
89

Distributing Intersection and Union Types with Splits and
Duality (Functional Pearl)

XUEJING HUANG, The University of Hong Kong, China
BRUNO C. D. S. OLIVEIRA, The University of Hong Kong, China

Subtyping with intersection and union types is nowadays common in many programming languages. From the
perspective of logic, the subtyping problem is essentially the problem of determining logical entailment: does
a logical statement follow from another one? Unfortunately, algorithms for deciding subtyping and logical
entailment with intersections, unions and various distributivity laws can be highly non-trivial.

This functional pearl presents a novel algorithmic formulation for subtyping (and logical entailment) in the
presence of various distributivity rules between intersections, unions and implications (i.e. function types).
Unlike many existing algorithms which first normalize types and then apply a subtyping algorithm on the
normalized types, our new subtyping algorithm works directly on source types. Our algorithm is based on two
recent ideas: a generalization of subtyping based on the duality of language constructs called duotyping; and
splittable types, which characterize types that decompose into two simpler types. We show that our algorithm
is sound, complete and decidable with respect to a declarative formulation of subtyping based on the minimal
relevant logic B+. Moreover, it leads to a simple and compact implementation in under 50 lines of functional
code.

CCS Concepts: • Theory of computation→ Type theory; • Software and its engineering→ Data types
and structures.

Additional Key Words and Phrases: intersection types, union types, subtyping, distributivity

ACM Reference Format:
Xuejing Huang and Bruno C. d. S. Oliveira. 2021. Distributing Intersection and Union Types with Splits
and Duality (Functional Pearl). Proc. ACM Program. Lang. 5, ICFP, Article 89 (August 2021), 24 pages. https:
//doi.org/10.1145/3473594

1 INTRODUCTION
Intersection and union types [Barbanera et al. 1995; Coppo and Dezani-Ciancaglini 1980; Coppo
et al. 1980] are nowadays common in many programming languages and calculi. Mainstream
OOP programming languages that employ union and intersection types include the upcoming
Scala 3 [team and community contributors 2020] (based on the DOT calculus [Amin et al. 2016]),
TypeScript [Microsoft 2012], Ceylon [Redhat 2011] and Flow [Facebook 2014]. CDuce [Benzaken
et al. 2003], a language for XML processing, also supports union and intersection types with a
very expressive subtyping relation. The Julia language [Bezanson et al. 2017], while not supporting
intersection types, supports union types as well as interesting distributivity rules between unions
and tuples [Zappa Nardelli et al. 2018].
Subtyping relations for union and intersection types can vary in expressive power. Some sub-

typing relations include distributivity rules between intersection and/or union types and other

Authors’ addresses: Xuejing Huang, The University of Hong Kong, China, xjhuang@cs.hku.hk; Bruno C. d. S. Oliveira, The
University of Hong Kong, China, bruno@cs.hku.hk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2475-1421/2021/8-ART89
https://doi.org/10.1145/3473594

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

HTTP://WWW.ORCID.ORG/0000-0002-8496-491X
https://doi.org/10.1145/3473594
https://doi.org/10.1145/3473594
http://www.orcid.org/0000-0002-8496-491X
https://doi.org/10.1145/3473594

89:2 Xuejing Huang and Bruno C. d. S. Oliveira

constructs. Languages that have some form of distributivity rules include Ceylon, CDuce, Julia
and Scala 3 (or Dotty). A typical example is the well-known rule in the subtyping relation of
Barendregt, Coppo, and Dezani-Ciancaglini [1983] (BCD subtyping), which distributes intersections
over arrows.

S-distArrR

(A → B1) ∧ (A → B2) ≤ A → B1 ∧ B2
In this rule, the intersection of two function types with the same input A is a subtype of a function
type whose input is alsoA, and the output is the intersection of the output types of the two functions.
Moreover, intersection and union types can distribute over each other:

S-distOr

(A1 ∨ B) ∧ (A2 ∨ B) ≤ (A1 ∧ A2) ∨ B

Subtyping relations with intersections and unions have deep connections to logic, which follow
from the Curry-Howard isomorphism [Howard 1980]. Types can be interpreted as propositions:
intersections are interpreted as conjunctions, unions as disjunctions and functions types as implica-
tions. Furthermore, from the perspective of logic, the subtyping problem is essentially the problem
of determining logical entailment: does a logical statement follow from another one? Where in
logic one may write 𝑃 ⊢ 𝑄 for logical entailment, with subtyping one writes 𝑃 <: 𝑄 to denote
that 𝑄 is a supertype of (or follows from) 𝑃 . Naturally, algorithms for deciding logical entailment
have applications to other areas, such as theorem proving [Stolze 2019]. One particular subtyping
relation of practical interest for programming languages is closely related to the basic positive logic
B+ of Routley and Meyer [1972]. The connection to programming languages is due to van Bakel
et al. [2000], who have shown a type assignment system that corresponds to the B+ logic. Logic
B+ is also called the minimal relevant logic since it is the minimal (or the weakest) relevant logic
system that is complete for the Routley-Meyer ternary relational semantics. In the minimal relevant
logic B+, there are two axioms that can be interpreted as the two distributivity rules above. The
subtyping relations used in Ceylon and CDuce, for instance, include all the rules of the minimal
relevant logic.

Existing subtyping algorithms that deal with distributivity rules often depend on a normalization
pre-procedure, which rewrites all types into a normal form (such as the disjunctive or conjunctive
normal form). Only after this step, the normalized types are compared for subtyping. Normalization
is used for instance by Frisch et al. [2008] and CDuce, by some flow-typing algorithms [Pearce
2013], by the integrated subtyping framework of Muehlboeck and Tate [2018], and by the Delta-
calculus [Stolze 2019]. While normalization is a well-known approach, it has some drawbacks:
there is a high space cost, and the two-step approach can be quite involved both in terms of
implementation and metatheory.

This pearl presents a novel algorithmic formulation of a powerful subtyping relation with union
and intersection types that is based on the minimal relevant logic. Unlike many normalization-
based algorithms, our new subtyping algorithm works directly on source types. In other words,
there is only one step in our algorithm without any pre-processing phase. Instead of deriving an
algorithmic formulation from first principles, we employ two recent ideas. The first idea is to deal
with distributivity rules with splittable types [Huang et al. 2021]. This idea was proposed recently
for BCD subtyping, which is a subtyping relation with intersection types (but no union types)
and the rule S-distArrR. In this pearl, we show that the idea of splittable types generalizes to
union types and other distributivity rules, such as the rule S-distOr. The second idea is to employ
duotyping [Oliveira et al. 2020], which provides a generalization of subtyping with a mode. This
mode allows exploiting fundamental dualities between union and intersection types and their

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:3

subtyping rules. This leads to a consistent and symmetrical design for the rules, and also benefits
both metatheory and implementation.
We take an incremental tutorial-style approach in the presentation of this paper, starting from

a simple subtyping relation that is extended with distributivity rules using splittable types in
Section 2. Then, the formulation for subtyping based on minimal relevant logic is presented in
Section 3. Such formulation is derived straightforwardly from the duotyping formulation discussed
in Section 4.2. All the results presented in this paper – including soundness/completeness, decid-
ability and transitivity – are mechanically formalized in the Coq theorem prover. Furthermore, we
discuss implementation considerations in detail and show that our algorithmic formulation leads
to a simple and compact Haskell implementation under 50 lines of code in Section 5.

In this pearl, we present the concepts and ideas from the perspective of subtyping. Nevertheless,
the algorithms shown here can also be used for deciding logical entailment of propositional formulas
and can be applied to other domains, such as theorem proving.

2 CHALLENGES OF DISTRIBUTIVITY AND BACKGROUND
This section discusses the challenges of distributivity rules for subtyping algorithms, and then
provides background on the idea of splittable types for addressing such challenges in the simpler
setting of BCD subtyping [Barendregt et al. 1983]. We follow the convention that intersections
have a higher precedence than unions, and arrows have the lowest precedence.

2.1 The Challenges of Distributivity for Algorithmic Subtyping
To design an algorithmic system for the declarative subtyping relation (discussed later in Section 3),
the key challenge is to eliminate the transitivity rule. Before we move on to our algorithmic
formulation of the subtyping relation, we discuss why distributivity is challenging. Namely, we first
discuss how the explicit transitivity rule is avoided in a simple subtyping relation with intersection
types and no distributivity, and discuss where this approach fails when a distributive law is included.

Conventional subtyping with intersection types. We start with a simple, and standard algorithmic
formulation of subtyping with intersections, shown at the right of Figure 1. The subtyping formula-
tion on the left is an equivalent system whose rules are a subset of the declarative subtyping that
we will study later.

In the declarative system, rule S-and, rule S-andL and rule S-andR are about intersections. Rule S-
top states that the top type (⊤) is the upper bound of all types. The remaining rules are standard.
According to rule S-and, a common subtype of two types is also a subtype of their intersection. An
intersection itself is a subtype of another type 𝐵 if one of the types in the intersection is a subtype
of 𝐵, by rule S-andL and rule S-andR (with the help of rule S-trans). The rules are straightforward,
especially when the subtyping judgement is interpreted as set inclusion and the intersection of two
types is, therefore, the intersection of two sets. From the coercive subtyping point of view, a term
of an intersection type A ∧ B can be directly converted into a term of A or a term of B.
Compared with the declarative rules, the algorithmic system has no explicit transitivity rule,

and the reflexivity rule is specialized to the primitive type Int. Reflexivity is straightforward to
obtain for any form of types, including the top type, function types, and intersection types. Among
the three rules for intersections, only rule CS-andL and rule CS-andR are changed, which can be
viewed as the rule S-andL and the rule S-andR with transitivity built-in.

