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Abstract
Generic programming (GP) is an increasingly important trend in
programming languages. Well-known GP mechanisms, such as
type classes and the C++0x concepts proposal, usually combine
two features: 1) a special type of interfaces; and 2) implicit instan-
tiation of implementations of those interfaces.

Scala implicits are a GP language mechanism, inspired by type
classes, that break with the tradition of coupling implicit instantia-
tion with a special type of interface. Instead, implicits provide only
implicit instantiation, which is generalized to work for any types.
This turns out to be quite powerful and useful to address many lim-
itations that show up in other GP mechanisms.

This paper synthesizes the key ideas of implicits formally in
a minimal and general core calculus called the implicit calculus
(λ⇒), and it shows how to build source languages supporting im-
plicit instantiation on top of it. A novelty of the calculus is its sup-
port for partial resolution and higher-order rules (a feature that has
been proposed before, but was never formalized or implemented).
Ultimately, the implicit calculus provides a formal model of implic-
its, which can be used by language designers to study and inform
implementations of similar mechanisms in their own languages.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Functional Languages, Object-
Oriented Languages; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs

General Terms Languages

Keywords Implicit parameters, type classes, C++ concepts, generic
programming, Haskell, Scala.

1. Introduction
Generic programming (GP) [23] is a programming style that de-
couples algorithms from the concrete types on which they oper-
ate. Decoupling is achieved through parametrization. Typical forms
of parametrization include parametrization by type (for example:
parametric polymorphism, generics or templates) or parametriza-
tion by algebraic structures (such as a monoid or a group).
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A central idea in generic programming is implicit instantia-
tion of generic parameters. Implicit instantiation means that, when
generic algorithms are called with concrete arguments, the generic
arguments (concrete types, algebraic structures, or some other form
of generic parameters) are automatically determined by the com-
piler. The benefit is that generic algorithms become as easy to use
as specialized algorithms. To illustrate implicit instantiation and its
benefits consider a polymorphic sorting function:

sort [α ] : (α → α → Bool) → List α → List α

with 3 parameters: the type of the elements in the list (α); the
comparison operator; and the list to be compared. Instantiating
all 3 parameters explicitly at every use of sort would be quite
tedious. It is likely that, for a given type, the sorting function is
called with the same, explicitly passed, comparison function over
and over again. Moreover it is easy to infer the type parameter α.
GP greatly simplifies such calls by making the type argument and
the comparison operator implicit.

isort : ∀α.(α → α → Bool) ⇒ List α → List α

The function isort declares that the comparison function is implicit
by using ⇒ instead of →. It is used as:

implicit {cmpInt : Int → Int → Bool } in
(isort [2, 1, 3], isort [5, 9, 3])

The two calls of isort each take only one explicit argument: the list
to be sorted. Both the concrete type of the elements (Int) and the
comparison operator (cmpInt) are implicitly instantiated.

The element type is automatically inferred from the type of
the list. More interestingly, the implicit comparison operator is
automatically determined in a process called resolution. Resolution
is a type-directed process that uses a set of rules, the implicit (or
rule) environment, to find a value that matches the type required
by the function call. The implicit construct extends the implicit
environment with new rules. In other words, implicit is a scoping
construct for rules similar to a conventional let-binding. Thus, in
the subexpression (isort [2, 1, 3], isort [5, 9, 3]), cmpInt is in the
local scope and available for resolution.

1.1 Existing Approaches to Generic Programming
The two main strongholds of GP are the C++ and the functional
programming (FP) communities. Many of the pillars of GP are
based on the ideas promoted by Musser and Stepanov [23]. These
ideas were used in C++ libraries such as the Standard Template
Library [24] and Boost [1]. In the FP community, Haskell type
classes [42] have proven to be an excellent mechanism for GP,
although their original design did not have that purpose. As years
passed the FP community created its own forms of GP [14, 10, 21].



Garcia et al.’s [9] comparative study of programming language
support for GP was an important milestone for both communi-
ties. According to that study many languages provide some sup-
port for GP. However, Haskell did particularly well, largely due to
type classes. A direct consequence of that work was to bring the
two main lines of work on GP closer together and promote cross-
pollination of ideas. Haskell adopted associated types [4, 3], which
was the only weak point found in the original comparison. For the
C++ community, type classes presented an inspiration for develop-
ing language support for concepts [23, 11, 35].

Several researchers started working on various approaches to
concepts (see Siek’s work [34] for a historical overview). Some re-
searchers focused on integrating concepts into C++ [7, 11], while
others focused on developing new languages with GP in mind.
The work on System FG [35, 36] is an example of the latter ap-
proach: Building on the experience from the C++ generic program-
ming community and some of the ideas of type classes, Siek and
Lumsdaine developed a simple core calculus based on System F
which integrates concepts and improves on type classes in several
respects. In particular, System FG supports scoping of rules1.

During the same period Scala emerged as new contender in the
area of generic programming. Much like Haskell, Scala was not
originally developed with generic programming in mind. However
Scala included an alternative to type classes: implicits. Implicits
were initially viewed as a poor man’s type classes [26]. Yet, ulti-
mately, they proved to be quite flexible and in some ways superior
to type classes. In fact Scala turns out to have very good support
for generic programming [28, 29].

A distinguishing feature of Scala implicits, and a reason for
their power, is that resolution works for any type. This allows Scala
to simply reuse standard OO interfaces/classes (which are regular
types) to model concepts, and avoids introducing another type of
interface in the language. In contrast, with type classes, or the
various concept proposals, resolution is tightly coupled with the
type class or concept-like interfaces.

1.2 Limitations of Existing Mechanisms
Twenty years of programming experience with type classes gave
the FP community insights about the limitations of type classes.
Some of these limitations were addressed by concept proposals.
Other limitations were solved by implicits. However, as far as we
know, no existing language or language proposal overcomes all
limitations. We discuss these limitations next.

Global scoping: In Haskell, rules2 are global and there can be
only a single rule for any given type [18, 2, 6, 8]. Locally scoped
rules are not available. Several researchers have already proposed to
fix this issue: with named rules [18] or locally scoped ones [2, 6, 8].
However none of those proposals have been adopted.

Both proposals for concepts and Scala implicits offer scoping of
rules and as such do not suffer from this limitation.

Second class interfaces: Haskell type classes are second-class
constructs compared to regular types: in Haskell, it is not possible
to abstract over a type class [13]. Yet, the need for first-class
type classes is real in practice. For example, Lämmel and Peyton
Jones [21] desire the following type class for their GP approach:

class (Typeable α, cxt α) ⇒ Data cxt α where
gmapQ :: (∀β.Data cxt β ⇒ β → r) → α → [r ]

In this type class, the intention is that the ctx variable abstracts
over a concrete type class. Unfortunately, Haskell does not support
type class abstraction. Proposals for concepts inherit this limitation

1 In the context of C++ rules correspond to models or concept maps.
2 In the context of Haskell rules correspond to type-class instances.

from type classes. Concepts and type classes are usually interpreted
as predicates on types rather than types, and cannot be abstracted
over as regular types. In contrast, because in Scala concepts are
modeled with types, it is possible to abstract over concepts. Oliveira
and Gibbons [28] show how to encode this example in Scala.

