
Pattern Matching in an Open World
∗

Weixin Zhang
The University of Hong Kong

Hong Kong, China
wxzhang2@cs.hku.hk

Bruno C. d. S. Oliveira
The University of Hong Kong

Hong Kong, China
bruno@cs.hku.hk

Abstract

Pattern matching is a pervasive and useful feature in func-
tional programming. There have been many attempts to
bring similar notions toObject-Oriented Programming (OOP)
in the past. However, a key challenge in OOP is how pattern
matching can coexist with the open nature of OOP data struc-
tures, while at the same time guaranteeing other desirable
properties for pattern matching.
This paper discusses several desirable properties for pat-

tern matching in an OOP context and shows how existing
approaches are lacking some of these properties. We argue
that the traditional semantics of pattern matching, which
is based on the order of patterns and adopted by many ap-
proaches, is in conflict with the openness of data structures.
Therefore we suggest that a more restricted, top-level pattern
matching model, where the order of patterns is irrelevant, is
worthwhile considering in an OOP context. To compensate
for the absence of ordered patterns we propose a comple-
mentary mechanism for case analysis with defaults, which
can be used when nested and/or multiple case analysis is
needed. To illustrate our points we develop Castor: a meta-
programming library in Scala that adopts both ideas. Castor
generates code that uses type-safe extensible visitors, and
largely removes boilerplate code typically associated with
visitors. We illustrate the applicability of our approach with
a case study modularizing the interpreters in the famous
book "Types and Programming Languages".

CCS Concepts • Software and its engineering → Lan-

guage features;

Keywords Pattern matching, Meta-programming, OOP

∗This work was funded by Hong Kong Research Grant Council projects
number 17210617 and 17258816.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6045-6/18/11. . . $15.00
https://doi.org/10.1145/3278122.3278124

ACM Reference Format:

Weixin Zhang and Bruno C. d. S. Oliveira. 2018. Pattern Matching
in an Open World. In Proceedings of the 17th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Experi-
ences (GPCE ’18), November 5–6, 2018, Boston, MA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3278122.3278124

1 Introduction

Pattern matching is a pervasive and useful feature in func-
tional programming. Languages such asHaskell [20] orML [24]
use algebraic datatypes to model data structures, and pat-
tern matching to process such data structures. Algebraic
datatypes and pattern matching allow concise programs for
many applications. For example, compilers, interpreters or
program analysis, often require extensive analysis on a com-
plex Abstract Syntax Tree (AST) structure. In functional
languages, ASTs are modeled with algebraic datatypes. With
built-in support for pattern matching, analyzing and manip-
ulating an AST can be done in a concise way.
Object-Oriented Programming (OOP) often uses class hi-

erarchies instead of algebraic datatypes to model data struc-
tures. Still, the same need for processing data structures also
exists in OOP. However, there are important differences be-
tween data structures modeled with algebraic datatypes and
class hierarchies. Algebraic datatypes are typically closed,
having a fixed set of variants. In contrast class hierarchies
are open, allowing the addition of new variants. A closed set
of variants facilitates exhaustiveness checking of patterns
but sacrifices the ability to add new variants. OO class hier-
archies do support the addition of new variants, but without
mechanisms similar to pattern matching some programs are
unwieldy and cumbersome to write.
There have been many attempts to bring notions simi-

lar to pattern matching to OOP in the past. The Visitor
pattern [10] is frequently used as a poor man’s approach
to pattern matching in OO languages. However, classic for-
mulations of the Visitor pattern have a high notational
overhead, and also lack extensibility for dealing with new
data variants. More recently several new designs for extensi-
ble visitors [15, 26, 27, 42] provide variations of the Visitor
pattern that allow for the modular addition of new variants.
However, these techniques do not solve the high notational
overhead problem and do not provide a concise notation
for pattern matching. Case classes in Scala [25] provide an
interesting blend between algebraic datatypes and class hi-
erarchies. Case classes come in different flavors. Sealed case

https://doi.org/10.1145/3278122.3278124
https://doi.org/10.1145/3278122.3278124

GPCE ’18, November 5–6, 2018, Boston, MA, USA Weixin Zhang and Bruno C. d. S. Oliveira

classes are very much like classical algebraic datatypes, and
facilitate exhaustiveness checking at the cost of a closed (non-
extensible) set of variants. Open case classes support pattern
matching for class hierarchies, which can modularly add new
variants. However no exhaustiveness checking is possible
for open case classes. Multiple dispatching [8] and multi-
methods [7] provide OOP alternatives to pattern matching,
enabling method dispatching to be determined by multiple
arguments at run-time (rather than just one). This facilitates
the definition of binary (and n-ary) operations such as equal-
ity, but it does not provide immediate support for nested
patterns. Furthermore, type systems supporting multiple dis-
patching add significant complexity. Finally, there are also
approaches [19, 23] that attempt to do a more principled
design that integrates pattern matching and OOP while pre-
serving the ability to add new variants and the ability to
check for exhaustiveness. However, such approaches require
new non-trivial language designs and thus cannot be used
in existing languages such as Scala.
This paper starts by identifying several desirable proper-

ties for pattern matching in an OOP context:
• Conciseness. Patterns should be described concisely with
potential support for wildcards, deep patterns and guards.

• Exhaustiveness. Patterns should be exhaustive to avoid
runtime matching failure. The exhaustiveness of patterns
should be statically verified by the compiler and the miss-
ing cases should be reported if patterns are incomplete.

• Extensibility.Datatypes should be extensible in the sense
that new data variants can be added while existing opera-
tions can be reused without modification.

• Composability. Patterns should be composable so that
complex patterns can be built from smaller pieces. When
composing overlapped patterns, programmers should be
warned about possible redundancies.

We show that many widely used approaches lack some of
these properties. We argue that a problem is that many ap-
proaches try to closely follow the traditional semantics of
pattern matching, which assumes a closed set of variants.
Under a closed set of variants, it is natural to use the order
of patterns to prioritize some patterns over the others. How-
ever, when the set of variants is not predefined a priori then
relying on some ordering of patterns is problematic, espe-
cially if separate compilation and modular type-checking are
to be preserved. Nonetheless many OO approaches, which
try to support both an extensible set of variants and pattern
matching, still try to use the order of patterns to define the
semantics. Unfortunately, this makes it hard to support other
desirable properties such as exhaustiveness or composability.
Therefore we suggest two different mechanisms to deal

with patterns in an OO context. Firstly, we suggest a more
restricted, top-level pattern matching model, where the or-
der of patterns is irrelevant. Secondly, to compensate for
the absence of ordered patterns we propose a second mecha-
nism for case analysis with defaults, which can be used when

nested and/or multiple case analysis is needed. The second
mechanism is directly inspired by Zenger and Odersky [40]’s
idea of Extensible Algebraic Datatypes with Defaults (EADDs).
In EADDs the key idea is that if pattern matching always
comes with a default then it is always exhaustive. However,
the key problem with EADDs is that not all operations have
a good default. In our approach, top-level pattern matching
does not force programmers to define a default, while still
retaining exhaustiveness. However, we argue that, in prac-
tice, many operations that require nested patterns tend to
have a good default for the nested patterns. Thus we propose
applying the EADDs idea only to nested patterns.
To illustrate our points we develop Castor1: a metapro-

gramming library in Scala that adopts both ideas, and to
a large extent, meets all the properties summarized above.
The key idea is to combine case classes with extensible vis-
itors so that top-level case analysis is done using visitors,
while nested case analysis is done using Scala’s own built-in
pattern matching. Castor eliminates the complexity and
verbosity of visitors by providing users with annotations.
Through macro annotation processing, the annotated pro-
gram is transformed and boilerplate automatically gener-
ated. We illustrate the applicability of our approach with a
case study modularizing the interpreters in the famous book
"Types and Programming Languages" (TAPL) [31].

In summary, this paper makes the following contributions:
• Desirable properties for open pattern matching: We
summarize the desirable properties of pattern matching
and evaluate existing approaches accordingly (Section 2).

• The Castormetaprogramming library:We present a
novel encoding for modular pattern matching based on an
encoding of extensible visitors. The pattern matching en-
coding is automated using metaprogramming (Section 4).

