrary
(compilation agent driven) AST rewriting.

Syntax and type errors Some preprocessors (like the C
one) can produce syntactically invalid code. Lombok ensures
only syntactically valid code is produced. Classless Java
additionally guarantees that no type errors are introduced
in generated code and client code. We discuss these two
guarantees in more detail next:
• Self coherence: the generated code itself is well-typed.

In our case, it means that either @Obj produces (in a
controlled way) an understandable error or the interface
can be successfully annotated and the generated code (e.g.
the of methods in Figure 5) is well-typed.

• Client coherence: all the client code (for example method
calls) that is well-typed before code generation is also
well-typed after the generation. The annotation just adds
more behaviour without removing any functionality.

Heir coherence Another form of guarantee that could be
useful in AST rewriting is heir coherence. That is, interfaces
(and in general classes) inheriting the instrumented code are
well-typed if they were well-typed without the instrumenta-
tion. In a strict sense, our rewriting does not guarantee heir
coherence. The reason is that this would forbid adding any
(default or abstract) method to the annotated interfaces, or
even doing type refinement. Indeed consider the following:
interface A { int x(); A withX(int x); }
@Obj interface B extends A {}
interface C extends B { A withX(int x); }

This code is correct before the translation, but @Obj would
generate in B a method “B withX(int x);”. This would break
C. Similarly, an expression of the form “new B(){.. A withX

(int x){..}}” would be correct before translation, but ill-
typed after the translation.

Our automatic type refinement is a useful and convenient
feature, but not transparent to the heirs of the annotated
interface. They need to be aware of the annotation semantics
and provide the right type while refining methods. To support

6 2016/6/30



Figure 5. Generated methods shown in the Outline window of Eclipse and auto-completion.

heir coherence, we need to give up automatic type refinement,
which is an essential part of IB programming. However, Java
libraries almost always break heir coherence during evolution
and still claim backward compatibility. In practice, adding
any method to any non-final class of a Java library is enough
to break heir coherence. We think return type refinement
breaks heir coherence “less" than normal library evolution,
and if no automatic type-refinements are needed, then @Obj

can claim a form of heir coherence. Formal definition/proofs
for our safety claims are in the technical report.

3.3 Limitations
Our prototype implementation has certain limitations:
• Lombok allows writing handlers for either javac or

ejc(Eclipse’s own compiler). Our current implementa-
tion only realizes ejc version. The implementation for the
javac version is still missing.

• Simple generics is supported: type parameters can be
used, but generic method typing is delegated to the Java
compiler instead of being explicitly checked by @Obj.

• Due to limited support in Lombok for separate compila-
tion, i.e., accessing information of code defined in differ-
ent files, @Obj requires that all related interfaces have to
appear in a single Java file. Reusing the logic inside the ex-
perimental Lombok annotation @Delegate, we also offer a
less polished annotation supporting separate compilation.

4. Applications and Case Studies
This section illustrates applications and larger case studies
for Classless Java. The first application shows how a use-
ful pattern, using multiple inheritance and type-refinement,
can be conveniently encoded in Classless Java. The second
application shows how to model embedded DSLs based on
fluent APIs. Then two larger case studies refactor existing
projects into Classless Java. The first one shows a significant
reduction in code size, while the second one maintains the
same amount of code, but improves modularity.

4.1 The Expression Problem with Object Interfaces
As the first application for Classless Java, we illustrate a
useful programming pattern that improves modularity and
extensibility of programs. This useful pattern is based on