No higher-order rules: Finally type classes do not support
higher-order rules. As noted by Hinze and Peyton Jones [12], non-
regular Haskell datatypes like:

data Perfect f α = Nil | Cons α (Perfect f (f α))

require type class instances such as:

instance (∀β.Show β ⇒ Show (f β),Show α) ⇒
Show (Perfect f α)

which Haskell does not support, as it restricts instances (or rules) to
be first-order. This rule is higher-order because it assumes another
rule, ∀β.Show β ⇒ Show (f β), that contains an assumption
itself. Also note that this assumed rule is polymorphic in β.

Both concept proposals and Scala implicits inherit the limitation
of first-order rules.

1.3 Contributions
This paper presents λ⇒, a minimal and general core calculus for
implicits and it shows how to build a source language supporting
implicit instantiation on top of it. Perhaps surprisingly the core
calculus itself does not provide implicit instantiation: instantia-
tion of generic arguments is explicit. Instead λ⇒ provides two key
mechanisms for generic programming: 1) a type-directed resolution
mechanism and 2) scoping constructs for rules. Implicit instantia-
tion is then built as a convenience mechanism on top of λ⇒ by com-
bining type-directed resolution with conventional type-inference.
We illustrate this on a simple, but quite expressive source language.

The calculus is inspired by Scala implicits and it synthesizes
core ideas of that mechanism formally. In particular, like Scala
implicits, a key idea is that resolution and implicit instantiation
work for any type. This allows those mechanisms to be more widely
useful and applicable, since they can be used with other types in
the language. The calculus is also closely related to System FG,
and like System FG, rules available in the implicit environment
are lexically scoped and scopes can be nested.

A novelty of our calculus is its support for partial resolution and
higher-order rules. Although Hinze and Peyton Jones [12] have dis-
cussed higher-order rules informally and several other researchers
noted their usefulness [40, 31, 28], no existing language or calculus
provides support for them. Higher-order rules are just the analogue
of higher-order functions in the implicits world. They arise natu-
rally once we take the view that resolution should work for any
type. Partial resolution adds additional expressive power and it is
especially useful in the presence of higher-order rules.

From the GP perspective λ⇒ offers a new foundation for
generic programming. The relation between the implicit calculus
and Scala implicits is comparable to the relation between System
FG and various concept proposals; or the relation between formal
calculi of type classes and Haskell type classes: The implicit calcu-
lus is a minimal and general model of implicits useful for language
designers wishing to study and inform implementations of similar
GP mechanisms in their own languages.

In summary, our contributions are as follows.

• Our implicit calculus λ⇒ provides a simple, expressive and
general formal model for implicits. Despite its expressiveness,
the calculus is minimal and provides an ideal setting for the
formal study of implicits and GP.

• Of particular interest is our resolution mechanism, which is
significantly more expressive than existing mechanisms in the



literature. It is based on a simple (logic-programming style)
query language, works for any type, and it supports partial
resolution as well as higher-order rules.

• The calculus has a polymorphic type system and an elaboration
semantics to System F. This also provides an effective imple-
mentation of our calculus. The elaboration semantics is proved
to be type-preserving, ensuring the soundness of the calculus.

• We present a small, but realistic source language, built on top
of λ⇒ via a type-directed encoding. This language features
implicit instantiation and a simple type of interface, which
can be used to model simple forms of concepts. This source
language also supports higher-order rules.

• Finally, both λ⇒ and the source language have been imple-
mented and the source code for their implementation is avail-
able at http://ropas.snu.ac.kr/~bruno/implicit.

Organization Section 2 presents an informal overview of our cal-
culus. Section 3 shows a polymorphic type system that statically
excludes ill-behaved programs. Section 4 shows the elaboration
semantics of our calculus into System F and correctness results.
Section 5 presents the source language and its encoding into λ⇒.
Section 6 discusses comparisons and related work. Section 7 con-
cludes. The companion technical report [30] provides additional
technical material and proofs.

2. Overview of the Implicit Calculus λ⇒
Our calculus λ⇒ combines standard scoping mechanisms (abstrac-
tions and applications) and types à la System F, with a logic-
programming-style query language. At the heart of the language
is a threefold interpretation of types:

types ∼= propositions ∼= rules

Firstly, types have their traditional meaning of classifying terms.
Secondly, via the Curry-Howard isomorphism, types can also be
interpreted as propositions – in the context of GP, the type proposi-
tion denotes the availability in the implicit environment of a value
of the corresponding type. Thirdly, a type is interpreted as a logic-
programming style rule, i.e., a Prolog rule or Horn clause [19]. Res-
olution [20] connects rules and propositions: it is the means to show
(the evidence) that a proposition is entailed by a set of rules.

Next we present the key features of λ⇒ and how these features
are used for GP. For readability purposes we sometimes omit re-
dundant type annotations and slightly simplify the syntax.

Fetching values by types: A central construct in λ⇒ is a query.
Queries allow values to be fetched by type, not by name. For
example, in the following function call

foo ?Int

the query ?Int looks up a value of type Int in the implicit environ-
ment, to serve as an actual argument.

Constructing values with type-directed rules: λ⇒ constructs
values, using programmer-defined, type-directed rules (similar to
functions). A rule (or rule abstraction) defines how to compute,
from implicit arguments, a value of a particular type. For example,
here is a rule that computes an Int×Bool pair from implicit Int
and Bool values:

(|(?Int + 1,¬ ?Bool) : {Int ,Bool } ⇒ Int×Bool |)
The rule abstraction syntax resembles a type-annotated expression:
the expression (?Int+1,¬ ?Bool) to the left of the colon is the rule
body, and to the right is the rule type {Int ,Bool } ⇒ Int×Bool .
A rule abstraction abstracts over a set of implicit values (here
{Int ,Bool }), or, more generally, over rules to build values.

Hence, when a value of type Int×Bool is needed (expressed
by the query ?(Int×Bool)), the above rule can be used, provided
that an integer and a boolean value are available in the implicit
environment. In such an environment, the rule returns a pair of the
incremented Int value and negated Bool value.

The implicit environment is extended through rule application
(analogous to extending the environment with function applica-
tions). Rule application is expressed as, for example:

(|(?Int + 1,¬ ?Bool) : {Int ,Bool } ⇒ Int×Bool |)
with {1,True }

With syntactic sugar similar to a let-expression, a rule abstraction-
application combination is denoted more compactly as:

implicit {1,True } in (?Int + 1,¬ ?Bool)

which returns (2,False).

