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Formalizations of programming languages typically adopt the substitution model from the lambda calculus.

However, substitution creates notorious complications for reasoning and implementation. Furthermore, it is

disconnected from practical implementations, which normally adopt environments and closures.

In this paper we advocate for formalizing programming languages using a novel style of small-step
environment-based semantics, which avoids substitution and is closer to implementations. We present a

call-by-value statically typed calculus, called λE, using our small-step environment semantics. With our alter-

native environment semantics programming language constructs for first-class environments arise naturally,
without creating significant additional complexity. Therefore, λE also adopts first-class environments, adding

expressive power that is not available in conventional lambda calculi. λE is a conservative extension of the

call-by-value Simply Typed Lambda Calculus (STLC), and employs de Bruijn indices for its formalization,

which fit naturally with the environment-based semantics. Reasoning about λE is simple, and in many cases

simpler than reasoning about the traditional STLC. We show an abstract machine that implements the se-

mantics of λE, and has an easy correctness proof. We also extend λE with references. We show that λE can

model a simple form of first-class modules, and suggest using first-class environments as an alternative to

objects for modelling capabilities. All technical results are formalized in the Coq proof assistant. In summary,

our work shows that the small-step environment semantics that we adopt has three main and orthogonal

benefits: 1) it simplifies the notorious binding problem in formalizations and proof assistants; 2) it is closer to

implementations; and 3) additional expressive power is obtained from first-class environments almost for free.
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1 Introduction
Formalizations of programming languages have historically been heavily influenced by the founda-

tional concepts of the lambda calculus [Church 1941]. The substitution model, a key element of the

lambda calculus, provides a powerful yet elegant mechanism for expressing computation through

the process of replacing variables with their corresponding values. This model has been widely

adopted in the design and formalization of modern programming languages.

Despite its elegance and widespread adoption, the substitution model is not without drawbacks.

One of the most notable complications, arising from the use of substitution, is the challenge it poses

for reasoning and implementation. In particular, the process of substituting variables can lead to

issues such as variable capture, where the meaning of a program may be inadvertently altered

during substitution. The challenges posed by the substitution model often create complications
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when attempting to reason about proofs. In particular, working with proof assistants can be notori-

ously difficult due to the intricacies associated with formalizing binding and substitution [Abel

et al. 2019; Aydemir et al. 2005; Charguéraud 2012]. Additionally, the necessity of performing sub-

stitutions throughout the entire program can result in significant computational overhead, making

it less efficient for practical applications. Consequently, practical implementations of programming

languages often diverge from the pure substitution model by adopting techniques such as envi-

ronments and closures. By employing these concepts, programming languages can be efficiently

implemented, and the execution model remains faithful to the conceptual underpinnings of the

lambda calculus. However, this creates a gap between substitution-based formalizations and their

efficiently implementable execution models. This gap has been noted by several researchers [Abadi

et al. 1991; Amin and Rompf 2017; Biernacka and Danvy 2007; Curien 1991; Curien et al. 1996],

who have argued for alternatives to the substitution model.

In this paper, we advocate for an alternative way in formalizing programming languages by

utilizing a novel small-step environment-based semantics. This alternative semantics offers three

significant advantages over the traditional substitution model: 1) it simplifies the notorious binding

problem in formalizations and proof assistants; 2) it is closer to implementations, by directly

adopting closures and environments; and 3) it enables a natural and simple extension with first-

class environments, adding significant additional expressive power, almost for free. We should

note that previous research, for instance on calculi with explicit substitutions [Abadi et al. 1991;
Curien et al. 1996], has already put a lot of emphasis on point (2) and on having calculi closer to

implementations. However explicit substitutions still have a complex metatheory, and they only

provide a form of second-class environments. Thus, they do not enable advantages (1) and (3). Our

work aims at having the three advantages together.

We present a call-by-value statically typed calculus, called λE, with our new environment

semantics. λE uses de Bruijn indices, which fit naturally with the environment-based semantics.

Due to the use of environments, substitution is not needed. In turn, this simplifies the use of de

Bruijn indices, and shifting/unshifting operations are not needed as well. Thus, we avoid well-

known complications arising from the use of those operations on de Bruijn indices. This simplified

formulation of de Bruijn indices is particularly beneficial when working with proof assistants, as it

allows for a more efficient and manageable approach to formalizing programming languages.

We formalize a substantial number of results in the Coq proof assistant for λE. These results
include: syntactic type soundness; semantic type soundness and normalization; correspondence

between small and big-step semantics; simulation and conservativity results for the (traditional)

call-by-value Simply Typed Lambda Calculus (STLC); the design and correctness of an abstract

machine; and others. We also extend λE with references. In all of these results, we only had to reason

about substitutions when showing the conservativity to the STLC. This is, of course unavoidable,

since the standard formulation of the STLC involves substitution. Overall we never felt that issues

with binding were in our way in our Coq formalization. Throughout the paper we will document

places in our proofs, where we believe that the environment-based approach made a significant

difference to an approach based on substitution.

When using a small-step environment semantics to model a calculus with static (or lexical)

scoping, a mechanism for evaluating an expression under a given local environment (which may be

different from the global environment) is necessary. In λE, such a mechanism is realised by boxes:
e1 ▷ e2. When e1 is a (value) environment, then boxes provide exactly a mechanism to evaluate e2
under a given local environment (e1). Boxes play a key role in beta reduction in λE. However, by
allowing e1 to be an arbitrary expression that evaluates to an environment, and with some other

constructs provided by λE, we enable programmer-controlled environments to be set up and used to

run some computations. The following program (with some syntactic sugar) is allowed in λE:
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var x = 1; (?, {y = 2}) ▷ y + x

In this program, we have a variable x initialized with 1. Then we use a box to run a computation

under a local environment that contains the current (global) environment (with x = 1), and a local

binding y = 2. Thus we can run y + x to compute 3. In the expression above, in addition to boxes,

we use environment merging/concatenation (,) and a reification operator ?. The reification operator

simply returns the global environment. If we had written instead

var x = 1; {y = 2} ▷ y + x

the program would not type-check, because the local environment in the box does not contain

a binding x. In other words, the expression to be evaluated in a box can only access the local

environment provided by the box, but not the global environment. Therefore, boxes provide a

form of sandboxing where computations can be run in an isolated and controlled environment.

Sandboxing is not available in standard lambda calculi, which typically only allow constructs that

extend the global environment.

Programming language constructs for first-class environments arise naturally from boxes and the

environment-based small-step semantics that we propose, without creating significant additional

complexity. Thus, in λE, environments are first-class citizens within the language. In other words,

environments can be passed as arguments, returned from functions, or assigned to variables, just

as any other values. First-class environments and sandboxing in λE are achieved while retaining

the simplicity of reasoning and binding. This is in contrast with previous work on first-class envi-

ronments [Nishizaki 1994; Sato et al. 2001, 2002], where issues with binding introduce significant

complexity. First-class environments are useful to enhance both the expressive power and practical-

ity of the language, empowering developers to fully harness the potential of an environment-based

semantics in their programs. The increased expressive power can facilitate the development of

sophisticated and modular programs, as developers can now leverage environments to encapsulate

and manage variable bindings more effectively. To illustrate the expressive power of λE, we show
that λE can model a simple form of first-class modules, and suggest using first-class environments

as an alternative to objects for modelling capabilities [Miller 2006; Miller et al. 2000]. In essence,

since we can use first-class environments to model a form of (sandboxed) modules, we can use

these modules as capabilities that can be passed to clients of the modules.

Overall, there is a synergy of factors that make calculi with a small-step environment-based

semantics and first-class environments appealing. Nevertheless we acknowledge that the study

in this paper is limited, and that with more advanced programming language features additional

complications may arise from binding. Section 6 discusses some expected challenges and limitations,

as well as possible variants in the design. The contributions of this paper are:

• The λE calculus, which is a call-by-value statically typed calculus with first-class environments.

λE adopts an environment-based semantics and supports lookup by de Bruijn indices or labels.

We illustrate its applicability to encodings of first-class modules and capabilities.

• A small-step style of environment semantics with easy metatheory. The λE calculus is

shown to have desirable properties including determinism, type soundness, and normalization.

The proofs in the metatheory are simple and do not involve reasoning about substitutions.

• Operational correspondence between the λE calculus and other models. The results include

equivalence between small-step and big-step semantics, completeness and conservativity with

respect to the lambda calculus, and correctness of compilation to an abstract machine.

• An extension of λE with references: We also investigate a type sound and deterministic

extension of the λE calculus with mutable references.

• Coq formalization: We have formalized all the calculi and proofs in this paper in the Coq

theorem prover and they are available in the companion artifact [Tan and Oliveira 2024].
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2 Overview
This section provides an overview of our work. We start with some relevant background, and then

present the key ideas in our work.

2.1 Background: Substitution-based Semantics
The lambda calculus [Church 1941] is an abstract mathematical model of computation, which can be

regarded as the theoretical foundation of functional programming. Beta reduction, which reduces

function applications, is the core rule that performs computation. In the typical presentation of the

operational semantics for the lambda calculus [Barendregt 1985], a substitution-based semantics is

usually employed. Function application reduces by substituting the right-hand component in the

body of the function definition, which is formally expressed as the following rule:

(λx. e1) e2 ↪→ e1[e2/x]
Beta

While the substitution model is, by far, the most widely adopted model for formalizing lambda

calculi, it does have some important drawbacks, which we discuss next.

Reasoning about binding and substitutions is tricky. Defining a correct capture-avoiding substitu-

tion is quite tricky, as the representation of variable names, freshness, and α-conversion need to be

considered carefully. The Barendregt convention is often adopted in pencil-and-paper proofs, where

all bound variables are assumed to be distinct and their names should be different from any free

variables. Nevertheless, nowadays proofs about programming languages tend to be mechanized

using proof assistants to enhance the rigor of the work. Therefore, a rigorous representation of vari-

ables, such as de Bruijn indices [De Bruijn 1972] (or others, such as locally nameless [Charguéraud

2012]) should be applied in mechanized proofs.

Reasoning about substitutions with de Bruijn indices is, however, tedious. Several lemmas need

to be established to characterize the interaction between shifting and substitution [Aydemir et al.

2005]. The manipulation of terms becomes fragile and error-prone. For example, incrementing

the mismatched index can easily disrupt the binding connection and cause issues in the encoding.

Proving normalization with a logical relation for the substitution-based lambda calculus requires

even stronger reasoning about substitutions, since we need to define simultaneous substitutions

for dealing with open terms. As a consequence, the proof relies on many properties about context

extensions, renaming, and composition of single and simultaneous substitution [Abel et al. 2019].

For example, the proof of normalization using de Bruijn indices in Abel et al.’s formalization consists

of a large amount of lemmas stating properties about composition, decomposition, and associativity

of substitutions, which requires development of a sophisticated theory of substitutions.

Gap to implementations. In most practical implementations of programming languages, beta

reduction is not implemented with substitution, since substitution is algorithmically inefficient.

The essential problem with substitutions is that it requires traversing terms to replace the variables

by their corresponding values or expressions. Since applications are pervasive, this means that

some expressions need to be traversed multiple times to replace different variables, which is very

costly. Since implementations, such as abstract machines, avoid substitutions, this complicates

establishing the connection between substitution-based calculi and those implementations.