In this case, such an algorithmic formulation follows from a common strategy for transitivity
elimination: pushing transitivity into other rules.

Adding distributivity: the simple approach to transitivity elimination fails. The rules in Figure 1
are quite standard and employed in several subtyping relations. Now, let us assume that we are

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:4 Xuejing Huang and Bruno C. d. S. Oliveira

𝑇𝑦𝑝𝑒 A, B,C ::= Int | A → B | A ∧ B | ⊤

A ≤ B (Declarative Subtyping)

S-refl

A ≤ A

S-trans
A ≤ B
B ≤ C

A ≤ C

S-top

A ≤ ⊤

S-arrow
B1 ≤ A1
A2 ≤ B2

A1 → A2 ≤ B1 → B2

S-and
A ≤ B1
A ≤ B2

A ≤ B1 ∧ B2

S-andL

A1 ∧ A2 ≤ A1

S-andR

A1 ∧ A2 ≤ A2

A <: B (Conventional Subtyping)

CS-int

Int <: Int

CS-arrow
B1 <: A1
A2 <: B2

A1 → A2 <: B1 → B2

CS-top

A <: ⊤

CS-and
A <: B1
A <: B2

A <: B1 ∧ B2

CS-andL
A1 <: B

A1 ∧ A2 <: B

CS-andR
A2 <: B

A1 ∧ A2 <: B

Fig. 1. The conventional algorithmic subtyping with intersections (without distributivity), compared with the
declarative rules.

going to add the distributivity of arrows over intersections to the declarative system.

S-distArrR

(A → B1) ∧ (A → B2) ≤ A → B1 ∧ B2

Following the same method, it seems that we can achieve the goal of obtaining an algorithmic
formulation by directly pushing transitivity into the rules. That is, by adding the following two
rules.

CS-distArrR-sub
C <: (A → B1) ∧ (A → B2)

C <: A → (B1 ∧ B2)

CS-distArrR-super
A → (B1 ∧ B2) <: C

(A → B1) ∧ (A → B2) <: C

Rule CS-distArrR-sub enables, for instance, arrows with a different input type to unify first, and
then applying distributivity on the result:

CS-distArrR-sub

CS-and

CS-andL

CS-arrow

CS-andL
A1 <: A1

A1 ∧ A2 <: A1 B1 <: B1
A1 → B1 <: A1 ∧ A2 → B1

(A1 → B1) ∧ (A2 → B2) <: A1 ∧ A2 → B1

...

... <: A1 ∧ A2 → B2
CS-andR

(A1 → B1) ∧ (A2 → B2) <: (A1 ∧ A2 → B1) ∧ (A1 ∧ A2 → B2)
(A1 → B1) ∧ (A2 → B2) <: A1 ∧ A2 → B1 ∧ B2

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:5

For simplification, we end at reflexivity in the derivation above. Meanwhile, rule CS-distArrR-
super can apply distributivity to nested arrows:

CS-distArrR-super

CS-arrow
A <: A

B → C1 ∧ C2 <: B → C1 ∧ C2

(B → C1) ∧ (B → C2) <: B → C1 ∧ C2
CS-distArrR-super

A → (B → C1) ∧ (B → C2) <: A → B → C1 ∧ C2

(A → B → C1) ∧ (A → B → C2) <: A → B → C1 ∧ C2

Unfortunately, that is not enough. Transitivity can extend to both sides of the distributivity rule
together. Consequently, the declarative system (Figure 4 extended by rule S-distArrR) can apply
distributivity to nested arrows with different input types, as the following example shows.

(A1 → B → C1) ∧ (A2 → B → C2)
≤ (A1 ∧ A2 → B → C1) ∧ (A1 ∧ A2 → B → C2) by rule S-and, rule S-arrow, and other rules
≤ A1 ∧ A2 → (B → C1) ∧ (B → C2) by rule S-distArrR
≤ A1 ∧ A2 → B → C1 ∧ C2 by rule S-arrow with rule S-distArrR

An attempt at providing an equivalent algorithmic formulation with rule CS-distArrR-sub and
rule CS-distArrR-super fails to accept such subtyping statement. The derived result only matches
rule CS-andL and rule CS-andR, but both of them drop part of the subtype, making it impossible to
reach the result. In other words, we cannot extend the system directly in this way, without losing
expressive power.

2.2 Background: Ordinary Types and Splittable Types for BCD Subtyping
Luckily there are other ways for obtaining transitivity elimination while adding distributivity. Here
we review the idea of splittable types for BCD subtyping [Huang et al. 2021]. The rules presented
in Figure 2 are equivalent to the declarative rules for the conventional subtyping in Figure 1 plus
the distributivity rule (rule S-distArrR). For simplicity of presentation, we ignore the peculiar rule
⊤ ≤ ⊤ → ⊤ in BCD subtyping here.

Ordinary types. Conventionally, types which are not intersections are called ordinary types.
Originally, all arrow types are considered as ordinary types [Davies and Pfenning 2000]. However,
in the presence of rule S-distArrR, function types like A → B1 ∧ B2 may behave as if they were an
intersection type. A → B1 ∧ B2 ≤ (A → B1) ∧ (A → B2) is already derivable without distributivity.
Adding rule S-distArrR then makes the two types isomorphic. That is to say, it breaks the boundary
of intersection rules and rules for ordinary types. In other words, the arrow type A → B1 ∧ B2 can
be converted into the intersection type (A → B1) ∧ (A → B2) without losing any information. Since
intersections are not ordinary types, it makes sense not to consider such (intersection-isomorphic)
arrow types as ordinary types either, and restrict the arrow rule to ordinary arrow types. This leads
to the definition of ordinary types presented in Figure 2, where A denotes that type A is ordinary.

Splittable types. The type splitting relation B� A� C denotes that the type in the middle can be
split into two. Naturally, an intersection type can be decomposed into two parts: A� A ∧ B� B by
rule BSp-and in Figure 2. The relation extends the decomposition of intersections to types that are
equivalent to intersections via distributivity rules. Specifically, according to rule S-distArrR, we
know that an arrow type can split if its result type can (rule BSp-arrow). Such types are called
splittable types. Every type is either ordinary or splittable and cannot be both at the same time. The
outputs of the split operation B� A� C represent an intersection type B ∧ C that is isomorphic to
A, therefore type splitting is always lossless.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:6 Xuejing Huang and Bruno C. d. S. Oliveira

A (Ordinary Types for BCD)

BO-top

⊤

BO-int

Int

BO-arrow
B

(A → B)

B� A� C (Splittable Types for BCD)

BSp-and

A� A ∧ B� B

BSp-arrow
C � B� D

A → C � A → B� A → D

A <:𝑎 B (Modular BCD Subtyping)

BS-int

Int <:𝑎 Int

BS-top

A <:𝑎 ⊤

BS-arrow
B1 → B2

B1 <:𝑎 A1 A2 <:𝑎 B2
A1 → A2 <:𝑎 B1 → B2

BS-and
B1 � B� B2

A <:𝑎 B1 A <:𝑎 B2
A <:𝑎 B

BS-andL
B A1 <:𝑎 B

A1 ∧ A2 <:𝑎 B

BS-andR
B A2 <:𝑎 B

A1 ∧ A2 <:𝑎 B

Fig. 2. The algorithmic BCD subtyping with intersection types and distributivity.

The modular BCD subtyping algorithm. The main idea for the algorithmic formulation of sub-
typing, shown at the bottom of Figure 2, is that the right-hand side type B keeps splitting until
it becomes ordinary. When it splits, rule BS-and is applied, which works in the same way as
rule CS-and when B is an intersection type. The most interesting case is when B is a splittable
function type, for example, B := B1 → B2 ∧ B3. Type B can be split into B1 → B2 and B1 → B3.
Therefore, the premises of A <:𝑎 B are A <:𝑎 B1 → B2 and A <:𝑎 B1 → B3, or equivalently,
A <:𝑎 (B1 → B2) ∧ (B1 → B3). Thus we are able to conclude A <:𝑎 B with a combination of
rule S-trans and rule S-distArrR in declarative subtyping. That is to say, while rule BS-and
combines rule S-trans and rule S-and, it also takes rule S-distArrR into consideration implicitly.
The ordinary-type conditions in gray eliminate some overlapping between the rules: we can see
that when B is splittable, only rule BS-and can be applied, since rule BS-andL and rule BS-andR
require B to be ordinary. However, dropping such conditions does not alter the expressive power: it
leads to an equivalent system (but with more overlapping).
The previous failed example can now be derived, as its right-hand side type, although not

matched by rule S-distArrR, is captured by type splitting. Due to space limitations, we omit the
type (A1 → B → C1) ∧ (A2 → B → C2), which is unchanged across the application of rule BS-and,
in its premises. We also employ the rules without the ordinary-type conditions in the derivation
for simplification. The main derivation is:

BS-and
BS-andL

BS-arrow
...

A1 → B → C1 <:𝑎 A1 ∧ A2 → B → C1
... <:𝑎 A1 ∧ A2 → B → C1 𝐷

BS-arrow
...