Higher-order rules: λ⇒ supports higher-order rules. For exam-
ple, the rule

(|?(Int×Int) : {Int , {Int } ⇒ Int×Int } ⇒ Int×Int |),

when applied, will compute an integer pair given an integer and
a rule to compute an integer pair from an integer. Hence, the
following rule application returns (3, 4):

implicit {3, (|(?Int , ?Int + 1) : {Int } ⇒ Int×Int |)} in
?(Int×Int)

Recursive resolution: Note that resolving the query ?(Int×Int)
involves applying multiple rules. The current environment does not
contain the required integer pair. It does however contain the integer
3 and a rule (|(?Int , ?Int + 1) : {Int } ⇒ Int×Int |) to compute
a pair from an integer. Hence, the query is resolved with (3, 4), the
result of applying the pair-producing rule to 3.

Polymorphic rules and queries: λ⇒ allows polymorphic rules.
For example, the rule

(|(?α, ?α) : ∀α.{α} ⇒ α×α|)

can be instantiated to multiple rules of monomorphic types

{Int } ⇒ Int×Int , {Bool } ⇒ Bool×Bool , . . .

Multiple monomorphic queries can be resolved by the same rule.
The following expression returns ((3, 3), (True,True)):

implicit {3,True, (|(?α, ?α) : ∀α.{α} ⇒ α×α|)} in
(?(Int×Int), ?(Bool×Bool))

Polymorphic rules can also be used to resolve polymorphic queries:

implicit {(|(?α, ?α) : ∀α.{α} ⇒ α×α|)} in
?(∀α.{α} ⇒ α×α)

Combining higher-order and polymorphic rules: The rule

(|(?((Int×Int)×(Int×Int))) : {Int , ∀α.{α} ⇒ α×α} ⇒
(Int×Int)×(Int×Int)|)

prescribes how to build a pair of integer pairs, inductively from an
integer value, by consecutively applying the rule of type

∀α.{α} ⇒ α×α

twice: first to an integer, and again to the result (an integer pair).
For example, the following expression returns ((3, 3), (3, 3)):

implicit {3, (|(?α, ?α) : ∀α.{α} ⇒ α×α|)} in
?((Int×Int)×(Int×Int))



Locally and lexically scoped rules: Rules can be nested and res-
olution respects the lexical scope of rules. Consider the following
program:

implicit {1} in
implicit {True, (| if ?Bool then 2 : {Bool } ⇒ Int |)}
in ?Int

The query ?Int is not resolved with the integer value 1. Instead the
rule that returns an integer from a boolean is applied to the boolean
True, because those two rules can provide an integer value and
they are nearer to the query. So, the program returns 2 and not 1.

Overlapping rules: Two rules overlap if their return types inter-
sect, i.e., when they can both be used to resolve the same query.
Overlapping rules are allowed in λ⇒ through nested scoping. The
nearest matching rule takes priority over other matching rules. For
example consider the following program:

implicit {λx .x : ∀α.α → α} in
implicit {λn.n + 1 : Int → Int } in
?(Int → Int) 1

In this case λn.n + 1 : Int → Int is the lexically nearest match in
the implicit environment and evaluating this program results in 2.
However, if we have the following program instead:

implicit {λn.n + 1 : Int → Int } in
implicit {λx .x : ∀α.α → α} in
?(Int → Int) 1

Then the lexically nearest match is λx .x :∀α.α → α and evaluating
this program results in 1.

3. The λ⇒ Calculus
This section formalizes the syntax and type system of λ⇒.

3.1 Syntax
This is the syntax of the calculus:

(Simple) Types τ ::= α | Int | τ1 → τ2 | ρ
Rule Types ρ ::= ∀α⃗.ρ̄ ⇒ τ
Expressions e ::= n | x | λx : τ.e | e1 e2

| ?ρ | (|e : ρ|) | e[τ⃗ ] | e with e : ρ

Types τ are either type variables α, the integer type Int , function
types τ1 → τ2 or rule types ρ. A rule type ρ = ∀α⃗.ρ̄ ⇒ τ
is a type scheme with universally quantified variables α⃗ and an
(implicit) context ρ̄. This context summarizes the assumed implicit
environment. Note that we use o⃗ to denote an ordered sequence
o1, . . . , on of entities and ō to denote a set {o1, . . . , on}. Such
ordered sequences and sets can be empty, and we often omit empty
universal quantifiers and empty contexts from a rule type. The base
case of rule types is when ρ̄ is the empty set (that is ∀α⃗.{} ⇒ τ or,
more compactly, ∀α⃗.τ ).

Expressions include integer constants n and the three basic
typed λ-calculus expressions (variables, lambda binders and appli-
cations). A query ?ρ queries the implicit environment for a value of
type ρ. A rule abstraction (|e : ∀α⃗.ρ̄ ⇒ τ |) builds a rule whose
type is ∀α⃗.ρ̄ ⇒ τ and whose body is e.

Without loss of generality we assume that all variables x and
type variables α in binders are distinct. If not, they can be easily
renamed apart to be so.

Note that, unlike System F, our calculus does not have a separate
Λ binder for type variables. Instead rule abstractions play a dual
role in the binding structure: 1) the universal quantification of type
variables (which binds types), and 2) the context (which binds a
rule set). Therefore, a Λ binder can be encoded using a rule with an
empty context:

Λ α⃗.(e : τ)
def
= (|e : ∀α⃗.τ |)

The design choice of making rules double binders is due to
our interpretation of rules as logic programming rules3. After all,
in the matching process of resolution, a rule is applied as a unit.
Hence, separating rules into more primitive binders (à la System
F’s type and value binders) would only complicate the definition of
resolution unnecessarily. However, elimination can be modularized
into two constructs: type application e[τ̄ ] and rule application
e with e : ρ.

Using rule abstractions and applications we can build the
implicit sugar that we have used in Sections 1 and 2.

implicit e : ρ in e1 : τ
def
= (|e1 : ρ ⇒ τ |) with e : ρ

For readability purposes, when we use implicit we omit the
type annotation τ . As we shall see in Section 5 this annotation can
be automatically inferred.

For brevity and simplicity reasons, we have kept λ⇒ small. In
examples we may use additional syntax such as built-in integer
operators and boolean literals and types.

3.2 Type System
Figure 1 presents the static type system of λ⇒. The typing judg-
ment Γ | ∆ ⊢ e : τ means that expression e has type τ under type
environment Γ and implicit environment ∆. The auxiliary resolu-
tion judgment ∆ ⊢r ρ expresses that type ρ is resolvable with
respect to ∆. Here, Γ is the conventional type environment that
captures type variables; ∆ is the implicit environment, defined as
a stack of contexts. Figure 1 also presents lookup in the implicit
environment (∆⟨τ⟩) and in contexts (ρ̄⟨τ⟩).