2.2 Background: Environment-based Semantics
In practical implementations, an explicit representation of environments is used, to avoid traversing

or modifying expressions. The substitution for a variable is deferred in the sense that the associated

value is looked up only if a variable needs to be evaluated. As a result, many abstract machines,
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such as Krivine’s machine [Crégut 1990], the CEK machine [Felleisen and Friedman 1987], and the

SECD machine [Landin 1964], can be implemented efficiently with environments. In such a setting,

de Bruijn indices can be adapted easily by abstract machines and work quite well.

While much less common in formalizations of lambda calculi, there are some alternative presen-

tations of the lambda calculus that employ an environment-based semantics, instead of substitution.

Typically, the environment-based evaluation of lambda calculus is presented with a big-step seman-

tics [Kahn 1987]. The evaluation judgment E ⊢ e ⇒ v means that, with the global environment E,
expression e evaluates to the value v. Function closures [Landin 1964] naturally appear as part of

the formalization in such a formulation. A function closure is basically a pair (λx. e)[E] containing
a function and an environment E associating values to the free variables of the function.

Curien [1991] went one step further to internalize environments and closures into a closure

calculus λρ using de Bruijn indices. The λρ calculus can be seen as a lightweight form of explicit

substitutions [Abadi et al. 1991], since reduction under lambdas is not allowed in closure calculi. A

follow-up untyped calculus λρ̂ extends λρwith one-step reductions [Biernacka and Danvy 2007]. In

this way, small-step semantics and weak reduction strategies can be expressed in λρ̂. Closure calculi
do not employ a global environment as in the conventional representation of big-step semantics.

Instead, an environment is propagated to each component of an expression. Thus, in the λρ̂ calculus

with the call-by-value strategy, the application ((λ.e)[s]) v is beta-reduced to e[v · s], in which

v · s is the environment by appending s with v. In this way, a general notion of closures e[s] is
introduced to the syntax of closure calculi, where s denotes the environment for computing e.

Lambda calculi based on an environment semantics solve the problems in Section 2.1:

• Simplified binding. Calculi based on environments do not need substitution. Thus they can

avoid the issues related to substitution. In particular, with an environment-based semantics de

Bruijn indices work quite well. The cumbersome aspects of working with de Bruijn indices,

which are related to substitutions, can be avoided.

• The gap to implementations is smaller. If a lambda calculus is based on an environment

semantics, then it has a smaller gap to implementations, such as abstract machines. Since im-

plementations also use an environment-based approach, then reasoning about the relationship

between the lambda calculus and the abstract machine is simpler.

We should note that while simplified binding is indeed a benefit of an environment-based

semantics and closure calculi, previous work [Biernacka and Danvy 2007; Curien 1991] has focused

on the second point. As far as we know, the benefits of using closure calculi for mechanical

formalizations have not been discussed previously in the literature. Moreover, in general, the

benefits for simplifying reasoning about binding have received little attention. In our work we wish

to emphasize and highlight those benefits, while providing improvements with our novel form of

small-step semantics and the addition of first-class environments.

2.3 First-class Environments
We can generalize the notion of environments and closures from closure calculi, so that environ-

ments are first-class expressions. With first-class environments, we can treat an environment as

any other value. In other words, variables can be assigned to an environment, and we can pass an

environment as an argument to a function and/or return it as a result. In closure calculi and explicit

substitutions, we have a notion of environments, but we cannot express the previous operations.

We can use environments in certain places in expressions (e.g., assigning an environment to an

expression, or creating a closure), but we cannot treat them as other first-class values. In contrast,

several entities (e.g., environments, closures, STLC expressions) fall on the same level in calculi

with first-class environments. Following this idea, several statically typed calculi with first-class

environments have been proposed [Nishizaki 1994; Sato et al. 2001; Tan and Oliveira 2023].
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Unlike closure calculi, where binding is simple, existing calculi with first-class environments

have to deal with problems that complicate the binding story again. For example, the λ→
env

calculus

proposed by Nishizaki and the λε calculus proposed by Sato et al. are both based on explicit

substitutions [Abadi et al. 1991]. Moreover, both of them use a named presentation for variables and

employ record-like environments {e1/x1, . . . , en/xn}, and they have an expression e1 Je2K which
denotes the evaluation of an expression e2 in an environment e1. As a result, (λx. e1) e2 is reduced
to {e1/x} Je2K, where {e1/x} is the environment for evaluating e2. Consider the following example:

(λz. ((λy. λx. y) z JxK 10)) {e1/x1, . . . , en/xn}

↪→ {{e1/x1, . . . , en/xn}/z}J(λy. λx. y) z JxK 10K
↪→ {{e1/x1, . . . , en/xn}/z}J({z JxK/y} Jλx. yK) 10K

Since environments are first-class, they can be passed to a function. The initial expression above

is an application of a function with an environment. Inside the function body, there is another

application, which is expected to return the first argument. Now we evaluate this expression. The

first step is performing beta reduction, so that variable z is associated with an environment. The

second step is a beta reduction inside the function body, which produces {z JxK/y} Jλx. yK. Now we

need to consider how to deal with the evaluation of λx. y in the environment {z JxK/y}. One way is

to push the environment into the lambda abstraction, which gives λx. ({z JxK/y} JyK). However, in
order to ensure α-equivalence, we need to make sure that x is not free in z JxK first. This introduces
the question: how can we determine the free variables of z JxK? We know that z is associated with

{e1/x1, . . . , en/xn}, but this information cannot be passed to the evaluation of {z JxK/y} Jλx. yK.
The λ→

env
calculus forbids substitution under lambdas to avoid the issue above. In general, the

problem of defining free variables for an expression is not considered in the λ→
env

calculus. As a result,

the issues caused by α-equivalence and variable renaming are not investigated. In such a setting,

the property of conservativity over the lambda calculus is not satisfied in λ→
env

. In other words,

λ→
env

cannot encode all the behaviour of the lambda calculus. The λε calculus allows substitution
under lambdas but it requires significant machinery. We know from the example above that z does
not have enough information about free variables from its syntactic representation. To solve this

problem, the definition of freeness in λε resorts to the information from types: x is free in e1 Je2K if
x is free in both e1 and e2, and x does not exist in the set of names collected from the type of e1.

For example, if the type of z is an environment type {xA,yB}, then x is not free in z JxK, since x is

“bound” by the type of z even though z is just a variable. On the other hand, x is free in z JxK if z
has type {uA

,yB} which does not contain x.
In this setting, the definition of freeness is entwined with environment types in λε. The correct-

ness of reduction rules requires carefully considering the interaction between variables, environ-

ments and types. Moreover, we need devices and constraints, such as positions and occurrences,

that identify the scope of variables within the context of first-class environments. Consequently,

the reasoning involved about binding is complex, and it is not clear whether such a formulation

can be easily adapted to theorem provers. Although lambda abstractions allow local renaming of

lambda-bound variables to fresh names, α-conversion is not permitted on variables bound by the

environment as they resemble labels. Otherwise the freeness would be broken. For example, y is

free in {1/x} JxK, but it is not free in {1/y} JyK which is α-converted from {1/x} JxK.
The Ei calculus [Tan and Oliveira 2023] is another typed calculus with first-class environments.

In Ei, variables are encoded as label names. The name bound by the abstraction {e}• needs to

match the label name from the argument. For example, {e}• : {x : Int} → Int only accepts an

argument labelled with x such as {x = 1}. Thus, α-conversion is not allowed on variables bound by

an abstraction, since {e}• : {y : Int} → Int cannot accept {x = 1}. To model conventional lambda

abstractions, a special kind of abstractions {e}◦ : {x : A} → B is proposed where x is only used
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internally in the function body. Thus, {e}◦ : {x : Int} → Int can accept 1 as an argument. However,

the connection between such abstractions and standard lambda abstractions is not clearly defined.

Complications of first-class environments. In addition to the complications introduced by binding,

none of the calculi with first-class environments comes with a corresponding abstract machine.

The complexities of binding may partly explain this, as the abstract machine needs to deal with

such complexities itself. For closure calculi an environment-based semantics has very appealing

properties. However, these good properties seem to be lost in calculi with first-class environments.

This seems unfortunate, as first-class environments introduce useful expressive power, and the

added expressiveness, together with the other nicer attributes of closure calculi would make a

powerful argument for the use of calculi with first-class environments.

2.4 Key Ideas
In this paper, we propose a typed, call-by-value calculus, called λE, with first-class environments.

λE recovers the simplicity of binding found in closure calculi. Moreover, we provide an abstract

machine that implements λE and is shown to correctly model the semantics of λE. We show that

λE has numerous desirable properties, such as being conservative over the call-by-value lambda

calculus, and being normalizing. Next we introduce the key ideas of λE.

Lookups by de Bruijn indices. As mentioned above, the named representation can be burdensome

and inefficient, especially in the context of first-class environments. To address this problem, like in

closure calculi, de Bruijn indices (denoted by n) are employed for variables in the λE calculus. Hence,

α-equivalence coincides with syntactic equality. Thus, standard lambda abstractions are definable

in λE. For example, the named lambda abstraction λf : Int → Int. λx : Int. f x is represented as

λInt → Int. λInt. 1 0

Moreover, α-equivalence is also respected for those variables that are bound by the environment.

In the λE calculus, e1 ▷ e2, where ▷ is called a box, denotes the evaluation of e2 in the environment

e1. The variables in e2 can be a de Bruijn index bound by e1. For example, in the expression

(· · · # succ(1) # 42 # true) ▷ 1

the environment consists of some expressions composed by the merge operator (#), which serves

the purpose of environment concatenation here. In the environment, the rightmost expression

is indexed by 0, and the index increments from right to left. Thus, index 1 refers to 42 in the

environment. Note that counting of indices in environments coincides with counting in typing

contexts. This is achieved by the unification of typing contexts and types. In contrast, α-equivalence
is not respected under an environment type in λε [Sato et al. 2001].

Lookups by labels. λE also provides label-based lookups. The addition of label-based lookup is

important for fully enabling the expressive power of first-class environments, and some of their

applications. Label-based lookups would not be needed if our goal would be merely to encode the

lambda calculus or a closure calculus (see also Section 6.2). A label, unlike a name or a de Bruijn

index, does not admit α-conversion. Labels fetch values from records. For example,

λ{l : Int → Int}. λInt. l 0

is a well-typed abstraction, where type Int → Int is looked up by l. This is also true for looking up

a value in an environment, such as (· · · # succ(1) # {l = 42} # true) ▷ l. In λE, ambiguous lookups by

labels are forbidden: ambiguous lookups are type errors. For example,

(· · · # succ(1) # {l = 42} # {l = true}) ▷ l
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is not allowed since the lookup would result in either 42 or true. However, the environment itself is

well-typed even though l appears twice. This treatment of environments is similar to how Haskell,

and other languages, deal with ambiguous occurrences of names imported from multiple modules.