an existing solution to the Expression Problem (EP) [25],
which is a well-known problem about modular extensibility
issues in software evolution. Recently, a new solution [26]
using only covariant type refinement was proposed. When this
solution is modelled with interfaces and default methods, it
can even provide independent extensibility [28]: the ability to
assemble a system from multiple, independently developed
extensions. Unfortunately, the required instantiation code
makes a plain Java solution verbose and cumbersome to use.
The @Obj annotation is enough to remove the boilerplate code,
making the presented approach very appealing. Our last case
study, presented in Section 4.4, is essentially a (much larger)
application of this pattern to an existing program. Here we
illustrate the pattern in the much smaller Expression Problem.
Initial System In the formulation of the EP, there is an
initial system that models arithmetic expressions with only
literals, addition, and an initial operation eval for expression
evaluation. As shown in Figure 6, Exp is the common super-
interface with operation eval() inside. Sub-interfaces Lit
and Add extend interface Exp with default implementations
for the eval operation. The number field x of a literal is
represented as a getter method x() and expression fields (e1
and e2) of an addition as getter methods e1() and e2().
Adding a New Type of Expressions In the OO paradigm,
it is easy to add new types of expressions. For example, the
following code shows how to add subtraction.
@Obj interface Sub extends Exp {
Exp e1(); Exp e2();
default int eval() {
return e1().eval() - e2().eval();} }

Adding a New Operation The difficulty of the EP in OO
languages arises from adding new operations. For example,
adding a pretty printing operation would typically change
all existing code. However, a solution should add operations
in a type-safe and modular way. This turns out to be easily
achieved with the assistance of @Obj. The code in Figure 6
(on the right) shows how to add the new operation print.
Interface ExpP extends Exp with the extra method print().
Interfaces LitP and AddP are defined with default imple-
mentations of print(), extending base interfaces Lit and
Add, respectively. Importantly, note that in AddP, the types
of “fields” (i.e. the getter methods) e1 and e2 are refined. If

7 2016/6/30



interface Exp { int eval(); }
@Obj interface Lit extends Exp {

int x();
default int eval() {return x();}

}
@Obj interface Add extends Exp {

Exp e1(); Exp e2();
default int eval() {

return e1().eval() + e2().eval();
}

}

interface ExpP extends Exp {String print();}
@Obj interface LitP extends Lit, ExpP {

default String print() {return "" + x();}
}
@Obj interface AddP extends Add, ExpP {

ExpP e1(); //return type refined!
ExpP e2(); //return type refined!
default String print() {

return "(" + e1().print() + " + "
+ e2().print() + ")";}

}

Figure 6. The Expression Problem (left: initial system, right: code for adding print operation).

the types were not refined then the print() method in AddP
would fail to type-check.

Independent Extensibility To show that our approach sup-
ports independent extensibility, a new operation collectLit
which collects all literal components in an expression is de-
fined. For space reasons, we omit some code:
interface ExpC extends Exp {

List<Integer> collectLit(); }
@Obj interface LitC extends Lit, ExpC {...}
@Obj interface AddC extends Add, ExpC {

ExpC e1(); ExpC e2(); ...}

Now we combine the two extensions together:
interface ExpPC extends ExpP, ExpC {}
@Obj interface LitPC extends ExpPC, LitP, LitC {}
@Obj interface AddPC extends ExpPC, AddP, AddC {

ExpPC e1(); ExpPC e2(); }

ExpPC is the new expression interface supporting print and
collectLit operations; LitPC and AddPC are the extended
variants. Notice that except for the routine of extends clauses,
no glue code is required. Return types of e1,e2 must be
refined to ExpPC. Creating a simple expression of type ExpPC
is as simple as:
ExpPC e8 = AddPC.of(LitPC.of(3), LitPC.of(4));

Without Classless Java, tedious instantiation code would need
to be defined manually.

4.2 Embedded DSLs with Fluent Interfaces
Since the style of fluent interfaces was invented in Smalltalk
as method cascading, more and more languages (Java, C++,
Scala, etc) came to support fluent interfaces. In most lan-
guages, to create fluent interfaces, programmers have to ei-
ther hand-write everything or create a wrapper around the
original non-fluent interfaces using this. In Java, there are
several libraries (including jOOQ, op4j, fluflu, JaQue, etc)
providing useful fluent APIs. However most of them only
provide a fixed set of predefined fluent interfaces.

The @Obj annotation can also be used to create fluent
interfaces. When creating fluent interfaces with @Obj, there
are two main advantages:
1. Instead of forcing programmers to hand-write code using

return this, our approach with @Obj annotation removes
this verbosity and automatically generates fluent setters.