We will not discuss the first four rules ((TyInt), (TyVar),
(TyAbs) and (TyApp)) because they are entirely standard. For now
we also ignore the gray-shaded conditions in the other rules; they
are explained in Section 3.3.

Rule (TyRule) checks a rule abstraction (|e : ∀α⃗.ρ̄ ⇒ τ |) by
checking whether the rule’s body e actually has the type τ under the
assumed implicit type context ρ̄. Rule (TyInst) instantiates a rule
type’s type variables α⃗ with the given types τ⃗ , and rule (TyRApp)
instantiates the type context ρ̄ with expressions of the required rule
types e : ρ. Finally, rule (TyQuery) delegates queries directly to the
resolution rule (TyRes).

Resolution Principle The underlying principle of resolution in
λ⇒ originates from resolution in logic. Following the Curry-
Howard correspondence, we assign to each type a corresponding
logical interpretation with the (·)† function:

Definition 3.1 (Logical Interpretation).

α† = α†

Int† = Int†

(τ1 → τ2)
† = τ†

1 →† τ†
2

(∀α⃗.ρ̄ ⇒ τ)† = ∀α⃗†.
∧
ρ∈ρ̄

ρ† ⇒ τ†

Here, type variables α map to propositional variables α† and the
primitive type Int maps to the propositional constant Int†. Unlike
Curry-Howard, we do not map function types to logical implica-
tions; we deliberately restrict our implicational reasoning to rule
types. So, instead we also map the function arrow to an uninter-
preted higher-order predicate →†. Finally, as already indicated, we
map rule types to logical implications.

3 In Prolog these are not separated either.



Type Environments Γ ::= · | Γ;x : τ
Implicit Environments ∆ ::= · | ∆; ρ̄

Γ | ∆ ⊢ e : τ

(TyInt) Γ | ∆ ⊢ n : Int

(TyVar)
(x : τ) ∈ Γ

Γ | ∆ ⊢ x : τ

(TyAbs)
Γ;x : τ1 | ∆ ⊢ e : τ2

Γ | ∆ ⊢ λx : τ1.e : τ1 → τ2

(TyApp)
Γ | ∆ ⊢ e1 : τ2 → τ1 Γ | ∆ ⊢ e2 : τ2

Γ | ∆ ⊢ e1 e2 : τ1

(TyRule)
ρ = ∀α⃗.ρ̄ ⇒ τ unambiguous(ρ)

Γ | ∆; ρ̄ ⊢ e : τ α⃗ ∩ ftv(Γ,∆) = ∅
Γ | ∆ ⊢ (|e : ρ|) : ρ

(TyInst)
Γ | ∆ ⊢ e : ∀α⃗.ρ̄ ⇒ τ

Γ | ∆ ⊢ e[τ⃗ ] : [α⃗ 7→ τ⃗ ](ρ̄ ⇒ τ)

(TyRApp)
Γ | ∆ ⊢ e : ρ̄ ⇒ τ

Γ | ∆ ⊢ ei : ρi (∀ei : ρi ∈ e : ρ)

Γ | ∆ ⊢ (ewith e : ρ) : τ

(TyQuery)
∆ ⊢r ρ unambiguous(ρ)

Γ | ∆ ⊢?ρ : ρ

∆ ⊢r ρ

(TyRes)
∆⟨τ⟩ = ρ̄′ ⇒ τ

∆ ⊢r ρi (∀ρi ∈ ρ̄′ − ρ̄)

∆ ⊢r ∀α⃗.ρ̄ ⇒ τ

∆⟨τ⟩ = ρ
ρ̄⟨τ⟩ = ρ no overlap(ρ̄, τ)

(∆; ρ̄)⟨τ⟩ = ρ

ρ̄⟨τ⟩ = ⊥ ∆⟨τ⟩ = ρ

(∆; ρ̄)⟨τ⟩ = ρ

ρ̄⟨τ⟩ = ρ
ρ ∈ ρ̄ ρ = ∀α⃗′.ρ̄′ ⇒ τ ′ θτ ′ = τ

ρ̄⟨τ⟩ = θρ̄′ ⇒ τ

Figure 1. Type System

Resolution in λ⇒ then corresponds to checking entailment of
the logical interpretation. We postulate this property as a theorem
that constrains the design of resolution.

Theorem 3.1 (Resolution Specification).

If ∆ ⊢r ρ, then ∆† |= ρ†.

Resolution for Simple Types The step from the logical interpre-
tation to the (TyRes) rule in Figure 1 is non-trivial. So, let us first
look at a simpler incarnation. What does resolution look like for
simple types τ like Int?

(SimpleRes)
∆⟨τ⟩ = ρ̄′ ⇒ τ

∆ ⊢r ρi (∀ρi ∈ ρ̄′)

∆ ⊢r τ

First, it looks up a matching rule type in the implicit environment by
means of the lookup function ∆⟨τ⟩ defined in Fig. 1. This partial
function respects the nested scopes: it first looks in the topmost
context of the implicit environment, and, only if it does not find a
matching rule, does it descend. Within an environment context, the
lookup function looks for a rule type whose right-hand side τ ′ can
be instantiated to the queried τ using a matching unifier θ. This rule
type is then returned in instantiated form.

The matching expresses that the looked-up rule produces a value
of the required type. To do so, the looked-up rule may itself require
other implicit values. This requirement is captured in the context
ρ̄′, which must be resolved recursively. Hence, the resolution rule
is itself a recursive rule. When the context ρ̄′ of the looked-up rule
is empty, a base case of the recursion has been reached.
Example Consider this query for a tuple of integers:

Int ; ∀α.{α} ⇒ α× α ⊢r Int × Int

Lookup yields the second rule, which produces a tuple, instantiated
to {Int} ⇒ Int × Int with matching substitution θ = [α 7→ Int ].
In order to produce a tuple, the rule requires a value of the compo-
nent type. Hence, resolution proceeds by recursively querying for
Int . Now lookup yields the first rule, which produces an integer,
with empty matching substitution and no further requirements.

Resolution for Rule Types So far, so good. Apart from allowing
any types, recursive querying for simple types is quite similar
to recursive type class resolution, and λ⇒ carefully captures the
expected behavior. However, what is distinctly novel in λ⇒, is that
it also provides resolution of rule types, which requires a markedly
different treatment.