Moreover, in λE we have a query construct ? to reify the environment, and e.n and e.l for
index-based and label-based lookups for an expression respectively. In this way, a de Bruijn index

n is desugared as ?.n, and a label l is desugared as ?.l.
In our design, we desire both de Bruijn indices and labels at the same time. This is because they

have different roles in calculi. De Bruijn indices are important since they enable α-equivalence
easily by syntactic equality. This is especially true in the context of first-class environments, since

previous calculi with first-class environments employ only a named representation for variables,

resulting that binding and α-equivalence are difficult to deal with. However, we also want labels

for practical modelling of declarations and modules. Take the following as an example:

module A
var x = 1
var y = x + x

open A in y

Such a definition of module is common in programming languages. Note that for the variables in

declarations inside a module, the names matter (i.e., we cannot simply rename variables and retain

the meaning of the modules). For instance, renaming y to z can break the code, because clients

of the module assume that a field has a certain name. In other words, the names of variables are

visible outside the scope where they are being defined.

This is unlike variables in lambda abstractions where λx. x is the same as λy. y, as names

in declarations do not admit α-conversion. For this reason, most previous work on first-class

environments needs to have quite a complicated story for binding, because in some cases/uses (e.g.,

creating a calculus that is conservative w.r.t. lambda calculus) we want α-equivalence, but in some

others (e.g., modelling environments or modules) we do not. Keeping both de Bruijn indices and

labels leads to a clear formalization without losing expressiveness in λE.

A small-step style for environment-based semantics. λE employs a call-by-value style of environ-

ment semantics. In the lexical environment for a function closure, each expression is a value. The

reduction relation v ⊢ e1 ↪→ e2 is read as: with the global environment v, expression e1 reduces to
e2 in one step. An expression e1 ▷ e2 with the box construct is evaluated using the call-by-value

strategy. The environment e1, which possibly contains open expressions, evaluates to a value

environment v1 within the global environment first, and then e2 evaluates under v1. For example,

{l1 = 42} ⊢ {l2 = l1} ▷ l2 ↪→∗ {l2 = 42} ▷ l2 ↪→∗
42

This setting gives rise to simple reasoning about the evaluation of boxes, especially in the case of

nested evaluations. Every e1▷e2 needs to evaluate to a value, simplifying evaluation, and eliminating

the need for determining free variables. For example, suppose that the initial environment is empty

(ε), and v is {l1 = 3} # {l2 = 4} that has type {l1 : Int}& {l2 : Int}, i.e., an intersection type of two

single-field record types. We have the following evaluation:

ε ⊢ (λ{l1 : Int}& {l2 : Int}. ((λInt. λInt. 1) (0 ▷ l1) 10)) v

↪→∗ (ε # v) ▷ (λInt. λInt. 1) (0 ▷ l1) 10

↪→∗ (ε # v) ▷ ⟨ε # v, λInt. λInt. 1⟩ (0 ▷ l1) 10

↪→∗ (ε # v) ▷ ⟨ε # v, λInt. λInt. 1⟩ 3 10

↪→∗ (ε # v) ▷ (ε # v # 3 # 10 ▷ 1)

↪→∗
3
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This is similar to the problematic example shown in Section 2.3. In the example above, a function

is applied with environment v, and 0 ▷ l1 in the function body expects to fetch the value of l1
from v. First, the argument v is added into the initial environment, and the function body is going

to evaluate in the updated environment. Next, λInt. λInt. 1 evaluates to a function closure with

environment ε # v. Then 0 ▷ l1 evaluates directly to 3 in environment ε # v without entering the

function closure. As a result, the unevaluated 0 ▷ l1 is never added into the lexical environment of

the function closure.

Easy proofs of metatheory and operational correspondence. In previous calculi with first-class

environments, the absence of a global environment, together with the named representation, makes

the evaluation of e1 Je2K (similar to e1 ▷ e2 in our setting) rather complex and error-prone. On the

contrary, we have a simple design for bindings and evaluation of boxes, which results in simple

proofs of type safety and termination for λE. In particular, the proof of termination is easier than

in λ→
env

and λε. We do not need to translate the calculus to another calculus (like in λ→
env

), or define

some advanced concepts to record the flow of environments (like in λε). The proof of termination

is even easier than in substitution-based lambda calculi. No reasoning of substitutions is needed

given that the global environment in λE contains enough information. Furthermore, the use of de

Bruijn indices also paves the way to connect λE with other conventional computational models

using de Bruijn indices, which is not done for Ei.

2.5 Applications of the λE Calculus
First-class environments provide interesting expressiveness over conventional lambda calculi.

Several authors, have already argued for the ability of first-class environments to model a form

of first-class modules and/or declarations [Gelernter et al. 1987; Jagannathan 1994; Queinnec and

Roure 1996]. We revisit this ability in λE. Furthermore, we argue that first-class environments

provide an alternative to model capabilities [Miller 2006; Miller et al. 2000], which are commonly

modelled via objects. We propose using first-class environments instead, as an alternative to objects

to model capabilities.

First-class modules. Cardelli [1997] proposed a simply-typed calculus with high-level abstractions

for modules and interfaces, where a module consists of abstract interfaces and a list of function

declarations that may require the interfaces. Here we adopt a similar form of first-class modules

where imports from other modules are done by module parameters. In our design modules are

sandboxed: the only functionality that a module can use must either be defined in the module itself,

or it must come from the module parameters. In other words, modules cannot access the global

environment. In this way, users are able to determine the authority of a module by examining the

capabilities supplied as arguments [Melicher et al. 2017]. Such setting, makes it convenient to track

and control module access. To illustrate how first-class modules can be modelled with first-class

environments using λE, consider two libraries represented as modules:

module IOUtils where
print : String → Void = ...
...

module ListUtils(print : String → Void) where
sort : [Int] → [Int] = ...
printLst : [Int] → Void = ...

IOUtils is a module that consists of several IO-related operations such as a print function. Module

ListUtils requires an external print function. Moreover, it contains a sort function that sorts a

list of integers and printLst that calls the imported function print for printing a list. A user can

also create a program as follows:
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module Main(sort : [Int] → [Int], printLst : [Int] → Void) where
printSorted : [Int] → Void = printLst . sort
main : Void = printSorted([2, 1, 3])

Here, Main requires functions sort and printLst. In the module, printSorted uses these two func-

tionalities to print a sorted list, and main applies printSorted with [2, 1, 3]. The sorted list

[1, 2, 3] should be printed after the execution of main.

Sandboxed modules in λE. IOUtils and ListUtils above are modelled as first-class entities in λE:
{IOUtils : {print : String → Void} & ...}
{IOUtils = ε ▷ {print = ...} # ...}

{ListUtils : {print : String → Void} →
{sort : [Int] → [Int]} & {printLst : [Int] → Void}}

{ListUtils = ε ▷ λ{print: String → Void}.
({sort = ...} # {printLst = ...}) }

The merge operator is used to compose declarations of functions in a module. A module is not

fully implemented if a module requires external functions. For instance ListUtils is not fully

implemented. Nevertheless, functions defined in such a module can rely on the abstract interfaces

(i.e., arguments passed to the module). In this case, a lambda abstraction boxed with empty en-

vironment ε is used for modelling such a module, where the imported interfaces are encoded as

input types. Thus, to use the module we must apply it with some concrete implementations of the

required functions. Note also that in the encoding above, the local environment is ε (the empty

environment) so that functions inside a module can only rely on what it imports. In other words,

the module is sandboxed and can only use bindings that are explicitly required by the module.

Therefore, functions inside ListUtils cannot get access to resources from the global environment.

The user-defined module can be modelled in a similar manner:

{Main : {sort : [Int] → [Int]} & {printLst : [Int] → Void} →
{printSorted : [Int] → Void} & {main : Void}}

{Main = ε ▷ λ{sort : [Int] → [Int]} & {printLst : [Int] → Void}.
({printSorted = printLst . sort} # {main = printSorted([2, 1, 3])}) }

The merge operator in λE is dependent. Thus printSorted can be referred by main. Now we can

implement the ListUtils module and then pass the implementation of sort and printLst to Main:

({ListUtilsImp = ListUtils({print = IOUtils.print})} # {Main = Main}) ▷

Main({sort = ListUtilsImp.sort} # {printLst = ListUtilsImp.printLst})

The expression above can be compiled in an environment containing IOUtils, ListUtils and Main.

Note that at the end of the first line there is a box operator ▷. This example illustrates how one can

manipulate environments. Module ListUtilsImp is implemented by accepting the print function

from IOUtils, and Main is imported to the environment for the box. In this way, we obtain an

environment {ListUtilsImp = ...} # {Main = ...}, from which we can make module Main be

concretized with sort and printLst coming from ListUtilsImp. The advantage of module systems

is that a user-defined program is decoupled from concrete implementations of libraries. Hence,

users are supposed not to know the concrete implementation of modules. For example, sort could

be reimplemented later using a more efficient algorithm, and printLst can be updated to print a

list in a prettier format. Thus we could have a different implementation of ListUtils, to obtain

these alternative functions.

Capabilities as first-class environments. Object-capability programming [Miller 2006; Miller et al.

2000] is a programming paradigm that provides a mechanism for controlling access to resources.

Several capability languages have been developed, such as Joe-E [Mettler et al. 2010], Caja [Miller
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et al. 2008], ADsafe [Crockford 2008], and Wyvern [Melicher et al. 2017]. With these languages,

one can grant limited privileges to untrusted code by selectively passing it relevant capabilities.

To ensure security, some form of explicit authorization mechanism is needed to be applied in the

implementation of capability languages. In a capability-safe setting, we must ensure that capabilities

can only be provided explicitly via some parameters, instead of being implicitly accessed via the

global environment. Sandboxed modules, which can only use bindings that are explicitly passed as

arguments, are thus useful for modelling capabilities.

In general, with the box construct, only a specific set of APIs is exposed to users as mediated

access to certain capabilities is performed. Alternatively access to the APIs can be restricted. In λE,
we can use first-class environments/modules to model capabilities, and the box construct to model

mediated access to capabilities. For example, it is possible that a program is created as follows:

module Untrusted(sort : [Int] → [Int], print : String → Void) where
sorted : [Int] = sort([2, 1, 3])
main : Void = print("hacked")

This module imports a sort and a print function. Suppose that this is a module from an untrusted

party. Hence, we want to restrict this module so that it is not implemented with the real print

function and thus “hacked” will not be printed. In λE, we can use first-class environments and the

box construct to achieve the goal:

({printReal = IOUtils.print} #
{ListUtilsImp = ListUtils({print = printReal})} #
{Untrusted = Untrusted} #
{printImp = error "cannot access this function"}) ▷
Untrusted({sort = ListUtilsImp.sort} # {print = printImp})

Here, printReal is the real implementation of the print function. We can use it to implement

ListUtilsImp to obtain the implementation of a sort function. On the other hand, printImp is a

mock implementation of the print function. Note that boxes can only access the local environment.

This means that boxes provide mediated access to the environment, as well as, fine-grained control

of capabilities. Moreover, Untrusted is not able to use the real print capability implicitly, since the

“print” capability accessed by Untrusted is printImp which is passed as an argument by the user.

Now the execution of the expression above will output an error message instead of “hacked”.

3 The λE Calculus: Syntax, Typing and Semantics
In this section, we will introduce the λE calculus, which is a calculus with first-class environments.

The design of first-class environments in λE is partly inspired by Tan and Oliveira [2023]. In partic-

ular we borrow the following ideas: typing contexts are modelled as types; runtime environments

as values; and compositions of environments as merges. However, our approach to binding is based

on de Bruijn indices, making modelling standard lambda abstractions simple and straightforward.