2. The approach supports extensibility: the return types of
fluent setters are automatically refined.

We use embedded DSLs of two simple SQL query languages
to illustrate. The first query language Database models
select, from and where clauses:
@Obj interface Database {

String select(); Database select(String select);
String from(); Database from(String from);
String where(); Database where(String where);
static Database of() {return of("", "", "");} }

The main benefit that fluent methods give us is the conve-
nience of method chaining:
Database query1 = Database.of().select("a, b").from(

"Table").where("c > 10");

Note how all the logic for the fluent setters is automatically
provided by the @Obj annotation.
Extending the Query Language The previous query lan-
guage can be extended with a new feature orderBy which
orders the result records by a field that users specify. With
@Obj programmers just need to extend the interface Database
with new features, and the return type of fluent setters in
Database is automatically refined to ExtendedDatabase:
@Obj interface ExtendedDatabase extends Database {
String orderBy();
ExtendedDatabase orderBy(String orderBy);
static ExtendedDatabase of() {
return of("", "", "","");} }

In this way, when a query is created using ExtendedDatabase,
all the fluent setters return the correct type instead of the old
Database type, which would prevent calling orderBy.
ExtendedDatabase query2 = ExtendedDatabase.of().

select("a, b").from("Table").where("c > 10").
orderBy("b");

Languages like Smalltalk and Dart offer method cascading
and avoid the need for fluent setters. This is achieved at the
price of introducing additional syntax and intrinsically relies
on an imperative setting. Our approach supports both fluent
setters and (functional) fluent withers.

4.3 A Maze Game
This case study is a simplified variant of a Maze game, which
is often used [4, 11] to evaluate code reuse ability related to
inheritance and design patterns. In the game, there is a player
with the goal of collecting as many coins as possible. She may
enter a room with several doors to be chosen among. This
is a good example because it involves code reuse (different
kinds of doors inherit a common type, with different features
and behavior), multiple inheritance (a special kind of door

8 2016/6/30



may require features from two other door types) and it also
shows how to model operations symmetric sum, override
and alias from trait-oriented programming. The game has
been implemented using plain Java 8 and default methods
by Bono et. al [4], and the code for that implementation is
available online. We refactored the game using @Obj. Due to
space constraints, we omit the code here. The following table
summarizes the number of lines of code and classes/interfaces
in each implementation:

SLOC # of classes/interfaces
Bono et al. 335 14

Ours 199 11
Reduced by 40.6% 21.4%

The @Obj annotation reduced the interfaces/classes used in
Bono et al.’s implementation by 21.4% (from 14 to 11), due
to the replacement of instantiation classes with generated
of methods. The number of source lines of code (SLOC)
was reduced by 40% due to both the removal of instantiation
overhead and generation of getters/setters.

4.4 Refactoring an Interpreter
The last case study refactors the code from an interpreter for
a Lisp-like language Mumbler1, which is created as a tutorial
for the Truffle Framework [27]. Keeping a balance between
simplicity and useful features, Mumbler contains numbers,
booleans, lists (encoding function calls and special forms
such as if-expression, lambdas, etc). In the original code base,
which consists of 626 SLOC of Java, only one operation
eval is supported. Extending Mumbler to support one more
operation, such as a pretty printer print, would normally
require changing the existing code base directly.

Our refactoring applies the pattern presented in Section 4.1
to the existing Mumbler code base to improve its modularity
and extensibility. Using the refactored code base it becomes
possible to add new operations modularly, and to support
independent extensibility. We add one more operation print
to both the original and the refactored code base. In the
original code base the pretty printer is added non-modularly
by modifying the existing code. In the refactored code base
the pretty printer is added modularly. Although the code in
the refactored version is slightly increased (by 2.4% SLOC),
the modularity is greatly increased, allowing for improved
reusability and maintainability:

Code SLOC Code SLOC
original (eval) 626 original (eval+print) 661
refactored (eval) 560 refactored (eval+print) 677

