
Castor: Programming with Extensible Generative Visitors

Weixin Zhanga,∗, Bruno C. d. S. Oliveiraa

aThe University of Hong Kong, Hong Kong, China

Abstract

Much recent work on type-safe extensibility for Object-Oriented languages has focused
on design patterns that require modest type system features. Examples of such design
patterns include Object Algebras, Extensible Visitors, Finally Tagless interpreters, or
Polymorphic Embeddings. Those techniques, which often use a functional style, can
solve basic forms of the Expression Problem. However, they have important limitations.

This paper presents Castor: a Scala framework for programming with extensible,
generative visitors. Castor has several advantages over previous approaches. Firstly,
Castor comes with support for (type-safe) pattern matching to complement its visitors
with a concise notation to express operations. Secondly, Castor supports type-safe
interpreters (à la Finally Tagless), but with additional support for pattern matching and
a generally recursive style. Thirdly, Castor enables many operations to be defined
using an imperative style, which is significantly more performant than a functional
style (especially in the JVM platform). Finally, functional techniques usually only
support tree structures well, but graph structures are poorly supported. Castor supports
type-safe extensible programming on graph structures. The key to Castor’s usability is
the use of annotations to automatically generate large amounts of boilerplate code to
simplify programming with extensible visitors. To illustrate the applicability of Castor
we present several applications and two case studies. The first case study compares the
ability of Castor for modularizing the interpreters from the “Types and Programming
Languages” book with previous modularization work. The second case study on UML
activity diagrams illustrates the imperative aspects of Castor, as well as its support for
hierarchical datatypes and graphs.

Keywords: modularity, visitor pattern, pattern matching, metaprogramming, OOP

1. Introduction

For many years researchers have been looking at improving modularity mechanisms
in programming languages. A particular problem that is the focus of much recent work
in modularity is the so-called Expression Problem [1]. In the Expression Problem, the
key challenge is how to achieve type-safe extensibility. That is, how to: evolve software5

∗Corresponding author
Email addresses: wxzhang2@cs.hku.hk (Weixin Zhang), bruno@cs.hku.hk (Bruno C. d. S.

Oliveira)

Preprint submitted to Elsevier May 5, 2020

in two dimensions (adding new variants and operations) without rewriting existing code;
and without using type-unsafe features (such as casts or reflection). Over the years,
many solutions were proposed. Some work proposes new programming languages or
programming language features designed specifically with modularity in mind. These
include virtual classes [2], multi-methods [3], and family polymorphism [4]. Other work10

has focused on more general language features – such as generics [5], higher-kinded
types [6], virtual types [7], traits [8] and mixins [5] – which can also help with various
modularity problems.

Much of the more recent work on type-safe extensibility for Object-Oriented lan-
guages focus is on design patterns that require modest type system features. Examples15

of such design patterns include Object Algebras [9], Modular Visitors [10], Finally
Tagless interpreters [11] or Polymorphic Embeddings [12]. All of those techniques can
solve basic forms of the Expression Problem, and are closely related.

The foundation for a lot of that work comes from functional programming and
type-theoretic encodings of datatypes [13, 14]. In particular, the work by Hinze [15] was20

the precursor for those techniques. In his work Hinze employed so-called Church [13]
and Scott [14] encodings of datatypes to model generic programming libraries. Later
Oliveira et al. [16, 17] showed that variants of those techniques have wider applications
and solve the Expression Problem [1]. These ideas were picked up by Carrete et al. [11]
to enable tagless interpreters, while also benefited from the extensibility properties of25

the techniques. Carrete et al.’s work popularized those applications of the techniques
as the nowadays so-called Finally Tagless style. Soon after Hofer et al. [12] proposed
Polymorphic Embeddings in Scala, highly inspired by the Finally Tagless style in
languages like Haskell and OCaml.

In parallel with the work on Finally Tagless and Polymorphic Embeddings the30

connections of those techniques to the Visitor pattern in OOP were further explored [18],
building on observations between the relationship between type-theoretic encodings of
datatypes and visitors by Buchlovsky and Thielecke [19]. That work showed that Church
and Scott encodings of datatypes correspond to two variants of the Visitor pattern called,
respectively, Internal and External visitors. Later on Oliveira and Cook [9] showed a35

simplified version of Internal Visitors called Object Algebras, which could solve the
Expression Problem even in languages like Java.

While Internal Visitors, Object Algebras, Finally Tagless or Polymorphic Embed-
dings can all be traced back to Church encodings, there has been much less work on
techniques that are based on Scott encodings. Scott encodings are more powerful, as40

they allow a (generally) recursive programming style. In contrast, Church encodings
rely on a programming style that is akin to programming with folds in functional pro-
gramming [20]. In general, Scott encodings require more sophisticated type system
features, which is one reason why they have seen less adoption. In particular recursive
types are necessary, which also brings up extra complications due to the interaction of45

recursive types and subtyping. Nevertheless, recent work by Zhang and Oliveira [21] on
the Java EVF framework picked up on modular External Visitors and shows External
Visitors can be made practical even with modest language features and code generation.
The applicability of EVF is demonstrated by refactoring interpreters from the “Types
and Programming Languages” (TAPL) book [22]. The interpreters are modularized, and50

various specific interpreters are recovered from modular, reusable components. This

2

effort is non-trivial because TAPL interpreters are written in a small-step operational
semantics style, which does not fit well with folds. The fundamental problem is that
the recursion pattern for small-step operational semantics is quite different from a fold.
Furthermore, many operations employed by implementations of TAPL interpreters55

depend on other operations. Such dependencies are hard to model in a modular setting,
but the use of EVF’s External Visitors can account for them. However, there are still
critical limitations on existing type-safe extensibility approaches, including EVF. One
drawback is the lack of support for pattern matching, which makes writing various oper-
ations quite cumbersome. Another drawback is that even for the techniques that have60

been adapted to Object-Oriented Programming (OOP), the focus is still on a functional
programming style. Writing operations in an imperative style is difficult, and supporting
graph structures (which are common in OOP) is nearly impossible.

This paper presents Castor: a Scala framework for programming with extensible,
generative visitors. Unlike previous work, Castor aims to support not only a functional65

style but also an imperative programming style with visitors. Castor visitors bring
several advantages over existing approaches:

Concise Notation. Programming with the Visitor pattern is typically associated with a
lot of boilerplate code. Extensible Visitors make the situation even worse due to the heavy
use of sophisticated type system features. Although previous work on EVF alleviated the70

burden of programmers by generating boilerplate code related to visitors and traversals,
it is restricted by Java’s syntax and annotation processor. Castor improves on EVF
by employing Scala’s concise syntax and Scalameta1 to simplify client code. Unlike
the Java annotation processor which generates code separately, Scalameta enables
direct transformation on the client code, further reducing the boilerplate and hiding75

sophisticated type system features from users.

Pattern Matching Support. Castor comes with support for (type-safe) pattern matching
to complement its visitors with a concise notation to express operations. In the OOP
context, data structures are open. However, the traditional semantics of pattern matching
adopted by many approaches is based on the order of patterns, which conflicts with the80

openness of OO data structures. Therefore, we suggest that a more restricted, top-level
pattern matching model, where the order of patterns is irrelevant. To compensate for the
absence of ordered patterns we propose a complementary mechanism for case analysis
with defaults, which can be used when nested or multiple case analysis is needed.
Castor adopts this new pattern matching model. As a result, pattern matching in Castor85

is concise, exhaustive, extensible and composable.

GADT-Style Definitions. Castor supports type-safe interpreters (à la Finally Tagless),
but with additional support for pattern matching and a generally recursive style. While
Finally Tagless interpreters are nowadays widely used by programmers in multiple
languages (including Haskell and Scala), they must be written in fold-like style. Sup-90

porting operations that require nested patterns, or simply depend on other operations is

1http://scalameta.org

3

http://scalameta.org

quite cumbersome (although workarounds exist [23]), especially if modularity is to be
preserved. In contrast, Castor can support those features naturally.

Hierarchical Datatypes. Functional datatypes are typically flat where variants have
no relationship with each other. Object-oriented style datatypes, on the other hand,95

can be hierarchical [24] where datatype constructors can be refined by more specific
constructors. Hierarchical datatypes facilitate reuse since the subtyping relation allows
the semantics defined for supertypes to be reused for subtypes. Castor exploits OOP
features and employs subtyping to model hierarchical datatypes.

Imperative Traversals. Castor enables many operations to be defined using an impera-100

tive style, which is significantly more performant than a functional style (especially in
the JVM platform). Both functional and imperative visitors [19] written with Castor
are fully extensible and can later support more variants modularly. Imperative visitors
enable imperative style traversals that instead of returning a new Abstract Syntax Tree
(AST), modify an existing AST in-place.105

Graph Structures. Finally functional techniques usually only support tree structures
well, but graph structures are poorly supported. Castor supports type-safe extensible
programming on graph structures. Compared to trees, graphs are a more general
data structure that have many important applications such as common subexpression
elimination.110

In summary, this paper makes the following contributions:

• Extensible pattern matching with modular external visitors: We evaluate
existing approaches to pattern matching in an OOP context (Section 2). We show
how to incorporate extensible (or open) pattern matching support on modular
external visitors, which allows Castor to define non-trivial pattern matching115

operations.

• Support for hierarchical datatypes: Besides flat datatypes that are typically
modeled in functional languages, we show how OOP style hierarchical datatypes
are supported in Castor (Section 3).

• Support for GADTs: We show how to use Castor’s support for GADTs in120

building well-typed interpreters (Section 4), which would be quite difficult to
model in a Finally Tagless style.

• Imperative style modular external visitors: We show how to define imperative
style modular external visitors in Castor (Section 5).

• Support for graph structures: We show how to do type-safe extensible pro-125

gramming on graph structures, which generalize the typical tree structures in
functional programming (Section 5).

• The Castor framework: We present a novel encoding for modular pattern
matching based on extensible visitors (Section 2.7). The encoding is automated
using metaprogramming and the transformation is formalized (Section 6).130

4

• Case studies: We conduct two case studies to illustrate the effectiveness of
Castor. The first case study on TAPL interpreters (Section 7) demonstrates
functional aspects of Castor, while the second one on UML activity diagrams
(Section 8) demonstrates the object-oriented aspects of Castor.

This paper is a significantly extended version of a conference paper [25]. We revise135

the presentation of the paper and more importantly extend Castor with novel features.
Firstly, we add a detailed comparison with our previous work on EVF (Section 2.8).
Secondly, we improve the way of declaring variants of open datatypes, which enables
hierarchical variants (Section 3), GADTs (Section 4), graphs and imperative style
visitors (Section 5). Thirdly, we revise the formalization according to the new encoding140

(Section 6). Finally, we conduct an additional case study on UML activity diagrams
(Section 8) for assessing these added features.