3.1 Syntax
The syntax of the λE calculus is shown in Figure 1. We use colors to highlight the constructs,

and corresponding rules, that are related to first-class environments. Blue is used to highlight the

constructs related to standard environment lookup. Red is used to highlight constructs that can be

used to create labelled expressions and lookup by label. We also use green, to highlight boxes which,

in a calculus with first-class environments, can have a very general form. Though λE supports

first-class environments, we can restrict the expressiveness of λE such that first-class environments

are disabled, while retaining the notion of closures. To do so we remove or change the colored

constructs, to obtain a closure calculus. We show how this alternative design works in Section 6.
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Types A,B, Γ F Int | ε | A&B | A → B | {l : A}

Expressions eF ? | e.n | i | ε | λA. e | e1 ▷ e2 | ⟨v, λA. e⟩ | e1 e2 | e1 # e2 | {l = e} | e.l

Values vF i | ε | ⟨v, λA. e⟩ | v1 # v2 | {l = v}

Frames FF [ ].n | [ ] # e | [ ] e | [ ] ▷ e | v [ ] | {l = [ ]} | [ ].l

Syntactic Sugar n ≜ ?.n

l ≜ ?.l
Fig. 1. λE syntax

Types and contexts. Meta-variables A,B, Γ range over types and typing contexts. Note that in

our calculus there is no distinction between contexts and types. Contexts are just types and any

type can act as a context. Types/contexts include base types (Int), a unit type used to denote

empty environments (ε), a limited form of intersection types (A&B), arrow types (A → B), and
single-field record types ({l : A}). A multi-field record type {l1 : A1, . . . , ln : An} can be obtained

by intersecting several single-field records: {l1 : A1}& · · · & {ln : An} [Reynolds 1997].

Expressions. Meta-variables e range over expressions. Expressions include several standard

constructs: integers (i), the unit expression (ε), applications (e1 e2), merges (e1 # e2) and lambda

abstractions (λA. e). Merges are left associative. Thus, e1 # e2 # e3 is interpreted as (e1 # e2) # e3. Note
that de Bruijn notation is applied in our calculus, and the variable bound by a lambda abstraction is

nameless. In addition, we have boxes (e1 ▷e2) for running computations under a given environment,

and closures (⟨v, λA. e⟩) that record the lexical environment of a function. The query construct (?)
reifies the current environment, and the projection (e.n) construct returns the n-th element of an

expression. In this way, a variable, denoted by a de Bruijn index n, can be regarded as ?.n, which is

a compound expression with a query and a projection. Single-field records are denoted by {l = e}.
A multi-field record {l1 = e1, . . . , ln = en} can be represented as a merge of single-field records

{l1 = e1} # · · · # {ln = en}. Finally, besides being able to lookup an environment by a de Bruijn

index, it is also possible to have labelled entries in the environment and lookup by label. Using the

selection construct (e.l), the field labelled by l from a multi-field record can be fetched. Similarly to

lookup by de Bruijn indices, we can also have syntactic sugar for looking up a labelled entry in the

environment by its label l.

Values and frames. Meta-variables v range over values. A value is either an integer (i), the unit
expression (ε), a closure (⟨v, λA. e⟩) where the lexical environment is also a value, a merge (v1 # v2)
of two values, or a record whose field is also a value ({l = v}). Frames (F) specify evaluation contexts

for applications, merges, boxes, projections, records, and selections. Note that frames do not include

evaluation on the right-hand side of a merge or a box.

3.2 Type System
Figure 2 shows the type system. The typing rules for integers, the unit expression, applications and

lambda abstractions are standard. Rule Typ-lam is the typing rule for lambda abstractions. Since de

Bruijn notation is used in our calculus, the variable bound by the current λ is represented as 0. In

rule Typ-lam, the type of 0, which is the input typeA, is appended to the context Γ by intersecting Γ
and A, such that it is the rightmost type in the context. This matches the conventional right-to-left

counting of λ binders. The query construct ? can synthesize the context (rule Typ-ctx). Since a

context is simply a type in our setting, the type of ? is the current context. Rule Typ-proj is the
typing rule for projections. The type of a query e.n is the n-th element of the type of e that is

obtained by the lookup function:
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l : A ∈ B (Containment)

ctm-rcd

l : A ∈ {l : A}

ctm-andl

l : A ∈ B l ∉ label(C)

l : A ∈ B&C

ctm-andr

l : A ∈ C l ∉ label(B)

l : A ∈ B&C

Γ ⊢ e : A (Typing)

Typ-ctx

Γ ⊢ ? : Γ

Typ-proj

Γ ⊢ e : B lookup(B, n) = A

Γ ⊢ e.n : A

Typ-lit

Γ ⊢ i : Int

Typ-top

Γ ⊢ ε : ε

Typ-box

Γ ⊢ e1 : Γ1 Γ1 ⊢ e2 : A

Γ ⊢ e1 ▷ e2 : A

Typ-merge

Γ ⊢ e1 : A Γ &A ⊢ e2 : B

Γ ⊢ e1 # e2 : A&B

Typ-app

Γ ⊢ e1 : A → B Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B

Typ-lam

Γ &A ⊢ e : B

Γ ⊢ λA. e : A → B

Typ-clos

ε ⊢ v : Γ1 Γ1 &A ⊢ e : B

Γ ⊢ ⟨v, λA. e⟩ : A → B

Typ-rcd

Γ ⊢ e : A

Γ ⊢ {l = e} : {l : A}

Typ-sel

Γ ⊢ e : B l : A ∈ B

Γ ⊢ e.l : A
Fig. 2. Type System.

lookup(A&B, 0) = B

lookup(A&B,n+ 1) = lookup(A,n)

Consequently, the type of variable n (encoded as ?.n) is the n-th element in the typing context.

Rule Typ-merge is the typing rule for merges. The right branch e2 may depend on the left branch

e1 in merge e1 # e2, since the context for typing e2 is the type Γ &A, which is the intersection of the

typing context for e1 #e2 and the type of e1. Rule Typ-box is the rule for boxes. In order to typecheck

a box e1 ▷ e2, we first check that e1 is well-typed under the global context and then e2 is checked
under the type of e1. Rule Typ-clos is the rule for closures. For a closure ⟨v, λA. e⟩, the body e is
checked under the type of the lexical environment v and the input type A. Since v is a value that is

closed, the typing context for it can be ε in the rule. Rule Typ-sel is the rule for selection. The type

of e.l is A if the type of e contains the entry l : A. In order to ensure determinism, when there are

multiple entries for l in B, the selection fails according to the containment judgment l : A ∈ B.

3.3 Dynamic Semantics
Figure 3 shows the small-step call-by-value operational semantics for λE. The reduction has the

form of v ⊢ e1 ↪→ e2. The value v denotes the runtime environment. We define multi-step reduction

↪→∗
as the reflexive and transitive closure of ↪→. Rule Step-ctx reduces a query ? to the current

runtime environment. To evaluate a projection e.n, expression e is evaluated to a value v first, after
which rule Step-proj is triggered. The n-th element of v is fetched by lookupv:

lookupv(v1 # v2, 0) = v2

lookupv(v1 # v2,n+ 1) = lookupv(v1,n)

A merge e1 # e2 is evaluated from left to right. After e1 is evaluated to a value v1, v1 is added to the

runtime environment by rule Step-merger, and e2 can refer to both v and v1. An application e1 e2
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v.l⇝ v ′ (Selection)

sel-rec

{l = v}.l⇝ v

sel-mrgl

v1.l⇝ v

(v1 # v2).l⇝ v

sel-mrgr

v2.l⇝ v

(v1 # v2).l⇝ v

v ⊢ e ↪→ e ′ (Small-step Operational Semantics)
Step-eval

v ⊢ e ↪→ e ′

v ⊢ F[e] ↪→ F[e ′]

Step-ctx

v ⊢ ? ↪→ v

Step-proj

v ⊢ v1.n ↪→ lookupv(v1, n)

Step-merger

v # v1 ⊢ e2 ↪→ e ′
2

v ⊢ v1 # e2 ↪→ v1 # e ′
2

Step-box

v1 ⊢ e ↪→ e ′

v ⊢ v1 ▷ e ↪→ v1 ▷ e
′

Step-boxv

v ⊢ v1 ▷ v2 ↪→ v2

Step-closure

v ⊢ λA. e ↪→ ⟨v, λA. e⟩

Step-beta

v ⊢ ⟨v1, λA. e⟩ v2 ↪→ (v1 # v2) ▷ e

Step-sel

v1.l⇝ v2

v ⊢ v1.l ↪→ v2

Fig. 3. Dynamic Semantics.

is also evaluated from left to right. We have closures, instead of lambda abstractions, as values in our

calculus. Hence, e1 in the application evaluates to a closure ⟨v1, λA. e⟩. Moreover, beta reduction is

substitution-free: argument v2 is not substituted into the function body. Instead, rule Step-beta

adds v2 into the runtime environment by merging v1, the lexical environment for the closure, with

v2. In our small-step reduction, this action is represented as a single step, and the result of beta

reduction is (v1 # v2) ▷ e, i.e., e boxed with v1 # v2. After that, the function body e can be evaluated

further under environment v1 # v2. To evaluate a box e1 ▷ e2, we first evaluate e1 to a value v1,

and then e2 is reduced under environment v1 by rule Step-box. Once the evaluation of e2 is done,
rule Step-boxv extracts the value from the box. For a selection e.l, e is evaluated to a value v and
then v.l⇝ v ′ is called by rule Step-sel to get the value labelled by l.

4 Reasoning with Environment-Based Semantics
In this section, we show that λE has numerous interesting properties. More importantly, reasoning

about these properties is simple, and we argue that is often easier than formulations based on

a standard lambda calculus with substitution-based beta-reduction. In particular, because there

is no substitution in the calculus, the use of de Bruijn indices is very natural and no reasoning

about shifting/unshifting is ever needed. Moreover, the formalization style is very friendly to

mechanized theorem provers where binding is a well-known source of complexity [Aydemir et al.

2005; Charguéraud 2012]. In our Coq formalization binding was never a problem.

4.1 Determinism and Syntactic Type Soundness
The operational semantics of λE is deterministic and type-sound. The statement of these theorems

follows the form by Tan and Oliveira. In contrast to substitution-based reduction, a value v is

responsible for tracking how the runtime environment is updated during reduction. As a result,

the theorem would not be strong enough if we set v to the empty environment ε. Hence, an
arbitrary environment needs to be considered in the theorems, and we need to ensure that the

environment involved is well-typed. Note that we do not need to define a typing judgment for

environments, since environments and expressions share the same set of typing rules as they are
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unified. Importantly, note that the substitution lemma, which is used in traditional type soundness

proofs [Wright and Felleisen 1994], is not needed, since we do not use substitution in the semantics.

We first show that our type system prevents ambiguous selections. A repeated label is allowed to

appear in a multi-field record. For example, let e be {l1 = 1} # {l2 = true} # {l2 = 2} and it has type

{l1 : Int}& {l2 : Bool}& {l2 : Int}. Invoking selection of l1 for e gives 1 safely. However, if the label is

l2, then e.l2 would evaluate to either true or 2, resulting in ambiguity. The containment judgment

l : A ∈ B in the type system rules out the ambiguous selections statically. Hence, e.l2 is forbidden.
Formally, we have the following lemma stating that well-typed selection is deterministic:

Lemma 4.1 (Determinism of Selection). If Γ ⊢ v.l : A and v.l⇝ v1 and v.l⇝ v2, then v1 = v2.
With the help of determinism of selection, we have determinism of reduction.