(RuleRes)
∆⟨τ⟩ = ρ̄ ⇒ τ

∆ ⊢r ∀α⃗.ρ̄ ⇒ τ

Here we retrieve a whole rule from the environment, including its
context. Resolution again performs a lookup based on a matching
right-hand side τ , but subsequently also matches the context with
the one that is queried. No recursive resolution takes place.
Example Consider a variant of the above query:

Int ;∀α.{α} ⇒ α× α ⊢r {Int} ⇒ Int × Int

Again lookup yields the second rule, instantiated to {Int} ⇒
Int × Int . The context {Int} of this rule matches the context of
the queried rule. Hence, the query is resolved without recursive
resolution.

Unified Resolution The feat that our actual resolution rule (TyRes)
accomplishes is to unify these seemingly disparate forms of resolu-
tion into one single inference rule. In fact, both (SimpleRes) and
(RuleRes) are special cases of (TyRes), which provides some ad-
ditional expressiveness in the form of partial resolution (explained
below).

The first hurdle for (TyRes) is that types τ and rule types ρ are
different syntactic categories. Judging from its definition, (TyRes)
only covers rule types. How do we get it to treat simple types
then? Just promote the simple type τ to its corresponding rule
type ∀.{} ⇒ τ and (TyRes) will do what we expect for simple
types, including recursive resolution. At the same time, it still
matches proper rule types exactly, without recursion, when that is
appropriate.

Choosing the right treatment for the context is the second hur-
dle. This part is managed by recursively resolving ρ̄′ − ρ̄. In the
case of promoted simple types, ρ̄ is empty, and the whole of ρ̄′ is
recursively solved; which is exactly what we want. In the case ρ̄′

matches ρ̄, no recursive resolution takes place. Again this perfectly
corresponds to what we have set out above for proper rule types.
However, there is a third case, where ρ̄′ − ρ̄ is a non-empty proper



subset of ρ̄′. We call this situation, where part of the retrieved rule’s
context is recursively resolved and part is not, partial resolution.
Example Here is another query variant:

Bool ; ∀α.{Bool , α} ⇒ α× α ⊢r {Int} ⇒ Int × Int

The first lookup yields the second rule, instantiated to {Bool , Int} ⇒
Int × Int , which almost matches the queried rule type. Only Bool
in the context is unwelcome, so it is eliminated through a recur-
sive resolution step. Fortunately, the first rule in the environment is
available for that.

3.3 Additional Type System Conditions
The gray-shaded conditions in the type system are to check lookup
errors (no overlap) and ambiguous instantiations (unambiguous).

Avoiding Lookup Errors To prevent lookup failures, we have to
check for two situations:

• A lookup has no matching rule in the environment.
• A lookup has multiple matching rules which have different rule

types but can yield values of the same type (overlapping rules).

The former condition is directly captured in the definition of lookup
among a set of rule types. The latter condition is captured in the
no overlap property, which is defined as:

no overlap({ρ1, . . . , ρn}, τ) def
=

∀i, j. ρi = ∀α⃗i.ρ̄i ⇒ τi ∧ ∃θi.θiτi = τ
∧ ρj = ∀α⃗j .ρ̄j ⇒ τj ∧ ∃θj .θjτj = τ
=⇒ i = j

Avoiding Ambiguous Instantiations We avoid ambiguous instan-
tiations in the same way as Haskell does: all quantified type vari-
ables (α⃗) in a rule type (∀α⃗.ρ̄ ⇒ τ ) must occur in τ . We use the
unambiguous condition to check in (TyRule) and (TyQuery):

unambiguous(∀α⃗.ρ̄ ⇒ τ) = α⃗ ⊆ ftv(τ)

∧ ∀ρi ∈ ρ̄.unambiguous(ρi).

If there is a quantified type variable not in type τ , the type may
yield ambiguous instantiations (e.g. ∀α.{α} ⇒ Int).

4. Type-Directed Translation to System F
In this section we define the dynamic semantics of λ⇒ in terms of
System F’s dynamic semantics, by means of a type directed trans-
lation. This translation turns implicit contexts into explicit parame-
ters and statically resolves all queries, much like Wadler and Blott’s
dictionary passing translation for type classes [42]. The advantage
of this approach is that we simultaneously provide a meaning to
well-typed λ⇒ programs and an effective implementation that re-
solves all queries statically.

4.1 Type-Directed Translation
Figure 2 presents the translation rules that convert λ⇒ expressions
into ones of System F extended with the integer and unit types. This
figure essentially extends Figure 1 with the necessary information
for the translation, but for readability we have omitted the earlier
gray-shaded conditions.

The syntax of System F is as follows:
Types T ::= α | T → T | ∀α.T | Int | ()
Expressions E ::= x | λ(x : T ).E | E E | Λα.E | E T | n | ()

The main translation judgment is

Γ | ∆ ⊢ e : τ ; E,

which states that the translation of λ⇒ expression e with type τ
is System F expression E, with respect to type environment Γ and

Type Environments Γ ::= · | Γ;x : τ
Translation Environments ∆ ::= · | ∆; ρ : x

Γ | ∆ ⊢ e : τ ; E

(TrInt) Γ | ∆ ⊢ n : Int ; n

(TrVar)
(x : τ) ∈ Γ

Γ | ∆ ⊢ x : τ ; x

(TrAbs)
Γ;x : τ1 | ∆ ⊢ e : τ2 ; E

Γ | ∆ ⊢ λx : τ1.e : τ1 → τ2 ; λx : |τ1|.E

(TrApp)
Γ | ∆ ⊢ e1 : τ2 → τ1 ; E1

Γ | ∆ ⊢ e2 : τ2 ; E2

Γ | ∆ ⊢ e1 e2 : τ1 ; E1 E2

(TrQuery)
∆ ⊢r ρ ; E

Γ | ∆ ⊢?ρ : ρ ; E

(TrRule)
ρ = ∀α⃗.ρ̄ ⇒ τ α⃗ ∩ ftv(Γ,∆) = ∅
Γ | ∆; ρ : x ⊢ e : τ ; E x̄ fresh

Γ | ∆ ⊢ (|e : ρ|) : ρ ; Λα⃗.λ(x⃗ : |ρ⃗|).E

(TrInst)
Γ | ∆ ⊢ e : ∀α⃗.ρ̄ ⇒ τ ; E

Γ | ∆ ⊢ e[τ⃗ ] : [α⃗ 7→ τ⃗ ](ρ̄ ⇒ τ) ; E |τ⃗ |

(TrRApp)
Γ | ∆ ⊢ e : ρ̄ ⇒ τ ; E

Γ | ∆ ⊢ ei : ρi ; Ei (∀ei : ρi ∈ e : ρ)

Γ | ∆ ⊢ (ewith e : ρ) : τ ; E E⃗

∆ ⊢r ρ ; E

(TrRes)

∆(τ) = ρ̄′ ⇒ τ : E x̄ fresh

∀ρi ∈ ρ̄′ :