Source code for examples, case studies and the Castor framework is available at:

https://github.com/wxzh/Castor

2. Open Pattern Matching145

Pattern matching is a pervasive and useful feature in functional languages (e.g.
ML [26] and Haskell [27]) for processing data structures conveniently. Data structures
are firstly modeled using algebraic datatypes and then processed through pattern match-
ing. On the other hand, OOP uses class hierarchies instead of algebraic datatypes to
model data structures. Still, the same need for processing data structures also exists150

in OOP. However, there are important differences between data structures modeled
with algebraic datatypes and class hierarchies. Algebraic datatypes are typically closed,
having a fixed set of variants. In contrast, class hierarchies are open, allowing the
addition of new variants. A closed set of variants facilitates exhaustiveness checking of
patterns but sacrifices the ability to add new variants. OO class hierarchies do support155

the addition of new variants, but without mechanisms similar to pattern matching, some
programs are unwieldy and cumbersome to write. In this section, we first characterize
four desirable properties of pattern matching in the context of OOP. We then review
some of the existing pattern matching approaches in OOP and discuss why they fall in
short of the desirable properties. This section ends with an overview of Castor and an160

evaluation summary on the presented approaches.

2.1. Desirable Properties of Open Pattern Matching

We identify the following desirable properties for pattern matching in an OOP
context:

• Conciseness. Patterns should be described concisely with potential support for165

wildcards, deep patterns, and guards.

• Exhaustiveness. Patterns should be exhaustive to avoid runtime matching failure.
The exhaustiveness of patterns should be statically verified by the compiler and
the missing cases should be reported if patterns are incomplete.

5

https://github.com/wxzh/Castor

• Extensibility. Datatypes should be extensible in the sense that new data variants170

can be added while existing operations can be reused without modification or
recompilation.

• Composability. Patterns should be composable so that complex patterns can be
built from smaller pieces. When composing overlapped patterns, programmers
should be warned about possible redundancies.175

Using these properties as criteria, we next evaluate pattern matching approaches
in OOP. We show that many widely used approaches lack some of these properties.
We argue that a problem is that many approaches try to closely follow the traditional
semantics of pattern matching, which assumes a closed set of variants. Under a closed
set of variants, it is natural to use the order of patterns to prioritize some patterns over180

the others. However, when the set of variants is not predefined a priori then relying on
some ordering of patterns is problematic, especially if separate compilation and modular
type-checking are to be preserved. Nonetheless, many OO approaches, which try to
support both an extensible set of variants and pattern matching, still try to use the order
of patterns to define the semantics. Unfortunately, this makes it hard to support other185

desirable properties such as exhaustiveness or composability.

2.2. Running Example: Arith
To facilitate our discussion, a running example from TAPL [22]—an untyped,

arithmetic language called Arith—is used throughout this paper. The syntax and
semantics of Arith are formalized in Figure 1. Our goal is to model the syntax and190

semantics of Arith in a concise and modular manner.
Arith has the following syntactic forms: zero, successor, predecessor, true, false,

conditional and zero test. The definition nv identifies 0 and successive application of
succ to 0 as numeric values. The operational semantics of Arith is given in small-step
style, with a set of reduction rules specifying how a term can be rewritten in one step.195

Repeatedly applying these rules will eventually evaluate a term to a value. There might
be multiple rules defined on a single syntactic form. For instance, rules PredZero,
PredSucc and Pred are all defined on a predecessor term. How pred t is going to
be evaluated in the next step is determined by the shape of the inner term t: if t is 0,
then PredZero will be applied; if t is a successor application to a numeric value, then200

PredSucc will be applied; otherwise pred will be applied.
Arith is a good example for assessing the four properties because: 1) The small-step

style semantics is best expressed with a concise nested case analysis on terms; 2) Arith
is, in fact, a unification of two sublanguages, Nat (zero, successor and predecessor) and
Bool (true, false, and conditional) plus an extension (zero test). Ideally, Nat and Bool205

should be separately defined and modularly reused.

2.3. The Visitor Pattern
The Visitor design pattern [18] is frequently used to implement interpreters or

compilers because of its ability to add new interpretations or compiler phases without
modifying the class hierarchy. Let us implement the Arith language using the Visitor210

pattern step by step. The implementation is written in Scala without using any Scala-
specific features and can be easily mapped to other OOP languages like C++ or Java.

6

t ::= 0 | succ t | pred t | true | false | if t then t else t | iszero t
nv ::= 0 | succ nv

t1 → t′1
succ t1 → succ t′1 pred 0→ 0

PredZero

pred (succ nv1)→ nv1
PredSucc

t1 → t′1
pred t1 → pred t′1

Pred

if true then t2 else t3 → t2 if false then t2 else t3 → t3

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3 iszero 0→ true

iszero (succ nv1)→ false

t1 → t′1
iszero t1 → iszero t′1

Figure 1: The syntax and semantics of Arith.

Abstract Syntax. The abstract syntax of Arith is modeled by the following class
hierarchy:
abstract class Tm {215

def accept[A](v: TmVisit[A]): A
}
class TmZero() extends Tm {

def accept[A](v: TmVisit[A]) = v.tmZero(this)
}220

class TmSucc(val t: Tm) extends Tm {
def accept[A](v: TmVisit[A]) = v.tmSucc(this)

}
class TmPred(val t: Tm) extends Tm {

def accept[A](v: TmVisit[A]) = v.tmPred(this)225

}
class TmTrue() extends Tm {

def accept[A](v: TmVisit[A]): A = v.tmTrue(this)
}
class TmFalse extends Tm {230

def accept[A](v: TmVisit[A]): A = v.tmFalse(this)
}
class TmIf(val t1: Tm, val t2: Tm, val t3: Tm) extends Tm {

def accept[A](v: TmVisit[A]): A = v.tmIf(this)
}235

class TmIsZero(val t: Tm) extends Tm {
def accept[A](v: TmVisit[A]): A = v.tmIsZero(this)

}
The abstract class Tm represents the datatype of terms, and syntactic constructs of terms
are subclasses of Tm. A generic accept method is defined throughout the class hierarchy,240

which is implemented by invoking the corresponding lowercase visit method exposed

7

by TmVisit.

Visitor Interface. TmVisit is the visitor interface that declares all the visit methods
required by accept implementations. Its definition is given below:
trait TmVisit[A] {245

def tmZero(x: TmZero): A
def tmSucc(x: TmSucc): A
def tmPred(x: TmPred): A
def tmTrue(x: TmTrue): A
def tmFalse(x: TmFalse): A250

def tmIf(x: TmIf): A
def tmIsZero(x: TmIsZero): A

}
TmVisit is parameterized by A for abstracting over the return type of visit methods. Each
visit method takes an instance of its corresponding class and returns a value of A.255

Concrete Visitors. Operations over Tm are concrete visitors that implement the visitor
interface TmVisit. The numeric value checker is defined like this:
class Nv extends TmVisit[Boolean] {

def tmZero(x: TmZero) = true
def tmSucc(x: TmSucc)= x.t.accept(this)260

def tmPred(x: TmPred) = false
def tmTrue(x: TmTrue) = false
def tmFalse(x: TmFalse) = false
def tmIf(x: TmIf) = false
def tmIsZero(x: TmIsZero) = false265

}
Nv implements TmVisit by instantiating the type parameter A as Boolean and giving
an implementation to each visit method. Here, the interesting cases are tmZero and
tmSucc. For the former, a true is returned; for the latter, we call _.t.accept(this) for
recursively applying Nv to check the inner term. The remaining cases are not numeric270

values thus return false.
With Nv defined, we can now implement the small-step evaluation visitor:

class Eval1 extends TmVisit[Tm] {
val eval1 = this // Dependency on the visitor itself
val nv = new Nv // Dependency on another visitor275

def tmZero(x: TmZero) = throw NoRuleApplies
def tmSucc(x: TmSucc) = new TmSucc(x.t.accept(this))
def tmPred(x: TmPred) = x.t.accept(new TmVisit[Tm] {

def tmZero(y: TmZero) = y // PredZero
def tmSucc (y: TmSucc) =280

if (y.t.accept(nv)) y.t // PredSucc
else new TmPred(y.t.accept(eval1)) // Pred

def tmPred(y: TmPred) = new TmPred(y.accept(eval1)) // Pred
def tmTrue(y: TmTrue) = new TmPred(y.accept(eval1)) // Pred
def tmFalse(y: TmFalse) = new TmPred(y.accept(eval1)) // Pred285

def tmIf(y: TmIf) = new TmPred(y.accept(eval1)) // Pred
def tmIsZero(y: TmIsZero) = new TmPred(y.accept(eval1)) // Pred

})
def tmTrue(x: TmTrue) = throw NoRuleApplies
def tmFalse(x: TmFalse) = throw NoRuleApplies290

def tmIf(x: TmIf) = x.t1.accept(new TmVisit[Tm] {

8

def tmTrue(y: TmTrue) = x.t2
def tmFalse(y: TmFalse) = x.t3
def tmZero(y: TmZero) = new TmIf(y.accept(eval1),x.t2,x.t3)
def tmSucc(y: TmSucc) = new TmIf(y.accept(eval1),x.t2,x.t3)295

def tmPred(y: TmPred) = new TmIf(y.accept(eval1),x.t2,x.t3)
def tmIf(y: TmIf) = new TmIf(y.accept(eval1),x.t2,x.t3)
def tmIsZero(y: TmIsZero) = new TmIf(y.accept(eval1),x.t2,x.t3)

})
def tmIsZero(x: TmIsZero) = x.t.accept(new TmVisit[Tm] {300

def tmZero(y: TmZero) = new TmTrue
def tmSucc (y: TmSucc) =

if (y.t.accept(nv)) new TmFalse
else new TmIsZero(y.accept(eval1))

def tmPred(y: TmPred) = new TmIsZero(y.accept(eval1))305

def tmTrue(y: TmTrue) = new TmIsZero(y.accept(eval1))
def tmFalse(y: TmFalse) = new TmIsZero(y.accept(eval1))
def tmIf(y: TmIf) = new TmIsZero(y.accept(eval1))
def tmIsZero(y: TmIsZero) = new TmIsZero(y.accept(eval1))

})310

}
The small-step evaluator rewrites a term to another thus A is instantiated as Tm. Since
primitive cases are already values, we simply throw a NoRuleApplies exception for
tmZero, tmTrue and tmFalse. Defining the case for tmSucc is easy too: we construct
a new successor with its inner term rewritten by eval1. In contrast, defining tmPred,315

tmIf and tmIsZero is trickier because they all have multiple rules. Take tmPred for
example. As a visitor recognizes only one level representation of a term, it is insufficient
to encode rules that require nested case analysis. To further reveal the shape of the
inner term, anonymous visitors are created. Rules like PredSucc can then be specified
inside the tmSucc method of the inner visitor. Moreover, the inner visitor of tmPred320

depends on both Eval1 and Nv. These dependencies are expressed by the fields eval1
and nv, which are instantiated as visitor instances. Then we can pass eval1 or nv as an
argument to the accept method for using the dependency. Notice that the Pred rule
is repeated 6 times. Similar situations also happen in tmIf and tmIsZero, making the
overall implementation of Eval1 quite lengthy.325

Client Code. We can write some tests for our implementation of Arith:
// iszero (if false then true else pred (succ 0))
val tm = new TmIsZero(

new TmIf(new TmFalse,new TmTrue,new TmPred(new TmSucc(new TmZero))))
val eval1 = new Eval1330

val tm1 = tm.accept(eval1) // iszero (pred (succ 0))
val tm2 = tm1.accept(eval1) // iszero 0
val tm3 = tm2.accept(eval1) // 0
where we construct a term using all syntactic forms of the Arith language and evaluate
it step by step using eval1. The evaluation result of each step is shown in the comments335

on the right hand side.