Theorem 4.2 (Generalized Determinism). If ε ⊢ v : Γ and Γ ⊢ e : A and v ⊢ e ↪→ e1 and
v ⊢ e ↪→ e2, then e1 = e2.
By instantiating v and Γ with ε, we obtain the standard determinism theorem as a corollary.

Corollary 4.3 (Determinism). If ε ⊢ e : A and ε ⊢ e ↪→ e1 and ε ⊢ e ↪→ e2, then e1 = e2.
Next we introduce the progress and preservation theorems for type-soundness. We first prove

progress and preservation for the lookup function and label selection.

Lemma 4.4 (Progress of Lookup). If ε ⊢ v : A and lookup(A, n) = B, then there exists v ′ s.t.
lookupv(v, n) = v ′.

Lemma 4.5 (Preservation of Lookup). If ε ⊢ v : A and lookup(A, n) = B and lookupv(v, n) =
v ′, then ε ⊢ v ′ : B.

Lemma 4.6 (Progress of selection). If ε ⊢ v : A and l : B ∈ A, then there exists v ′ s.t. v.l⇝ v ′.
Lemma 4.7 (Preservation of selection). If ε ⊢ v : A and l : B ∈ A and v.l ⇝ v ′, then

ε ⊢ v ′ : B.
With the lemmas above, we know that if the environment v is well-typed, then any value produced

during the evaluation of e that refers to v (by lookup or by label selection) should progress and

preserve types. Consequently, we have the following generalized theorems.

Theorem 4.8 (Generalized Progress). If ε ⊢ v : Γ and Γ ⊢ e : A, then either e is a value or
there exists e ′ s.t. v ⊢ e ↪→ e ′.
Theorem 4.9 (Generalized Preservation). If ε ⊢ v : Γ and Γ ⊢ e : A and v ⊢ e ↪→ e ′, then

Γ ⊢ e ′ : A.
Standard progress and preservation theorems are now corollaries as follows.

Corollary 4.10 (Progress). If ε ⊢ e : A, then either e is a value or there exists e ′ s.t. ε ⊢ e ↪→ e ′.
Corollary 4.11 (Preservation). If ε ⊢ e : A and ε ⊢ e ↪→ e ′, then ε ⊢ e ′ : A.

4.2 Semantic Type Soundness and Termination
Termination. We also define semantic typing and prove the termination (or normalization) for

our calculus following Tait’s method [Tait 1967]. Proving the termination of the Simply Typed

Lambda Calculus (STLC) by performing induction on the typing judgment directly does not work,

since we are stuck at the case of application e1 e2: the induction hypotheses for e1 and e2 are not
strong enough to conclude that e1 e2 terminates. We know that e1 and e2 evaluate to a lambda

abstraction λx : A. e and a value v2 respectively, and the beta reduction gives e[v2/x]. However,
whether the function body e terminates is unknown and the proof cannot proceed.

The standard method to strengthen the theorem is to define a unary logical relation (a.k.a. logical

predicate) as a proxy to decompose the proof into two steps: we first embed the termination property

into the logical predicate, and then prove that every well-typed expression satisfies the logical

predicate. We follow this approach to prove the termination of the λE calculus.
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v ∈ VJεK ≜ v = ε

v ∈ VJIntK ≜ ∃i, v = i

v ∈ VJA&BK ≜ ∃v1 v2, v = v1 # v2 ∧ v1 ∈ VJAK ∧ v2 ∈ VJBK

v ∈ VJ{l : A}K ≜ ∃v ′, v = {l = v ′} ∧ v ′ ∈ VJAK

v ∈ VJA → BK ≜ ∃v1 e, v = ⟨v1, λA. e⟩∧ (∀v2 ∈ VJAK,∃v ′, ε ⊢ (v1 # v2) ▷ e ↪→∗ v ′ ∧ v ′ ∈ VJBK)

Γ |= e : A ≜ ∀v ∈ VJΓK,∃v ′, v ⊢ e ↪→∗ v ′ ∧ v ′ ∈ VJAK

Fig. 4. Semantic Typing.

Semantic typing is recursively defined in Figure 4. We define a logical predicate to include values

(v ∈ VJAK) and expressions (Γ |= e : A) that have the expected semantic behaviour. The semantic

type VJAK captures all the values of type A that terminates. To be more specific, VJεK includes the
empty environment ε, VJIntK consists of all of the integers; VJA&BK and VJ{l : A}K are comprised

of merge values and record values, respectively. VJA → BK is made up of closures. Moreover, it is

required that, for any value v2 of semantic type A, the result of the beta reduction, i.e., (v1 # v2) ▷ e,
can be evaluated to a value v ′ of semantic type B. This condition ensures that the function body,

which is exposed after the beta reduction, actually terminates (under the updated environment),

and thus it provides a strong hypothesis for the termination proof. The definition of VJA → BK is
similar to the one in the proof of termination for substitution-based calculi, but a boxed expression,

instead of meta-level substitution e[v2/x], is applied in the definition.

An expression e has semantic typeA in typing context Γ , if e can evaluate to a value of typeA in

every environment v of semantic type Γ . We prove that syntactic typing entails semantic typing:

Theorem 4.12 (Semantic Soundness). If Γ ⊢ e : A then Γ |= e : A.
The proof is done by induction on the typing judgment. In each case, we need to show that the

rule of syntactic typing can be derived for semantic typing. For example, we have the lemmas for

query, box, and lambda abstraction as follows:

Lemma 4.13 (Soundness of qery). Γ |= ? : Γ .

Lemma 4.14 (Soundness of box). If Γ |= e1 : Γ1 and Γ1 |= e2 : A, then Γ |= e1 ▷ e2 : A.

Lemma 4.15 (Soundness of lambda abstraction). If Γ &A |= e : B, then Γ |= λA. e : A → B.
Each lemma has the same “shape” of its corresponding syntactic typing rule. This property also

holds for the other constructs. Next we introduce briefly the proof of Lemma 4.15, which is a hard

case in the termination proof for substitution-based semantics, but is easy in our formulation. To

prove Γ |= λA. e : A → B, suppose that v1 ∈ VJΓK, then we have v1 ⊢ λA. e ↪→∗ ⟨v1, λA. e⟩. So
we need to show ⟨v1, λA. e⟩ ∈ VJA → BK by the definition of semantic typing. By the definition

of VJA → BK, we suppose that v2 ∈ VJAK. Now we merge the environment v1 with v2, and we

have v1 # v2 ∈ VJΓ &AK. By the assumption Γ &A |= e : B, we know that there exists a value

v ′ such that v1 # v2 ⊢ e ↪→∗ v ′ and v ′ ∈ VJBK. By the semantics of the box construct, we have

ε ⊢ (v1 # v2) ▷ e ↪→∗ (v1 # v2) ▷ v ′ ↪→∗ v ′ and the proof is complete.

Now we can obtain the termination result easily because termination is plugged in the definition

of semantic typing. Theorem 4.12 is in a generalized form. By picking Γ to be empty, we get the

following termination theorem.

Theorem 4.16 (Termination). If ε ⊢ e : A then there exists a value v s.t. ε ⊢ e ↪→∗ v.
Our definition of semantic typing uses the environment-based evaluation v ⊢ e ↪→∗ v ′ so that

open terms in e can refer to v. In the proof of termination of STLC, a simultaneous substitution γ,
which is essentially an environment, is introduced for dealing with open terms. However, since

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 360. Publication date: October 2024.



A Case for First-Class Environments 360:17

v ⊢ e ⇒ e ′ (Big-step Operational Semantics)

Bstep-ctx

v ⊢ ? ⇒ v

Bstep-proj

v ⊢ e ⇒ v1

v ⊢ e.n ⇒ lookupv(v1, n)

Bstep-lit

v ⊢ i ⇒ i

Bstep-clos

v ⊢ ⟨v1, λA. e⟩ ⇒ ⟨v1, λA. e⟩

Bstep-unit

v ⊢ ε ⇒ ε

Bstep-merge

v ⊢ e1 ⇒ v1 v # v1 ⊢ e2 ⇒ v2

v ⊢ e1 # e2 ⇒ v1 # v2

Bstep-box

v ⊢ e1 ⇒ v1 v1 ⊢ e2 ⇒ v2

v ⊢ e1 ▷ e2 ⇒ v2

Bstep-app

v ⊢ e1 ⇒ ⟨v1, λA. e⟩ v ⊢ e2 ⇒ v2 v1 # v2 ⊢ e ⇒ v ′

v ⊢ e1 e2 ⇒ v ′

Bstep-lam

v ⊢ λA. e ⇒ ⟨v, λA. e⟩

Bstep-rec

v ⊢ e ⇒ v1

v ⊢ {l = e} ⇒ {l = v1}

Bstep-sel

v ⊢ e ⇒ v1 v1.l⇝ v2

v ⊢ e.l ⇒ v2

Fig. 5. Big-step operational semantics.

environments are not involved in the substitution-based semantics of STLC, the target expression is

set to be γ(e), the application of γwith e, for generalizing the theorem. As a result, the lambda case

of semantic soundness requires careful reasoning about substitutions. In contrast, reasoning about

environments is much easier in λE and we do not need to handle substitutions at all. In addition, for

a substitution-based semantics, γ cannot be any arbitrary substitution. A context relation γ |= Γ is

defined to ensure that γ respects termination: γ should produce expressions that are terminating

for all the variables in Γ . On the other hand, the λE calculus features first-class environments, and

thus v ∈ VJΓK can act as such a context relation because environments are values.

4.3 Big-step Semantics
We also present a big-step operational semantics (shown in Figure 5) for λE, which is in spirit

to the environment-based natural semantics [Kahn 1987]. The big-step semantics specifies the

entire transition from an expression to a final value. The rules for values, lambda abstractions, and

applications are mostly standard. Values reduce to themselves and lambda abstractions reduce to

closures. Unlike small-step reduction, rule Bstep-app does not rely on the box construct, since

we do not need to store the intermediate result in the big-step evaluation. Rule Bstep-box is the

evaluation rule for boxes, where e1 reduces to a value that acts as an environment for e2 and then

e2 reduces to the final value. Note that rule Step-boxv in the small-step semantics is not needed in

the big-step evaluation, since the result of reducing e2 can be obtained directly from the premise of

rule Bstep-box. Also note that n is a syntactic sugar of ?.n. Thus the rule for variables is

v ⊢ n ⇒ lookupv(v, n)
Bstep-var

In fact, the semantics in Figure 5 can be seen as a modular extension of the environment-based

big-step semantics of the lambda calculus, except that the environments in the relation are values.