5. Related Work
Multiple inheritance in object-oriented languages Many
authors have argued in favor or against multiple inheritance.
Multiple implementation inheritance is very expressive, but
difficult to model and implement. It can cause difficulties
(including the famous diamond problem [5, 20], conflicting

1 https://github.com/cesquivias/mumbler/tree/master/simple

methods, etc.) in reasoning about programs. To allow for
expressive power and simplicity, many models have been
proposed, including C++ virtual inheritance, mixins [5],
traits [21], and hybrid models such as CZ [15]. They provide
novel programming architecture models in the OO paradigm.
In terms of restrictions set on these models, C++ virtual
inheritance aims at a relative general model; the mixin
model adds some restrictions; and the trait model is the most
restricted one (excluding state, instantiation, etc).

C++ has a general solution to multiple inheritance by
virtual inheritance, dealing with the diamond problem by
keeping only one copy of the base class [9]. However it
suffers from object initialization problem [15]. It bypasses
constructor calls to virtual superclasses, which can cause seri-
ous semantic errors. In our approach, the @Obj annotation has
full control over object initialization, and the mechanism is
transparent to users. If users are not satisfied with the default
of method, customized factory methods can be provided.

Mixins are more restricted than the C++ approach. Mix-
ins allow naming components that can be applied to various
classes as reusable functionality units. However, the lineariza-
tion (total ordering) of mixin inheritance cannot provide a
satisfactory resolution in some cases and restricts the flexibil-
ity of mixin composition. To fight against this limitation, an
algebra of mixin operators is introduced [2], but this raises
the complexity, especially when constructors and fields are
considered [29]. Scala traits [17] are in fact more like lin-
earized mixins. Scala avoids the object initialization problem
by disallowing constructor parameters, causing no ambiguity
in cases such as the diamond problem. However this approach
has limited expressiveness, and suffers from all the problems
of linearized mixin composition. Java interfaces and default
methods do not use linearization: the semantics of Java ex-
tends clause in interfaces is unordered and symmetric.

Malayeri and Aldrich proposed a model CZ [15] which
aims to do multiple inheritance without the diamond problem.
Inheritance is divided into two concepts: inheritance depen-
dency and implementation inheritance. Using a combination
of requires and extends, a program with diamond inher-
itance is transformed to one without diamonds. Moreover,
fields and multiple inheritance can coexist. However untan-
gling inheritance also untangles the class structure. In CZ,
not only the number of classes, but also the class hierarchy
complexity increases. IB does not complicate the hierarchical
structure, and state also coexists with multiple inheritance.

Simplifying the mixins approach, traits [21] draw a strong
line between units of reuse and object factories. Traits, as
units of reusable code, contain only methods as reusable func-
tionality, ignoring state and state initialization. Classes, as
object factories, require functionality from (multiple) traits.
Java 8 interfaces are closely related to traits: concrete method
implementations are allowed (via the default keyword) in-
side interfaces. The introduction of default methods opens
the gate for various flavors of multiple inheritance in Java.

9 2016/6/30



Traits offer an algebra of composition operations like sum,
alias, and exclusion, providing explicit conflict resolution.
Former work [4] provides details on mimicking the trait al-
gebra through Java 8 interfaces. There are also proposals for
extending Java with traits. For example, FeatherTrait Java
(FTJ) [14] extends FJ [13] with statically-typed traits, adding
trait-based inheritance in Java. Except for few, mostly syntac-
tic details, their work can be emulated with Java 8 interfaces.
There are also extensions to the original trait model, with
operations (e.g. renaming [18], which breaks structural sub-
typing) that default methods and interfaces cannot model.