• Non-trivial modular operations: We show how to use
Castor in defining non-trivial pattern matching opera-
tions, as well as dependencies (Section 3).

• Case study: We conduct a case study on TAPL that illus-
trate the effectiveness of Castor (Section 5).
Source code for Castor and case study is available at:

https://github.com/wxzh/Castor

2 Pattern Matching in Scala: An Evaluation

This section reviews existing approaches to patternmatching
in Scala. To facilitate our discussion, a running example from
TAPL [31]—an untyped, arithmetic language called Arith—
is used. Our goal is to model the syntax and semantics of
Arith in a concise and modular manner. None of the exist-
ing Scala approaches, including the Visitor pattern, sealed
case classes, open case classes and partial functions, fully
accomplishes the task. We discuss why these approaches fail
and describe the desirable properties for a better solution.

1Castor stands for CASe class visiTOR

https://github.com/wxzh/Castor

Pattern Matching in an Open World GPCE ’18, November 5–6, 2018, Boston, MA, USA

t ::= 0 | succ t | pred t | true | false | if t then t else t | iszero t nv ::= 0 | succ nv
t1 → t ′1

succ t1 → succ t ′1 pred 0 → 0
PredZero

pred (succ nv1) → nv1
PredSucc

t1 → t ′1

pred t1 → pred t ′1
Pred

if true then t2 else t3 → t2 if false then t2 else t3 → t3

t1 → t ′1

if t1 then t2 else t3 → if t ′1 then t2 else t3

iszero 0 → true iszero (succ nv1) → false

t1 → t ′1

iszero t1 → iszero t ′1

Figure 1. The syntax and semantics of Arith.

2.1 Running Example: Arith

The syntax and semantics of Arith are formalized in Fig-
ure 1. Arith has the following syntactic forms: zero, succes-
sor, predecessor, true, false, conditional and zero test. The
definition nv identifies 0 and successive application of succ
to 0 as numeric values. The operational semantics of Arith
is given in small-step style, with a set of reduction rules spec-
ifying how a term can be rewritten in one step. Repeatedly
applying these rules will eventually evaluate a term to a
value. There might be multiple rules defined on one syntac-
tic form. For instance, rules PredZero, PredSucc and Pred
are all defined on a predecessor term. How pred t is going to
be evaluated in the next step is determined by the shape of
the inner term t . If t is a successor application to a numeric
value, then PredSucc will be applied, etc.

Arith is a good example for assessing the 4 desirable
properties of pattern matching summarized in Section 1 be-
cause: 1) The small-step style semantics is best expressed
with a concise nested case analysis on terms; 2) Arith is a
unification of two sublanguages, Nat (zero, successor and
predecessor) and Bool (true, false, and conditional) with an
extension (zero test). An ideal implementation of Arith is to
have Nat and Bool separately defined and modularly reused.

2.2 The Visitor Pattern

The Visitor pattern [10] is often used in OOP languages for
simulating pattern matching. Figure 2 implements the Nat
sublanguage using the Visitor pattern. The class hierarchy
models the abstract syntax of Nat, where the abstract class
Tm represents the datatype of terms and syntactic constructs
of terms are concrete subclasses of Tm. A generic accept

method is defined throughout the class hierarchy, which
is implemented by invoking the corresponding lowercase
method defined on the visitor instance it takes. These low-
ercase methods are declared in the visitor interface TmVisit.
Operations over Tm are concrete implementations of TmVisit.
For example, object nv instantiates the type parameter A of
TmVisit as Boolean and implements each visit method accord-
ingly. For recursive cases like tmSucc, we call t.accept(nv).
Discussion of the Approach. A well-known criticism of
the Visitor pattern is its verbosity, which is manifested in
encoding the small-step semantics in eval1. Defining tmZero

object NoRuleApplies extends Exception
// Class hierarchy
abstract class Tm {

def accept[A](v: TmVisit[A]): A }
object TmZero extends Tm {

def accept[A](v: TmVisit[A]) = v.tmZero }
class TmSucc(t: Tm) extends Tm {

def accept[A](v: TmVisit[A]) = v.tmSucc(t) }
class TmPred(t: Tm) extends Tm {

def accept[A](v: TmVisit[A]) = v.tmPred(t) }
// Visitor interface
trait TmVisit[A] {

def tmZero: A
def tmSucc(t: Tm): A
def tmPred(t: Tm): A }

// Numeric value checking visitor
object nv extends TmVisit[Boolean] {

def tmZero = true
def tmSucc(t: Tm) = t.accept(nv)
def tmPred(t: Tm) = false }

// Small-step evaluation visitor
object eval1 extends TmVisit[Tm] {

def tmZero = throw NoRuleApplies
def tmSucc(t: Tm) = new TmSucc(t.accept(eval1))
def tmPred(t: Tm) = t.accept(new TmVisit[Tm] {

// Anonymous visitor
def tmZero = TmZero
def tmSucc(t1: Tm) = // PredSucc

if (t1.accept(nv)) t1
else new TmPred(t.accept(eval1))

def tmPred(t1: Tm) = new TmPred(t.accept(eval1))
})}

Figure 2. Implementing Nat with the Visitor pattern.

and tmSucc for eval1 is easy by throwing an exception and
calling eval1 on the inner term respectively. However, defin-
ing tmPred is tricky! Take the PredSucc rule for example,
which cancels a pair of predecessor and successor application
to a numeric value. As a visitor recognizes only one level rep-
resentation of a term, it is insufficient to implement rules that
require deep case analysis like PredSucc. To further reveal
the shape of the inner term, an auxiliary anonymous visitor
is hence needed. Then rules like PredSucc are possible to
be specified inside that anonymous visitor.

GPCE ’18, November 5–6, 2018, Boston, MA, USA Weixin Zhang and Bruno C. d. S. Oliveira

// Sealed case class hierarchy
sealed abstract class Tm
case object TmZero extends Tm
case class TmSucc(t: Tm) extends Tm
case class TmPred(t: Tm) extends Tm
// Numeric value checking function
def nv(t: Tm): Boolean = t match {
case TmZero => true
case TmSucc(t1) => nv(t1)
case _ => false }

// Small-step evaluation function
def eval1(t: Tm): Tm = t match {
case TmSucc(t1) => TmSucc(eval1(t1))
case TmPred(TmZero) => TmZero
case TmPred(TmSucc(t1)) if nv(t1) => t1 // PredSucc
case TmPred(t1) => TmPred(eval1(t1))
case _ => throw NoRuleApplies }

Figure 3. Implementing Nat with sealed case classes.

A problem arises when we try to reuse the Nat implemen-
tation above in implementing Arith. The Visitor pattern
suffers from the Expression Problem (EP) [38]: it is easy to
add new operations by defining new visitors (as illustrated by
nv and eval1) but hard to add new variants. The reason is that
the Tm hierarchy is tightly coupled with the TmVisit inter-
face. When trying to add new subclasses to the Tm hierarchy,
we are unable to implement their accept methods because
there exist no corresponding visit methods in TmVisit. A
non-solution is to modify TmVisit with new visit methods.
As a consequence, all existing concrete implementations of
TmVisit have to be modified in order to account for those
variants. This violates the “no modification on existing code”
principle of the EP. Thus, the implementation is neither ex-
tensible nor composable. Even if modification is allowed, the
implementation would become much more tedious. There is
a lot of boilerplate needs to be written for boring cases (e.g.
cases that return false in nv). Nevertheless, exhaustiveness
is enforced since a concrete visitor is an object, which must
implement all visit methods exposed by the visitor interface.