Next we prove that the small- and big-step semantics are equivalent. The proof is simple, since

our small-step semantics is also environment-based. We first show that big-step semantics is sound

w.r.t. the small-step semantics:

Lemma 4.17. If v ⊢ e ⇒ v ′ then v ⊢ e ↪→∗ v ′.
The proof is done by induction on the big-step relation. For the case of application, we know that

v ⊢ e1 ↪→∗ ⟨v1, λA. e⟩ and v ⊢ e2 ↪→∗ v2. Thuswe have v ⊢ e1 e2 ↪→∗ ⟨v1, λA. e⟩ v2 ↪→∗ (v2#v1)▷e.
However, we only have v2 # v1 ⊢ e ↪→∗ v ′ by the induction hypothesis for e, while our goal is to
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prove v ⊢ (v2 # v1) ▷ e ↪→∗ v ′. We have the following lemma to fill this gap. That is, the global

environment can be assigned as a local environment and the final result is not affected.

Lemma 4.18. If v ⊢ e ↪→∗ v ′ and v ′ is a value, then v1 ⊢ (v ▷ e) ↪→∗ v ′ for any v1.
Moreover, we show that the big-step semantics is complete, which relies on lemma 4.20, stating

that one single step can be encompassed by the big-step semantics.

Lemma 4.19. If v ⊢ e ↪→∗ v ′ and v ′ is a value, then v ⊢ e ⇒ v ′.

Lemma 4.20. If v ⊢ e1 ↪→ e2 and v ⊢ e2 ⇒ v ′, then v ⊢ e1 ⇒ v ′.
Finally, by combining lemma 4.17 and lemma 4.19, we have the equivalence result as following.

Theorem 4.21 (Eqivalence of Semantics). v ⊢ e ⇒ v ′ if and only if v ⊢ e ↪→∗ v ′.

4.4 Conservativity over the Simply Typed Lambda Calculus
For our calculus to serve as a replacement to the Simply Typed Lambda Calculus (STLC), it is

desirable that it is a conservative extension of the STLC. Thus, λE should be able to simulate and

express different aspects of the semantics of the STLC. We relate our calculus to the STLC here.

Figure 6 shows the definition of the STLC. We use Γλ and Γλ ⊩ e : A to denote the contexts and

typing judgment respectively for the STLC. Binding is also modelled using de Bruijn indices, and

the dynamic semantics is a standard call-by-value small-step reduction. Since the reduction is weak
(no reductions happen under abstractions), we can employ a simpler form of substitution for beta

reduction [Forster and Smolka 2017]. The correspondence between STLC contexts and λE types

is defined by the relation Γ ∼ Γλ. Let ⊢λ e and ⊢λ A represent that e and A are expressions and

types respectively in STLC. The connection with the typing of STLC is easy to establish:

Theorem 4.22 (Completeness w.r.t. Typing). If Γλ ⊩ e : A and Γ ∼ Γλ, then Γ ⊢ e : A.

Theorem 4.23 (Conservativity w.r.t. Typing). If ⊢λ e, ⊢λ A, Γ ∼ Γλ, and Γ ⊢ e : A, then
Γλ ⊩ e : A.

Now we connect our semantics with the semantics of STLC. Since lambda abstractions are values

in STLC, but not in λE, we need first to relate values in STLC and values in λE. Inspired by the

unfolding operation in the work by Forster et al. [2020], we define a substitution function S(v, e,k)
that substitutes free variables in a λE expression e by their values in the environment v at depth k,
and returns an STLC expression after the substitution. In this way, a closure in λE is transformed

to a corresponding closed lambda abstraction. Note that this substitution function is not the same

as the one in the reduction rule of STLC. The substitution in the beta reduction is an operation on

STLC expressions and does not involve environments.

Definition 4.24 (Substitution). The substitution function S(v, e,k) is recursively defined as:

S(v, i,k) = i

S(v, n,k) = n if n < k

S(v, n,k) = i if n ⩾ k and lookupv(v,n− k) = i

S(v, n,k) = λA.S(v ′, e, 1) if n ⩾ k and lookupv(v,n− k) = ⟨v ′, λA. e⟩
S(v, λA. e,k) = λA.S(v, e,k+ 1)

S(v, e1 e2,k) = S(v, e1,k) S(v, e2,k)

With the help of the substitution function, now we can define value correspondence, as shown in

Figure 6. Any integer corresponds to itself. An STLC lambda abstraction λA. e corresponds to a λE
closure ⟨v, λA. e ′⟩ such that substituting e ′ with environment v at depth 1 gives the function body

e. We prove that the dynamic semantics of λE is complete and conservative w.r.t. the one of STLC.
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Types A,BF Int | A → B

Terms eF n | i | e1 e2 | λA. e

Values vλ F i | λA. e

Contexts Γλ F · | Γλ,A
Γλ ⊩ e : A (Typing of STLC)

styp-lit

Γλ ⊩ i : Int

styp-var

Γλ[n] = A

Γλ ⊩ n : A

styp-app

Γλ ⊩ e1 : A → B Γλ ⊩ e2 : A

Γλ ⊩ e1 e2 : B

styp-lam

Γλ,A ⊩ e : B

Γλ ⊩ λA. e : A → B

e ↪→ e ′ (Reduction of STLC)

sred-beta

(λA. e) v ↪→ e[0 7→ v]

sred-appl

e1 ↪→ e ′
1

e1 e2 ↪→ e ′
1
e2

sred-appr

e2 ↪→ e ′
2

v1 e2 ↪→ v1 e
′
2

Γ ∼ Γλ (Context Correspondence)

crel-top

ε ∼ ·

crel-and

A ∼ Γλ

A&B ∼ Γλ,B

v ∼ vλ (Value Correspondence)

vrel-lit

i ∼ i

vrel-lam

S(v, e ′, 1) = e

⟨v, λA. e ′⟩ ∼ λA. e

Fig. 6. Simply Typed Lambda Calculus and correspondence to λE.

Theorem 4.25 (Completeness w.r.t. Dynamic). If · ⊩ e : A and e ↪→∗ vλ. then there exists v s.t.
ε ⊢ e ↪→∗ v and v ∼ vλ.

Theorem 4.26 (Conservativity w.r.t. Dynamic). If ⊢λ e, ε ⊢ e : A and ε ⊢ e ↪→∗ v, then there
exists vλ s.t. e ↪→∗ vλ and v ∼ vλ.

An important point to note is that the conservativity proof to the STLC is the only place in

our proofs where we need to reason about substitution. This is, of course unavoidable, since the

standard formulation of the STLC employs substitution in beta-reduction.

4.5 Closure Calculus λρ̂
We also connect the λE calculus with the CBV version of the closure calculus λρ̂ [Biernacka and

Danvy 2007] shown in Figure 7. Since λρ̂ is an untyped calculus, we only show a connection with

respect to the dynamic semantics. In λρ̂, terms consist of de Bruijn indices, applications and lambda

abstractions. A closure is either a lambda equipped with a substitution, or an application of two

closures. Values include function closures, and substitutions are lists of closures.

Unlike conventional lambda calculi, the reduction in λρ̂ is defined for closures instead of lambda

terms. Applications of closures are evaluated from left to right. Moreover, closures are distributive

over application of lambda terms, and environment duplicates for each term in the application

(rule Red-appdist). Note that this is different from how we evaluate boxes in λE. If there is an
application e1 e2 boxed by an environment v, then v becomes the global environment for evaluating

e1 e2, and no duplication of environments is performed for evaluating boxed expressions.
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Terms eF n | e1 e2 | λ.e

Substitutions sF ∅ | v · s
Closures cF e[s] | c1 c2

Values vF (λ.e)[s]

c ↪→ c ′ (Reduction of λ ρ̂)

Red-var

n[v1 · · · vn · · · vm] ↪→ vn

Red-beta

((λ.e)[s]) v ↪→ e[v · s]

Red-appl

c1 ↪→ c ′
1

c1 c2 ↪→ c ′
1
c2

Red-appr

c2 ↪→ c ′
2

v1 c2 ↪→ v1 c
′
2

Red-appdist

(e1 e2)[s] ↪→ (e1[s]) (e2[s])

Fig. 7. The λρ̂ Calculus

We show that the semantics of the λE calculus can encode the one of λρ̂ by first translating the

substitutions in λρ̂ to the environments in λE:

J∅Ks = ε

Jv · sKs = JsKs # JvKc
Here a list of values is translated to a merge of corresponding values in λE, and the translation of

closures JcKc is defined as follows:

Jc1 c2Kc = Jc1KcJc2Kc
J(λ.e)[s]Kc = ⟨JsKs, λε. e⟩

Je[s]Kc = JsKs ▷ e, otherwise

Applications of closures are translated to applications of two expressions. A function closure is

translated to a closure in λE, in which an untyped lambda abstraction in λρ̂ is encoded as a lambda

abstraction with a dummy unit type in λE. For any other closures in λρ̂, they are encoded as boxes.

With the translation defined, we can prove that the λE is semantically complete and conservative

w.r.t. λρ̂.

Theorem 4.27 (Completeness). If c ↪→∗ v in λρ̂, then ε ⊢ JcKc ↪→∗ JvKc.

Theorem 4.28 (Conservativity). If ε ⊢ JcKc ↪→∗ JvKc in λE, then c ↪→∗ v.

5 Compilation to an Abstract Machine
We compile our calculus to a modern SECD abstract machine [Leroy and Grall 2009]. The syntax

for the abstract machine is:

Instructions IF Lit(i) | Unit | Clos(C) | Ret | App |Query | Proj(n) | Box(C) |Merge | Trans

| Del | Rec(l) | Sel(l)

Values V F i | ε | C[V] | V1 # V2 | {l = V}

Code CF • | I,C

Stacks SF • | S,V | S, (C,V)

Code is represented as a list of instructions, and instructions are tailored to accommodate the

operations required for implementing the constructs of the λE calculus. The form of values corre-

sponds to the one in the λE calculus where C[V] denotes a function closure in the machine. Like in
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⟨Lit(i),C;S;V⟩ 7−→ ⟨C;S, i;V⟩
⟨Unit,C;S;V⟩ 7−→ ⟨C;S, ε;V⟩

⟨Clos(C ′),C;S;V⟩ 7−→ ⟨C;S,C ′[V];V⟩
⟨App,C;S,C ′[V2],V1;V⟩ 7−→ ⟨C ′

;S, (C,V);V2 # V1⟩

⟨Ret,C;S, (C ′
,V2),V1;V⟩ 7−→ ⟨C ′

;S,V1;V2⟩
⟨Query,C;S;V⟩ 7−→ ⟨C;S,V ;V⟩

⟨Proj(n),C;S,V ′
;V⟩ 7−→ ⟨C;S,V ′

.n;V⟩
⟨Box(C ′),C;S,V ′

;V⟩ 7−→ ⟨C ′
;S, (C,V);V ′⟩

⟨Merge,C;S,V1,V2;V⟩ 7−→ ⟨C;S, (V1 # V2);V⟩

⟨Trans,C;S,V ′
;V⟩ 7−→ ⟨C;S,V ′

;V # V ′⟩

⟨Del,C;S;V # V ′⟩ 7−→ ⟨C;S;V⟩

⟨Rec(l),C;S,V ′
;V⟩ 7−→ ⟨C;S, {l = V ′};V⟩

⟨Sel(l),C;S,V ′
;V⟩ 7−→ ⟨C;S,V ′

.l;V⟩

JiKe = Lit(i)

JεKe = Unit

J?Ke = Query

JλA. eKe = Clos(JeKe,Ret)

Je1 e2Ke = Je1Ke, Je2Ke,App

Je1 # e2Ke = Je1Ke, Trans, Je2Ke,Del,Merge

Je1 ▷ e2Ke = Je1Ke,Box(Je2Ke,Ret)

Je.nKe = JeKe,Proj(n)

J{l = e}Ke = JeKe,Rec(l)

Je.lKe = JeKe, Sel(l)

JiKv = i

JεKv = ε

J⟨v, λA. e⟩Kv = (JeKe,Ret)[JvKv]

Jv1 # v2Kv = Jv1Kv # Jv2Kv
J{l = v}Kv = {l = JvKv}

Fig. 8. Transition of the Abstract Machine and Compilation from λE.

the calculus, an environment of the machine is simply a value and we do not need to introduce a

separate definition for environments. A stack consists of values and return frames.