A2 → B → C2 <:𝑎 A1 ∧ A2 → B → C2
... <:𝑎 A1 ∧ A2 → B → C2

BS-andR

(A1 → B → C1) ∧ (A2 → B → C2) <:𝑎 A1 ∧ A2 → B → C1 ∧ C2

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:7

-- ordinary type
ordinary :: Type → Bool
ordinary a = split a == Nothing

-- split type
split :: Type → Maybe (Type, Type)
split (TAnd a b) = Just (a, b) -- Bsp-and
split (TArrow a b) -- Bsp-arrow

| Just (b1, b2) <- split b
= Just (TArrow a b1, TArrow a b2)

split _ = Nothing

-- subtyping
checkSub :: Type → Type → Bool
checkSub TInt TInt = True -- BS-int
checkSub _ TTop = True -- BS-top
checkSub a b -- BS-and

| Just (b1, b2) <- split b
= checkSub a b1 && checkSub a b2

checkSub (TAnd a1 a2) b -- BS-andL BS-andR
= checkSub a1 b || checkSub a2 b

checkSub (TArrow a1 a2) (TArrow b1 b2) -- BS-arrow
= checkSub b1 a1 && checkSub a2 b2

checkSub _ _ = False

Fig. 3. Haskell implementation of BCD subtyping.

The missing subderivation D for type splitting is:

BSp-arrow

BSp-arrow

BSp-and
C1 � C1 ∧ C2 � C2

B → C1 � B → C1 ∧ C2 � B → C2

A1 ∧ A2 → B → C1 � A1 ∧ A2 → B → C1 ∧ C2 � A1 ∧ A2 → B → C2

2.3 Implementation
Finally, we present an Haskell implementation of the rules in Figure 3. We model types as:

data Type = TInt | TTop | TArrow Type Type | TAnd Type Type

There are four constructors for Int, ⊤, arrow types, and intersection types respectively. A type is
either ordinary or splittable. The split function in Figure 3 is based on the definition of the type
splitting relation. It returns the split results if the input type is splittable. The ordinary function
makes use of the fact that the set of ordinary types is complementary to the set of splittable types.
It can also be implemented by analyzing the form of the type.
The checkSub function takes two types and decides whether the first input is a subtype of

the second one. The first two cases correspond to rule BS-int and rule BS-top. Then the case
corresponding to rule BS-and handles all cases of which the second input is splittable. Since the
code executes sequentially, the second input is guaranteed to be ordinary after that. Following are
the cases corresponding to rule BS-andL and rule BS-andR. When the first input is an intersection

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:8 Xuejing Huang and Bruno C. d. S. Oliveira

A ≤ B (Declarative Subtyping Extension)

S-bot

⊥ ≤ A

S-or
A1 ≤ B A2 ≤ B

A1 ∨ A2 ≤ B

S-orL

B1 ≤ B1 ∨ B2

S-orR

B2 ≤ B1 ∨ B2

S-distArrR

(A → B1) ∧ (A → B2) ≤ A → B1 ∧ B2

S-distArrR-rev

A → B1 ∧ B2 ≤ (A → B1) ∧ (A → B2)

S-distArrL

(A1 → B) ∧ (A2 → B) ≤ A1 ∨ A2 → B

S-distArrL-rev

A1 ∨ A2 → B ≤ (A1 → B) ∧ (A2 → B)

S-distOr

(A1 ∨ B) ∧ (A2 ∨ B) ≤ (A1 ∧ A2) ∨ B

S-distAnd

(A1 ∨ A2) ∧ B ≤ (A1 ∧ B) ∨ (A2 ∧ B)

Fig. 4. Declarative subtyping rules (extends the left part of Figure 1).

type, it is necessary to try both rules before returning False. In the end, both types must be arrow
types and must satisfy rule BS-arrow if the subtyping holds.

Roadmap. For the rest of the paper we will see how the ideas of splittable types can be extended
into a more complex setting with union types and additional distributivity rules. Then, using another
technique called duotyping, we will exploit the fundamental dualities between intersection and
union types to further unify the rules in the system. Our ultimate goal is the implementation given in
Section 5, which exploits splittable types and duality to obtain a compact functional implementation
of a subtyping algorithm for the setting with union types and additional distributivity rules. Along
the way, we show various results regarding the metatheory of the system, including soundness,
completeness and decidability.

3 SUBTYPING BASED ON MINIMAL RELEVANT LOGIC
In this section, we show two equivalent subtyping relations (one declarative and another algorithmic)
for a variant of minimal relevant logic subtyping [Routley and Meyer 1972; van Bakel et al. 2000].
The main novelty over the BCD subtyping relation presented in Section 2 are the addition of union
types, and extra distributivity rules. We show that the idea of splittable types smoothly extends
to deal with those features. The algorithmic formulation is derived from a formulation based on
duotyping that will be presented in Section 4, but the presentation in this section is understandable
independently of duotyping.

3.1 Declarative subtyping
Denoted by meta-variables A and B, types include the integer type Int, function types A → B,
intersection (A ∧ B) and union (A ∨ B) types, as well as the top (⊤) and bottom (⊥) types.

𝑇𝑦𝑝𝑒 A, B ::= Int | A → B | A ∧ B | A ∨ B | ⊤ | ⊥
The declarative subtyping rules in Figure 4 extend the rules on the left of Figure 1. We describe the
new rules next.
(1) Rule S-bot, similarly to rule S-top, defines the bottom type as the lowermost bound among

types. ⊥ has no inhabited values. In other words, it is the empty type from the set-theoretic

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:9

view of types. In a system where arrow types are interpreted as logical implications, the
bottom type can be used to encode negation as A → ⊥.

(2) Rule S-or, rule S-orL, and rule S-orR define basic subtyping for unions, similarly to the
three intersection rules. In a language with union types, a term of type A can be transformed
into any union type containing A. From the point of view of proof theory, having the proof
of either A or B is enough to construct a proof of A ∨ B. That is to say, a union type is a
supertype of its components. Moreover, a union type is a subtype of some type if both its
components are subtypes of that type.

(3) The remaining six rules are related to the distributivity of intersections and unions over
other constructs. Rule S-distArrR is part of the BCD subtyping (discussed in Section 2).
Along with rule S-distArrL, the two rules distribute arrows over intersections and unions,
respectively. These two rules have two corresponding reversed rules (rule S-distArrR-rev
and rule S-distArrL-rev). Note that the latter two rules are not necessary since they can
be derived from other rules, but we present them here because in Section 4.1 they will play
a role in our reformulation of the subtyping relation using duotyping [Oliveira et al. 2020].
Rule S-distArrR-rev and rule S-distArrL-rev, in combination with the previous two rules,
illustrate that the two types in the subtyping relation are isomorphic (i.e. they are subtypes
of each other).

(4) The interaction between intersection types and union types is described by the rule S-distOr
and the rule S-distAnd. They can distribute over each other. The reversed rules are derivable
and therefore omitted. To be noted, it would not affect the whole system to drop one of the
two rules (either rule S-distOr or rule S-distAnd): in the presence of one of the two rules,
the other rule can be derived by the other subtyping rules.

Remark. It is should be noted that, in combination with transitivity, more general subtyping
rules become derivable. For instance, an intersection of any two arrow types has a supertype that
is a combination of them:

S-distArr-gen

(A1 → A2) ∧ (B1 → B2) ≤ A1 ∧ B1 → A2 ∧ B2

In other words, rule S-distArr-gen is not restricted to types that share the same input type (as
the rule S-distArrR). Similarly, the subtype of an intersection of two arrow types can be obtained
from an arrow type that takes the union of the input types of the arrow types:

S-distArr-rev-gen

A1 ∨ B1 → A2 ∧ B2 ≤ (A1 → A2) ∧ (B1 → B2)

3.2 Algorithmic Subtyping: Adding Union Types and More Distributivity
Now we are ready to move on to the design of algorithmic subtyping for Figure 4. We first cover the
extended definitions of ordinary and splittable types here, in which the initial definition is revised,
and a dual version is defined for union types.

Intersection-ordinary and intersection-splittable types. With union types and the bottom type
taken into consideration, we need to revise the previous definitions. Firstly we rename them as
intersection-ordinary types (A , top of Figure 5) and intersection-splittable types (B � A � C, in
the middle of Figure 5). Originally, “ordinary” was used to describe the lack of “intersections”,
and “splittable” meant a type that has two parts connected by an intersection. Now we make this
explicit in the names. Intersection-ordinary types include (non-splittable) union types, but exclude
intersection types at the top level (although intersection types can appear in some nested positions

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:10 Xuejing Huang and Bruno C. d. S. Oliveira

A (Intersection-Ordinary Types)

OI-top

⊤

OI-bot

⊥

OI-int

Int

OI-arrow
A B

(A → B)

OI-or
A B

(A ∨ B)

A (Union-Ordinary Types)

OU-top

⊤

OU-bot

⊥

OU-int

Int

OU-arrow

(A → B)

OU-and
A B

(A ∧ B)

B� A� C (Intersection-Splittable Types)

SpI-and

A� A ∧ B� B

SpI-arrowR
C � B� D

A → C � A → B� A → D

SpI-arrowL
D B� A� C

B → D � A → D � C → D

SpI-orL
A1 � A� A2

A1 ∨ B� A ∨ B� A2 ∨ B

SpI-orR
A B1 � B� B2

A ∨ B1 � A ∨ B� A ∨ B2

B� A� C (Union-Splittable Types)

SpU-or

A� A ∨ B� B

SpU-andL
A1 � A� A2

A1 ∧ B� A ∧ B� A2 ∧ B

SpU-andR
A B1 � B� B2

A ∧ B1 � A ∧ B� A ∧ B2

Fig. 5. Ordinary and splittable types.

inside the types). In contrast, intersection-splittable types include top-level intersections and some
union types. Mainly, there are four changes in the new definition.
(1) The bottom type is ordinary like the top type.
(2) Due to the distributivity of union over intersections (rule S-distOr and rule S-distAnd),

some unions are also isomorphic to intersections, for example the type (A1 ∧ A2) ∨ B is
isomorphic to (A1 ∨ B) ∧ (A2 ∨ B). That is to say, the former can be split into A1 ∨ B and
A2 ∨ B. Splitting the union type A∨ B, first tries to split A by rule SpI-orL, and only moves to
B if A cannot be split (rule SpI-orR). Thus only unions whose components are both ordinary
can be treated as ordinary types (rule OU-and).