2.3 Sealed Case Classes

Pattern matching, a feature originally from functional lan-
guages, offers the ability to “inspect and decompose data
simultaneously”. This ability makes it possible to model Nat
concisely. As a programming language that unifies functional
and OO paradigms, Scala [25] supports first-class pattern
matching via case classes/extractors [9]. Figure 3 shows an
implementation using Scala’s sealed case classes, which is
close to an implementation written in a pure functional lan-
guage like Haskell or ML. A case class hierarchy models the
abstract syntax. The case keyword triggers the compiler to
automatically inject methods into the class/object, includ-
ing a constructor method (apply) and an extractor method
(unapply). The injected constructor method simplifies the

creation of terms. For example, a successor application to
constant zero can be constructed via TmSucc(TmZero). Con-
versely, the injected extractor enables tearing down a term
via pattern matching, as illustrated by the implementation
of nv. The term t is matched sequentially against a series of
patterns (case clauses). For example, TmSucc(TmZero) will be
handled by the second case clause of nv, which recursively in-
vokes nv on TmZero and returns a true eventually. A wildcard
pattern (_) is used for handling boring cases altogether.
Discussion of theApproach.The strength of patternmatch-
ing shines in encoding the small-step semantics. With the
help of pattern matching, the overall definition of eval1 is a
direct mapping from the formalization shown in Figure 1. As
an example, the PredSucc rule is concisely and precisely de-
scribed by a deep pattern (TmPred(TmSucc(t1))) with a guard
(if nv(t1)). Furthermore, sealed case classes facilitate ex-
haustiveness checking on patterns. If we forgot to write the
wildcard pattern in nv, the Scala compiler would warn us that
a case clause for TmPred is missing. An exception is eval1,
whose exhaustiveness is not checked by the compiler due to
the use of guards. A guard might call some function whose
execution result is only known at runtime, making the reach-
ability of that pattern difficult to decide statically. The price
to pay for exhaustiveness is the inability to add new vari-
ants of Tm in separate files. Thus, like the visitor version, the
implementation is neither extensible nor composable.
2.4 Open Case Classes

Case classes in Scala can also be open, as the sealed keyword
is optional. By removing sealed, we exchange exhaustive-
ness checking for the ability to add new variants in separate
files. Combined with EADDs [40], it is possible to implement
Arith in a modular manner. The idea is to use a default (wild-
card pattern) in each operation to handle variants that are
not explicitly mentioned. The existence of a default makes
operations extensible, as variants added later will be auto-
matically subsumed by that default. If the extended variants
have behavior different from the default, we can define a
new operation that deals with the extended variants and
delegates to the old operation. Figure 4 shows how to modu-
larize Arith using open case classes. Note that Tm is declared
as a top-level open datatype.
Discussion of the Approach. One nice aspect about this
approach is that sublanguages,Nat and Bool, are now imple-
mented separately into two traits Nat and Bool. Nat and Bool

introduce their respective variants of Tm and a corresponding
definition of eval1. The definition nv defined by Nat works
well in Arith, as it happens to have a very good default that
automatically works for extended cases. For instance, calling
nv(TmFalse) returns false as expected.
Unfortunately, eval1 is more problematic. In the general

case defining Arith in terms of Nat and Bool causes problems
as EADDs do not work well for such non-linear extensions.
eval1 needs to be overridden for combining definitions from

Pattern Matching in an Open World GPCE ’18, November 5–6, 2018, Boston, MA, USA

abstract class Tm
trait Nat {
case object TmZero extends Tm
case class TmSucc(t: Tm) extends Tm
case class TmPred(t: Tm) extends Tm
def nv(t: Tm): Boolean = ... // Same as in Figure 3
def eval1(t: Tm): Tm = ... // Same as in Figure 3

}
trait Bool {
case object TmTrue extends Tm
case object TmFalse extends Tm
case class TmIf(t1: Tm,t2: Tm,t3: Tm) extends Tm
def eval1(t: Tm): Tm = t match {

case TmIf(TmTrue,t2,_) => t2
case TmIf(TmFalse,_,t3) => t3
case TmIf(t1,t2,t3) => TmIf(eval1(t1),t2,t3)
case _ => throw NoRuleApplies

}}
trait Arith extends Nat with Bool { // Unification
case class TmIsZero(t: Tm) extends Tm
override def eval1(t: Tm) = t match {

case _: TmSucc => super[Nat].eval1(t)
case _: TmPred => super[Nat].eval1(t)
case _: TmIf => super[Bool].eval1(t)
case TmIsZero(TmZero) => TmTrue
case TmIsZero(TmSucc(t1)) if nv(t1) => TmFalse
case TmIsZero(t1) => TmIsZero(eval1(t1))
case _ => throw NoRuleApplies

}}

Figure 4. Implementing Arith with open case classes.

Nat and Bool as well as complementing rules for the zero test.
This turns out to be quite tedious and error-prone: we have
to recognize interesting old cases (TmSucc, TmPred and TmIf)
using typecases and delegate appropriately to either Nat or
Bool via a super call. If the programmer forgets delegating
any of those cases, then the pattern matching falls into the
wildcard pattern (the last case), throwing a NoRuleApplies

exception. In this situation the semantics of patternmatching
and wildcard patterns are to blame: since pattern matching
just follows the order of patterns, once we make a super call
to a definition with wildcards then all cases will be covered.
Therefore to workaround this problem we have to carefully
delegate the cases one-by-one to the super calls. Without
any assistance from the Scala compiler during this process,
it is rather easy to make mistakes like forgetting to delegate
a case or delegating a case to a wrong parent.

2.5 Partial Functions

To ease the composition of Nat and Bool, one may turn to
Scala’s PartialFunction. PartialFunction provides an orElse

method for composing partial functions. orElse tries the com-
posed partial functions sequentially until no MatchError is
raised. The open case class version can be adapted using
PartialFunction with a few changes, e.g. eval1 in Bool:
def eval1: PartialFunction[Tm,Tm] = {

Table 1. Pattern matching support comparison

Conciseness Exhaustiveness Extensibility Composability
Visitor # # #
Sealed case class # #
Open case class # #
Partial function # G#
Castor G#*

 = good, G#= neutral, #= bad
* Castor only gets half score on exhaustiveness because for nested case analysis
Scala cannot enforce a default. In a language-based approach nested case analysis
should always require a default, thus fully supporting exhaustiveness.

... // Cases for TmIf
case TmTrue => throw NoRuleApplies
case TmFalse => throw NoRuleApplies }

eval1 is a partial function of type PartialFunction[Tm,Tm].
A value of PartialFunction[Tm,Tm] is constructed using the
anonymous function syntax, where the argument Tm is di-
rectly pattern matched. The convenience of wildcard pat-
terns is lost: wildcards are replaced by named patterns to
avoid shadowing other partial functions to be combined.
Discussion of the Approach. Partial functions make the
composition of features work more smoothly, avoiding the
problems with eval1 for the open case classes approach:
override def eval1 = super[Nat].eval1 orElse

super[Bool].eval1 orElse
{ ... /* Cases for TmIsZero */ }

Composing eval1 in Arith is done by chaining eval1 from
Nat and Bool as well as a new partial function for the zero
test using the orElse combinator.
Still, this implementation is not very satisfactory. orElse

is left-biased, thus the combination order determines the com-
posed semantics. That is, f orElse g is not equivalent to g

orElse f, if f and g are two overlapped partial functions
(i.e. both f and g define same case patterns). orElse gives no
warning when composing such overlapped partial functions
and the semantics of the overlapped patterns are all from ei-
ther f or g, depending on which comes first. It is not possible
to have a mixed semantics for overlapped patterns from both
f and g, which restricts the reusability of partial functions.

2.6 Discussion

So far, we have presented (partial) implementations of Arith
using the Visitor pattern, sealed case classes, open case
classes, partial functions. Unfortunately, none of these imple-
mentations fully meets the desirable properties—conciseness,
exhaustiveness, extensibility and composability—summarized
in Section 1. Using these four properties as criteria, Table 1
compares the pattern matching support of these approaches.
Key Observations. Conciseness and exhaustiveness are
somehow conflicting with each other. The support for guards
brings conciseness but, at the same time, complicates exhaus-
tiveness checking. A guard might call some function whose
execution result is unknown at compile-time, making the

GPCE ’18, November 5–6, 2018, Boston, MA, USA Weixin Zhang and Bruno C. d. S. Oliveira

reachability of that case clause hard to check. Regarding ex-
tensibility and composability, essentially what makes pattern
matching hard to be extended or composed is that the case

clauses are order-sensitive and gathered in one definition.
We observe that it is useful to distinguish between top-

level (shallow) patterns and nested (deep) patterns. Top-level
patterns should be order-insensitive and split into multiple
definitions so that they can be easily composed. For many
functions nested patterns often have a good default. That is
the case for the nested patterns in eval1 as well as other ex-
amples illustrated in Section 3.While there are operations for
which sometimes nested patterns do not have good defaults,
in our personal experience and also the extended case study
in Section 5 these operations are not very common in prac-
tice. Therefore we propose an approach for nested patterns
that offers conciseness for the common case: nested patterns
should come with a default so that they would work for vari-
ant extensions. We apply this key insight in designing the
Castor framework, which turns out to be compared favor-
ably in terms of the four properties among the approaches.
An overview of Castor will come next in Section 3.