Traits vs Object Interfaces We consider object interfaces
an alternative to traits or mixins. In trait model two concepts
(traits and classes) coexist and cooperate. Some authors [3]
see this as good language design fostering good software de-
velopment by helping programmers think about the program
structures. However, others see the need of two concepts and
the absence of state as drawbacks of this model [15]. Object
interfaces are units of reuse, and meanwhile provide factory
methods for instantiation and support state. Our approach
promotes the use of interfaces in order to exploit the modular
composition offered by interfaces. Since Java was designed
for classes, a direct classless programming style is verbose
and unnatural. However, annotation-driven code generation
is enough to overcome this difficulty and the resulting pro-
gramming style encourages modularity, composability and
reusability. In that sense, we promote object interfaces as
being both units of reuse and object factories. Our practical
experience shows that separating the two notions leads to
lots of boilerplate code, and is quite limiting when multiple
inheritance with state is required. Abstract state operations
avoid the key difficulties associated with multiple inheritance
and state, while still being quite expressive. Moreover the
ability to support constructors adds expressivity, which is not
available in approaches such as Scala’s traits/mixins.

Automatic generation of getters and setters This is an
old idea used in languages such as Self [23], Dart [1] and
Newspeak [6]. Programmers specifies field signatures and
(critically) the intention of storing such information, then
the language generates getters and setters. Once state is
abstracted away, it is well known that state access can be
replaced with computation, but the type of the field stays the
same. We do the opposite, the idea of the field is generated
starting from signatures of getters and setters. In our approach,
the intention of storing the information is not expressed by
the programmer and set in stone but can vary by inheritance.
In this case, the underling type of the field can be changed by
our fluid state, and with methods provide the right injection
from the old type to the new.

ThisType and MyType Object interfaces support automatic
type-refinement. Type refinement is part of a bigger topic in
class-based languages: expressing and preserving type recur-
sion and (nominal/structural) subtyping at the same time. One
famous attempt in this direction is MyType [7], representing

the type of this, changing its meaning along with inheritance.
However when invoking a method with MyType in parameter
positions, the exact type of the receiver must be known. This
is a big limitation in class-based OO programming and is
exasperated by the interface-based programming we propose:
no type is ever going to be exact since classes are not explic-
itly used. A recent article [19] proposes two new features:
exact statements and nonheritable methods. Both are related
to our work: 1) any method generated inside the of method is
indeed non-inheritable since there is no class name to extend
from; 2) exact statements (a form of wild-card capture on
the exact run-time type) could capture the “exact type” of
an object even in a class-less environment. Admittedly, My-
Type greatly enhances the expressivity and extensibility of
object-oriented programming languages. Object interfaces
simulate some uses of MyType. But this approach only works
for refining return types, whereas MyType is more general, as
it also works for parameter types. Our approach to covariantly
refine state can recover some of the additional expressivity of
MyType. As illustrated with our examples, object interfaces
are still very useful in many practical applications, yet they
do not require additional complexity from the type system.

6. Conclusion
Before Java 8, concrete methods were not allowed to appear
in interfaces. Java 8 allows static interface methods and
introduces default methods, which enable implementations
inside interfaces. An important positive consequence that
was probably overlooked is that the concept of class (in
Java) is now (almost) redundant and unneeded. We propose a
programming style, called Classless Java, where truly object-
oriented programs and (reusable) libraries can be defined and
used without ever defining a single class.

However, using this programming style directly in Java is
very verbose. To avoid syntactic boilerplate caused by Java
not being originally designed to work without classes, we
introduce the @Obj annotation that provides default imple-
mentations for various methods (e.g. getters, setters, with-
methods) and a mechanism to instantiate objects. We leverage
on annotation processing and the Lombok library, in this way
@Obj is just a normal Java library. The @Obj annotation helps
programmers to write less cumbersome code while coding
in Classless Java. Indeed, we think the obtained gain is so
high that Classless Java with the @Obj annotation can be less
cumbersome than full Java.

Classless Java is just a programming style, but showing
the way to a new flavour of OOP: we propose interface-
based object-oriented languages (IB), as opposed to class-
based or prototype-based. In IB state is not modelled at the
platonic level but handled exclusively by instances. This
unlocks useful code reuse patterns, as shown in Section 2. An
interesting avenue for future work would be to design a new
language based on IB. With a proper language design, IB
would not be restricted by limitations of Java and its syntax.