Discussion of the Approach. The conventional Visitor pattern has been criticized for
its verbosity and inextensibility [28, 29], which are manifested in the implementation of
Arith. Programming with the Visitor pattern is associated with a lot of infrastructure

9

code, including the visitor interface, the class hierarchy, etc. Writing such infrastructure340

manually is tedious and error-prone, especially when there are many classes involved.
Such verbosity restricts the usage Visitor pattern, as Martin [30] wrote:

“Often, something that can be solved with a Visitor can also be solved by
something simpler.”

Moreover, the Visitor pattern suffers from the Expression Problem [1]: it is easy to345

add new operations by defining new visitors (as illustrated by nv and eval1) but hard
to add new variants. The reason is that Tm and TmVisit are tightly coupled. When
trying to add new subclasses to the Tm hierarchy, it is not possible to implement their
accept methods because there exist no corresponding visit methods in TmVisit. A non-
solution is to modify TmVisit with new visit methods. As a consequence, all existing350

concrete implementations of TmVisit have to be modified in order to account for those
variants. This violates the “no modification on existing code” principle of the Expression
Problem. Modification is even impossible if the source code is unavailable. As a result,
Nat and Bool cannot be separated from Arith. Thus, the whole implementation is
neither extensible nor composable. Nevertheless, the exhaustiveness on visit methods is355

guaranteed since a class cannot contain any abstract methods.

2.4. Sealed Case Classes
The Visitor pattern is often used as a poor man’s approach to pattern matching in

OO languages. Fortunately, Scala [31] is a language that unifies functional and OO
paradigms and supports pattern matching natively via case classes/extractors [32]. Case360

classes can be either open or sealed. Sealed case classes are close to algebraic datatypes
in functional languages, which have a fixed set of variants.

Representing the Tm hierarchy using sealed case classes looks like this:
sealed trait Tm
case object TmZero extends Tm365

case class TmSucc(t: Tm) extends Tm
case class TmPred(t: Tm) extends Tm
case object TmTrue extends Tm
case object TmFalse extends Tm
case class TmIf(t1: Tm, t2: Tm, t3: Tm) extends Tm370

case class TmIsZero(t: Tm) extends Tm
The differences are that Tm is a sealed trait and variants of Tm are additionally marked
as case. Also, no-argument variants are Scala’s singleton objects and fields of case
classes are by default val.

The case keyword triggers the Scala compiler to automatically inject methods into a375

class, including a constructor method (apply) and an extractor method (unapply). The
injected constructor method simplifies creating objects from case classes. For example,
a successor application to zero can be constructed via TmSucc(TmZero). Conversely, the
injected extractor enables tearing down an object via pattern matching.

The numeric value checker can be defined by pattern matching on the term:380

def nv(t: Tm): Boolean = t match {
case TmZero => true
case TmSucc(t1) => nv(t1)
case _ => false

}385

10

The term t is matched sequentially against a series of patterns (case clauses). For
example, TmSucc(TmZero) will be handled by the second case clause of nv, which
recursively invokes nv on its subterm t1 (which is TmZero). Then, TmTrue will be
matched by the first case clause with a true returned eventually. A wildcard pattern (_)
is used in the last case clause for handling boring cases altogether.390

The strength of pattern matching shines in encoding the small-step semantics:
def eval1(t: Tm): Tm = t match {

case TmSucc(t1) => TmSucc(eval1(t1))
case TmPred(TmZero) => TmZero // PredZero
case TmPred(TmSucc(t1)) if nv(t1) => t1 // PredSucc395

case TmPred(t1) => TmPred(eval1(t1)) // Pred
case TmIf(TmTrue,t2,_) => t2
case TmIf(TmFalse,_,t3) => t3
case TmIf(t1,t2,t3) => TmIf(eval1(t1),t2,t3)
case TmIsZero(TmZero) => TmTrue400

case TmIsZero(TmSucc(t1)) if nv(t1) => TmFalse
case TmIsZero(t1) => TmIsZero(eval1(t1))
case _ => throw NoRuleApplies

}
With the help of pattern matching, the overall definition is a direct mapping from the405

formalization shown in Figure 1. There is a one-to-one correspondence between the
rules and the case clauses. For example, PredSucc is concisely described by a deep
pattern (TmPred(TmSucc(t1))) with a guard (if nv(t1)) and Pred is captured only
once by TmPred(t1).

Client Code. The client code is also more natural and compact than that in visitors:410

val tm = TmIsZero(TmIf(TmFalse,TmTrue,TmPred(TmSucc(TmZero))))
val tm1 = eval1(tm) // iszero (pred (succ 0))
val tm2 = eval1(tm1) // iszero 0
val tm3 = eval1(tm2) // 0
where new clauses are no longer needed.415

Discussion of the Approach. The Arith implementation using sealed case classes is very
concise. Moreover, sealed case classes facilitate exhaustiveness checking on patterns
since all variants are statically known. If we forgot to write the wildcard pattern in
nv, the Scala compiler would warn us that a case clause for TmPred is missing. An
exception is eval1, whose exhaustiveness is not checked by the compiler due to the use420

of guards. The reason is that a guard might call some function whose execution result
is only known at runtime, making the reachability of that pattern difficult to decide
statically. The price to pay for exhaustiveness is the inability to add new variants of Tm
in separate files. Thus, like the visitor version, the implementation is neither extensible
nor composable.425

2.5. Open Case Classes

While the implementation using sealed case classes is concise, it is not modular
because Arith is still defined as a whole. To separate out Nat and Bool, we turn to open
case classes by trading exhaustiveness checking for the ability to add new variants in
separate files. To make up for the loss of exhaustiveness, Zenger and Odersky’s idea430

11

of Extensible Algebraic Datatypes with Defaults (EADDs) [33] can be applied. The
key idea is to always use a default in each operation to handle variants that are not
explicitly mentioned. The existence of a default makes operations extensible, as variants
added later will be automatically subsumed by that default. If the extended variants
have behavior different from the default, we can define a new operation that deals with435

the extended variants and delegates to the old operation.
We first remove the sealed constraint on Tm and specify the default behavior of

eval1 inside a trait Term:
trait Term {

trait Tm440

def eval1(t: Tm): Tm = throw NoRuleApplies
}

Then, Nat can be defined as an extended trait for Term:
trait Nat extends Term {

case object TmZero extends Tm445

case class TmSucc(t: Tm) extends Tm
case class TmPred(t: Tm) extends Tm
def nv(t: Tm): Boolean = t match {

case TmZero => true
case TmSucc(t1) => nv(t1)450

case _ => false
}
override def eval1(t: Tm): Tm = t match {

case TmSucc(t1) => TmSucc(eval1(t1))
case TmPred(TmZero) => TmZero // PredZero455

case TmPred(TmSucc(t1)) if nv(t1) => t1 // PredSucc
case TmPred(t1) => TmPred(eval1(t1)) // Pred
case _ => super.eval1(t)

}
}460

Nat introduces TmZero, TmSucc and TmPred as variants of Tm. nv is defined in the old
way. eval1 is overridden with case clauses for TmSucc and TmPred, and TmZero is dealt
by Term’s eval1 via a super call.

Similarly, Bool is defined as another trait that extends Tm with its own variants and
eval1:465

trait Bool extends Tm {
case object TmTrue extends Tm
case object TmFalse extends Tm
case class TmIf(t1: Tm,t2: Tm,t3: Tm) extends Tm
override def eval1(t: Tm): Tm = t match {470

case TmIf(TmTrue,t2,_) => t2
case TmIf(TmFalse,_,t3) => t3
case TmIf(t1,t2,t3) => TmIf(eval1(t1),t2,t3)
case _ => super.eval1(t)

}475

}
Finally, Arith can be defined as a unification of Nat and Bool implementations:

trait Arith extends Nat with Bool {
case class TmIsZero(t: Tm) extends Tm
override def eval1(t: Tm) = t match {480

case TmIsZero(TmZero) => TmTrue

12

case TmIsZero(TmSucc(t1)) if nv(t1) => TmFalse
case TmIsZero(t1) => TmIsZero(eval1(t1))
case TmZero => super[Nat].eval1(t)
case _: TmSucc => super[Nat].eval1(t)485

case _: TmPred => super[Nat].eval1(t)
case _ => super[Bool].eval1(t)

}
}
Scala’s mixin composition allows Arith to extend both Nat and Bool. The definition nv490

inherited from Nat works well in Arith, as it happens to have a very good default that
automatically fits for the new cases. For instance, calling nv(TmFalse) returns false
as expected. However, overridding eval1 becomes problematic. We cannot simply
complement the cases for TmIsZero and handle all the inherited cases at once since
both Nat and Bool are extended. Instead we have to separate the inherited cases using495

typecases and delegate appropriately to either Nat or Bool via super calls.

Discussion of the Approach. Combining open case classes with EADDs brings exten-
sibility. This idea works well for linear extensions (such as Nat and Bool) but not so
well for non-linear extensions like Arith. As shown by eval1 in Arith, composing
non-linear extensions is tedious and error-prone. Without any assistance from the Scala500

compiler during this process, it is rather easy to make mistakes like forgetting to delegate
a case or delegating a case to a wrong parent. Moreover, the exhaustiveness checking
on case clauses is lost. Although in the spirit of EADDs case clauses should always end
with a wildcard that ensures exhaustiveness, it is not enforced by the Scala compiler.

2.6. Partial Functions505

To ease the composition of Nat and Bool, one may consider Scala’s PartialFunction.
PartialFunction provides an orElse method for composing partial functions. orElse
tries the composed partial functions sequentially until no MatchError is raised.