3 An Overview of Castor

This section presents the Castor framework. We first show
how to model the Arith language discussed in Section 2
using Castor and discuss how this implementation meets
the desirable properties. We then show how to define various
types of operations that pose previously identified challenges
in a modular setting. In particular, we show that dependent
operations [30], context-sensitive operations [18] and multi-
sorted languages [28] can be nicely modeled in Castor.

3.1 Arith with Castor

A nice aspect of the Visitor pattern is that it decentralizes
pattern matching into multiple, order-insensitive methods.
Taking the best of both worlds, Castor combines open case
classes with extensible visitors [15, 26, 27]. To reduce the
complexity and verbosity incurred by visitors, Castor em-
ploys metaprogramming for generating boilerplate.
Recall the Arith language shown in Figure 1. With Cas-

tor, it is possible to model Arith in a concise and modular
way, as shown in Figure 5. A Castor component is a trait an-
notated with @family. Component Term serves as the root of
all terms, where an open data type Tm is declared and marked
as @adt. The signature of the small-step evaluator is spec-
ified by the inner trait Eval1, where @default(Tm) denotes
that Eval1 is an operation on Tm with a default behavior. The
output type of Eval1 is declared by setting the abstract type
OTm as Tm. The default behavior is specified via the otherwise
method, which throws a NoRuleApplies exception. Nat and
Bool are independent extensions to Term that are defined
separately as two Castor components. Nat, for example,
extends the data type Tm with TmZero, TmSucc and TmPred

@family trait Term {
@adt trait Tm // Datatype declaration
@default(Tm) trait Eval1 { // Signature

type OTm = Tm
def otherwise = _ => throw NoRuleApplies

}}
@family trait Nat extends Term {

// Datatype extension
@adt trait Tm extends super.Tm {

def TmZero: Tm
def TmSucc: Tm => Tm
def TmPred: Tm => Tm

}
def nv(t: Tm): Boolean = ... // Same as in Figure 3
@default(Tm) trait Eval1 extends super.Eval1 {

override def tmSucc = t => TmSucc(this(t))
override def tmPred = {

case TmZero => TmZero
case TmSucc(t) if nv(t) => t
case t => TmPred(this(t))

}}}
@family trait Bool extends Term {

@adt trait Tm extends super.Tm {
def TmTrue: Tm
def TmFalse: Tm
def TmIf: (Tm,Tm,Tm) => Tm

}
@default(Tm) trait Eval1 extends super.Eval1 {

override def tmIf = {
case (TmTrue,t2,_) => t2
case (TmFalse,_,t3) => t3
case (t1,t2,t3) => TmIf(this(t1),t2,t3)

}}}
@family trait Arith extends Nat with Bool {

@adt trait Tm extends super[Nat].Tm
with super[Bool].Tm {

def TmIsZero: Tm => Tm
}
@visit(Tm) trait Eval1 extends super[Nat].Eval1

with super[Bool].Eval1 {
def tmIsZero = {

case TmZero => TmTrue
case TmSucc(t) if nv(t) => TmFalse
case t => TmIsZero(this(t))

}}}

Figure 5. Implementing Arith with Castor.

methods. These capitalized methods use function types to
express how to construct these variants. As opposed to the
case classes counterpart, methods are more compact.

The combination of case classes and visitors provides Cas-
tor with flexibility in defining operations over Tm. Opera-
tions that focus on a fixed subset of variants and have a good
default like nv are defined as functions. Ordinary operations
like Eval1 are defined as visitors for retaining composability.
But unlike normal visitors, nested case analysis is much sim-
plified via (nested) pattern matching rather than auxiliary

Pattern Matching in an Open World GPCE ’18, November 5–6, 2018, Boston, MA, USA

visitors. Take the evaluation of a predecessor term for exam-
ple. When a predecessor is processed by Eval1, it will be rec-
ognized and dispatched to the tmPredmethod. Then its inner
term is pattern matched using several case clauses via Scala’s
anonymous function syntax. As these are case clauses, deep
patterns and guards can be used. To apply Eval1 on the inner
term, we call this(t). To restore the convenience of wild-
cards for visitors, Castor provides an annotation @default,
which provides a default implementation for all known vari-
ants. By annotating @default and inheriting otherwise from
Term’s Eval1, we only need to override interesting cases.

Definitions from Nat and Bool are easily combined in Arith

through Scala’s mixin composition. Datatype definitions are
merged with a new constructor for the zero test. With top-
level patterns split into different methods, Eval1 from Nat

and Bool are merged without conflicts. The only thing we
need to do is to complement the case for zero test. As the
zero test is a case that requires programmer written code,
Arith’s Eval1 is annotated with @visit rather than @default.
ClientCode.ACastor component can be directly imported
in client code. Here are some tests on Arith:
import Arith._
val tm = TmIsZero(
TmIf(TmFalse,TmTrue,TmPred(TmSucc(TmZero))))

eval1(tm) // TmIsZero(TmPred(TmSucc(TmZero)))
eval1(eval1(tm)) // TmIsZero(TmZero)
eval1(eval1(eval1(tm))) // TmTrue
By importing Arith, we are able to construct a term using
all the variants including those from Nat and Bool. Castor’s
visitors are used like normal functions with their lowercase
name. The constructed term is evaluated step by step using
eval1 and the result for each step is shown in the comments.
Discussion. Here we discuss how Castor addresses the
four desirable properties:
• Conciseness. By employing Scala’s concise syntax and
metaprogramming, Castor greatly simplifies the defini-
tion and usage of visitors. In particular, the need for aux-
iliary visitors in performing deep case analysis is now
replaced by pattern matching via case clauses. The con-
cept of visitors is even made transparent to the end user,
making the framework more user-friendly.

• Exhaustiveness. The exhaustiveness of patterns in Cas-
tor consists of two parts. Top-level patterns are methods,
whose exhaustiveness is checked in the code generation
phase by the Scala compiler (see Section 4 for details). For
nested patterns using case clauses, a default must be pro-
vided. However, this is neither statically enforced by Scala
norCastor. Note, however, that with specialized language
support it is possible to enforce that nested always provide
a default. This is precisely what EADDs [40] do.

• Extensibility. As illustrated by Nat, Bool and Arith, we
can extend the datatype with new variants and operations,
modularly. Such extensibility is enabled by the underlying
extensible visitor encoding (see Section 4 for details).

@family @adts(Tm) @ops(Eval1)
trait PrintArith extends Arith {

@default(Tm) trait PtmTerm {
type OTm = String
def otherwise = ptmAppTerm(_)
override def tmIf = "if " + this(_) +

" then " + this(_) + " else " + this(_)
}
@default(Tm) trait PtmAppTerm {

type OTm = String
def otherwise = ptmATerm(_)
override def tmPred = "pred " + ptmATerm(_)
override def tmSucc = "succ " + ptmATerm(_)
override def tmIsZero = "iszero " + ptmATerm(_)

}
@default(Tm) trait PtmATerm {

type OTm = String
def otherwise = "(" + ptmTerm(_) + ")"
override def tmZero = "0"
override def tmTrue = "true"
override def tmFalse = "false"

}}

Figure 6. Pretty printer for Arith.

• Composability.Castor obtains composability via Scala’s
mixin composition, as illustrated by Arith. Unlike partial
functions, which silently compose overlapped patterns,
composing overlapped patterns in Castor will trigger
compilation errors because they are conflicting methods
from different traits. The error message will indicate the
source of conflicts and we are free to select an implemen-
tation in resolving the conflict.