(3) Rule SpI-arrowL is brought by rule S-distArrL and rule S-distArrL-rev: if its input type
is a union, an arrow type can be converted into an intersection type, and therefore it is not
ordinary. In the ordinary rule for arrow types, the new version has more restrictions: the
input type of an intersection-ordinary arrow type must not be a union-like type, i.e. it is a
union-ordinary type (Figure 5).

(4) To be noted, a side condition D is added in rule SpI-arrowL to ensure that the relation can
be used as a deterministic function, like in rule SpI-orR. Although we prioritize rule SpI-orL
and rule SpI-arrowR here, we believe some other arrangements are also feasible.

Union-ordinary and union-splittable types. Figure 5 also presents the definition of union-ordinary
types (A) and union-splittable types (B � A� C). A union-splittable type is isomorphic to the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:11

union of its split results, and union-ordinary types are those that cannot be split. Such a definition
is almost the dual of the intersection- rules: just exchange intersection and union, and switch
intersection- and union- judgments.
The key difference is that no arrow types are union-splittable and they are all union-ordinary.

Correspondingly, splitting union types lacks arrow related rules, and ruleOU-arrow has no premise.
The source of the difference is that both of the two distributivity arrow rules in the declarative
system (rule S-distArrR and rule S-distArrL) relate arrow types with intersection types but not
union types. To have an exact dual, the union-ordinary and union-splittable types definitions would
lead to the following two rules:

S-distArrR-union

A → B1 ∨ B2 ≤ (A → B1) ∨ (A → B2)

S-distArrL-union

A1 ∧ A2 → B ≤ (A1 → B) ∨ (A2 → B)

However, such rules do not lead to valid coercions from the coercive subtyping point of view where
unions are interpreted as sums and intersections are interpreted as products. If we added these two
rules, then some arrow types could be union-splittable.
While a type must be either intersection- (union-) ordinary or intersection- (union-) splittable,

the two sets of ordinary (and splittable) definitions are overlapping. The following table presents
some examples of each of the four kinds of types:

Intersection- Union-

Ordinary types Int , ⊤ , ⊥ Int , ⊤ , ⊥
Bool ∧ String → Int ∨ Char Bool ∧ String → Int ∨ Char

Int ∨ Char Int ∧ Char
A ∧ B A ∨ B

Int → A ∧ B Int → A ∨ B

Splittable types A� A ∧ B� B A� A ∨ B� B
A ∨ Int � (A ∧ B) ∨ Int � B ∨ Int A ∧ B� (A ∧ B) ∨ Int � Int

A ∨ B� (A ∨ B) ∧ Int � Int A ∧ Int � (A ∨ B) ∧ Int � B ∧ Int
Int → A� Int → A ∧ B� Int → B Int → A� Int → A ∨ B� Int → B

The examples using a strikeout font represent negative examples: that is types that do not conform
to the definition. For instance, in the first cell, Int ∨ Char is intersection-ordinary, while A ∧ B is
not. Types that are ordinary from both perspectives include Int, ⊤, ⊥, and all intersection-ordinary
arrow types. Such arrow types can contain intersections in negative positions, or unions in positive
positions, like Bool ∧ String → Int ∨ Char . In contrast, only some union types and intersection
types are both intersection- or union- splittable, as demonstrated by the second and third lines
in the cell of the splittable types. Once we have A1 � A � A2 and B1 � A � B2, we know that A
is isomorphic to A1 ∧ A2 and B1 ∨ B2. Via the subtyping rules in Figure 4, we can obtain 𝐴𝑖 ≤ 𝐵 𝑗

(𝑖, 𝑗 = 1, 2). The last examples for splittable types correspond to the last examples for ordinary types.
They emphasize the dissymmetry between intersection-splittable types and union-splittable types,
while other examples highlight the symmetric part.

Algorithmic subtyping. Compared to the modular BCD subtyping in Figure 2, we have a rule AS-
bot for the bottom type, and three more rules for union-splittable types (rule AS-or, rule AS-orL,
and ruleAS-orR) in our algorithmic system in Figure 6. Similarly to the modular BCD subtyping, the
three distributivity rules in the declarative system in Figure 4 (rule S-distArrR, rule S-distArrL,

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:12 Xuejing Huang and Bruno C. d. S. Oliveira

A <:𝑎 B (Algorithmic Subtyping)

AS-int

Int <:𝑎 Int

AS-top

A <:𝑎 ⊤

AS-bot

⊥ <:𝑎 A

AS-arrow
(A1 → A2)
(B1 → B2)

B1 <:𝑎 A1 A2 <:𝑎 B2
A1 → A2 <:𝑎 B1 → B2

AS-and
B1 � B� B2

A <:𝑎 B1 A <:𝑎 B2
A <:𝑎 B

AS-andL
B

A1 � A� A2 A1 <:𝑎 B

A <:𝑎 B

AS-andR
B

A1 � A� A2 A2 <:𝑎 B

A <:𝑎 B

AS-or
A

B A1 � A� A2
A1 <:𝑎 B A2 <:𝑎 B

A <:𝑎 B

AS-orL
A B

B1 � B� B2 A <:𝑎 B1
A <:𝑎 B

AS-orR
A B

B1 � B� B2 A <:𝑎 B2
A <:𝑎 B

Fig. 6. Algorithmic subtyping rules.

and rule S-distOr), are covered with the rule AS-and by splitting the supertype. Besides this,
rule AS-andL and rule AS-andR generalize the subtype to an intersection-splittable type, while the
modular BCD subtyping uses an intersection type. That is because rule AS-arrow is restricted to
only handle ordinary types with the two intersection-ordinary premises, and intersection-splittable
types need help from other rules. In rule AS-orL and rule AS-orR, we use A to denote both A
and A . Compared to the rules for intersection-splittable types, the three rules have additional
restrictions on types to avoid overlapping with them. These gray-highlighted premises divide
rules into groups and make an order among them, except for rule AS-top and rule AS-bot, which
can still overlap with other rules. Such gray conditions help to implement an algorithm with less
backtracking, but we can remove these premises and the subtyping system would remain equivalent
in terms of expressive power.

Example. Let us demonstrate the algorithmic formulation with an example, where we assume
type A and type B are not splittable and omit the subderivations for ordinary types.

AS-and
AS-andR
AS-orR
AS-int

Int <:𝑎 Int D3

Int <:𝑎 A ∨ Int D2

(A ∨ B) ∧ Int <:𝑎 A ∨ Int D1

D2

...

A ∨ B <:𝑎 A ∨ B
AS-or

(A ∨ B) ∧ Int <:𝑎 A ∨ B
AS-andL

(A ∨ B) ∧ Int <:𝑎 A ∨ (Int ∧ B)

The missing subderivation D1 for type splitting is:

SpI-orR
A

SpI-and

Int � Int ∧ B� B

A ∨ Int � A ∨ (Int ∧ B) � A ∨ B

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:13

Subderivations D2 and D3 are:

SpI-and

A ∨ B� (A ∨ B) ∧ Int � Int

SpU-or

A� A ∨ Int � Int

In the next section, we will see the duality of intersection and union types more clearly.

4 DUOTYPING BASED ON MINIMAL RELEVANT LOGIC
The algorithmic subtyping relation in Section 3.2 was not designed from first principles. Instead,
it is derived (in a straightforward way) from another definition that exploits the duality between
unions and intersections (as well as top and bottom). The approach that exploits duality is so-called
duotyping [Oliveira et al. 2020]. The key idea is to generalize the subtyping relation with a third
argument, which is the mode of the relation (subtyping or supertyping). Then many dual rules
can be expressed as a single rule in the duotyping relation, and the dual rules are ensured (by
construction) to be designed in a consistent way. In turn, this leads to an implementation approach
that can exploit duotyping and modes, to reduce the number of cases, definitions and code. Our
implementation in Section 5 will use duotyping.

This section shows the duotyping definitions fromwhich the subtyping relations in Section 3were
derived, and discusses the respective metatheory, including transitivity as well as various soundness
and completeness theorems among the different relations. In this paper, we opted to present the
traditional formulation of subtyping in Section 3 first because the formulation of duotyping, while
more compact, is also more abstract and can be harder to grasp than the more concrete subtyping
formulation. We first reformulate declarative subtyping in terms of duotyping, and then exploit the
duotyping structure found in the declarative formulation to design the algorithmic formulation.

4.1 Declarative Duotyping
Before developing the algorithmic version of duotyping we first show a duotyping version of
declarative subtyping. Duotyping is particularly useful when the types in the language have
multiple dual constructs, which is precisely the case here: we have both intersections and unions,
as well as top and bottom types. Thus, understanding the subtyping relation from the point of view
of duotyping can shed new light over the various rules used in subtyping, and give us some hints
regarding the design of an algorithmic version.