10 2016/6/30



References
[1] Dart programming language. https://www.dartlang.org,

2016.

[2] D. Ancona and E. Zucca. A calculus of module systems.
Journal of Functional Programming, 12(02):91–132, 2002.

[3] L. Bettini, F. Damiani, I. Schaefer, and F. Strocco. Traitrecordj:
A programming language with traits and records. Sci. Comput.
Program., 78(5):521–541, 2013.

[4] V. Bono, E. Mensa, and M. Naddeo. Trait-oriented program-
ming in java 8. In PPPJ’14, 2014.

[5] G. Bracha and W. Cook. Mixin-based inheritance. In OOP-
SLA/ECOOP ’90, 1990.

[6] G. Bracha, P. Ahe, V. Bykov, Y. Kashai, and E. Miranda. The
newspeak programming platform, 2008.

[7] K. B. Bruce. A paradigmatic object-oriented programming
language: Design, static typing and semantics. Journal of
Functional Programming, 4(02):127–206, 1994.

[8] K. B. Bruce, M. Odersky, and P. Wadler. A statically safe
alternative to virtual types. In ECOOP’98, 1998.

[9] M. A. Ellis and B. Stroustrup. The annotated C++ reference
manual. Addison-Wesley, 1990.

[10] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class
calculus. In POPL’06, 2006.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software.
Pearson Education, 1994.

[12] B. Goetz and R. Field. Featherweight defenders: A
formal model for virtual extension methods in java.
http://cr.openjdk.java.net/~briangoetz/lambda/
featherweight-defenders.pdf, 2012.

[13] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: A
minimal core calculus for java and gj. ACM Trans. Program.
Lang. Syst., 23(3):396–450, 2001.

[14] L. Liquori and A. Spiwack. Feathertrait: A modest extension
of featherweight java. ACM Trans. Program. Lang. Syst., 30
(2):11, 2008.

[15] D. Malayeri and J. Aldrich. Cz: Multiple inheritance without
diamonds. In OOPSLA ’09, 2009.

[16] Neildo. Project lombok: Creating custom transfor-
mations. http://notatube.blogspot.hk/2010/12/
project-lombok-creating-custom.html, 2011.

[17] M. Odersky and al. An overview of the scala programming
language. Technical Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

[18] J. Reppy and A. Turon. A foundation for trait-based metapro-
gramming. In International workshop on foundations and
developments of object-oriented languages, 2006.

[19] C. Saito and A. Igarashi. Matching mytype to subtyping. Sci.
Comput. Program., 78(7):933–952, 2013.

[20] M. Sakkinen. Disciplined inheritance. In ECOOP’89, 1989.

[21] N. Scharli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits:
Composable units of behaviour. In ECOOP’03, 2003.

[22] A. Srikanth. Compiler support for private interface
methods. http://mail.openjdk.java.net/pipermail/
jdk9-dev/2015-March/001981.html, 2016.

[23] D. Ungar and R. B. Smith. Self: The power of simplicity. In
OOPSLA ’87, 1987.

[24] D. Ungar and R. B. Smith. Self: The power of simplicity.
In Conference Proceedings on Object-oriented Programming
Systems, Languages and Applications, OOPSLA ’87, 1987.

[25] P. Wadler. The Expression Problem. Email, Nov. 1998.
Discussion on the Java Genericity mailing list.

[26] Y. Wang and B. C. d. S. Oliveira. The expression problem,
trivially! In Proceedings of the 15th International Conference
on Modularity, 2016.

[27] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One vm
to rule them all. In Proceedings of the 2013 ACM international
symposium on New ideas, new paradigms, and reflections on
programming & software, 2013.

[28] M. Zenger and M. Odersky. Independently extensible solutions
to the expression problem. In FOOL’05, 2005.

[29] E. Zucca, M. Servetto, and G. Lagorio. Featherweight Jigsaw -
A minimal core calculus for modular composition of classes.
In ECOOP’09, 2009.

[30] R. Zwitserloot and R. Spilker. Project lombok. http://
projectlombok.org, 2016.

11 2016/6/30