3.2 Pretty Printing: Operations with Dependencies

Operations that depend (or even mutually depend) on other
operations pose additional challenges for modularity [30].
Castor fully supports modular dependent operations.
Consider implementing a pretty printer for Arith. To

print out parenthesis only when necessary, we classify terms
according to whether they are primitives or applications.
Figure 6 gives the implementation, which illustrates how to
add new (possibly dependent) operations with Castor. The
pretty printer consists of three mutually dependent visitors:
PtmTerm, PtmAppTerm and PtmATerm, each of which focuses on
a subset of terms and delegates remaining cases to others.
Castor allows operations with complex dependencies to be
defined in a natural andmodular way.We can directly refer to
other visitors in scope via their lowercase name and use them
as normal functions. For instance, visitor PtmTerm delegates
its boring cases to visitor PtmAppTerm by supplying the term
to ptmAppTerm. The magic under the hood is that Castor
generates a lowercase val declaration for each visitor, which
allows the visitor to be used elsewhere. @adt and @ops are
auxiliary annotations that provide information for Castor
in generating code. More details will come in Section 4.

GPCE ’18, November 5–6, 2018, Boston, MA, USA Weixin Zhang and Bruno C. d. S. Oliveira

3.3 Structural Equality

Structural equality is an operation that checks whether two
terms are constructed consistently. We can already compare
the structural equality of two terms using == thanks to the
equals method injected by the case keyword. Still, manu-
ally encoding structural equality is interesting as it shows
how to pattern match on multiple arguments. A Castor
implementation of structural equality for Arith is:
@family @adts(Tm) @ops(Eval1)
trait EqArith extends Arith {
@visit(Tm) trait Equal {

type OTm = Tm => Boolean
def tmZero = {

case TmZero => true
case _ => false }

def tmSucc = t => {
case TmSucc(s) => this(t)(s)
case _ => false }

... // Definition for other cases elided
}}
Equal is a context-sensitive visitor [15] whose context is the
second term being compared. To capture the context, we
instantiate the output type OTm as a function type Tm =>

Boolean. Pattern matching on the two terms is done differ-
ently: the shape of the first term is revealed by the visit
methods whereas the shape of the second term is revealed
by case clauses. We then recursively compare their subterms
if they fall in the same pattern; otherwise, a false is returned.

Note that all cases share the same default (false).We could
use Scala’s pattern matching mechanism to avoid duplicating
that default by overriding the generated apply method:
override def apply(t: Tm) = s => {
try { t.accept(this)(s) }
catch { case _: MatchError => false }}

When two terms are constructed differently, a MatchError ex-
ception is thrown. The apply method catches that exception
and returns false. However, we prefer to use nested case
analysis with a default to stick to the core ideas in Castor.

3.4 Typed Arith

TheArith language presented so far allows erroneous terms
like TmPred(TmTrue) to be constructed. To rule out erroneous
terms, we introduce types and a type-checking operation
to the Arith language. The introduction of types evolves
Arith from an untyped language to a typed language:
@family @adts(Tm) @ops(Eval1)
trait TyArith extends Arith {
@adt trait Ty {

def TyNat: Ty
def TyBool: Ty

}
@visit(Tm) trait Typeof {

type OTm = Option[Ty]
def tmZero = Some(TyNat)
def tmSucc = t => this(t) match {

case ty@Some(TyNat) => ty
case _ => None }

def tmPred = tmSucc // Case definition reused
def tmTrue = Some(TyBool)
def tmFalse = tmTrue // Case definition reused
def tmIf = (t1,t2,t3) =>

(this(t1),this(t2),this(t3)) match {
case (Some(TyBool),o2,o3) if o2==o3 => o2
case _ => None }

def tmIsZero = t => this(t) match {
case Some(TyNat) => Some(TyBool)
case _ => None }

}}
Like Tm, Ty is a datatype for representing types. Two concrete
types, TyNat and TyBool, are introduced for classifying terms
that produces numbers or boolean values. A visitor Typeof is
defined for type checking terms. The output type of Typeof
is Option[Ty], indicating that if a term is well-typed, some
type will be returned; otherwise a Nonewill be returned. One
interesting thing to notice is that for variants that share the
same signature and behavior, it is sufficient to define the
behavior once and reuse the definition for other variants, as
illustrated by tmSucc and tmPred. Such reuse is, however, hard
to achieve for case clauses because they are not referable.

4 Extensible Visitors and Code Generation

The power of Castor comes from the underlying extensible
visitors. The extensible visitor encoding combines ideas from
previous work [15, 26, 27, 42] for better supporting pattern
matching. Furthermore, Castor employs Scalameta [1, 5],
a modern Scala meta-programming library, for generating
the boilerplate required by the visitor encoding. This section
first presents the encoding by explaining the generated code
for Arith shown in Figure 5 and then formalizes the code
generation and discusses the limitations of Castor.

4.1 An Encoding of Extensible Visitors

Recall the Castor implementation of Arith shown in Fig-
ure 5. Let us first have a look at the generated code for Term:
trait Term {

type TmV <: TmVisit
abstract class Tm { def accept(v: TmV): v.OTm }
trait TmVisit { _: TmV =>

type OTm
def apply(t: Tm) = t.accept(this) }

trait TmDefault extends TmVisit { _: TmV =>
def otherwise: Tm => OTm }

trait Eval1 extends TmDefault { _: TmV => ... }
val eval1: Eval1

}
The visitor encoding presented here is slightly different
from the one shown in Figure 2. The use of several Scala-
specific features requires explanations. Instead of directly
using TmVisit in declaring the acceptmethod, we use TmV-an
abstract type bounded by TmVisit. This decouples Tm from

Pattern Matching in an Open World GPCE ’18, November 5–6, 2018, Boston, MA, USA

a specific visitor interface, allowing covariant refinement
on the upper bound of TmV to account for new data variants.
The return type of the visit methods is parameterized by an
abstract type OTm rather than a type parameter. Hence the
return type of accept is now a path dependent type v.OTm. A
syntactic sugar method apply is defined inside TmVisit for
enabling v(t) as a shorthand of t.accept(v), where t and v

are instances of Tm and TmVisit respectively. To pass this as
an argument of accept in implementing apply, we state that
TmVisit is of type TmV using a self-type annotation. TmDefault
is the default visitor interface, which extends TmVisit with
an otherwise method for specifying the default behavior.
Eval1 is a visitor annotated with @default, thus extending
TmDefaultwith a self-type annotation. There is a correspond-
ing val with lowercase name generated for Eval1, which not
only allows the visitor to be used like normal functions but
also facilitates exhaustiveness checking, as seen later.
The encoding makes more sense with the following gen-

erated code for Nat:
trait Nat extends Term {
type TmV <: TmVisit
case object TmZero extends Tm {

def accept(v: TmV): v.OTm = v.tmZero }
case class TmSucc(t: Tm) extends Tm {

def accept(v: TmV): v.OTm = v.tmSucc(t) }
case class TmPred(t: Tm) extends Tm {

def accept(v: TmV): v.OTm = v.tmPred(t) }
trait TmVisit extends super.TmVisit { _: TmV =>

def tmZero: OTm
def tmSucc: Tm => OTm
def tmPred: Tm => OTm }

trait TmDefault extends TmVisit
with super.TmDefault { _: TmV =>

def tmZero = otherwise(TmZero)
def tmSucc = t => otherwise(TmSucc(t))
def tmPred = t => otherwise(TmPred(t)) }

def nv(t: Tm): Boolean = ...
trait Eval1 extends TmDefault

with super.Eval1 { _: TmV => ... }
}
The constructors of Tm are transformed to case classes/objects
that extend Tm. To implement the accept method, TmVisit is
extended with lowercase visit methods one for each construc-
tor. The upper bound of TmV is refined as the new TmVisit

to allow invocations on extended visit methods in imple-
menting accept for new subclasses of Tm. TmDefault is a de-
fault visitor that provides an implementation for each visit
method. The default implementation reconstructs the term
and passes it to the otherwisemethod. nv remains unchanged
while Eval1 is modified by extending TmDefault and annotat-
ing itself as TmV. Bool and Arith are transformed in the same
way. Their definitions are elided for space reasons.
Companion Object. Besides modifying the trait annotated
with @family, Castor also automatically generates a com-
panion object for it, e.g. Nat:

Fam ::= @family @adts(D) @ops(V)

trait F extends F {Adt Vis}

Adt ::= @adt trait D extends super[F].D{Ctr}

Vis ::= @a(D) trait V extends super[F].V { . . .}
a ::= default | visit

Ctr ::= def C:D | def C:(T)=>D
T ::= D | Int | Boolean | T =>T

Figure 7. Syntax.

object Nat extends Nat {
type TmV = TmVisit
object eval1 extends Eval1 }

Castor tries to bind all the abstract types to their corre-
sponding visitor interfaces. Moreover, the val declarations
are met by singleton objects that extend traits with capital-
ized names. Automatically generating companion objects
is useful for two reasons. Firstly, it provides exhaustiveness
checking for concrete visitors. That is, if a visitor does not im-
plement all the visit methods, the object creation fails, with
the missing methods being reported to the user. Secondly,
the companion objects can be directly imported into client
code, simplifying the usage of Castor components.