The key idea of duotyping. The key idea in duotyping is to have a generalization of the subtyping
relation that takes an extra mode as an argument:

𝑀𝑜𝑑𝑒 3 ::= ≺ | ≻

The mode can either be subtyping (≺) or supertyping (≻). A duotyping judgement A3B can
therefore be interpreted as both A is a subtype of B (A ≺ B), and A is a supertype of B (A ≻ B),
depending on which mode is chosen. This extra mode is helpful to generalize dual rules for dual
constructs.

Auxiliary functions. Before we dive into the duotyping rules, some auxiliary definitions need to
be introduced. At the top of Figure 7, we restate some of the auxiliary functions as described in the
original duotyping work [Oliveira et al. 2020]. For example, to combine the conventional subtyping
rules for top and bottom (rule S-top and rule S-bot), a function ⌉3⌈ parameterized by the mode 3
is necessary. The intersection and union constructors are also dual, and they can be selected using
the function (A3? B). Finally, there is a flip function to invert the mode.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:14 Xuejing Huang and Bruno C. d. S. Oliveira

⌉ ≺ ⌈ = ⊤
⌉ ≻ ⌈ = ⊥

(A ≺? B) = A ∧ B

(A ≻? B) = A ∨ B

≺ = ≻
≻ = ≺

A3B (Declarative Duotyping)
D-dual
B3A

A3B

D-refl

A3A

D-trans
A3B B3C

A3C

D-bound

A3 ⌉3⌈

D-arrow
A3B C3D

A → C3B → D

D-and
A3B A3C

A3 (B3? C)

D-andL

(A3? B)3A

D-andR

(A3? B)3B

D-distArrR

(A → B) ∧ (A → C)3A → B ∧ C

D-distArrL

(A → C) ∧ (B → C)3A ∨ B → C

D-distOr

((A1 3? B)3? (A2 3? B))3 ((A1 3? A2)3? B)

Fig. 7. Declarative duotyping and auxiliary functions (top).

Declarative duotyping. With these helper functions, the declarative duotyping relation is defined
in the bottom part of Figure 7. For instance, using ⌉3⌈ we can capture the two subtyping rules for
top and bottom with the following duotyping rule:

D-bound

A3 ⌉3⌈
Some rules (rule D-refl, rule D-trans and rule D-arrow) are direct generalizations from the
original subtyping rules in Figure 1 and Figure 4, since those rules are reversible (i.e. they work
in both modes). One unique rule in the duotyping formulation is the duality rule (rule D-dual),
which transforms a subtyping judgement to a supertyping one, or vice versa. The remaining rules
match with two original subtyping rules: rule D-and, rule D-andL, and rule D-andR unify the
three intersection rules and three union rules (rule S-and, rule S-andL, rule S-andR, rule S-or,
rule S-orL, and rule S-orR). RuleD-distArrR and ruleD-distArrL are for distributing arrows over
unions and intersections. As mentioned in Section 3, their dual rules are absent, therefore cannot
be further unified. The rule D-distOr is the generalization of rule S-distOr and rule S-distAnd.
Compared to the rules in Figure 4, the duotyping version is pleasingly more compact (11 rules
versus 17 rules). More importantly, the dual relationship between various rules in Figure 4 is now
made explicit in the formalism.

4.2 Algorithmic Duotyping
The rules for the algorithmic duotyping system are presented in Figure 8.

Ordinary and splittable types. By parametrizing over the mode 3, the two ordinary definitions in
Figure 5 can be merged. Instantiated3 by subtyping, A ≺ defines the intersection-ordinary relation,
which is the same relation as the one on the top of Figure 5. Its supertyping dual A ≻, unsurprisingly,
matches with the previous union-ordinary definition. A similar unification applies to splittable
types. B � A ≺ � C is for intersection-splittable types, while B � A ≻ � C is for union-splittable
ones. Only arrow-related rules (rule O-arrowI, rule O-arrowU, rule Sp-arrowR, rule Sp-arrowL)

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:15

A3 (Ordinary Types)

O-top

⊤3

O-bot

⊥3

O-int

Int 3

O-arrowU

A → B ≻

O-arrowI
A ≻ B ≺

A → B ≺

O-or
A3 B 3

(A3? B)
3

B� A3 � C (Splittable Types)

Sp-and

A� (A3? B) 3 � B

Sp-arrowR
C � B ≺ � D

A → C � A → B ≺ � A → D

Sp-arrowL
D ≺ B� A ≻ � C

B → D � A → D ≺ � C → D

Sp-orL
A1 � A3 � A2

(A1 3? B) � (A3? B) 3 � (A2 3? B)

Sp-orR
A3 B1 � B 3 � B2

(A3? B1) � (A3? B) 3 � (A3? B2)

A3𝑎 B (Algorithmic Duotyping)

AD-int

Int3𝑎 Int

AD-bound

A3𝑎 ⌉3⌈

AD-arrow
A1 → A2

≺

B1 → B2 ≺

A1 3𝑎 B1 A2 3𝑎 B2
A1 → A2 3𝑎 B1 → B2

AD-dual
A3 B 3 B3𝑎 A

A3𝑎 B

AD-and
B1 � B 3 � B2

A3𝑎 B1 A3𝑎 B2
A3𝑎 B

AD-andL
B 3

A1 � A3 � A2 A1 3𝑎 B

A3𝑎 B

AD-andR
B 3

A1 � A3 � A2 A2 3𝑎 B

A3𝑎 B

Fig. 8. Algorithmic duotyping.

are specific to a particular mode (subtyping or supertyping), but otherwise, all the other rules are
generic on the mode.

Duotyping. In total there are 7 rules in the algorithmic duotyping system, compared to 10 in the
subtyping system in Figure 6.

Duotyping reorganizes and unifies the rules in a more abstract style. All rules, except ruleAD-int,
rule AD-arrow and rule AD-dual unify a pair of subtyping rules. In essence one of the pairs is
simply the result of flipping arguments and the mode. For instance, rule AS-top flips rule AS-bot
(and vice-versa), rule AS-andL flips rule AS-orL (and vice-versa) and so on. While the definition of
type splitting is extended, the subtyping rules are very similar to the modular BCD subtyping rules
in Figure 2. Besides the generalization of mode, the key difference is that the left-hand side type in
rule AD-andL and rule AD-andR is splittable rather than being restricted to intersections. As a
consequence, rule AD-arrow has an additional condition.

Strictly speaking, the inclusion of the duality rule (rule AD-dual) means that the system is not
fully algorithmic. A naive implementation could apply the duality rule indefinitely, thus resulting in
a non-terminating function. However, the set of rules with the duality rule is morally algorithmic.
As illustrated by Oliveira et al. [2020], in implementation we can use a boolean flag to prevent

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:16 Xuejing Huang and Bruno C. d. S. Oliveira

repeated flipping with a case similar to the duality rule. We will see this approach in Section 5
when we illustrate our Haskell implementation.

From duotyping to subtyping: deriving the subtyping rules. As we have mentioned, the algorithmic
subtyping rules can be derived from the duotyping formulation by specializing the mode. Take
rule AD-andL as an example:

AD-andL-sub
B ≺ A1 � A ≺ � A2 A1 ≺𝑎 B

A ≺𝑎 B

AD-andL-super
B ≻ A1 � A ≻ � A2 A1 ≻𝑎 B

A ≻𝑎 B

The rules above are the result of specializing rule AD-andL to subtyping and supertyping, respec-
tively. To make them compatible with the subtyping style, all judgments in supertyping mode need
to be flipped via the duality rule. After that, each instances agree with ruleAS-andL and ruleAS-orL
respectively. Note that rule AS-orL has more restrictions (A ≺ and B ≺) than rule AD-andL-super.
These two conditions are essentially the ordinary conditions that arise from the use of the duality
rule to convert supertyping into subtyping.

The order of rules. Except for rule AD-int and rule AD-bound, other rules have duotyping
judgements as premises, which means the algorithm will search further after it matches its goal
with the rule. Without the gray-highlighted conditions, it is possible for one duotyping judgement
to satisfy multiple rules at the same time, i.e. rule AD-and and rule AD-dual for A1∨A2 ≺𝑎 B1∧B2.
Thus we use the ordinary-type conditions in gray to make these recursive rules disjoint and sort
them in the following order: 1) rule AD-and; 2) rule AD-andL and rule AD-andR; 3) rule AD-dual
and rule AD-arrow. Then a subtyping (or supertyping) judgement cannot match later rules once
it satisfies the conditions of one rule (regardless of the satisfaction of the subtyping premises). For
example, rule AD-dual cannot be used to flip A1 ∨ A2 ≺𝑎 B unless B ≺. In that case, rule AD-and
will be applied to the flipped goal B ≻𝑎 A1 ∨ A2, as A1 � A1 ∨ A2 ≻ � A2. To justify the order, we
prove the following lemmas:

Lemma 4.1 (Inversions on Splittable Types). Assuming A3𝑎 B,
• if B1 � B 3 � B2 then A3𝑎 B1 and A3𝑎 B2.
• if A1 � A3 � A2 and B 3 then A1 3𝑎 B1 or A2 3𝑎 B2.
• if A1 � A3 � A2 then A1 3𝑎 B and A2 3𝑎 B.
• if A3 and B1 � B 3 � B2 then A3𝑎 B1 or A3𝑎 B2

An inversion lemma tells us that it is safe to prioritize certain rule in some cases. The first one is
for rule AD-and: if a subtyping (or supertyping) judgement holds, and its right-hand side type is
splittable under the mode, then it must satisfy rule AD-and. The second one is for rule AD-andL
and rule AD-andR. It has an extra condition B 3, which means the judgement does not meet the
conditions of rule AD-and. The next two are for the rule AD-dual, with it we can unfold the
duotyping rules by mirroring rule AD-and, rule AD-andL and rule AD-andRwith extra conditions.
For instance, the dual rule of rule AD-and would be:

AD-unfold-or
A3

B 3 A1 � A3 � A2
A13𝑎B A23𝑎B

A3𝑎B

In short, there are two principles: rule AD-and before rule AD-andL and rule AD-andR; the dual
of rule AD-and before the dual of rule AD-andL and rule AD-andR. Since the order we choose

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:17

obeys the principle, we can prove the duotyping system with the gray conditions is equivalent to
the system without such conditions. The same applies to the derived subtyping system (Figure 6).
Violating the principles may lead to false-negative results (i.e. an incomplete implementation
with respect to the algorithmic specification). For example, if an algorithm tries rule AD-andL
and rule AD-andR before rule AD-and, it will reject Int ∧ Char ≺𝑎 Int ∧ Char because both
rule AD-andL and rule AD-andR fail.