The open case class version of Arith can be adapted to a partial function version
with a few changes. First, eval1 in Term should be declared as a partial function:510

def eval1: PartialFunction[Tm,Tm]
Second, wildcards cannot be used in implementing eval1 anymore because they will
shadow other partial functions to be composed. For example, eval1 in Bool is rewritten
as:
override def eval1 {515

case TmIf(TmTrue,t2,_) => t2
case TmIf(TmFalse,_,t3) => t3
case TmIf(t1,t2,t3) => TmIf(eval1(t1),t2,t3)
case TmTrue => throw NoRuleApplies
case TmFalse => throw NoRuleApplies520

}
An instance of PartialFunction[Tm,Tm] is constructed using the anonymous function
syntax with the argument Tm being directly pattern matched. The wildcard pattern is
replaced by two constructor patterns TmTrue and TmFalse with identical right hand side,
losing some convenience. Nevertheless, partial functions make the composition work525

more smoothly, avoiding the problems caused by the open case classes approach:

13

override def eval1 = super[Nat].eval1 orElse super[Bool].eval1 orElse {
case TmIsZero(TmZero) => TmTrue
case TmIsZero(TmSucc(t1)) if nv(t1) => TmFalse
case TmIsZero(t1) => TmIsZero(eval1(t1))530

}
eval1 is overridden by chaining eval1 from Nat and Bool as well as a new partial
function for the zero test using the orElse combinator.

Discussion of the Approach. Although combining open case classes with partial func-
tions makes the composition smoother, it is still not fully satisfactory. The orElse535

combinator is left-biased, thus the composition order determines the composed seman-
tics. That is, f orElse g is not equivalent to g orElse f, if f and g are two overlapped
partial functions (i.e. containing case clauses with identical left hand side but different
right hand side). When composing such overlapped partial functions, orElse gives
no warning. Also, the semantics of the overlapped patterns are all from either f or g,540

depending on which comes first. It is not possible to have a mixed semantics for over-
lapped patterns (e.g. picking case A from f and case B from g when both f and g define
case A and case B), which restricts the reusability of partial functions. Lastly, partial
functions rely on exception handling, which has a negative impact on performance.

2.7. Extensible Visitors545

Essentially what makes pattern matching hard to be extended or composed is the
order-sensitive semantics of pattern matching and wildcard patterns that cover both
known and unknown variants. We think it is useful to distinguish between top-level
(shallow) patterns and nested (deep) patterns. Top-level patterns should be order-
insensitive and partitioned into multiple definitions so that they can be easily composed.550

We can achieve this by combining open case classes with extensible visitors [34, 10, 35,
21].

The Arith implementation is organized in a way similar to the open case classes
approach. Let us start with Term:
trait Term {555

type TmV <: TmVisit
trait Tm { def accept(v: TmV): v.OTm }
trait TmVisit { _: TmV =>

type OTm
def apply(t: Tm) = t.accept(this)560

}
trait TmDefault extends TmVisit { _: TmV =>

def tm: Tm => OTm
}
trait Eval1 extends TmDefault { _: TmV =>565

type OTm = Tm
def tm = _ => throw NoRuleApplies

}
val eval1: Eval1

}570

Instead of using TmVisit in declaring the accept method, we use an abstract type
member TmV and constrain it to be a subtype of TmVisit. This enables invocations
on the methods declared inside TmVisit, but at the same time, decouples Tm from

14

TmVisit. The upper bound of the return type of the visit methods is also captured by
an abstract type rather than a type parameter for avoiding reinstantiation in inherited575

visitors. Accordingly, the return type of accept is now a path dependent type v.OTm. A
syntactic sugar method apply is defined inside TmVisit for enabling v(x) as a shorthand
of x.accept(v), where x and v are instances of Tm and TmVisit, respectively. To pass
this as an argument of accept in implementing apply, we state that TmVisit is of type
TmV using a self-type annotation. To mimic wildcards, we use default visitors [36].580

But unlike wildcards, default visitors only deal with known variants. TmDefault is the
default visitor interface, which extends TmVisit with a generic tm method for specifying
the default behavior. Eval1 is a default visitor thus it extends TmDefault, specifies the
output type OTm as Tm and implements tm. Each concrete visitor has a companion val
declaration for allowing themselves to be used in other visitors.585

The encoding makes more sense with the implementation of Nat given:
trait Nat extends Term {

type TmV <: TmVisit
case object TmZero extends Tm {

def accept(v: TmV): v.OTm = v.tmZero590

}
case class TmSucc(t: Tm) extends Tm {

def accept(v: TmV): v.OTm = v.tmSucc(t)
}
case class TmPred(t: Tm) extends Tm {595

def accept(v: TmV): v.OTm = v.tmPred(t)
}
trait TmVisit extends super.TmVisit { _: TmV =>

def tmZero: OTm
def tmSucc: TmSucc => OTm600

def tmPred: TmPred => OTm
}
trait TmDefault extends TmVisit with super.TmDefault { _: TmV =>

def tmZero = tm(TmZero)
def tmSucc = tm605

def tmPred = tm
}
def nv(t: Tm): Boolean = t match {

case TmZero => true
case TmSucc(t1) => nv(t1)610

case _ => false
}
trait Eval1 extends TmDefault with super.Eval1 { _: TmV =>

override def tmSucc = x => TmSucc(this(x.t))
override def tmPred = {615

case TmPred(TmZero) => TmZero
case TmPred(TmSucc(t)) if nv(t) => t
case TmPred(t) => TmPred(this(t))

}
}620

}
Tm is extended with several case classes/objects. Correspondingly TmVisit is extended
with new visit methods and TmV is covariantly refined as the subtype of the extended
TmVisit. Visit methods are declared using Scala’s functions instead of ordinary methods

15

for two reasons. First, the argument type (e.g. TmSucc) has already been revealed625

by the method name (tmSucc) and can be inferred by the Scala compiler without
losing information. Second, first-class functions facilitate pattern matching on the
argument. These two advantages result in a concise definition of Eval1, where the
type of x is omitted and a value of TmPred => Tm is constructed by pattern matching.
Unlike conventional visitors, nested case analysis is much simplified via (nested) pattern630

matching rather than auxiliary visitors. For example, when a predecessor term is
processed by Eval1, it will be recognized and dispatched to the tmPred method. Then
the TmPred object is matched by the case clauses. As these are case clauses, deep
patterns and guards can be used. To restore the convenience of wildcards for top-level
patterns, TmDefault is used, which implements visit methods by delegating to tm. Notice635

that Eval1 is defined as a trait instead of a class for enabling mixin composition. By
extending both TmDefault and super.Eval1, Eval1 only needs to override interesting
cases.

The numeric value checker is defined as a method rather than a visitor. This is
because, as we have discussed, nv is a good candidate for applying EADDs. Of course,640

nv can be defined as a default visitor like Eval1. But whenever Nat is extended with
new terms, the definition of nv has to be refined by composing Nv with the extended
TmDefault.

Bool is defined in a similar manner:
trait Bool extends Term {645

type TmV <: TmVisit
trait TmVisit extends super.TmVisit { _: TmV =>

def tmTrue: OTm
def tmFalse: OTm
def tmIf: TmIf => OTm650

}
trait TmDefault extends TmVisit with super.TmDefault { _: TmV =>

def tmTrue = tm(TmTrue)
def tmFalse = tm(TmFalse)
def tmIf = tm655

}
case object TmTrue extends Tm {

override def accept(v: TmV) = v.tmTrue
}
case object TmFalse extends Tm {660

override def accept(v: TmV) = v.tmFalse
}
case class TmIf(t1: Tm, t2: Tm, t3: Tm) extends Tm {

override def accept(v: TmV) = v.tmIf(this)
}665

trait Eval1 extends TmDefault with super.Eval1 { _: TmV =>
override def tmIf = {

case TmIf(TmTrue,t2,_) => t2
case TmIf(TmFalse,_,t3) => t3
case TmIf(t1,t2,t3) => TmIf(this(t1), t2, t3)670

}
}

}
With case clauses partitioned into visit methods according to their top-level pattern,

16

unifying Nat and Bool becomes easy via Scala’s mixin composition:675

trait Arith extends Nat with Bool {
type TmV <: TmVisit
case class TmIsZero(t: Tm) extends Tm {

override def accept(v: TmV) = v.tmIsZero(this)
}680

trait TmVisit extends super[Nat].TmVisit
with super[Bool].TmVisit { _: TmV =>

def tmIsZero: TmIsZero => OTm
}
trait TmDefault extends TmVisit with super[Nat].TmDefault685

with super[Bool].TmDefault { _: TmV =>
def tmIsZero = tm

}
trait Eval1 extends TmVisit with super[Nat].Eval1

with super[Bool].Eval1 { _: TmV =>690

def tmIsZero = {
case TmIsZero(TmZero) => TmTrue
case TmIsZero(TmSucc(t)) if nv(t) => TmFalse
case TmIsZero(t) => TmIsZero(this(t))

}695

}
}
Defining Eval1 for Arith only needs to inherit Eval1 definitions from Nat and Bool
and complement the tmIsZero method. Since tmIsZero is an interesting case, Eval1
extends TmVisit rather than TmDefault.700

Instantiation. Components defined in this way cannot be directly used in client code.
An additional step to instantiate traits into objects is required. Instantiating Arith, for
example, is done like this:
object Arith extends Arith {

type TmV = TmVisit705

object eval1 extends Eval1
}
The companion object Arith binds the abstract type TmV to its corresponding the visitor
interface TmVisit. The eval1 declaration is met by a singleton object that extends Eval1.
If Eval1 does not implement all the visit methods, the object creation fails, with the710

missing methods reported.

Client Code. Now we can use the companion object Arith in client code:
import Arith._
val tm = TmIsZero(TmIf(TmFalse,TmTrue,TmPred(TmSucc(TmZero))))
val tm1 = eval1(tm) // iszero (pred (succ 0))715

val tm2 = eval1(tm1) // iszero 0
val tm3 = eval1(tm2) // 0
By importing Arith, the constructors and visitors defined inside Arith are in scope.
With the syntactic sugar defined for visitors, a term can be constructed and evaluated
identically to the case class version.720

Discussion of the Approach. With the powerful extensible visitor encoding, the Arith
implementation is made both extensible and composable. However, extensible visitors

17

are even more verbose than conventional ones. The use of traits in implementing visitors
brings composability but, at the same time, requires extra instantiation code. Another
downside of using traits is that the exhaustiveness checking on visit methods is deferred725

to the instantiation stage. Moreover, the encoding relies on advanced features of Scala,
making it less accessible to novice Scala programmers.

2.8. EVF

Programming with visitors can be greatly simplified with the associated infrastruc-
ture automatically generated. This idea has been adopted in our previous work on730

EVF [21], which employs Java annotation processors for generating extensible visitor
infrastructure.