{
∆ ⊢r ρi ; Ei , ρi ̸∈ ρ̄

Ei = xi , ρi ∈ ρ̄

∆ ⊢r ∀α⃗.ρ̄ ⇒ τ ; Λα⃗.λ(x⃗ : |ρ⃗|).(E E⃗)

∆⟨τ⟩ = ρ : E
ρ : x⟨τ⟩ = ρ : E

(∆; ρ : x)⟨τ⟩ = ρ : E

ρ : x⟨τ⟩ = ⊥ ∆⟨τ⟩ = ρ

(∆; ρ : x)⟨τ⟩ = ρ

ρ : x⟨τ⟩ = ρ : E
(ρ : x) ∈ ρ : x ρ = ∀α⃗′.ρ̄′ ⇒ τ ′

θτ ′ = τ θ = [α⃗′ 7→ τ⃗ ]

ρ : x⟨τ⟩ = θρ̄′ ⇒ τ : x |τ⃗ |

|α| = α

|Int | = Int

|τ1 → τ2| = |τ1| → |τ2|
|∀α⃗.{ρ1, · · · , ρn} ⇒ τ | = ∀α⃗.|ρ1| → · · · → |ρn| → |τ |

|Γ| = {(x : |τ |) | (x : τ) ∈ Γ}
|∆| = {(x : |ρ|) | (ρ : x) ∈ ∆}

Figure 2. Type-directed Translation to System F



translation environment ∆. The translation environment ∆ relates
each rule type in the earlier implicit environment to a System F
variable x; this variable serves as value-level explicit evidence for
the implicit rule. Lookup in the translation environment is defined
similarly to lookup in the type environment, except that the lookup
now returns a pair of a rule type and an evidence variable.

Figure 2 also defines the type translation function | · | from λ⇒
types τ to System F types T. In order to obtain a unique translation
of types, we assume that the types in a context are lexicographically
ordered.

Variables, lambda abstractions and applications are translated
straightforwardly. Queries are translated by rule (TrQuery) using
the auxiliary resolution judgment ⊢r , defined by rule (TrRes). Note
that rule (TrRes) performs the same process that rule (TyRes)
performs in the type system except that it additionally collects
evidence variables.

Rule (TrRule) translates rule abstractions to explicit type and
value abstractions in System F, and rule (TrInst) translates instan-
tiation to type application. Finally, rule (TrRApp) translates rule
application to application in System F.
Example We have that:

· | · ⊢ (|(?α, ?α) : ∀α.{α} ⇒ α× α|)
; Λα.λ(x : α).(x, x)

and also:

(Int : x1), (∀α.{α} ⇒ α× α : x2) ⊢r Int × Int

; x2 Int x1

For brevity, Figure 2 omits the case where the context of a rule type
is empty. To properly handle empty contexts, the translation of rule
type should include |{} ⇒ τ | = () → |τ | and the translation
rules (TrRule), (TrRApp) and (TrRes) should be extended in the
obvious way.

Theorem 4.1 (Type-preserving translation). Let e be a λ⇒ expres-
sion, τ be a type and E be a System F expression. If · | · ⊢ e : τ ;
E, then · ⊢ E : |τ |.

Proof. (Sketch) We first prove4 the more general lemma “if Γ |
∆ ⊢ e : τ ; E, then |Γ|, |∆| ⊢ E : |τ |” by induction on the
derivation of translation. Then, the theorem trivially follows.

4.2 Dynamic Semantics
Finally, we define the dynamic semantics of λ⇒ as the composition
of the type-directed translation and System F’s dynamic semantics.
Following Siek’s notation [35], this dynamic semantics is:

eval(e) = V where · | · ⊢ e : τ ; E and E →∗ V

with →∗ the reflexive, transitive closure of System F’s standard
single-step call-by-value reduction relation.

Now we can state the conventional type safety theorem for λ⇒:

Theorem 4.2 (Type Safety). If · | · ⊢ e : τ , then eval(e) = V for
some System F value V .

The proof follows trivially from Theorem 4.1.

5. Source Languages and Implicit Instantiation
Languages like Haskell and Scala provide a lot more programmer
convenience than λ⇒ (which is a low level core language) because
of higher-level GP constructs, interfaces and implicit instantiation.
This section illustrates how to build a simple source language on
top of λ⇒ to add the expected convenience. We should note that
unlike Haskell this language supports local and nested scoping, and

4 in the technical report

interface Eq α = {eq : α → α → Bool }
let (≡) : ∀α. {Eq α} ⇒ α → α → Bool = eq ? in
let eqInt1 : Eq Int = Eq {eq = primEqInt } in
let eqInt2 : Eq Int = Eq {eq = λx y .isEven x ∧ isEven y } in

let eqBool : Eq Bool = Eq {eq = primEqBool } in
let eqPair : ∀α β. {Eq α,Eq β} ⇒ Eq (α, β) =

Eq {eq = λx y.fst x ≡ fst y ∧ snd x ≡ snd y } in
let p1 : (Int ,Bool) = (4,True) in

let p2 : (Int ,Bool) = (8,True) in
implicit {eqInt1 , eqBool , eqPair } in

(p1 ≡ p2, implicit {eqInt2 } in p1 ≡ p2)

Figure 3. Encoding the Equality Type Class

Interface Declarations
interface I α⃗ = u : T

Types
T ::= α Type Variables

| Int Integer Type
| I T⃗ Interface Type
| T → T Function

σ ::= ∀α. σ ⇒ T Rule Type

Expressions
E ::= n Integer Literal

| x Lambda Variable
| λx.E Abstraction
| E1 E2 Application
| u Let Variable
| let u : σ = E1 in E2 Let
| implicit u in E2 Implicit Scoping
| ? Implicit Lookup
| I u = E Interface Implementation

Figure 4. Syntax of Source Language

unlike both Haskell and Scala it supports higher-order rules. We
present the type-directed translation from the source to λ⇒.

5.1 Type-directed Translation to λ⇒

The full syntax of the source language is presented in Figure 4. Its
use is illustrated in the program of Figure 3, which comprises an
encoding of Haskell’s equality type class Eq. The example shows
that the source language features a simple type of interface I T⃗
(basically records), which are used to encode simple forms of type
classes. Note that we follow Haskell’s conventions for records: field
names u are unique and they are modeled as regular functions
taking a record as the first argument. So a field u with type T in
an interface declaration I α⃗ actually has type ∀ᾱ.{} ⇒ I α⃗ → T .
There are also other conventional programming constructs (such as
let expressions, lambdas and primitive types).

Unlike the core language, we strongly differentiate between
simple types T and type schemes σ in order to facilitate type in-
ference. Moreover, as the source language provides implicit rather
than explicit type instantiation, the order of type variables in a
quantifier is no longer relevant. Hence, they are represented by a set
(∀ᾱ). We also distinguish simply typed variables x from let-bound
variables u with polymorphic type σ.