4.3 Metatheory
Here we present some theorems that connect the two systems in subtyping style (introduced in
Section 3) with the two systems in duotyping style.

Theorem 4.2 (Eqivalence of Declarative Systems). For any type A B,
• if A3B, then 3 =≺ and A ≤ B, or 3 =≻ and B ≤ A.
• if A ≤ B, then A ≺ B and B ≻ A.

The first property in the above theorem states the declarative duotyping system (Figure 7) is
sound with respect to the declarative subtyping (Figure 4), no matter whether the judgement is in
subtyping or supertyping mode. The second property is the completeness of the duotyping system.

After proving that the declarative subtyping relation is equally transformed into duotyping, we
show that the algorithmic duotyping system can be mapped into the subtyping in Figure 6 as well.
Firstly, the definitions of ordinary and splittable types are equivalent to the intersection- and union-
ordinary types and splittable types defined in Figure 5.

Lemma 4.3 (Eqivalence of Ordinary and Splittable Types). For any type A,
• A if and only if A ≺.
• A if and only if A ≻.
• B1 � A� B2 if and only if B1 � A ≺ � B2.
• B1 � A� B2 if and only if B1 � A ≻ � B2.

Then the soundness and completeness of the algorithmic subtyping (Figure 6) regarding to the
algorithmic duotyping (Figure 8) can be established.

Theorem 4.4 (Eqivalence of the Algorithmic Systems). For any type A B,
• if A <:𝑎 B, then A ≺𝑎 B and B ≻𝑎 A.
• if A3𝑎 B, then 3 =≺ and A <:𝑎 B, or 3 =≻ and B <:𝑎 A.

Properties for the algorithmic system. With a set of duotyping rules, one can reason about not
only subtyping and supertyping, but also two modes together, which helps to unify theorems and
proofs. Here we build the theorems on the two duotyping systems. Thanks to the equivalence
between subtyping and duotyping systems, these theorems justify the algorithmic subtyping system
(Figure 6) with respect to the declarative subtyping system (Figure 4) as well.

One of the key properties that validate the algorithmic system is the equivalence to the declarative
system.

Theorem 4.5 (Soundness and Completeness of Algorithmic Duotyping). A3𝑎 B if and only
if A3B.

To establish it, reflexivity and transitivity are a must.
Theorem 4.6 (Reflexivity of the Algorithmic Duotyping). A3𝑎 A.

During the proof we need to consider whether a type can be split or not. The process relies
on two facts: First, types can be divided into ordinary types and splittable ones under any mode.
Second, type splitting produces unique results.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:18 Xuejing Huang and Bruno C. d. S. Oliveira

Table 1. Summary of the proof scripts.

File SLOC Description

TypeSize.v 55 Defines the size of type for induction measures.
Definitions.v 397 Contains definitions for all relations. It is generated by the tool Ott [Sewell

et al. 2007].
Duotyping.v 966 Contains Lemma 4.1, Theorem 4.5, Theorem 4.6, Lemma 4.7, Lemma 4.8,

Lemma 4.9, and Theorem 4.10.
Equivalence.v 159 Relates the two declarative systems and the two algorithmic systems, respec-

tively. It contains Theorem 4.2, Lemma 4.3, and Theorem 4.4.
Subtyping.v 663 Contains some lemmas about the two subtyping systems. Three of them are

used in the proof of Theorem 4.4
DistAnd.v 28 Justifies one statement in the paper. It shows that the rule S-distAnd (in

Figure 4) is omittable.
DistSubtyping.v 832 A stand-alone file, which contains the two subtyping systems in Section 3, as

well as related proofs that algorithmic subtyping (Figure 6) is decidable and
equivalent to the declarative system (Figure 4).

Total 3,100 (2,240 excluding the last two files)

Lemma 4.7 (Types are Either Ordinary or Splittable). For any type A,
• A3 or B� A3 � C for some type B and C.
• A3 and B� A3 � C cannot both hold.

Lemma 4.8 (Determinism of Type Splitting). If A1�A3 �A2 and B1�A3 �B2 then A1 = A2
and B1 = B2.

With reflexivity, the soundness of type splitting can be obtained directly. This suggests that the
intersection (or union, according to the mode) of the splitting results is isomorphic to the original
type.

Lemma 4.9 (Soundness of Splitting). If B1�A3�B2 thenA3𝑎 (B1 3? B2) and (B1 3? B2)3𝑎 A.

Compared with reflexivity, transitivity is straightforward since the ordinary conditions eliminate
most overlapping.

Theorem 4.10 (Transitivity of the Algorithmic Duotyping). If A3𝑎 B and B3𝑎 C then
A3𝑎 C.

Decidability is the other key property. Its proof replays the algorithm in duotyping style.

Theorem 4.11 (Decidability of the Algorithmic Duotyping). It is decidable whether A3𝑎 B.

4.4 Coq Formalization and Proof Statistics
All the lemmas and theorems are formalized and verified in the Coq proof assistant [Coq Develop-
ment Team 2021]. We use 𝐿𝑖𝑏𝑇𝑎𝑐𝑡𝑖𝑐𝑠 .𝑣 from the TLC Coq library [Charguéraud and Pottier [n.d.]],
which defines a collection of general-purpose tactics. In the formalization, a variant of algorithmic
duotyping in Figure 8 is formalized where the rule AD-dual is eliminated and dual rules are made
explicit. The two variants (with and without dual rules) are proved to be equivalent in Coq, and
some of the lemmas of algorithmic duotyping are proved using this variant. We also provide a
stand-alone file for the two subtyping systems in Section 3. The proof scripts include 3,100 lines of
code. Table 1 provides a brief summary of the files in the formalization, their number of source
lines of code (SLOC), and a brief description of the content.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:19

split :: Mode → Type → Maybe (Type, Type)
split MSub (TArrow a b) -- Sp-arrowR

| Just (b1, b2) <- split MSub b
= Just (TArrow a b1, TArrow a b2)

split MSub (TArrow a b) -- Sp-arrowL
| Just (a1, a2) <- split MSuper a
= Just (TArrow a1 b, TArrow a2 b)

split m (TOp m' a b) -- Sp-and
| m == m'
= Just (a, b)

split m (TOp m' a b) -- Sp-orL
| Just (a1, a2) <- split m a
= Just (TOp m' a1 b, TOp m' a2 b)

split m (TOp m' a b) -- Sp-orR
| Just (b1, b2) <- split m b
= Just (TOp m' a b1, TOp m' a b2)

split _ _ = Nothing

Fig. 9. Haskell implementation of splittable types in the algorithmic duotyping system

5 A FUNCTIONAL IMPLEMENTATION IN HASKELL
After working out through splittable types and duotyping, we now show the Haskell implemen-

tation of the algorithmic duotyping formulation presented in Figure 8. Our implementation exploits
the extra ordinary-type conditions in the duotyping rules to avoid too much backtracking, and thus
result in a more efficient implementation.

5.1 Abstract Syntax and Modes
The datatype definitions for the implementation are:
data Mode = MSub | MSuper

deriving (Eq, Show)

data Type = TInt | TTop | TBot | TArrow Type Type | TOp Mode Type Type
deriving (Eq, Show)

The datatype Mode models the two modes, which stand for the two directions of duotyping
judgements: MSub for subtyping; and MSuper for supertyping. The datatype Type models the abstract
syntax of types. The first four constructors directly correspond to the integer, top, bottom and
arrow types. In the last constructor, we make use of the mode to unify intersection and union types.
Specifically, TOp MSub A B means A ∧ B, and TOp MSuper A B means A ∨ B.