4.2 Formalized Code Generation

We can see that although the extensible visitor encoding
is powerful, directly programming with it is cumbersome.
Moreover, the encoding relies on advanced features of Scala,
making it less accessible to novice Scala programmers. To
reduce the complexity and verbosity of the encoding, Cas-
tor employs Scalameta based macro annotations [1, 5] in
generating code. With Scalameta, we are able to modify the
parsed source program before type-checking takes place.

Figure 7 describes valid Scala programs accepted by Cas-
tor. Uppercase meta-variables range over capitalized names.
A is written as a shorthand for sequenceA1•. . .•An , where •
denotes with, comma or semicolon according to the context.
Figure 8 formalizes the translation. We use semantic brackets
(⟦·⟧) in defining the translation rules and angle brackets (<>)
for processing sequences. The translation is quite straight-
forward. One can easily see that processing Term and Nat

through Figure 8 generates the code shown previously. Here
we briefly discuss some interesting cases. A trait is recog-
nized as a base case if it extends nothing. Base cases need
extra declarations such as abstract class for datatypes or
val declaration for visitors. Non-argument constructors are
translated to case objects rather than case classes.

4.3 Limitations

Castor has some limitations due to the use of metaprogram-
ming and the restrictions from the current Scalameta library:
• Unnecessary annotations.With the current version of
Scalameta, we are not able to get information from an-
notated parents. If parents’ information were accessible,
annotations @adts and @ops could be eliminated.

GPCE ’18, November 5–6, 2018, Boston, MA, USA Weixin Zhang and Bruno C. d. S. Oliveira

⟦@family @adts(D) @ops(V) trait F extends F {Adt Vis}⟧ =
trait F extends F { ⟦Adt⟧ ⟦Vis⟧}
object F extends F {

⟨type DV = DVisit | D ∈ D ∪Adt⟩

⟨object v extends V | V ∈ V ∪Vis⟩}

⟦@adt trait D{Ctr}⟧ =
type DV <:DVisit

abstract class D{ def accept(v:DV): v.OD}

⟦Ctr⟧
trait DVisit{ _:DV =>

type OD
def apply(x:D) = x.accept(this)

⟦Ctr⟧visit}
trait DDefault extends DVisit{ _:DV =>

def otherwise:D => OD

⟦Ctr⟧def ault}
⟦@adt trait D extends super[F].D{Ctr}⟧ =

type DV <:DVisit

⟦Ctr⟧
trait DVisit extends super[F].DVisit

{ _:DV =>⟦Ctr⟧visit}
trait DDefault extends DVisit with super[F].DDefault

{_:DV => ⟦Ctr⟧def ault}
⟦def C:D⟧ =

case object C extends D{ def accept(v:DV) = v.c}

⟦def C:(T)=>D⟧ =
case class C(x:T) extends D{ def accept(v:DV) = v.c(x)}

⟦def C:D⟧visit = def c:OD

⟦def C: (T)=>D⟧visit = def c:(T)=>OD
⟦def C:D⟧def ault = def c = otherwise(C)

⟦def C: (T)=>D⟧def ault = def c = (x)=> otherwise(C(x))
⟦@a(D) trait V { . . .}⟧ =

trait V extends DA{ _:DV => . . .}
val v : V

⟦@a(D) trait V extends super[F].V { . . .}⟧ =
trait V extends DA with super[F].V { _:DV => . . .}

⟦X⟧ = ⟨⟦X⟧ | X ∈ X ⟩

Figure 8. Translation.

• Boilerplate nested composition. Lacking of parents’ in-
formation also disallows automatically composing nested
members. Assuming that automatic nested composition is
available, Arith shown in Figure 5 can be simplified as:
@family trait Arith extends Nat with Bool {

@adt trait Tm { ... }
@visit(Tm) trait Eval1 { ... }}

By expressing the inheritance relationship once at the fam-
ily level, extend clauses formembers such as super[Nat].Tm
with super[Bool].Tm can be inferred.

• Imprecise error messages. As Castor modifies the an-
notated programs, what the compiler reports are errors on

Arith

Nat Bool

Untyped

VarApp

FullUntyped

Record Str Let

TyArith

TyBoolTyNat

SimpleBool

Typed

FullSimple

Variant

MoreExt

Bot

Top

FullErrorRcdSubBot

TyRcd

FullSub

Term

Type

TyStr TyLet

Extension

Figure 9. Simplified inheritance graph.

the modified program rather than the original program.
Reasoning about the error messages becomes harder as
they are mispositioned and require some understanding
of the generated code.

5 Case Study and Evaluation

To give some evidence on the expressivity and effectiveness
of Castor, we conduct a case study on TAPL [31]. Examples
shown in previous sections are directly from or greatly in-
spired by the TAPL case study. TAPL are a good benchmark
for assessing the capabilities of modular pattern matching
and has been adopted by EVF [42]. The reason is that core
data structures of TAPL interpreters, types and terms, are
modeled using algebraic datatypes; operations over types
and terms are defined via pattern matching. There are a few
operations that require nested patterns: small-step seman-
tics, type equality and subtyping relations. They all come
with a default. The data structures and associated operations
should be modular as new language features are introduced
and combined. However, without proper support for modu-
lar pattern matching, the original implementation duplicates
code for features that could be shared. With Castor and
techniques shown in Section 3, we are able to refactor the
non-modular implementation into a modular manner. Our
evaluation shows that the refactored version significantly
reduces the SLOC. However, at the moment, improved mod-
ularity does come at some performance penalty.
5.1 Overview

The Scala implementation of TAPL [3] strictly follows the
original OCaml version, which uses sealed case classes and
pattern matching. The first 10 languages (arith, untyped,
fulluntyped, tyarith, simplebool, fullsimple, fullerror, bot, rcd-
subbot and fullsub) are our candidates for refactoring. Each
language implementation consists of 4 files: parser, syntax,
core and demo. These languages cover various features in-
cluding arithmetic, lambda calculus, records, fix points, error
handling, subtyping, etc. Features are shared among these
10 languages. For example, arith is included by fulluntyped,
fullsimple and fullsub. However, such featuring sharing is
achieved via duplicating code, causing problems like:

Pattern Matching in an Open World GPCE ’18, November 5–6, 2018, Boston, MA, USA

Table 2. SLOC evaluation of TAPL interpreters

Extracted Castor EVF Language Castor EVF Scala

bool 71 98 arith 31 33 106
extension 24 34 untyped 40 46 124
str 42 55 fulluntyped 18 47 256
let 48 47 tyarith 22 26 157
moreext 112 106 simplebool 24 38 212
nat 85 103 fullsimple 24 83 619
record 117 198 fullerror 68 105 396
top 79 86 bot 40 61 190
typed 82 138 rcdsubbot 30 39 257
varapp 40 65 fullsub 57 116 618
variant 136 161
misc 212 172 Total 1402 1857 2935

• Inconsistent definitions. Lambdas are printed as "lambda"
in all languages except untyped, which is "\".

• Feature leaks. Features introduced in the latter part of
the book (e.g. System F) leak to previous language imple-
mentations such as fullsimple.
Our refactoring focuses on syntax and corewhere datatypes

and associated operations are defined. Figure 9 gives a sim-
plified high-level overview of the refactored implementation.
The candidate languages are represented as gray boxes and
extracted features/sub-languages are represented as white
boxes. From Figure 9 we can see that the interactions be-
tween languages (revealed by the arrows) are quite intense.