5.1 Transition Relation
The machine state is defined as a triple consisting of code, a stack and an environment. The

transition relation ⟨C;S;V⟩ 7−→ ⟨C ′
;S ′

;V ′⟩, shown in Figure 8, defines the behaviour of the

machine. For example, Clos(C) creates a closure for code C and Ret returns to the calling function,

while App facilitates the execution of a function application. Query reifies the environment by

pushing the current environment V to the stack. Proj returns the n-th values V ′
.n of the top

value V ′
of the stack. Rec(l) and Sel(l) return a single-field record and the selection for a label

respectively. Moreover, Merge returns a merge of the top two values of the stack. With Trans and
Del, we are able to implement dependent merges. For a dependent merge e1 # e2, we first compute

the code translated from e1, and this results that a machine value V1 will appear at the top of the

stack. Then Trans appends V1 to the environment for computing the code corresponding to e2.
After that, Del deletes the V1 from the environment for avoiding that V1 affects future computation.

Finally, Merge gives the result by merging V1 and V2. The instruction that corresponds to the box

construct in λE is Box. Basically, Box(C ′) imports an environment for code C ′
. The top value V ′

from the stack is assigned as the environment to compute C ′
. After the computation of C ′

, we

need to continue to compute code C with environment V . Thus, a return frame (C,V) is pushed
into the stack in the transition rule for Box.

We define 7−→+
as the transitive closure of 7−→. That is, there is one or more transitions along the

computation. To establish the connection with the machine, we need to define the compilation from

λE to the abstract machine (Figure 8). The compilation function JeKe compiles each λE expression

to machine code that corresponds to the construct. We also need to connect the values from the

source language to the machine values. JvKv compiles a λE value to a corresponding machine value.

Note that for a closure ⟨v, λA. e⟩ in λE, the environment v is also needed to be compiled.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 360. Publication date: October 2024.



360:22 Jinhao Tan and Bruno C. d. S. Oliveira

Types A,B,C, Γ ::= . . . | RefA

Expressions e ::= . . . | o | ref e | !e | e1 := e2

Values v ::= . . . | o

Locations Σ ::= · | Σ,o : A

Stores µ ::= · | µ,o = v

Frames F ::= . . . | ref [ ] | ![ ] | v := [ ] | [ ] := e

Σ; Γ ⊢ e : A (Extended Typing)

Rtyp-loc

o : A ∈ Σ

Σ; Γ ⊢ o : RefA

Rtyp-ref

Σ; Γ ⊢ e : A

Σ; Γ ⊢ ref e : RefA

Rtyp-deref

Σ; Γ ⊢ e : RefA

Σ; Γ ⊢!e : A

Rtyp-assign

Σ; Γ ⊢ e1 : RefA Σ; Γ ⊢ e2 : A

Σ; Γ ⊢ e1 := e2 : ε

v ⊢ µ; e ↪→ µ ′
; e ′ (Extended Small-step Operational Semantics)

Rstep-eval

v ⊢ µ; e ↪→ µ ′
; e ′

v ⊢ µ; F[e] ↪→ µ ′
; F[e ′]

Rstep-refv

o ∉ dom(µ)

v ⊢ µ; ref v1 ↪→ µ,o = v1;o

Rstep-deref

o = v1 ∈ µ

v ⊢ µ; !o ↪→ µ; v1

Rstep-assign

o ∈ dom(µ)

v ⊢ µ;o := v1 ↪→ µ[o 7→ v1]; ε

v ⊢ µ; e ⇒ µ ′
; e ′ (Extended Big-step Operational Semantics)

Brstep-loc

v ⊢ µ;o ⇒ µ;o

Brstep-ref

v ⊢ µ; e ⇒ µ ′
; v1 o ∉ dom(µ ′)

v ⊢ µ; ref e ⇒ µ ′
,o = v1;o

Brstep-deref

v ⊢ µ; e ⇒ µ ′
;o o = v1 ∈ µ ′

v ⊢ µ; !e ⇒ µ ′
; v1

Brstep-assign

v ⊢ µ; e1 ⇒ µ1;o v ⊢ µ1; e2 ⇒ µ2; v1 o ∈ dom(µ2)

v ⊢ µ; e1 := e2 ⇒ µ2[o 7→ v1]; ε

Fig. 9. Extended calculus

We can prove the correctness of the compilation using our big-step semantics. That is, the

compilation preserves program behaviour. If a λE expression e is evaluated to a value v ′, then the

machine reaches a final state, in which the corresponding machine code JeKe is consumed and the

corresponding machine value Jv ′Kv is left on top of the stack.

Theorem 5.1 (Semantic Preservation). If v ⊢ e ⇒ v ′ then for any code C and stack S,
⟨(JeKe,C);S; JvKv⟩ 7−→+ ⟨C; (S, Jv ′Kv); JvKv⟩.

6 Discussion, Variants and Extensions
We have only studied simply typed calculi. With more advanced calculi and type systems there can

be additional complications. Nonetheless, many programming language features are still quite easy

to add to calculi employing our proposed environment-based semantics. To illustrate this point we

extended λE with references. We also discuss some challenges that we foresee with more advanced

type systems, and some alternative designs may help with some challenges.

6.1 Extension with References
To investigate the addition of features to λE, we create an extension with references. The syntax

and rules for references in the extended calculus are shown in Figure 9.
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Instructions IF . . . | Loc(o) | Ref | Deref | Assign

Values V F . . . | o

Stores HF • | H,o = V

⟨Loc(o),C;S;V ;H⟩ 7−→ ⟨C;S,o;V ;H⟩
⟨Ref,C;S,V ′

;V ;H⟩ 7−→ ⟨C;S,o;V ;H,o = V ′⟩ if o ∉ dom(H)

⟨Deref,C;S,o;V ;H⟩ 7−→ ⟨C;S,V ′
;V ;H⟩ if o = V ′ ∈ H

⟨Assign,C;S,o,V ′
;V ;H⟩ 7−→ ⟨C;S, ε;V ;H[o 7→ V ′]⟩ if o ∈ dom(H)

Fig. 10. Extended abstract machine

Syntax. Types are extended with reference types (RefA), and expressions are extended with

dereferences (!e), assignments (e1 := e2), references (ref e) and locations (o). Moreover, the calculus

is equipped with location typing contexts (Σ) that track the bound locations with their types, and

stores (µ) for tracking locations with their stored values during the reduction.

Typing and dynamic semantics. The typing relation is enriched as judgment Σ; Γ ⊢ e : A,

where the rules propagate the location typing context Σ. The rules related to references utilize

the information from Σ and they are standard. In the presence of references, we need to define

the well-formedness of stores. A store µ is well-formed with the typing location Σ if they share

the same domains, and for each location in the store, the bounded value has the corresponding

bounded type. Formally,

Σ ⊢ µ ≜ dom(Σ) = dom(µ)∧ ∀o ∈ µ, Σ; ε ⊢ µ(o) : Σ(o)

The small-step reduction is extended with stores as v ⊢ µ; e ↪→ µ ′
; e ′, which states that in

environment v, e with store µ reduces to e ′ with the updated store µ ′
. The semantics for reference-

related constructs is also standard. We also define a big-step semantics v ⊢ µ; e ⇒ µ ′
; e ′, which is

proved to be equivalent to the small-step semantics.

Determinism and type-soundness. We prove that the extended calculus is deterministic:

Theorem 6.1 (Determinism). If Σ; Γ ⊢ e : A, Σ; ε ⊢ v : Γ , Σ ⊢ µ, v ⊢ µ; e ↪→ µ1; e1, and
v ⊢ µ; e ↪→ µ2; e2, then e1 = e2 and µ1 = µ2.

Furthermore, the progress and preservation of the extended calculus are shown below:

Theorem 6.2 (Progress). If Σ; Γ ⊢ e : A, Σ; ε ⊢ v : Γ , and Σ ⊢ µ, then either e is a value or there
exist e ′ and µ ′ s.t. v ⊢ µ; e ↪→ µ ′

; e ′.

Theorem 6.3 (Preservation). If Σ; Γ ⊢ e : A, Σ; ε ⊢ v : Γ , Σ ⊢ µ, and v ⊢ µ; e ↪→ µ ′
; e ′, then

there exists Σ ′ s.t. Σ ′
; Γ ⊢ e ′ : A, Σ ′ ⊢ µ ′ and Σ ′ ⊇ Σ.

Compilation to an abstract machine. We also extend the abstract machine so that it has extra

instructions for dealing with references (Figure 10). Moreover, the transition relation becomes

⟨C;S;V ;H⟩ 7−→ ⟨C ′
;S ′

;V ′
;H ′⟩ which includes machine stores. To define the compilation, we

have an extra function J·Kh that translates stores µ in the calculus to the machine stores. We prove

that the compilation is correct using the big-step semantics.

Theorem 6.4 (Semantic Preservation). If v ⊢ µ; e ⇒ µ ′
; v ′, then ⟨(JeKe,C);S; JvKv; JµKh⟩ 7−→+

⟨C; (S, Jv ′Kv); JvKv; Jµ ′Kh⟩ for any C and S.
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6.2 An Alternative Design: No First-class Environments
In the design of λE we opted to include constructs for first-class environments, since they do not

introduce significant complexity. However, we can easily remove first-class environments, while

preserving our environment-based semantics and making the calculus closer to the lambda calculus.

Firstly, we can remove the constructs (and associated rules) highlighted with red for lookups by

label. Those constructs are not needed for modelling a conventional lambda calculus. Secondly,

we can simplify the box construct highlighted with green, such that the environment in the box is

always a value:

ε ⊢ v : Γ1 Γ1 ⊢ e : A

Γ ⊢ v ▷ e : A
Typ-box

In this way, we can remove [ ] ▷ e from frames since the environment does not need to be evaluated

in the box. Finally, we can remove the blue constructs for queries and index lookups. Instead, we

define directly de Bruijn indexes n, whose static and dynamic behaviour are the same as ?.n:

Γ ⊢ n : lookup(Γ , n)
Typ-var

v ⊢ n ↪→ lookupv(v, n)
Step-var

After these steps, and removing corresponding rules, we have a simple calculus with closures. The

simplified calculus may be interesting for language designers, who are not interested in having

first-class environments. Furthermore, in some settings, first-class environments themselves may

introduce complexity, which would not appear without first-class environments. In this case a

closure calculus may be simpler to design and formalize.