5.2 Type Splitting
Figure 9 shows the implementation of type splitting. The type splitting function follows the
formalization directly. The mode specifies whether it is for intersection- (MSub) or union- (MSuper)
splittable types. The function splits the given type when possible and returns Nothing if the type
is ordinary and cannot be split. The actual implementation makes an interesting use of pattern
guards [Erwig and Peyton Jones 2000]. For instance, in the first case we have to analyse the result
of split MSub b to decide whether to execute the code on the right-side of = or fail and move to
the next case. If the pattern Just (b1,b2) does not match the result then we fail and move to the
next case. Regarding the order of cases, we can divide them (denoted by the corresponding rules)

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:20 Xuejing Huang and Bruno C. d. S. Oliveira

check :: Mode → Type → Type → Bool → Bool
check _ TInt TInt _ = True -- AD-int
check m _ t _ -- AD-bound

| select m == t
= True

check m a b _ -- AD-and
| Just (b1, b2) <- split m b
= (check m a b1 False) && (check m a b2 False)

check m a b _ -- AD-andL AD-andR
| Just (a1, a2) <- split m a
= (check m a1 b False) || (check m a2 b False)

check m a b False = check (flipmode m) b a True -- AD-dual
check m (TArrow a1 a2) (TArrow b1 b2) _ -- AD-arrow

= (check (flipmode m) a1 b1 False) && (check m a2 b2 False)
check _ _ _ _ = False

Fig. 10. Haskell implementation of the duotyping checking algorithm

into three groups based on the form of the split type: 1) rule Sp-arrowR and rule Sp-arrowL; 2)
rule Sp-and; 3) rule Sp-orL and rule Sp-orR. While the order inside the group is restricted by the
rules, the order across groups does not matter. Actually, the precedence among rules is merely
assigned to avoid non-determinism of the split result, and the order itself is insignificant.

5.3 Duotyping and Subtyping
Figure 10 shows the implementation of duotyping. The code uses auxilary functions for flipping
modes and selecting ⊤ or ⊥ by mode, which are trivial to implement:

flipmode :: Mode → Mode
flipmode MSub = MSuper
flipmode MSuper = MSub

select :: Mode → Type
select MSub = TTop
select MSuper = TBot

Themain function check takes two types and a mode as inputs (following the duotyping judgment
A3𝑎 B), and one additional boolean flag. The output is a boolean which denotes if the judgement
holds. The mode is flipped when it does not fit with the code corresponding to rule AD-int,
rule AD-bound, rule AD-and, rule AD-andL, and rule AD-andR, according to rule AD-dual. In
such a case we recheck the resulting judgement, which is equivalent to check the initial judgement
by the dual of the above rules. A boolean flag is used to make sure such flipping only happens at
most once for one judgement. This implementation approach for duotyping follows the approach
proposed by Oliveira et al. [2020]. The arrow rule is the last one to be checked because flipping
the goal does not affect it. At that point, we know that types on both sides are fully ordinary, and
both of them are not Int. Thus, if rule AD-arrow fails, a negative result will be returned. Finally,
to obtain a function that checks the subtyping of two types we can simply have:

sub :: Type → Type → Bool
sub a b = check MSub a b False

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:21

5.4 Eliminating Backtracking
Note that no backtracking is employed during the process, except for the rule AD-andL and
rule AD-andR: both rules need to be considered if the first attempt fails. The lack of other forms of
backtracking is justified by our duotyping rules with ordinary conditions, which follows Lemma 4.1.
Rules that involve no recursion are put at the start of the function. Rule AD-bound only returns a
positive result so it is always safe to prioritize it among overlapping rules. Rule AD-dual overlaps
with rule AD-arrow, but in that case, after rule AD-dual, the flipped goal only matches with
rule AD-arrow, which makes no difference to directly applying rule AD-dual. Meanwhile, with
the current order that we use, the ordinary-type conditions are guaranteed by previous rules which
handle splittable types, and therefore not appear in the code.

An alternative implementation is to check rule AD-bound and its dual (for⊤ and⊥) and rule AD-
arrow before the rules for splittable types (regardless of the ordinary conditions), which can
potentially save some space and time. It can be justified by the following inversion lemma:

Lemma 5.1 (Rule AD-arrow Inversion). If A1 → A23𝑎B1 → B2 then A13𝑎A2 and B13𝑎B2.

If both types in a duotyping judgment are arrow types, their input types and output types must
satisfy the duotyping relation respectively as required by the rule AD-arrow. That means it is safe
to put the arrow case before others in the Haskell implementation.

6 RELATEDWORK
This section discusses related work, focusing on subtyping algorithms with distributivity rules.

Origins of union and intersection types. Coppo et al. extended the lambda calculus à la Curry,
and introduced intersection types [Coppo and Dezani-Ciancaglini 1980; Coppo et al. 1980, 1981].
Following them, Barendregt, Coppo, and Dezani-Ciancaglini [1983] proposed a subtyping relation
for intersection types with distributivity, that became known as BCD subtyping. Later on, the line
of work expanded to union types, and distributivity rules for union types were added by Barbanera
et al. [1995]. The work by van Bakel et al. [2000] was found to be “a pleasant surprise”: from the logic
system B+, a type system with intersection and union can be designed directly, with its subtyping
arising from the axioms and rules of B+, via the Curry-Howard isomorphism [Howard 1980]. The
B+ logic itself was invented in the 70s, by Routley and Meyer [1972], as the minimal one among
positive relevant logics, to formalize propositional entailment. Its connectives include conjunctions,
disjunctions, and implications, which correspond to intersections, unions, and arrows.

Union and intersection types for programming languages. The use of intersection types for practical
programming goes back to Reynolds’s Forsythe [Reynolds 1988, 1997]. Pierce [1991] extended this
line of work to union types, as well as second-order polymorphism. He also invented a decision
procedure for intersections and bounded variables [Pierce 2018], which lead to an algorithmic
system for BCD subtyping [Bi et al. 2018]. This algorithm analyzes the supertype structurally,
storing its input type for arrows in a queue. When it reaches primitive types or the top type, it then
decomposes the subtype part, and pops the queue for comparison. The completeness proof with
respect to BCD subtyping relies on an extra concept of “reflexive supertypes”, and therefore is not
trivial.

The notion of splittable types was introduced in a modular formulation of BCD subtyping [Huang
et al. 2021]. This formulation is a cut-free subtyping relation equivalent to BCD subtyping. The
metatheory of this alternative formulation of BCD subtyping is pleasingly simple, and our work
has shown that this idea can be extended to union types and additional distributivity rules.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

89:22 Xuejing Huang and Bruno C. d. S. Oliveira

Algorithms for minimal relevant logic subtyping. There are some algorithms designed for the
provability problem of the minimal relevant logic [Gochet et al. 1995; Viganò 2000]. Such algorithms
build a deduction system. But their formalization is quite different from conventional subtyping
relations. Here we focus on algorithms designed for subtyping systems that are similar to the
minimal relevant logic in expressiveness power. Unlike Pierce’s decision procedure or modular
BCD subtyping, most algorithms for minimal relevant logic subtyping require a pre-processing
step on types. Typically this pre-processing step is some reduction of types into a normal form.
Muehlboeck and Tate [2018] proposed a composable algorithmic framework called integrated

subtyping. Integrated subtyping is able to generate decision procedures for various systems with
union and intersection types including BCD subtyping, and the one arising from minimal rele-
vant logic. Their strategy is to transform types on the left-hand side to a normal form, which is
the disjunctive normal form in the setting without distributivity over arrows. A function called
intersector is used in the conversion, and it varies according to the subtyping rules.

Subtyping in the Delta-calculus [Stolze 2019] extends BCD subtyping with union types, and has
rules similar to minimal relevant logic. This work provides an algorithm for deciding subtyping,
which first rewrites types into some standard normal forms. After rewriting, the left-hand type
is a union of intersections, while the right-hand type is an intersection of unions. The basic
components in both types include type variables and arrow types rephrased into a normal form,
which corresponds to our intersection-ordinary arrow types. Because all arrow types are naturally
union-ordinary, these components are ordinary in both modes, and therefore the left-hand side
type is an intersection of intersection-ordinary types, while the right-hand side type is a union of
union-ordinary types. However, this method may not be able to scale if union arrow distributivity
rules (rule S-distArrR-union and rule S-distArrL-union, discussed in Section 3.2) are to be
added in the future. As discussed at the end of Section 4, the next step of the algorithm is similar to
ours, except that it works on normalized types.
Frisch et al. [2008] extended semantic subtyping to intersection and union types for the CDuce

project. Type constructors act as their corresponding set-theoretic operators. They provided an
algorithm for the induced subtyping relation. Firstly they write types into a disjunctive normal
form. Then they check whether the result of the left-hand type minus the right-hand type is an
empty type by enumeration. Improved versions of the algorithm were implemented and run in
the current implementation of CDuce [Frisch 2004]. Pearce followed their path and introduced a
subtyping algorithm with a constructive proof for soundness and completeness [Pearce 2013].

7 CONCLUSION
This pearl shows a new algorithm for deciding subtyping (and logical entailment) in the presence of
union types, intersection types and distributivity rules. Such algorithms are known to be challenging
to implement and formalize. Most previous work has addressed similar problems using a pre-
processing step to transform types into a normal form, before comparing types for subtyping.
Here we present a new algorithm that directly compares source types for subtyping, without a
pre-processing phase.
Splittable types [Huang et al. 2021] are key to our algorithm. While originally proposed for

a calculus with intersection types only, our pearl illustrates that splittable types can scale up to
systems with union types and additional distributivity rules. Moreover, duotyping [Oliveira et al.
2020] helped in designing a very symmetric formulation of algorithmic subtyping. One interesting
aspect revealed by duotyping is that minimal relevant logic is not fully symmetric from the point
of view of duality. As discussed in Section 3.2, minimal relevant logic lacks some “dual” axioms,
making the subtyping rules not completely dual. This was a surprise to us. Although the absence
of bottom types in minimal relevant logic created an obvious imbalance with respect to duality

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

Distributing Intersection and Union Types with Splits and Duality (Functional Pearl) 89:23

(which is easy to correct), we only detected the later issue with the duotyping design. Nonetheless,
duotyping was still helpful to organize many of the other rules and relations, and leads to an
implementation that can exploit duality to avoid extra code for dual cases. Overall we believe that
both splittable types and duotyping are helpful in the design of expressive subtyping relations, and
hope that this work encourages further exploration and use of both ideas.