5.2 Evaluation

We evaluate Castor by answering the following questions:
• Q1. Is Castor effective in reducing SLOC?
• Q2. How does Castor compare to EVF [42]?
• Q3. How much performance penalty does Castor incur?
Q1. Table 2 reports the SLOC comparison results. With
shared features modularly extracted and reused, Castor
reduces over half of the total SLOC compared to the non-
modular implementation written in plain Scala.
Q2. Table 2 also compares Castor with EVF [42], a modular
visitor framework in Java. Like Castor, EVF automatically
generates boilerplate code associated with visitors. However,
better support for pattern matching and more concise syntax
forCastor result in around 25% SLOC reductionwith respect
to EVF. Moreover, EVF requires manual instantiation from
Java interfaces to classes for creating objects. The instantia-
tion burden can be quite heavy for feature-rich languages.
Castor completely removes the burden of instantiation by
generating companion objects automatically.
Q3. To measure the performance, we randomly generate
10,000 terms for each language and calculate the average
evaluation time for 10 runs. The ScalaMeter [2] microbench-
mark framework is used for performance measurements. The
benchmark programs are compiled using Scala 2.12.3 and
executed on a MacBook Pro with 2.6 GHz Intel Core i5 with
8 GB memory. Figure 10 compares the execution time in

Evaluation time (ms)

arith
untyped

fulluntyped
tyarith

simplebool
fullsimple

bot
fullerror

rcdsubbot
fullsub

0 175 350 525 700
166

205.5

120.6

172.7

158.9

208

82.6

157.9

166.6

84.8

531.3

418.5

337.3

387.3

406.8

655.3

124.3

290.9

312.9

105.4 Castor Scala

Figure 10. Performance evaluation of TAPL interpreters.

Evaluation time (ms)

Visitor
Sealed case class

Open case class
Partial function

Castor
0 32.5 65 97.5 130

105.4
121.3

96.3
84.8

93.8

Figure 11. Performance evaluation of Arith.

milliseconds. From the figure we can see that Castor imple-
mentations have a 1.24x (arith) to 3.2x (fullsub) slowdown
with respect to the corresponding non-modular Scala im-
plementations. Figure 11 further compares the performance
of the Arith implementations discussed in Section 2. With-
out surprise, modular implementations are slower than non-
modular implementations. With underlying optimizations,
implementations based on case classes are faster than imple-
mentations based on visitors. The implementation in partial
function is worst due to the heavy use of exception handling.
Discussion. We believe that the performance penalty is
mainly caused by method dispatching. A modular imple-
mentation typically has a complex inheritance hierarchy.
Dispatching on a case needs to go across that hierarchy. An-
other source of performance might be the use of functions
instead of normal methods in visitors. Of course, more rigor-
ous benchmarks need to be conducted to verify our guesses.
One possible way to boost the performance is to turn TAPL
interpreters into compilers via staging [33].

6 Related Work

Polymorphic Variants.OCaml supports polymorphic vari-
ants [11]. Unlike traditional variants, polymorphic variant
constructors are defined individually and are not tied to a
particular datatype. Garrigue [12] presents a solution to the
EP using polymorphic variants. To correctly deal with recur-
sive calls, open recursion and an explicit fixed-point operator
must be used properly, otherwise the recursion may go to the
original function rather than the extended one. This causes
additional work for the programmer especially when the
operation has complex dependencies. In contrast, Castor
handles open recursion easily through OO dynamic dispatch-
ing, reducing the burden of programmers significantly.

GPCE ’18, November 5–6, 2018, Boston, MA, USA Weixin Zhang and Bruno C. d. S. Oliveira

Open Data Types and Open Functions. To solve the EP,
Löh and Hinze [22] propose to extend Haskell with open
datatypes and open functions. Different from classic closed
datatypes and closed functions, the open variants decentral-
ize the definition of datatypes and functions and there is
a mechanism that reassembles the pieces into a complete
definition. To avoid unanticipated captures caused by clas-
sic first-fit pattern matching, a best-fit scheme is proposed,
which rearranges patterns according to their specificness
rather than the order (e.g. wildcards are least specific). How-
ever open datatypes and open functions are not supported in
standard Haskell and more importantly, they do not support
separate compilation: the source for all files with variants of
a datatype must be available for generating code.
Data Types à la Carte (DTC). DTC [37] encodes compos-
able datatypes using existing features of Haskell. The idea is
to express extensible datatypes as a fixpoint of co-products
of functors. While it is possible to define operations that
have dependencies and/or require nested pattern matching
with DTC, the encoding becomes complicated and needs sig-
nificant machinery. There is some follow-up work that tries
to equip DTC with additional power. Bahr and Hvitved [4]
extend DTC with GADTs [39] and automatically generates
boilerplate using Template Haskell [35]. Oliveira et al. [29]
use list-of-functors instead of co-products to better simulate
OOP features subtyping, inheritance and overriding.
Modular Church-Encoded Interpreters. Solutions to the
EP based on Church encodings can also be used for develop-
ing modular interpreters. Well-known techniques are finally
tagless [6], Object Algebras [28] and Polymorphic Embed-
ding [16]. However, these techniques do not support pattern
matching and/or dependencies, making it hard to define op-
erations like small-step semantics discussed in Section 2.
Typical workarounds are defining the operation together
with the dependencies or use advanced features like intersec-
tion types and a merge operator [30, 32]. In contrast, Castor
allows us to implement operations that need nested patterns
and/or with dependencies in a simple, modular way.
Extractors. Extractors [9] are an alternative pattern match-
ing mechanism in Scala. Extractors are objects with a user-
defined unapply method that specifies how to tear down an
object. Compared to case classes, extractors are flexible, in-
dependent of classes but verbose. Emir et al. [9] further com-
pare case classes and extractors with other four OO pattern
matching techniques according to conciseness, maintainabil-
ity and performance. Their results show that case classes
and extractors are complementary in terms of these crite-
ria. Two criteria that we consider important—exhaustiveness
and composability—are not addressed. Like open case classes,
extractors do not meet these two properties as well.
Other Approaches to Pattern Matching in OOP. There
are many attempts to introduce pattern matching into main-
stream OOP languages like Java [14, 21] and C++ [36]. Some

new OOP languages are designed with first-class pattern
matching such as Newspeak [13], Fortress [34] or Grace [17].
Yet, how to cooperate pattern matching with the open na-
ture of OOP class hierarchy while preserving the desirable
properties summarized in Section 1 is still challenging.
Extensible Visitors. Section 4 presents an extensible visi-
tor encoding for modular pattern matching. The basis of the
encoding comes from [26] and the use of case classes and
the way to express dependencies are inspired by [15, 27]. A
common problem of these encodings is that although pow-
erful, they are too complicated for practical use. In contrast,
Castor simplifies the encoding through meta-programming.
Similar idea has been adopted in EVF [42] which generates
boilerplate associated with visitors through Java annotation
processor. Unlike Castor, nested pattern matching in EVF
is simulated via constructing anonymous visitors with flu-
ent setters and Java 8’s lambdas [41]. Consequently, deep
patterns and guards are not supported and the notation over-
head is much higher than Scala’s case clauses. EVF also gen-
erates various traversal templates for eliminating boilerplate
in querying and transforming AST structures. Essentially,
these traversal templates can be ported to Castor by gener-
ating code and providing annotations similar to @default.

7 Conclusion and Future Work

This work argues that pattern matching in an extensible
setting would benefit from an unordered semantics for (top-
level) patterns. In essence, extensibility and composability
do not interact well with ordered patterns. To accommodate
for the convenience of nested patterns, we propose a second
case analysis mechanism with defaults. We argue that such
nested patterns often have good default for most operations
in practice. This is partly validated by our case study, where
practically all operations that used nested case analysis had
good defaults for such nested patterns. We applied this idea
in designing Castor, a Scala meta-programming framework
that allows programmers to write concise, exhaustive, ex-
tensible and composable pattern matching code. While Cas-
tor is practical and serves the purpose of demonstrating
our points regarding pattern matching, there are important
drawbacks on such a meta-programming, library-based ap-
proach: error reporting is imprecise; the syntax and typing
of Scala cannot be changed to enforce certain restrictions.
A worthwhile path for future work would be to study a

more principled language design that builds on the ideas of
this work. Another path would be to support GADTs [39].
There is some initial support for GADTs that allows simple,
typed, embedded DSLs to bemodeled withCastor. For space
reasons, we do not discuss such support in this paper. We
would like continue the investigation and see if more realistic
embedded DSLs can be modeled with Castor.