EVF employs Object Algebra interfaces [9] to describe the abstract syntax:
@Visitor interface TmAlg<Tm> {

Tm TmZero();735

Tm TmSucc(Tm t);
Tm TmPred(Tm t);

}
where the type parameter Tm represents the datatype and capitalized methods that return
Tm represent variants of Tm. Annotated as @Visitor, TmAlg will be recognized and740

processed by EVF. Then the infrastructure for TmAlg will be generated, including a class
hierarchy, a visitor interface and various default visitors. Based on the generated visitor
infrastructure, we are able to implement Nv:
interface Nv<Tm> extends TmAlgDefault<Tm,Boolean> {

@Override default Zero<Boolean> m() {745

return () -> false;
}
default Boolean TmZero() {

return true;
}750

default Boolean TmSucc(Tm t) {
return visitTm(t);

}
}
Nv is defined as an interface with visit methods implemented using default methods755

for retaining composability. The Java extensible visitor encoding adopted by EVF is,
however, not as powerful as the Scala one shown in Section 2.7, which does not support
modular ASTs. Whenever an annotated Object Algebra interface gets extended, a new
class hierarchy is generated. Thus, we cannot refer to a concrete datatype directly in
visitors since this will make them inextensible. Instead, datatypes are kept abstract760

in visitors. To traverse an abstract datatype like Tm, visitTm is called. visitTm is a
method exposed by the generated visitor interface, similar to apply shown in Section 2.7.
TmAlgDefault is the default visitor similar to TmDefault, where the default behavior is
specified inside m().

Defining Eval1 is tricker:765

interface Eval1<Tm> extends TmAlgDefault<Tm,Tm>, tm.Eval1<Tm> {
TmAlgMatcher<Tm,Tm> matcher(); // Dependency for nested case analysis
TmAlg<Tm> f(); // Dependency for AST reconstruction
Nv<Tm> nv(); // Dependency for another visitor

18

@default Tm TmPred(Tm t) {770

return matcher()
.TmZero(() -> t)
.TmSucc(t1 -> nv().visitTm(t1) ? t1 : TmPred(visitTm(t)))
.otherwise(() -> f().TmPred(visitTm(t)))
.visitTm(t);775

}
default Tm TmSucc(Tm t) {

return f().TmSucc(visitTm(t));
}

}780

There are three dependencies declared using abstract methods. Firstly, since Java does
not support native pattern matching, the matcher dependency is convenient for construct-
ing anonymous visitors. matcher returns an instance of the generated TmAlgMatcher
interface, which provides fluent setters for defining visit methods via Java 8’s lambdas.
The otherwise setter mimics the wildcard pattern. Secondly, the reconstruction of a785

term is done via an abstract factory f of type TmAlg<Tm>. Lastly, the abstract method nv
expresses the dependency on the visitor Nv.

Bool is implemented similarly in another package bool, whose definition is omitted.
The implementation of Arith is more interesting, which is shown below:
@Visitor interface TmAlg<Tm> extends nat.TmAlg<Tm>, bool.TmAlg<Tm> {790

Tm TmIsZero(Tm t);
}
interface Eval1<Tm> extends GTmAlg<Tm,Tm>,bool.Eval1<Tm>,nat.Eval1<Tm> {

TmAlgMatcher<Tm,Tm> matcher(); // Dependency refinement
TmAlg<Tm> f(); // Dependency refinement795

default Tm TmIsZero(Tm t) {
return matcher()

.TmZero(() -> f().TmTrue())

.TmSucc(t1 -> nv(t1) ? f().TmFalse() : f().TmIsZero(visitTm(t)))

.otherwise(() -> f().TmIsZero(visitTm(t)))800

.visitTm(t);
}

}
interface Nv<Tm> extends TmAlgDefault<Tm,Boolean>, nat.Nv<Tm> {}
Nat and Bool implementations are merged using Java 8’ multiple interface inheritance.805

Despite complementing TmIsZero, return types of dependencies are covariantly refined
for allowing TmIsZero calls. Since Nv is implemented as a visitor, it needs to be refined
as well.

Instantiation. Instantiating interfaces into classes for creating objects is also required:
static class NvImpl implements Nv<CTm>, TmAlgVisitor<Boolean> {}810

static class Eval1Impl implements Eval1<CTm>, TmAlgVisitor<CTm> {
public TmAlg<CTm> f() { return f; }
public TmAlgMatcher<CTm,CTm> matcher() {

return new TmAlgMatcherImpl<>();
}815

public Nv<CTm> nv() { return nv; }
}
static TmAlgFactory f = new TmAlgFactory();
static NvImpl nv = new NvImpl();
static Eval1Impl eval1 = new Eval1Impl();820

19

The interfaces are instantiated into classes with a suffix Impl. Eval1Impl, for example,
implements Eval1 by: 1) instantiating Tm as the generated datatype CTm; 2) inheriting the
generated TmAlgVisitor for a visitTm implementation; 3) fullfilling the dependencies
using TmAlgFactory, TmAlgMatcherImpl and NvImpl respectively.

Client Code. The term is constructed via the factory object f and can be evaluated like825

this:
CTm tm = f.TmIsZero(

f.TmIf(f.TmFalse(),f.TmTrue(),f.TmPred(f.TmSucc(f.TmZero()))));
eval1.visitTm(eval1.visitTm(eval1.visitTm(tm)))

Discussion of the Approach. EVF simplifies programming with visitors through code830

generation. It further addresses the extensibility issue by adopting extensible visitors.
Restricted by Java, nested case analysis in EVF is done by means of anonymous
visitors, which is not as expressive and concise as pattern matching in Scala. To enable
composability, EVF visitors are defined using Java 8’s interfaces with default methods—
in the same spirit of using traits in Scala. Consequently, the exhaustiveness checking835

on the top-level visit methods is lost in visitor definition site and is delayed to the
visitor instantiation site. Nevertheless, the exhaustiveness on the visit methods of the
anonymous visitors is guaranteed because the otherwise setter must be called when
constructing an anonymous visitor.

2.9. Castor840

Highly inspired by EVF, Castor is a Scala framework designed for programming
with generative, extensible visitors. Castor improves on EVF in two aspects. First, Cas-
tor adopts a more powerful Scala extensible visitor encoding presented in Section 2.7
that additionally enables pattern matching, GADTs, hierarchical datatypes, graphs, etc.
Second, Castor employs Scalameta for annotation processing, which allows not only845

generating new code based on the annotated code but also modifying the annotated code
itself. These extra abilities together result in more concise and expressive visitor code
than that in EVF. We next give a modular implementation of Arith using Castor, which
has a one-to-one correspondence with the code shown in Section 2.7.

Let us start with the root component Term:850

@family trait Term {
@adt trait Tm
@default(Tm) trait Eval1 {

type OTm = Tm
def tm = _ => throw NoRuleApplies855

}
}
Several Castor’s annotations are employed: @family denotes a Castor’s component;
@adt denotes a datatype; @default(Tm) denotes a default visitor on Tm. Compared to the
Term definition shown in Section 2.7, the definition here is much simplified. The accept860

declaration, the type member TmV, the visitor interface TmVisit and the default visitor
TmDefault are all generated by analyzing the @adt definition of Tm. Similarly, Castor
adds the extends clause, the self type annotation and the corresponding val declaration
for Eval1 by the annotation @default(Tm).

Defining Nat is also much simplified:865

20

@family trait Nat extends Term {
@adt trait Tm extends super.Tm {

case object TmZero
case class TmSucc(t: Tm)
case class TmPred(t: Tm)870

}
def nv(t: Tm): Boolean = t match {

case TmZero => true
case TmSucc(t1) => nv(t1)
case _ => false875

}
@default(Tm) trait Eval1 extends super.Eval1 {

override def tmSucc = x => TmSucc(this(x.t))
override def tmPred = {

case TmPred(TmZero) => TmZero880

case TmPred(TmSucc(t)) if nv(t) => t
case TmPred(t) => TmPred(this(t))

}
}

}885

Variants of Tm are declared inside Tm. Castor will pull them outside of Tm and automat-
ically complement the extends clause and the accept method definition. Since new
variants of Tm are introduced, Castor will add the extended TmVisit, TmDefault and
refined TmV to Nat.

Similarly, Bool can be defined as follows:890

@family trait Bool extends Term {
@adt trait Tm extends super.Tm {

case object TmTrue
case object TmFalse
case class TmIf(t1: Tm, t2: Tm, t3: Tm)895

}
@default(Tm) trait Eval1 extends super.Eval1 {

override def tmIf = {
case TmIf(TmTrue,t2,_) => t2
case TmIf(TmFalse,_,t3) => t3900

case TmIf(t1,t2,t3) => TmIf(this(t1),t2,t3)
}

}
}

The code below finishes the Arith implementation:905

@family trait Arith extends Nat with Bool {
@adt trait Tm extends super[Nat].Tm with super[Bool].Tm {

case class TmIsZero(t: Tm)
}
@visit(Tm) trait Eval1 extends super[Nat].Eval1910

with super[Bool].Eval1 {
def tmIsZero = {

case TmIsZero(TmZero) => TmTrue
case TmIsZero(TmSucc(t)) if nv(t) => TmFalse
case TmIsZero(t) => TmIsZero(this(t))915

}
}

}

21

Since the TmIsZero is an interesting case for Eval1, @visit annotation is used, which
denotes an ordinary visitor. Thus, Eval1 extends TmVisit after transformation.920

Client Code. A @family trait can be directly imported in client code since Castor
automatically generates a companion object for it:
import Arith._
val tm = TmIsZero(TmIf(TmFalse,TmTrue,TmPred(TmSucc(TmZero))))
val tm1 = eval1(tm) // iszero (pred (succ 0))925

val tm2 = eval1(tm1) // iszero 0
val tm3 = eval1(tm2) // 0
which is identical to the client code for Scala extensible visitors shown in Section 2.7.

Discussion of the Approach. We discuss how Castor addresses the four properties:

• Conciseness. By employing Scala’s concise syntax and metaprogramming, Cas-930

tor greatly simplifies the definition and usage of visitors. In particular, the need
for auxiliary visitors in performing deep case analysis is now replaced by pattern
matching via case clauses. The concept of visitors is even made transparent to
the end-user, making the framework more user-friendly.

• Exhaustiveness. The exhaustiveness of patterns in Castor consists of two parts.935

The exhaustiveness of visit methods is checked by the Scala compiler when
generating companion objects. For nested patterns using case clauses, a default
must be provided. However, this default is neither statically enforced by Scala
nor Castor. Note, however, that with specialized language support it is possible
to enforce that nested patterns always provide a default. This is precisely what940

EADDs [33] do.

• Extensibility. As illustrated by Nat, Bool and Arith, we can extend the datatype
with new variants and operations, modularly. Such extensibility is enabled by the
underlying extensible visitor encoding.