6.3 More Powerful Calculi and Type Systems
We foresee some challenges when extending our ideas to more powerful calculi. For example, in

System F, substitution is performed on types. In the type system, substitution on types is needed for

the output type of type applications:

Γ ⊢ e : ∀X.B
Γ ⊢ e A : B[A/X]

Typ-tapp

and substitution of types in terms e[A/X] is applied on beta-reduction of type applications:

(ΛX. e) A ↪→ e[A/X]
step-tapp

in the dynamic semantics. We expect to be able to extend the idea of environment-based reduction

and delaying substitutions to the dynamic semantics: pushing A into the environment rather than

substituting A for the type variables in e. That is, firstly ΛX. e would reduce to a closure ⟨v,ΛX. e⟩,
and then ⟨v,ΛX. e⟩A is beta-reduced to (v # X = A) ▷ e (for readability, here we use a named

presentation for variables in the environment).

It is less clear how to deal with the type-level substitution in the typing rule for type applications.

If we are to follow the spirit of an environment-based semantics, then we ought to replace the

type level substitution with a closure. This hints for a reformulation of the type syntax to include

closures. However, how to redesign the type syntax of System F and its type system with this

closure formulation is non-obvious. Another alternative is to keep the substitution at the type level,

and still benefit from the environment-semantics for terms. However, some complications would be

introduced in this setting. For example, the reasoning would require a form of type correspondence

that connects types with respect to their environments, since substitution is performed in the

typing rule but type references are not resolved in the reduction rule. We expect that the work by

Amin and Rompf [2017] will be helpful to pursue this direction, since they present a definitional

(big-step style) interpreter for System F<:, which does not employ substitution. Nevertheless, it is

clear that extending the environment semantics to System F requires further study.
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While many programming languages and calculi rely only on weak forms of reduction, such

as call-by-value reduction, some calculi also employ full reduction. For example, dependent types

are a powerful tool adopted by proof assistants such as Coq. Typically, in a dependently typed

language, determining the equality of types is necessary and is captured as the conversion rule.

The definitional equality of two dependent types is implemented by evaluating the terms on which

the types rely to normal form and subsequently comparing these normalized terms. For example,

to check Vec (1 + 1) is equal to Vec 2 we need to reduce 1 + 1 to 2. Dealing with equality

requires reducing sub-terms at any position including those inside lambdas. However we have not

studied full reduction in our work. For future work, we want to explore the design of environment-

based semantics with full reduction for first-class environments, while expecting to simplify the

complicated reasoning of (explicit) substitutions in previous work [Nishizaki 1994; Sato et al. 2001].

7 Related Work
First-class environments. First-class environments were first introduced by Gelernter et al. [1987]

in the research literature. They proposed a programming language called Symmetric Lisp that

enriches Lisp with first-class environments that can be manipulated at runtime by users. Following

the work by Gelernter et al., there have been several attempts to incorporate first-class environments

into dialects of Lisp. For example, Queinnec and Roure [1996] presented a form of first-class

environments as an approach to share data objects for the Scheme programming language.

There is also some work on statically typed calculi with first-class environments. Nishizaki [1994]

proposed λ→
env

with reification and reflection on environments. In our work, the two corresponding

operators are the query and box constructs in λE. λ
→
env

is a non-deterministic calculus defined from

the weak reduction of the λσ calculus [Curien et al. 1996]. λ→
env

is proved to have confluence and

normalization. Normalization is proved indirectly by translating the calculus to another calculus

with records. The issue of defining the set of free variables is not covered in λ→
env

.

Sato et al. [2001] identified the importance of a correct definition of free variables in the presence

of first-class environments. They proposed the λε calculus and addressed the issue of variables

and bindings. The λε calculus is conservative over the lambda calculus with full reduction. Both

λ→
env

and λε use a named representation for variables, while de Bruijn indices are applied in λE.
However, record-like environments and label-based lookups are still possible in λE. The proof of
normalization in λ→

env
and λε requires careful reasoning about names and (explicit) substitutions.

For example, the proof in λε requires some sophisticated techniques, such as decoration trees, for

tracking the movements of the environments. As discussed by Sato et al., subtle counter-examples

occur if the reduction rule for nested evaluation is not defined properly. In contrast, normalization

is easy to prove with the environment-based semantics in λE. Dezani-Ciancaglini et al. [2008] also
proposed a typed calculus with first-class environments, which we call λc. The calculus focuses on
modelling context-dependent behaviour of objects and employs call-by-value reduction. However,

termination and the correspondence to the lambda calculus are unknown.

None of the work above is mechanically formalized in theorem provers. The Ei calculus proposed
by Tan and Oliveira is a calculus with environment-based semantics. Similarly to λε and λ→

env
,

first-class environments are represented as records. Conventional variables and lambda abstractions,

however, cannot be expressed in Ei. Thus conservativity over the lambda calculus is unknown, and

termination is not investigated. Fetching values from (global or local) contexts is done by the query

construct and label projections. However, the access of a value from the environment is indirect:

an annotated multi-field record needs to be cast to a single-field record before the lookup by label.

In contrast, the selection in λE is direct since no casting is triggered.
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λρ̂ λ→
env

λε λc Ei λE
2007 1994 2001 2008 2023 present work

First-class Environments × ✓ ✓ ✓ ✓ ✓
Reification of Environments × ✓ × × ✓ ✓
Conservativity over lambda calculus ✓ × ✓ ✓
Termination ✓ ✓ ✓
Reduction Strategy Weak Weak Full CBV CBV CBV

Big-step Semantics ✓
Compilation to an Abstract Machine ✓ ✓
Extended with References ✓ ✓
Mechanized Proofs × × × × ✓ ✓

Table 1. A comparison between closure calculi and calculi with first-class environments. A × symbol
denotes a negative result (the property or feature does not hold). A ✓ denotes a positive result. White-
space denotes that the property/feature has not been studied or it is unknown.

Closure calculi. The calculus of closures λρ [Curien 1991] is a calculus that aims to maintain

faithfulness to the substitution-based lambda calculus, while better reflecting the computational

aspects of abstract machines. Explicit substitutions [Abadi et al. 1991] extend the idea of the closure

calculus where reduction under lambdas is allowed in general. As a result, if de Bruijn notation is

used for encoding variables, shifting needs to be defined and an amount of reasoning of shifting

is involved in the proof of metatheory. In contrast, λρ targets weak lambda calculus and there is

no reduction under lambdas. Hence there is no need to be concerned about name clashes, and

α-conversion does not need to be performed at any point. Thus de Bruijn indices fit very well

with λρ. Our calculus λE generalizes this idea with first-class environments. For example, while all

substitutions are at the top level in λρ, nested environments, such as (e1 ▷ e2) ▷ e3, are allowed in

λE. Moreover, a global environment is also applied for evaluating environments with open terms.

The λρ̂ calculus [Biernacka and Danvy 2007] is a minimal extension of λρ, where one-step

reductions can be expressed. In this way, call-by-name and call-by-value strategies are investigated

in λρ̂. Following the refocusing method [Danvy and Nielsen 2004], several environment machines

can be derived for corresponding reduction strategies. In our work, the calculus is compiled to

an abstract machine using a big-step semantics. Jay [2019] also proposes a closure calculus in a

formulation different from Curien. The calculus requires no metatheory for substitution and can

be translated to a calculus of combinators. However, the connection with the lambda calculus or

abstract machines is unknown. Table 1 provides an overview of the key results in various closure

calculi and calculi with first-class environments.

Type Soundness for Definitional Interpreters. Siek [2013] proposed a simple type soundness proof

for the STLC, based on a (big-step style) definitional interpreter, inspired by an approach to

prove type soundness by Ernst et al. [2006]. Amin and Rompf [2017] extended Siek’s approach to

System F<: and variants of the Dependent Object Calculus (DOT) [Rompf and Amin 2016]. In their

approach, definitional interpreters, which are big-step and substitution-free, are parametrized by

a step-counter and errors are dealt with monads. The use of the latter two techniques addresses

well-known limitations of a big-step style for type soundness proofs. In particular in terms of

distinguishing errors from non-termination. Furthermore, the use of step-counters avoids the need

for coinduction, and the proofs can remain inductive. They showed that their approach extends to

common features, such as references or exceptions. The environment semantics that we employ is

small-step (although we also present a big-step version), so the complications due to the big-step

style do not arise in our setting. Thus we do not need to employ step-counters or monads, which

add some additional complexity to proofs and reasoning. Furthermore, we present a calculus with
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first-class environments, and we study a broader set of results besides type soundness proofs. Unlike

us, their work covers more advanced type systems. As mentioned in Section 6 we believe that their

work will be helpful when extending our results to polymorphism.

Binding in mechanized proofs. While paper proofs often overlook the complexities of binders,

mechanical proofs that involve binders tend to be more intricate. To measure the progress of

mechanizing proofs, the POPLmark challenge [Aydemir et al. 2005] and POPLMark Reloaded [Abel

et al. 2019] have introduced a collection of benchmarks about the metatheory of programming

languages. Many tools have been developed to simplify the process of defining infrastructure

and enhance proof automation. For example, Autosubst [Schäfer et al. 2015; Stark et al. 2019] is

a Coq library that provides automation for de Bruijn syntax and substitution based on the λσ
calculus [Abadi et al. 1991]. Besides de Bruijn indices, there are other binding representations. The

locally nameless representation [Charguéraud 2012] uses de Bruijn indices to represent bound

variables but applies names to represent free variables. With this approach, the use of shifting and

the need to rename variables can be eliminated. However, this approach requires handling two types

of variables (bound variables and free variables) and managing a separate substitution operation for

each. Moreover, one needs to deal with other concepts, such as variable opening/closing, locally-

closed terms, and universal quantification, when using locally nameless representation. Higher

order abstract syntax (HOAS) [Pfenning and Elliott 1988] is a technique that relies on binders in the

meta-language to model binders in the object language. HOAS provides a high level of abstraction

to encapsulate the complexities of reasoning about binders. However, its usability depends on the

chosen proof assistant. Abella [Baelde et al. 2014] and Beluga [Pientka and Cave 2015] are two proof

assistants supporting HOAS. Nevertheless, they are based on two rather different background logics.

The nominal approach [Pitts 2003] handles named variables explicitly and offers well-behaved

principles for inductive reasoning for abstract syntax. This method allows for the creation of

mechanized proofs that closely resemble traditional paper proofs. However, the nominal approach

requires the development of an extensive framework and it is currently supported by Nominal

Isabelle [Urban 2008], which relies on a great deal of infrastructure only available in Isabelle. In

our work we suggest that, by adopting an environment-based approach in formalizations, many

common issues with binding and substitution can essentially be avoided. However, more study is

needed to cover more advanced type systems with an environment-based semantics.

8 Conclusion
This paper presents a case for the formalization of programming languages by adopting an

environment-based semantics. An environment-based semantics provides substantial advantages

over the traditional substitution model. The proposed call-by-value statically typed calculus, λE,
aligns closely with practical execution models and simplifies reasoning, thereby facilitating more

efficient and manageable formalizations with proof assistants. By elevating environments to first-

class citizens within the language, λE enables powerful and flexible abstractions, promoting the

development of sophisticated and modular programs. Furthermore, λE has several desirable prop-

erties, such as determinism, type soundness, and normalization, while also establishing operational

correspondence with other models. The extension of λE with references and the Coq formalization

of all calculi and proofs further underscores the potential of environment-based semantics as a

viable alternative to the substitution model in programming languages.
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