ACKNOWLEDGMENTS
We would like to thank Jinxu Zhao for his insightful discussions throughout the metatheory’s
development. We appreciate the valuable comments from Yaoda Zhou and the anonymous reviewers
that improved the manuscript and the accompanying artifact. We are also grateful to Fabian
Muehlboeck and Ross Tate for their detailed reply about their algorithm. This work has been
sponsored by the Hong Kong Research Grant Council projects number 17209519 and 17209520.

REFERENCES
Nada Amin, Karl Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence of Dependent Object

Types. A List of Successes That Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday (2016), 249–272. https://doi.org/10.1007/978-3-319-30936-1_14

F. Barbanera, M. Dezaniciancaglini, and U. Deliguoro. 1995. Intersection and Union Types: Syntax and Semantics. Information
and Computation 119, 2 (1995), 202–230. https://doi.org/10.1006/inco.1995.1086

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness
of Type Assignment. The Journal of Symbolic Logic 48, 4 (1983), 931–940. http://www.jstor.org/stable/2273659

Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: An XML-Centric General-Purpose Language.
(2003), 51–63. https://doi.org/10.1145/944705.944711

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia: A Fresh Approach to Numerical Computing.
SIAM Rev. 59, 1 (2017), 65–98. https://doi.org/10.1137/141000671

Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2018. The Essence of Nested Composition. In 32nd European Conference
on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands (LIPIcs, Vol. 109), Todd D.
Millstein (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:33. https://doi.org/10.4230/LIPIcs.ECOOP.
2018.22

Arthur Charguéraud and François Pottier. [n.d.]. TLC: a non-constructive library for Coq. https://www.chargueraud.org/
softs/tlc/.

M. Coppo and M. Dezani-Ciancaglini. 1980. An extension of the basic functionality theory for the 𝜆-calculus. Notre Dame
Journal of Formal Logic 21, 4 (1980), 685 – 693. https://doi.org/10.1305/ndjfl/1093883253

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1980. Principal Type Schemes and Lambda-calculus
Semantics. (1980), 535–560. http://www.di.unito.it/~dezani/papers/CDV80.pdf

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981. Functional Characters of Solvable Terms. Math. Log.
Q. 27, 2-6 (1981), 45–58. https://doi.org/10.1002/malq.19810270205

The Coq Development Team. 2021. The Coq Reference Manual, version 8.13.2. Available electronically at https://coq.inria.fr/
distrib/current/refman/.

Rowan Davies and Frank Pfenning. 2000. Intersection types and computational effects. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000, Martin
Odersky and Philip Wadler (Eds.). ACM, 198–208. https://doi.org/10.1145/351240.351259

Martin Erwig and Simon Peyton Jones. 2000. Pattern Guards and Transformational Patterns. InHaskellWorkshop 2000 (haskell
workshop 2000 ed.). https://www.microsoft.com/en-us/research/publication/pattern-guards-and-transformational-
patterns/

Facebook. 2014. Flow. https://flow.org.
Alain Frisch. 2004. Théorie, conception et réalisation d’un langage de programmation adapté à XML. Ph.D. Dissertation. PhD

thesis, Université Paris 7.
Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: Dealing Set-Theoretically with

Function, Union, Intersection, and Negation Types. J. ACM 55, 4, Article 19 (Sept. 2008), 64 pages. https://doi.org/10.
1145/1391289.1391293

Paul Gochet, Pascal Gribomont, and Didier Rossetto. 1995. ALGORITHMS FOR RELEVANT LOGIC: Leo Apostel in
memoriam. Logique et Analyse 38, 150/152 (1995), 329–346. http://www.jstor.org/stable/44084547

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1006/inco.1995.1086
http://www.jstor.org/stable/2273659
https://doi.org/10.1145/944705.944711
https://doi.org/10.1137/141000671
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://www.chargueraud.org/softs/tlc/
https://www.chargueraud.org/softs/tlc/
https://doi.org/10.1305/ndjfl/1093883253
http://www.di.unito.it/~dezani/papers/CDV80.pdf
https://doi.org/10.1002/malq.19810270205
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.1145/351240.351259
https://www.microsoft.com/en-us/research/publication/pattern-guards-and-transformational-patterns/
https://www.microsoft.com/en-us/research/publication/pattern-guards-and-transformational-patterns/
https://flow.org
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
http://www.jstor.org/stable/44084547

89:24 Xuejing Huang and Bruno C. d. S. Oliveira

William A. Howard. 1980. The formulae-as-types notion of construction. In To H.B. Curry: Essays on Combinatory Logic,
𝜆-calculus and Formalism, J. Hindley and J. Seldin (Eds.). Academic Press, 479–490.

Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. 2021. Taming the Merge Operator: a Type-directed Operational
Semantics Approach. Technical Report TR-2021-01. Department of Computer Science, The University of Hong Kong.
https://www.cs.hku.hk/data/techreps/document/TR-2021-01.pdf

Microsoft. 2012. TypeScript. https://www.typescriptlang.org.
Fabian Muehlboeck and Ross Tate. 2018. Empowering Union and Intersection Types with Integrated Subtyping. Proc. ACM

Program. Lang. 2, OOPSLA, Article 112 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276482
Bruno C. d. S. Oliveira, Cui Shaobo, and Baber Rehman. 2020. The Duality of Subtyping. In 34th European Conference on

Object-Oriented Programming (ECOOP 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 166), Robert
Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 29:1–29:29.
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29

David J. Pearce. 2013. Sound and Complete Flow Typing with Unions, Intersections and Negations. In Verification, Model
Checking, and Abstract Interpretation, Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 335–354.

Benjamin C. Pierce. 1991. Programming with Intersection Types and Bounded Polymorphism. Ph.D. Dissertation. Carnegie
Mellon University.

Benjamin C. Pierce. 2018. A decision procedure for the subtype relation on intersection types with bounded variables.
https://doi.org/10.1184/R1/6587339.v1

Redhat. 2011. Ceylon. https://ceylon-lang.org.
John C Reynolds. 1988. Preliminary design of the programming language Forsythe. Technical Report CMU-CS-88-159.

Carnegie Mellon University.
John C Reynolds. 1997. Design of the Programming Language Forsythe. In ALGOL-like languages. Springer, 173–233.
Richard Routley and Robert K. Meyer. 1972. The Semantics of Entailment: III. Journal of Philosophical Logic 1, 2 (1972),

192–208. http://www.jstor.org/stable/30226036
Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar, and Rok Strniša. 2007.

Ott: Effective Tool Support for the Working Semanticist. SIGPLAN Not. 42, 9 (Oct. 2007), 1–12. https://doi.org/10.1145/
1291220.1291155

Claude Stolze. 2019. Combining union, intersection and dependent types in an explicitly typed lambda-calculus. Ph.D.
Dissertation. Université Côte d’Azur.

The Scala Center team and community contributors. 2020. Scala 3. https://dotty.epfl.ch.
Steffen van Bakel, Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Yoko Motohama. 2000. The Minimal Relevant

Logic and the Call-by-Value Lambda Calculus. Technical Report TR-ARP-05-2000. The Australian National University.
http://www.di.unito.it/~deligu/papers/vBDdLM-trANU00.pdf

Luca Viganò. 2000. An O(n log n)-Space Decision Procedure for the Relevance Logic B+. Studia Logica: An International
Journal for Symbolic Logic 66, 3 (2000), 385–407. http://www.jstor.org/stable/20016237

Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson, and Jan Vitek. 2018. Julia
Subtyping: A Rational Reconstruction. Proc. ACM Program. Lang. 2, OOPSLA, Article 113 (Oct. 2018), 27 pages. https:
//doi.org/10.1145/3276483

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 89. Publication date: August 2021.

https://www.cs.hku.hk/data/techreps/document/TR-2021-01.pdf
https://www.typescriptlang.org
https://doi.org/10.1145/3276482
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://doi.org/10.1184/R1/6587339.v1
https://ceylon-lang.org
http://www.jstor.org/stable/30226036
https://doi.org/10.1145/1291220.1291155
https://doi.org/10.1145/1291220.1291155
https://dotty.epfl.ch
http://www.di.unito.it/~deligu/papers/vBDdLM-trANU00.pdf
http://www.jstor.org/stable/20016237
https://doi.org/10.1145/3276483
https://doi.org/10.1145/3276483

	Abstract
	1 Introduction
	2 Challenges of Distributivity and Background
	2.1 The Challenges of Distributivity for Algorithmic Subtyping
	2.2 Background: Ordinary Types and Splittable Types for BCD Subtyping
	2.3 Implementation

	3 Subtyping based on Minimal Relevant Logic
	3.1 Declarative subtyping
	3.2 Algorithmic Subtyping: Adding Union Types and More Distributivity

	4 Duotyping Based on Minimal Relevant Logic
	4.1 Declarative Duotyping
	4.2 Algorithmic Duotyping
	4.3 Metatheory
	4.4 Coq Formalization and Proof Statistics

	5 A Functional Implementation in Haskell
	5.1 Abstract Syntax and Modes
	5.2 Type Splitting
	5.3 Duotyping and Subtyping
	5.4 Eliminating Backtracking

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