Figure 5 presents the type-directed translation G ⊢ E : T ; e
of source language expressions E of type T to core expressions e,
with respect to type environment G. The type environment collects
both simply and polymorphic variable typings. The connection
between source types T and σ on the one hand and core types τ



Type Environments G ::= · | G, u : σ | G, x : T

G ⊢ E : T ; e

(TyIntL) G ⊢ n : Int ; n

(TyVar)
G(x) = T

G ⊢ x : T ; x

(TyAbs)
G, x : T1 ⊢ E ; e

G ⊢ λx.E : T1 → T2 ; λx : JT1K.e
(TyApp)

G ⊢ E1 : T1 → T2 ; e1
G ⊢ E2 : T1 ; e2

G ⊢ E1 E2 : T2 ; e1 e2

(TyLVar)

G(u) = ∀α. σ ⇒ T ′

θ = [α 7→ T ] T = θT ′

qi = (?JθσiK) : JθσiK (∀σi ∈ σ)

G ⊢ u : T ; u[JT⃗ K]with q

(TyLet)

σ = ∀α.σ ⇒ T1

G ⊢ E1 : T1 ; e1
G, u : σ ⊢ E2 : T2 ; e2

G ⊢ let u : σ = E1 in E2 : T2 ;
(λu : JσK.e2) (|e1 : JσK|)

(TyImp)

G ⊢ E : T ; e

G(ui) = σi qi = ui : JσiK (∀ui ∈ u)

G ⊢ implicit u in E : T ;
(|e : JσK ⇒ JT K|)with q

(TyIVar) G ⊢? : T ; ?({} ⇒ JT K) with {}

(TyRec)
∀i :

{
G(ui) = ∀ᾱ.{} ⇒ I α⃗ → Ti

G ⊢ Ei : θTi ; e θ = [α⃗ 7→ T⃗ ]

G ⊢ I u = E : I T⃗ ; I u = eJαK = αJIntK = IntJT1 → T2K = JT1K → JT2KJI T⃗ K = I JT⃗ KJ∀α.σ ⇒ T K = ∀Jα⃗K.JσK ⇒ JT K
Figure 5. Type-directed Encoding of Source Language in λ⇒

and ρ on the other hand is captured in the auxiliary function J·K.
Note that this function imposes a canonical ordering α⃗ on the set of
quantifier variables ᾱ (based on their precedence in the left-to-right
prefix traversal of the quantified type term). For the translation of
records, we assume that λ⇒ is extended likewise with records.

let and let-bound variables The rule (TyLet) in Figure 5 shows
the type-directed translation for let expressions. This translation
binds the variable u using a regular lambda abstraction in an ex-
pression e2, which is the result of the translation of the body of the
let construct (E2). Then it applies that abstraction to a rule whose
rule type is just the corresponding (translated) type of the definition
(σ1), and whose body is the translation of the expression E1.

The source language provides convenience to the user by infer-
ring type arguments and implicit values automatically. This infer-
ence happens in rule (TyLVar), i.e., the use of let-bound variables.
That rule recovers the type scheme of variable u from the environ-

ment G . Then it instantiates the type scheme and fires the necessary
queries to resolve the context.

Queries The source language also includes a query operator (?).
Unlike λ⇒ this query operator does not explicitly state the type;
that information is provided implicitly through type inference. For
example, instead of using p1 ≡ p2 in Figure 5, we could have
directly used the field eq as follows:

eq ? p1 p2

When used in this way, the query acts like a Coq placeholder ( ),
which similarly instructs Coq to automatically infer a value.

The translation of source language queries, given by the rule
(TyIVar), is fairly straightforward. To simplify type-inference, the
query is limited to types, and does not support partial resolution (al-
though other designs with more powerful queries are possible). In
the translated code the query is combined with a rule instantiation
and application in order to eliminate the empty rule set.

Implicit scoping The implicit construct, which has been al-
ready informally introduced in Section 1, is the core scoping con-
struct of the source language. It is used in our example to first in-
troduce definitions in the implicit environment (eqInt1 , eqBool and
eqPair ) available at the expression

(p1 ≡ p2, implicit {eqInt2 } in p1 ≡ p2)

Within this expression there is a second occurrence of implicit,
which introduces an overlapping rule (eqInt2 ) that takes priority
over eqInt1 for the subexpression p1 ≡ p2.

The translation rule (TyImp) of implicit into λ⇒ also exploits
type-information to avoid redundant type annotations. For example,
it is not necessary to annotate the let-bound variables used in
the rule set u because that information can be recovered from the
environment G .

Higher-order rules and implicit instantiation for any type The
following example illustrates higher-order rules and implicit instan-
tiation working for any type in the source language.

let show : ∀α. {α → String } ⇒ α → String = ? in
let showInt : Int → String = . . . in
let comma : ∀α. {α → String } ⇒ [α ] → String = . . . in
let space : ∀α. {α → String } ⇒ [α ] → String = . . . in
let o : {Int → String , {Int → String } ⇒ [Int ] → String }

⇒ String = show [1, 2, 3] in
implicit showInt in
(implicit comma in o, implicit space in o)

For brevity, we have omitted the implementations of showInt ,
comma and space; but showInt renders an Int as a String
in the conventional way, while comma and space provide two
ways for rendering lists. Evaluation of the expression yields
("1,2,3", "1 2 3"). Thanks to the implicit rule parameters, the
contexts of the two calls to o control how the lists are rendered.

This example differs from that in Figure 3 in that instead of
using a nominal interface type like Eq , it uses standard functions
to model a simple concept for pretty printing values. The use of
functions as implicit values leads to a programming style akin to
structural matching of concepts, since only the type of the function
matters for resolution.

5.2 Extensions
The goal of our work is to present a minimal and general framework
for implicits. As such we have avoided making assumptions about
extensions that would be useful for some languages, but not others.

In this section we briefly discuss some extensions that would be
useful in the context of particular languages and the implications
that they would have in our framework.



Full-blown Concepts The most noticeable feature that was not
discussed is a full-blown notion of concepts. One reason not to
commit to a particular notion of concepts is that there is no general
agreement on what the right notion of concepts is. For example,
following Haskell type classes, the C++0x concept proposal [11]
is based on a nominal approach with explicit concept refinement,
while Stroustrup favors a structural approach with implicit concept
refinement because that would be more familiar to C++ program-
mers [38]. Moreover, various other proposals for GP mechanisms
have their own notion of interface: Scala uses standard OO hierar-
chies; Dreyer et al. use ML-modules [8]; and in dependently typed
systems (dependent) record types are used [37, 5].