• Composability. Castor obtains composability via Scala’s mixin composition, as945

illustrated by Arith. Unlike partial functions, which silently compose overlapped
patterns, composing overlapped patterns in Castor will trigger compilation errors
because they are conflicting methods from different traits. The error message will
indicate the source of conflicts and we are free to select an implementation in
resolving the conflict. The composition order does not matter as well.950

Table 1 summarizes the evaluation on pattern matching approaches abovementioned
in terms of conciseness, exhaustiveness, extensibility, and composability. Castor is
compared favorably in terms of the four properties among the approaches.

3. Hierarchical Datatypes

Traditional functional style datatypes are flat: variants have no relationships among955

each other. In contrast, object-oriented style datatypes (i.e. data structures modeled
as class hierarchies) can be hierarchical: a variant can extend intermediate datatypes

22

Table 1: Pattern matching support comparison: = good, G#= neutral, #= bad.

Conciseness Exhaustiveness Extensibility Composability
Conventional visitors # # #
Sealed case classes # #
Open case classes # #
Partial functions # G#
Extensible visitors # #
EVF G# G#
Castor G#*

* Castor only gets half score on exhaustiveness because for nested case analysis Scala
cannot enforce a default. In a language-based approach nested case analysis should
always require a default, thus fully supporting exhaustiveness.

and/or an existing variant. In other words, while OO style class hierarchies can be
arbitrarily deep, typical functional datatypes would correspond to a hierarchy where the
depth is always one.960

Hierarchical datatypes facilitate reuse. The subtyping relation allows the semantics
defined for supertypes to be reused in subtypes. Castor supports both styles of datatypes.
In this section, we illustrate Castor’s support for hierarchical datatypes by revising the
Arith language. Another form of hierarchical datatypes will be shown in Section 5,
where a new variant is introduced by refining an existing variant. Moreover, the965

case study on UML Activity Diagrams Section 8 further illustrates the application of
hierarchical datatypes.

3.1. Flat Datatypes versus Hierarchical Datatypes

Terms of the Arith language shown in Section 2 are represented as a flat datatype,
where all the variants extend the root datatype Tm. In fact, terms can be organized970

in a hierarchical manner according to their types and arities. Figure 2 visualizes the
hierarchical representation of terms and the following code materializes it using Castor:
@adt trait Tm {

trait TmNullary
trait TmUnary { val t: Tm }975

trait TmTernary { val t1, t2, t3: Tm }
trait TmNat extends TmNullary
trait TmBool extends TmNullary
trait TmNat2Nat extends TmUnary
trait TmNat2Bool extends TmUnary980

case object TmZero extends TmNat
case class TmSucc(t: Tm) extends TmNat2Nat
case class TmPred(t: Tm) extends TmNat2Nat
case object TmTrue extends TmBool
case object TmFalse extends TmBool985

case class TmIf(t1: Tm, t2: Tm, t3: Tm) extends TmTernary
case class TmIsZero(t: Tm) extends TmNat2Bool

}
The hierarchy becomes multi-layered, where several intermediate datatypes are in-
troduced and case classes/objects do not directly extend the root but an intermediate990

datatype. Traits in the second layer (TmNullary, TmUnary and TmTernary) classify terms

23

Tm

TmNat

TmNullary TmTernary

TmBool TmNat2Nat

TmSucc TmPredTmTrue TmFalse

TmNat2Bool

TmIsZeroTmZero

TmIf

TmUnary

Figure 2: Hierarchical representation of Arith terms.

according to their arities. Based on arities, traits in the third layer (TmNat, TmBool,
TmNat2Nat, TmNat2Bool) further classify terms according to their types. Concrete case
classes/objects are in the fourth layer that extend a corresponding intermediate datatypes.
For example, both TmSucc and TmPred extend TmNat2Nat.995

3.2. Explicit Delegations

Now we illustrate the advantages of hierarchical datatypes. Suppose we would like
to define a printer for Arith that prints out a term using an S-expression like format.
For example, TmIsZero(TmIf(TmFalse,TmTrue,TmPred(TmSucc(TmZero)))) is printed
as "(iszero (if false true (pred (succ 0))))". With terms being classified ac-1000

cording to their arities, the printer can be modularized:
@visit(Tm) trait Print {

type OTm = String
def tmUnary(x: TmUnary, op: String) = "(" + op + " " + this(x.t) + ")"
def tmSucc = tmUnary(_,"succ")1005

def tmPred = tmUnary(_,"pred")
def tmIsZero = tmUnary(_,"iszero")
def tmZero = "0"
def tmTrue = "true"
def tmFalse = "false"1010

def tmIf = x =>
"(if " + this(x.t1) + " " + this(x.t2) + " " + this(x.t3) + ")"

}
Since all unary terms (TmSucc, TmPred and TmIsZero) are printed in the same way except
for the operator, we define an auxiliary method tmUnary. Taking a TmUnary instance and1015

an operator string as arguments, tmUnary puts the parentheses around the operator and
the printed inner term of TmUnary. Then, tmSucc, tmPred and tmIsZero are implemented
just by calling tmUnary with their respective instance and operator string.

3.3. Default Visitors

The previous example has shown how to enhance the modularity through explicit1020

delegations. When subtypes share the same behavior with supertypes, the explicit
delegations can be eliminated with the help of the generated default visitor. Currently,
the Arith language presented allows ill-typed terms such as TmPred(TmTrue) to be
constructed. To rule out these ill-typed terms, typechecking is needed. Some of the

24

terms share typing rules: TmTrue and TmFalse; TmSucc and TmPred. With Castor’s1025

default visitor, we can avoid duplication of typing rules:
@adt trait Ty {

case object TyNat
case object TyBool

}1030

@default(Tm) trait Typeof {
type OTm = Option[Ty]
override def tmBool = _ => Some(TyBool)
override def tmNat = _ => Some(TyNat)
override def tmNat2Nat = x => this(x.t) match {1035

case Some(TyNat) => Some(TyNat)
case _ => None

}
override def tmNat2Bool = x => this(x.t) match {

case Some(TyNat) => Some(TyBool)1040

case _ => None
}
override def tmIf = x => (this(x.t1),this(x.t2),this(x.t3)) match {

case (Some(TyBool),ty1,ty2) if ty1 == ty2 => this(x.t2)
case _ => None1045

}
def tm = _ => None

}
Like Tm, Ty is a datatype for representing types, where TyNat and TyBool are two
concrete types. A visitor Typeof is defined for typechecking terms. The output type1050

of Typeof is Option[Ty], indicating that if a term is well-typed, some type will be
returned; otherwise a None will be returned. Except for TmIf, typing rules are defined on
intermediate datatypes. For example, tmNat2Nat is overridden, which checks whether
its inner term is of type TyNat and returns TyNat if so. tmSucc and tmPred are implicitly
implemented by the inherited default visitor, whose definition is given below:1055

trait TmDefault extends TmVisit { _: TmV =>
def tm: Tm => OTm
def tmNullary = (x: TmNullary) => tm(x)
def tmUnary = (x: TmUnary) => tm(x)
def tmTernary = (x: TmTernary) => tm(x)1060

def tmNat = (x: TmNat) => tmNullary(x)
def tmBool = (x: TmBool) => tmNullary(x)
def tmNat2Nat = (x: TmNat2Nat) => tmUnary(x)
def tmNat2Bool = (x: TmNat2Bool) => tmUnary(x)
def tmZero = tmNat(TmZero)1065

def tmSucc = tmNat2Nat(_)
def tmPred = tmNat2Nat(_)
def tmTrue = tmBool(TmTrue)
def tmFalse = tmBool(TmFalse)
def tmIf = tmTernary(_)1070

def tmIsZero = tmNat2Bool(_)
}
We can see that the default visitor extends the visitor interface with visit methods for
intermediate datatypes and each visit method is implemented by delegating to its direct
parent’s visit method.1075

25

4. GADTs and Well-Typed EDSLs

In this section, we show the support for generalized algebraic data types (GADTs) [37]
in Castor. GADTs allow not only datatypes to be parameterized but also well-
formedness constraints to be expressed in constructors. GADTs are widely used for
building well-typed domain-specific languages (EDSLs), which exploit the type system1080

of the host language to typecheck the terms of the EDSL. Popular approaches to EDSLs
like Finally Tagless [11] can provide an encoding of GADTs and provide modularity as
well. However, the encoding employed by Finally Tagless is based on Church encodings.
Unfortunately, this makes it hard to model several operations that require nested patterns
or operations with dependencies. The interested reader is referred to Section 2 and 31085

of the EVF paper [21] for a detailed discussion on the issue of Church encodings. We
show that just as Finally Tagless encodings, modularity is supported; and like GADTs
nested pattern matching and dependencies are easy to do as well.

4.1. GADTs and Well-Typed Terms

We have shown how to rule out ill-typed terms using a type-checking algorithm in1090

Section 3.3. A better solution, however, is to prevent such terms from being constructed
in the first place. This is possible through representing Arith terms using a GADT-style:
@family trait GArith {

@adt trait Tm[A] {
case object TmZero extends Tm[Int]1095

case class TmSucc(t: Tm[Int]) extends Tm[Int]
case class TmPred(t: Tm[Int]) extends Tm[Int]
case object TmTrue extends Tm[Boolean]
case object TmFalse extends Tm[Boolean]
case class TmIf[A](t1: Tm[Boolean], t2: Tm[A], t3: Tm[A])1100

extends Tm[A]
case class TmIsZero(t: Tm[Int]) extends Tm[Boolean]

}
}
Tm is now parameterized by a type parameter A. When declaring variants of Tm, the1105

extends clause cannot be omitted anymore since Castor does not know how to in-
stantiate A. Notice that A is instantiated differently as Int or Boolean for expressing
well-formedness constraints. For example, TmIsZero requires its subterm t of type
Tm[Int]. Consequently, one cannot supply a term of type Tm[Boolean] constructed
from TmTrue, TmFalse or TmIsZero to TmIsZero. Therefore, ill-formed terms are stati-1110

cally rejected by the Scala type system:
TmIsZero(TmZero) // Accepted!
TmIsZero(TmTrue) // Rejected!