Pattern Matching in an Open World GPCE ’18, November 5–6, 2018, Boston, MA, USA

References

[1] [n. d.]. Scalameta. http://scalameta.org/. ([n. d.]).
[2] [n. d.]. ScalaMeter. http://scalameter.github.io/. ([n. d.]).
[3] [n. d.]. TAPL Scala. https://github.com/ilya-klyuchnikov/tapl-scala/.

([n. d.]).
[4] Patrick Bahr and Tom Hvitved. 2011. Compositional data types. In

Proceedings of the seventh ACM SIGPLAN workshop on Generic pro-
gramming. ACM, 83–94.

[5] Eugene Burmako. 2017. Unification of Compile-Time and Runtime
Metaprogramming in Scala. Ph.D. Dissertation. EPFL.

[6] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. Journal of Functional Programming 19, 5 (2009),
509–543.

[7] Craig Chambers. 1992. Object-oriented multi-methods in Cecil. In
European Conference on Object-Oriented Programming.

[8] Curtis Clifton, Gary T Leavens, Craig Chambers, and Todd Millstein.
2000. MultiJava: Modular open classes and symmetric multiple dis-
patch for Java. In ACM Sigplan Notices, Vol. 35. ACM, 130–145.

[9] Burak Emir, Martin Odersky, and John Williams. 2007. Matching
objects with patterns. In European Conference on Object-Oriented Pro-
gramming.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1994. Design Patterns : Elements of Reusable Object-Oriented Software.
Addisson-Wesley.

[11] Jacques Garrigue. 1998. Programming with polymorphic variants. In
ML Workshop.

[12] Jacques Garrigue. 2000. Code reuse through polymorphic variants. In
Workshop on Foundations of Software Engineering.

[13] Felix Geller, Robert Hirschfeld, and Gilad Bracha. 2010. Pattern Match-
ing for an object-oriented and dynamically typed programming language.
Number 36. Universitätsverlag Potsdam.

[14] Martin Hirzel, Nathaniel Nystrom, Bard Bloom, and Jan Vitek. 2008.
Matchete: Paths through the pattern matching jungle. In International
Symposium on Practical Aspects of Declarative Languages.

[15] Christian Hofer and Klaus Ostermann. 2010. Modular Domain-specific
Language Components in Scala. In Proceedings of the Ninth Interna-
tional Conference on Generative Programming and Component Engi-
neering (GPCE ’10).

[16] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan
Moors. 2008. Polymorphic Embedding of Dsls. In Proceedings of the 7th
International Conference on Generative Programming and Component
Engineering (GPCE ’08).

[17] Michael Homer, James Noble, Kim B. Bruce, Andrew P. Black, and
David J. Pearce. 2012. Patterns As Objects in Grace. In Proceedings of
the 8th Symposium on Dynamic Languages (DLS ’12). New York, NY,
USA, 17–28.

[18] Pablo Inostroza and Tijs van der Storm. 2015. Modular Interpreters
for the Masses: Implicit Context Propagation Using Object Algebras.
In Proceedings of the 2015 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences.

[19] Chinawat Isradisaikul and Andrew C. Myers. 2013. Reconciling Ex-
haustive Pattern Matching with Objects. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’13).

[20] Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised
report. Cambridge University Press.

[21] Jed Liu and Andrew C Myers. 2003. JMatch: Iterable abstract pattern
matching for Java. In PADL.

[22] Andres Löh and Ralf Hinze. 2006. Open data types and open functions.
In Proceedings of the 8th ACM SIGPLAN international conference on

Principles and practice of declarative programming.
[23] Todd Millstein, Colin Bleckner, and Craig Chambers. 2004. Modular

Typechecking for Hierarchically Extensible Datatypes and Functions.
ACM Trans. Program. Lang. Syst. 26, 5 (Sept. 2004).

[24] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. 1997.
The Definition of Standard ML-Revised. (1997).

[25] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-
tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz,
Erik Stenman, and Matthias Zenger. 2004. An overview of the Scala
programming language. Technical Report.

[26] Martin Odersky and Matthias Zenger. 2005. Independently extensible
solutions to the expression problem. In The 12th InternationalWorkshop
on Foundations of Object-Oriented Languages.

[27] Bruno C. d. S. Oliveira. 2009. Modular Visitor Components. In Proceed-
ings of the 23rd European Conference on Object-Oriented Programming.

[28] Bruno C. d. S. Oliveira and William R. Cook. 2012. Extensibility for the
Masses: Practical Extensibility with Object Algebras. In Proceedings of
the 26th European Conference on Object-Oriented Programming.

[29] Bruno C. d. S. Oliveira, Shin-Cheng Mu, and Shu-Hung You. 2015.
Modular Reifiable Matching: A List-of-functors Approach to Two-
level Types. In Proceedings of the 2015 ACM SIGPLAN Symposium on
Haskell (Haskell ’15).

[30] Bruno C. d. S. Oliveira, Tijs van der Storm, Alex Loh, and William R.
Cook. 2013. Feature-Oriented Programming with Object Algebras.
In Proceedings of the 27th European Conference on Object-Oriented
Programming.

[31] Benjamin C Pierce. 2002. Types and programming languages. MIT
press.

[32] Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Oster-
mann. 2014. From Object Algebras to Attribute Grammars. In Pro-
ceedings of the 2014 ACM International Conference on Object-Oriented
Programming Systems Languages and Applications.

[33] Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging:
A Pragmatic Approach to Runtime Code Generation and Compiled
DSLs. In In GPCE.

[34] Sukyoung Ryu, Changhee Park, and Guy L Steele Jr. 2010. Adding pat-
tern matching to existing object-oriented languages. In ACM SIGPLAN
Foundations of Object-Oriented Languages Workshop.

[35] Tim Sheard and Simon Peyton Jones. 2002. Template meta-
programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN
workshop on Haskell.

[36] Yuriy Solodkyy, Gabriel Dos Reis, and Bjarne Stroustrup. 2013. Open
Pattern Matching for C++. In Proceedings of the 12th International Con-
ference on Generative Programming: Concepts and Experiences (GPCE
’13).

[37] Wouter Swierstra. 2008. Data types à la carte. Journal of functional
programming 18, 4 (2008), 423–436.

[38] Philip Wadler. 1998. The Expression Problem. Email. (Nov. 1998).
Discussion on the Java Genericity mailing list.

[39] Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recur-
sive Datatype Constructors. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
’03).

[40] Matthias Zenger and Martin Odersky. 2001. Extensible Algebraic
Datatypes with Defaults. In Proceedings of the Sixth ACM SIGPLAN
International Conference on Functional Programming.

[41] Weixin Zhang. 2017. Extensible domain-specific languages in object-
oriented programming. HKU Theses Online (HKUTO) (2017).

[42] Weixin Zhang and Bruno C. d. S. Oliveira. 2017. EVF: An Extensible
and Expressive Visitor Framework for Programming Language Reuse.
In European Conference on Object-Oriented Programming.

http://scalameta.org/
http://scalameter.github.io/
https://github.com/ilya-klyuchnikov/tapl-scala/

	Abstract
	1 Introduction
	2 Pattern Matching in Scala: An Evaluation
	2.1 Running Example: Arith
	2.2 The Visitor Pattern
	2.3 Sealed Case Classes
	2.4 Open Case Classes
	2.5 Partial Functions
	2.6 Discussion

	3 An Overview of Castor
	3.1 Arith with Castor
	3.2 Pretty Printing: Operations with Dependencies
	3.3 Structural Equality
	3.4 Typed Arith

	4 Extensible Visitors and Code Generation
	4.1 An Encoding of Extensible Visitors
	4.2 Formalized Code Generation
	4.3 Limitations

	5 Case Study and Evaluation
	5.1 Overview
	5.2 Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