An advantage of λ⇒ is that no particular notion of interface is
imposed on source language designers. Instead, language design-
ers are free to use the one they prefer. In our source language, for
simplicity, we opted to add a very simple (and limited) type of in-
terface. But existing language designs [29, 8, 37, 5] offer evidence
that more sophisticated types of interfaces, including some form of
refinement or associated types, can be built on top of λ⇒.

Type Constructor Polymorphism and Higher-order Rules Type
constructor polymorphism is an advanced, but highly powerful GP
feature available in Haskell and Scala, among others. It allows
abstracting container types like List and Tree with a type variable
f ; and applying the abstracted container type to different element
types, e.g., f Int and f Bool .

This type constructor polymorhism leads to a need for higher-
order rules: rules for containers of elements that depend on rules for
the elements. The instance for showing values of type Perfect f α
in Section 1, is a typical example of this need.

Extending λ⇒ with type constructor polymorphism is not hard.
Basically, we need to add a kind system and move from a System F
like language to a System Fω like language.

Subtyping Languages like Scala or C++ have subtyping. Subtyp-
ing would require significant adaptations to λ⇒. Essentially, in-
stead of targetting System F, we would have to target a version of
System F with subtyping. In addition, the notion of matching in the
lookup function ∆⟨τ⟩ would have to be adjusted, as well as the
no overlap condition. While subtyping is a useful feature, some
language designs do not support it because it makes the system
more complex and interferes with type-inference.

Type-inference Languages without subtyping (like Haskell or
ML) make it easier to support better type-inference. Since we
do not use subtyping, it is possible to improve support for type-
inference in our source language. In particular, we currently require
a type annotation for let expressions, but it should be possible to
make that annotation optional, by building on existing work for the
GHC Haskell compiler [33, 41].

6. Related Work
Throughout the paper we have already discussed a lot of related
work. In what follows, we offer a more detailed technical compar-
ison of λ⇒ versus System FG and Scala implicits, which are the
closest to our work. Then we discuss the relation with other work
in the literature.

System FG Generally speaking our calculus is more primitive
and general than System FG. In contrast to λ⇒, System FG has
both a notion of concepts and implicit instantiation of concepts5.
This has the advantage that language designers can just reuse that
infrastructure, instead of having to implement it. The language
G [36] is based on System FG and it makes good use of these

5 Note that instantiation of type variables is still explicit.

built-in mechanisms. However, System FG also imposes impor-
tant design choices. Firstly it forces the language designer to use
the notion of concepts that is built-in to System FG. In contrast λ⇒
offers a freedom of choice (see also the discussion in Section 5.2).
Secondly, fixing implicit instantiation in the core prevents useful al-
ternatives. For example, Scala and several other systems do provide
implicit instantiation by default, but also offer the option of explicit
instantiation, which is useful to resolve ambiguities [29, 18, 6, 8].
This cannot be modeled on top of System FG, because explicit
instantiation is not available. In contrast, by taking explicit instan-
tiation (rule application) as a core feature, λ⇒ can serve as a target
for languages that offer both styles of instantiation.

There are also important differences in terms of scoping and
resolution of rules. System FG only formalizes a very simple
type of resolution, which does not support recursive resolution.
Furthermore, scoping is less fine-grained than in λ⇒. For example,
System FG requires a built-in construct for model expressions,
but in λ⇒ implicit (which plays a similar role) is just syntactic
sugar on top of more primitive constructs.

Scala Implicits Scala implicits are integrated in a full-blown lan-
guage, but they have only been informally described in the liter-
ature [29, 27]. Our calculus aims at providing a formal model of
implicits, but there are some noteworthy differences between λ⇒
and Scala implicits. In contrast to λ⇒, Scala has subtyping. As dis-
cussed in Section 5.2 subtyping would require some adaptations to
our calculus. In Scala, nested scoping can only happen through sub-
classing and the rules for resolution in the presence of overlapping
instances are quite ad-hoc. Furthermore, Scala has no (first-class)
rule abstractions. Rather, implicit arguments can only be used in
definitions. In contrast λ⇒ provides a more general and disciplined
account of scoping for rules.

Type Classes Obviously, the original work on type classes [42]
and the framework of qualified types [15] around it has greatly
influenced our own work, as well as that of System FG and Scala.

There is a lot of work on Haskell type classes in the literature.
Notably, there have been some proposals for addressing the limita-
tions that arise from global scoping [18, 6]. However in those de-
signs, type classes are still second-class and resolution only works
for type classes. The GHC Haskell compiler supports overlapping
instances [17], that live in the same global scope. This allows some
relief for the lack of local scoping. A lot of recent work on type
classes is focused on increasingly more powerful “type class” in-
terfaces. Functional dependencies [16], associated types [4, 3] and
type families [32] are all examples of this trend. This line of work
is orthogonal to our work.

Other Languages and Systems Modular type classes [8] are a
language design that uses ML-modules to model type classes. The
main novelty of this design is that, in addition to explicit instantia-
tion of modules, implicit instantiation is also supported. In contrast
to λ⇒, implicit instantiation is limited to modules and, although
local scoping is allowed, it cannot be nested.

Instance arguments [5] are an Agda extension that is closely re-
lated to implicits. However, unlike most GP mechanisms, implicit
rules are not declared explicitly. Furthermore resolution is limited
in its expressive power, to avoid introducing a different computa-
tional model in Agda. This design differs significantly from λ⇒,
where resolution is very expressive and the scoping mechanisms
allow explicit rule declarations.

Implicit parameters [22] are a Haskell extension that allows
named arguments to be passed implicitly. Implicit parameters are
resolved by name, not by type and there is no recursive resolution.

GP and Logic Programming The connection between Haskell
type classes and Prolog is folklore. Neubauer et. al. [25] also



explore the connection with Functional Logic Programming and
consider different evaluation strategies to deal with overlapping
rules. With Constraint Handling Rules, Stuckey and Sulzmann [39]
use Constraint Logic Programming to implement type classes.

7. Conclusion
Our main contribution is the development of the implicit calculus
λ⇒. This calculus isolates and formalizes the key ideas of Scala
implicits and provides a simple model for language designers inter-
ested in developing similar mechanisms for their own languages.
In addition, λ⇒ supports higher-order rules and partial resolution,
which add considerable expressiveness to the calculus.

Implicits provide an interesting alternative to conventional GP
mechanisms like type classes or concepts. By decoupling resolution
from a particular type of interfaces, implicits make resolution more
powerful and general. Furthermore, this decoupling has other ben-
efits too. For example, by modeling concept interfaces as conven-
tional types, those interfaces can be abstracted as any other types,
avoiding the issue of second class interfaces that arise with type
classes or concepts.

Ultimately, all the expressiveness offered by λ⇒ offers a wide-
range of possibilities for new generic programming applications.
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