4.2. Well-Typed Big-Step Evaluator

As opposed to small-step semantics, big-step semantics immediately evaluates a1115

valid term to a value. In the case of Arith, a term can either be evaluated to an integer
or a boolean value. Without GADTs, implementing a big-step evaluator for Arith is
tedious:

26

@family @adts(Tm) @ops(Eval1) trait EvalArith extends Arith {
@adt trait Value {1120

case class IntValue(v: Int)
case class BoolValue(v: Boolean)

}
@visit(Tm) trait Eval {

type OTm = Value1125

def tmZero = IntValue(0)
def tmSucc = x => this(x.t) match {

case IntValue(n) => IntValue(n+1)
case _ => throw NoRuleApplies

}1130

def tmPred = x => this(x.t) match {
case IntValue(n) => IntValue(n-1)
case _ => throw NoRuleApplies

}
def tmTrue = BoolValue(true)1135

def tmFalse = BoolValue(false)
def tmIf = x => this(x.t1) match {

case BoolValue(true) => this(x.t2)
case BoolValue(false) => this(x.t3)
case _ => throw NoRuleApplies1140

}
def tmIsZero = x => this(x.t) match {

case IntValue(0) => BoolValue(true)
case IntValue(_) => BoolValue(false)
case _ => throw NoRuleApplies1145

}
}

}
EvalArith illustrates the operation extensibility of Castor, which does not introduce any
new variants of Tm but a new visitor Eval on Tm. Auxiliary annotations @adts and @ops1150

provide inherited datatypes and operations for Castor to generate the companion object.
Such an implementation suffers from the so-called tag problem [11]: to accommodate
different evaluation result types, an open datatype Value is defined for accommodating
integers, booleans and many other evaluation result types that might be added in the
future. The two variants IntValue and BoolValue are introduced for wrapping integers1155

and boolean values, respectively. Pattern matching is used for unwrapping the evaluation
results from inner terms. A defensive wildcard is needed for dealing with ill-typed terms.
We can see that the tagging overhead is high.

Fortunately, we can avoid the tag problem with the help of Castor’s GADTs. The
extensible visitor encoding for GADTs is slightly different from the one presented in1160

Section 2.7, which additionally take the type information carried by terms into account.
For instance, the visitor interface generated for Tm[A] is listed below:
trait TmVisit { _: TmV =>

type OTm[A]
def apply[A](x: Tm[A]) = x.accept(this)1165

def tmZero: OTm[Int]
def tmSucc: TmSucc => OTm[Int]
def tmPred: TmPred => OTm[Int]
def tmTrue: OTm[Boolean]
def tmFalse: OTm[Boolean]1170

27

def tmIf[A]: TmIf[A] => OTm[A]
def tmIsZero: TmIsZero => OTm[Boolean]

}
Each visit method now returns a value of a higher-kinded type OTm[A], where A is
instantiated consistently with how it is instantiated in the extends clause. For example,1175

tmZero is of type OTm[Int] while tmTrue is of type OTm[Boolean]. Then, a well-typed
big-step evaluator can be made tagless:
@family @adts(Tm) trait EvalGArith extends GArith {

@visit(Tm) trait Eval {
type OTm[A] = A1180

def tmZero = 0
def tmSucc = x => this(x.t) + 1
def tmPred = x => this(x.t) - 1
def tmTrue = true
def tmFalse = false1185

def tmIf[A] = x => if (this(x.t1)) this(x.t2) else this(x.t3)
def tmIsZero = x => this(x.t) == 0

}
}
With the output type specified as A, the visit method returns a value of the type carried1190

by the term. For example, visit methods tmZero and tmTrue return Int and Boolean
values respectively. Moreover, this Eval implementation remains retroactive when terms
of new types (such as Tm[Float]) are introduced.

Here are some terms that have different evaluation result types.
import EvalGArith._1195

eval(TmSucc(TmZero)) // 1
eval(TmIsZero(TmZero)) // true

4.3. Well-Typed Small-Step Evaluator

Well-typed big-step evaluators can be defined with Finally Tagless in an equally
simple manner. What distinguishes Castor from Finally Tagless is the ability to define1200

small-step evaluators in an easy way. The need for deep patterns and the dependency
on a numeric value checker causes immediate trouble for Finally Tagless. Although
workarounds may be possible for some of the issues, they are cumbersome and require
significant amounts of boilerplate code [23]. In contrast, encoding small-step semantics
in a GADT-style with Castor is unproblematic:1205

@family @adts(Tm) trait Eval1Arith extends GArith {
def nv[A](t: Tm[A]): Boolean = t match {

case TmZero => true
case TmSucc(t1) => nv(t1)
case _ => false1210

}
@default(Tm) trait Eval1 {

type OTm[A] = Tm[A]
def tm[A] = x => throw NoRuleApplies
override def tmIf[A] = {1215

case TmIf(TmTrue,t2,_) => t2
case TmIf(TmFalse,_,t3) => t3
case TmIf(t1,t2,t3) => TmIf(this(t1),t2,t3)

}

28

override def tmIsZero = {1220

case TmIsZero(TmZero) => TmTrue
case TmIsZero(TmSucc(t)) if nv(t) => TmFalse
case TmIsZero(t) => TmIsZero(this(t))

}
... // Other cases are the same as before1225

}
}
The instantiation of the output type guarantees that the small-step evaluator is type-
preserving. That is, the type carried by a term remains the same after one step of
evaluation. For example, calling eval1 on TmZero will never return TmTrue no matter1230

how Eval1 is implemented. The actual definition of Eval1 is almost the same as before
except that nv, tm and tmIf become generic. Still, the ability to do nested pattern
matching and to call nv in Eval1 is preserved.

4.4. Extension: Higher-Order Abstract Syntax for Name Binding

A recurring problem in designing EDSLs is how to deal with binders. For example,1235

in lambda calculus, operations involved with names like α-equivalence and capture-
avoiding substitution are non-trivial to define. Higher-order abstract syntax (HOAS) [38]
avoids these problems through reusing the binding mechanisms provided by the host
language. The following code shows how to extend Arith with simply-typed lambda
calculus modularly:1240

@family trait HOAS extends EvalGArith {
@adt trait Tm[A] extends super.Tm[A] {

case class TmVar[A](v: A) extends Tm[A]
case class TmAbs[A,B](f: Tm[A] => Tm[B]) extends Tm[A => B]
case class TmApp[A,B](t1: Tm[A => B], t2: Tm[A]) extends Tm[B]1245

}
@visit(Tm) trait Eval extends super.Eval {

def tmVar[A] = _.v
def tmAbs[A,B] = x => y => this(x.f(TmVar(y)))
def tmApp[A,B] = x => this(x.t1)(this(x.t2))1250

}
}
Three new forms of terms are introduced: lifters (TmVar), lambda abstractions (TmAbs)
and applications (TmApp). Of particular interest is TmAbs, which constructs a term of type
Tm[A => B] from a Scala lambda function Tm[A] => Tm[B] and thus is higher-order.1255

Correspondingly, Eval is extended with three new visit method implementations.
tmVar simply extracts the value out of the lifter. tmAbs is trickier since it returns a value
of type A => B. A lambda function is hence created, which takes y of type A and lifts it
into Tm[A] using TmVar, then applies x.f to the lifted term for computing a Tm[B] and
finally does a recursive call to evaluate Tm[B] into B. tmApp recursively evaluates t1 and1260

t2, which returns the value A => B and A respectively. Then it applies A => B to A for
getting a value of B.

Here is an example that illustrates the use of HOAS:
import HOAS._
eval(TmApp(TmAbs((t: Tm[Int]) => TmSucc(TmSucc(t))), TmZero)) // 21265

We first create an abstraction term that applies successor twice to the argument t and
then apply it to constant zero. Note that the type of t is explicitly specified because

29

Machine

states *

State

name: String

target

transitions
*

Transition

event: String

Figure 3: Class diagram of FSM.

close
Opened

open

lock

Closed

unlock

Locked

Figure 4: A state machine for controlling a door.

Scala’s type system is not powerful enough to infer the type of TmAbs without the type
annotation.

5. Graphs and Imperative Visitors1270

Examples presented so far are all functional visitors (i.e. computation is done
via returning values) on immutable trees. In fact, Castor also supports imperative
visitors (i.e. computation is done via side effects) and data structures can be mutable
graphs. Imperative computation is, in some cases, more efficient than the functional
counterpart regarding time and memory. Compared to trees, graphs are a more general1275

data structure that have many important applications. For instance, in the domain of
compilers, abstract semantic graphs can be used for representing shared subexpressions,
facilitating optimizations like common subexpression elimination. In this section, we
show how to model graphs and imperative visitors with Castor.

5.1. The Difficulties in Modeling Graphs1280

Modeling graphs modularly is non-trivial in approaches such as Object Algebras [9].
Consider modeling a Finite State Machine (FSM) language. Figure 3 shows a UML class
diagram for the FSM language. A Machine consists of some States. Each State has
a name and a number of Transitions. A Transition is triggered by an event, taking
one State to another. Concretely, Figure 4 shows a simple state machine for controlling1285

a door, which has three states (opened, closed and locked) and four transitions (close,
open, lock and unlock). From Figure 4 we can see that this state machine forms a graph,
where we can go back and forth from one state to another along with the transitions.

A Failed Attempt with Object Algebras. Let us try to model the FSM language with
Object Algebras. Describing the FSM language using a multi-sorted Object Algebra1290

interface is unproblematic:
trait FSM[M,S,T] {

def machine(states: List[S]): M
def state(name: String, trans: List[T]): S
def trans(event: String, target: S): T1295

}
where type parameters M, S, T represent different datatypes and factory methods capture
their variants. However, constructing a graph using this representation is hard because

30

Object Algebras support only immutable tree structures that are built bottom up. Here is
a failed attempt on modeling the door state machine:1300

// Forward reference error!
def door[M,S,T](f: FSM[M,S,T]) = {

val close: T = f.trans("close",closed)
val open: T = f.trans("open",opened)
val lock: T = f.trans("lock",locked)1305

val unlock: T = f.trans("unlock",closed)
val opened: S = f.state("opened", List(close))
val closed: S = f.state("opened", List(open,lock))
val locked: S = f.state("opened", List(unlock))
f.machine(List(opened,closed,locked))1310

}
A forward reference error will always occur no matter how we arrange these statements.
The reason is that there is no proper way to decouple the cyclic references between
states and transitions.

5.2. FSM in Castor1315

Fortunately, modeling the FSM language using Castor is not a problem:
@family trait FSM {

@adt trait M {
val states = ListBuffer[S]()
class Machine1320

}
@adt trait S {

val trans = ListBuffer[T]()
var name: String
class State(var name: String)1325

}
@adt trait T {

class Trans(val event: String, var target: S)
}
@visit(M,S,T) trait Print {1330

type OM = String
type OS = OM
type OT = OM
def machine = _.states.map{this(_)}.mkString("\n")
def state = s => s.trans.map{this(_)}.mkString(s.name+":\n","\n","")1335

def trans = t => t.event + " -> " + t.target.name
}
@visit(M,S,T) trait Step {

type OM = String => Unit
type OS = OM1340

type OT = OM
var res: S = null
def machine = m => event => m.states.foreach{this(_)(event)}
def state = s => event => s.trans.foreach{this(_)(event)}
def trans = t => event => if (event == t.event) res = t.target1345

}
}
The actual class hierarchies of the FSM language are slightly different from what
Figure 3 shows. Each class in the UML diagram is defined inside an @adt trait for

31

allowing potential variant extensions. Fields are either declared as var or val for1350

enabling/disabling mutability.

Combined Visitors. There are two visitors defined for the FSM language, namely
Print and Step. Annotated as @visit(M,S,T), both of them are combined visitors
on transitions, states, and machines. Such a combined implementation is much more
compact than defining three mutually dependent visitors with distinct names. Print1355

instantiates the output types OM, OS, OT consistently as String and implements three visit
methods machine, state and trans altogether. Concretely, methods machine and state
map Print to the substructures and concatenate the results with a newline. For trans,
we should not call this on the target state otherwise it will not terminate. Instead, we
print out the name field on the target state only.1360

Imperative Visitors. The Step visitor captures a small-step execution semantics of FSM.
Given an event, it goes through the structure for finding out the transition triggered by
that event and returning the state that transition points to. Note that Step is also an
imperative visitor, which instantiates the output types as String => Unit and updates
the field res to the found target transition. If res is still null after traversal, then no1365

such transition exists.
Now we are able to model the state machine that controls doors like this:

import FSM._
val door = new Machine
val opened = new State("Opened")1370

val closed = new State("Closed")
val locked = new State("Locked")
val open = new Trans("open",opened)
val close = new Trans("close",closed)
val lock = new Trans("lock",locked)1375

val unlock = new Trans("unlock",closed)
door.states += (opened,closed,locked)
opened.trans += close
closed.trans += (open,lock)
locked.trans += unlock1380

The graph is constructed in a conventional OOP style. Unlike Object Algebras, the struc-
ture is built top down. To decouple cyclic references, the declaration and initialization
of the variables are separated. This is possible because unlike Object Algebras, variants
in Castor are concrete classes provided with setters.

Calling print(door) produces the following output:1385

Opened:
close -> Closed
Closed:
open -> Opened
lock -> Locked1390

Locked:
unlock -> Closed
Some tests on Step are:
step(door)("open")
println(step.res.name) // "Opened"1395

step.res = null // Reset to null
step(door)("close")

32

println(step.res.name) // "Closed"
Imperative visitors should be used more carefully. In the case of Step, its field res
needs to be reset to null afterwards. Otherwise, the result may be wrong next time we1400

call step.

5.3. Language Composition and Memoized Traversals

Consider unifying FSM and Arith. The unification happens when a new kind of
transition called guarded transitions is introduced. A guarded transition additionally
contains a boolean term and is triggered not only by the event but also by the evaluation1405

result of that term. Combining FSM with the GADT version of Arith is given below:
@family @adts(Tm,F,S) @ops(Eval)
trait GuardedFSM extends FSM with EvalArith {

@adt trait T extends super[FSM].T {
class GuardedTrans(event: String, target: State, val tm: Tm[Boolean])1410

extends Trans(event, target)
}
@visit(M,S,T) trait Print extends super[FSM].Print {

def guardedTrans = t => trans(t) + " when " + t.tm.toString
}1415

@visit(F,S,T) trait Step extends super[FSM].Step {
def guardedTrans = t => event => if (eval(t.tm)) trans(t)(event)

}
@visit(S,T) trait Reachable {

type OS = Unit1420

type OT = Unit
val reached = collection.mutable.Set[S]()
def state = s =>

if (!reached.contains(s)) {
reached += s1425

s.trans.foreach(this(_))
}

def trans = t => this(t.target)
def guardedTrans = t => if (eval(t.tm)) this(t.target)

}1430

}
Class GuardedTrans illustrates another form of hierarchical datatypes discussed in
Section 3, which extends an existing variant Trans. The additional field tm is of
type Tm[Boolean], ensuring that the evaluation result is a boolean value. To handle
GuardedTrans, Print and Step are extended with an implementation of guardedTrans1435

method. Having GuardedTrans as a subtype of Trans, we are able to partially reuse the
semantics of Trans by calling the inherited trans method on a GuardedTrans instance.

Memoized Traversals. Naively traversing a graph might be inefficient because the same
object may be traversed multiple times. If not dealt with carefully, the traversal may
not even terminate. A more appropriate approach is to memoize the results of traversed1440

objects and fetch the cached result when an object is traversed again. Reachable is a
combined imperative visitor that finds out all reachable states for a given state. The
reachable states are collected in the reached field, which is initialized as an empty
mutable set. Reachable employs memoized depth-first search, which first checks
whether the state has already been traversed. If not, the state is added to reached and1445

33

Fam ::= @family @adts(D) @ops(V) trait F extends F{ Adt Vis}

Adt ::= @adt trait D[X] extends super[F].D[X]{Ctr}

Ctr ::= class C[X] extends
(
C[T] with

)
? D[T]

| object C extends
(
C[T] with

)
? D[T]

| trait D[X] extends D[T]
Vis ::= @

(
default | visit

)
(D) trait V extends super[F].V

T ::= X | D[T] | Int | T=>T

Figure 5: Syntax.

the recursion goes to the states its transitions lead to. Similarly, memoization is also
applicable to functional visitors by changing reached to a mutable map.

We can build a guarded door controller by changing the import statement and how
lock is initialized:
val lock = new GuardedTrans("lock",locked,TmFalse)1450

Now, an opened door can no longer be locked because the guard evaluates to false:
reachable(open)
println(reachable.reached.size) // 2
By setting the expression to TmTrue, the door can be locked again:
lock.tm = TmTrue1455

reachable.clear // Reset to empty
reachable(open)
println(reachable.reached.size) // 3

6. Formalized Code Generation

In previous sections, we have shown code written with Castor and its corresponding1460

generated code. In this section, we formally describe the valid Scala programs accepted
by Castor and the transformation scheme.

6.1. Syntax
Figure 5 describes valid Scala programs accepted by Castor. Uppercase meta-

variables range over capitalized names. A is written as a shorthand for a potentially1465

empty sequence A1 • . . . • An, where • denotes with, comma or semicolon depending
on the context.

(
. . .
)
? denotes that . . . is optional. For brevity, we ignore the syntax that

is irrelevant to the transformation, such as the case modifier, constructors, fields, and
methods. These parts are kept unchanged after transformation.

6.2. Transformation1470

Figure 6 formalizes the transformation. We use semantic brackets (~·�) in defining
the transformation rules and angle brackets (<>) for processing sequences. The transfor-
mation is given by pattern matching on the concrete syntax and is quite straightforward.
One can see that processing the Arith implementation in Castor (cf. Section 2.9)
through Figure 6 will get back the extensible visitor implementation (cf. Section 2.7).1475

Here we briefly discuss some interesting cases. A trait is recognized as a base case
if it extends nothing. Base cases have extra declarations such as accept declaration for

34

datatypes or val declaration for visitors. Variants declared using class, trait or object
are treated differently. objects and classes have their corresponding visit methods in
the visitor interface while visit methods for traits only exist in the default visitor. The1480

extends clause for @adt is used in inferring the extends clause for concrete visitors.

6.3. Implementation

Castor employs Scalameta [39] (version 1.8.0), a modern Scala meta-programming
library, for analyzing and generating the code. The actual implementation closely
follows the formalization. After parsing, the Scala source program is represented as an1485

AST. We first check the validity of that AST with errors like annotating @adt not on a
trait reported. We then generate code by analyzing the AST. Next, we build the AST
with code injected. Finally, the AST is typechecked by the Scala compiler. During the
process, Scala’s quasiquotes are used, which allow us to analyze and rebuild the AST
conveniently via the concrete syntax.1490

7. Case Study I: Types and Programming Languages

In this section, we present a case study on modularizing the interpreters in TAPL [22].
The Arith language and its variations are directly from or greatly inspired by the TAPL
case study. TAPL are a good benchmark for examining Castor’s capabilities of open
pattern matching and modular dependencies. The reason is that core data structures of1495

TAPL interpreters, types and terms, are modeled using algebraic datatypes; operations
over types and terms are defined via pattern matching. There are a few operations that
require nested patterns: small-step semantics, type equality, and subtyping relations.
They all come with a default. The data structures and associated operations should be
modular as new language features are introduced and combined. However, without1500

proper support for modular pattern matching, the original implementation duplicates
code for features that could be shared. With Castor and techniques shown in Section 2.9,
we are able to refactor the non-modular implementation into a modular manner. Our
evaluation shows that the refactored version significantly reduces the SLOC compared
to a non-modular implementation found online. However, at the moment, improved1505

modularity does come at some performance penalty.

7.1. Overview

An existing Scala implementation of TAPL2 strictly follows the original OCaml
version, which uses sealed case classes and pattern matching. The first ten languages
(arith, untyped, fulluntyped, tyarith, simplebool, fullsimple, fullerror, bot, rcdsubbot and1510

fullsub) are our candidates for refactoring. Each language implementation consists of 4
files: parser, syntax, core and demo. These languages cover various features including
arithmetic, lambda calculus, records, fixpoints, error handling, subtyping, etc. Features
are shared among these ten languages. However, such featuring sharing is achieved via
duplicating code, causing problems like:1515

2https://github.com/ilya-klyuchnikov/tapl-scala

35

https://github.com/ilya-klyuchnikov/tapl-scala

~@family @adts(D) @ops(V) trait F extends F{ Adt Vis}� =

trait F extends F{ ~Adt� ~Vis�}
object F extends F{
〈type DV = DVisit | D ∈ D ∪ Adt〉
〈object v extends V | V ∈ V ∪ Vis〉

}
~@adt trait D[X]{Ctr}� =

type DV <:DVisit
trait D[X]{ def accept(v:DV): v.OD[X]}
~Ctr�
trait DVisit{ _:DV =>

type OD[X]
def apply[X](x:D[X]) = x.accept(this)
~Ctr�visit

}
trait DDefault extends DVisit{ _:DV =>

def d[X]:D[X] => OD[X]
~Ctr�de f ault

}
~@adt trait D extends super[F].D{Ctr}� =

type DV <:DVisit
~Ctr�
trait DVisit extends super[F].DVisit{ _:DV =>~Ctr�visit}
trait DDefault extends DVisit with super[F].DDefault{_:DV => ~Ctr�de f ault}
~class C[X] . . .� = class C[X] . . . { override def accept(v:DV) = v.c(this)}
~object C . . .� = object C . . . { override def accept(v:DV) = v.c}
~Ctr� = Ctr
~class C[X] extends

(
. . . with

)
? D[T]�visit = def c[X]:C => OD[T]

~object C extends
(
. . . with

)
? D[T]�visit = def c: OD[T]

~Ctr�visit = ∅

~class C1[X] extends C2[T] . . .�de f ault = def c1[X]= x => c2(x)
~object C1 extends C2[T] . . .�de f ault = def c1 = c2(C1)
~trait D1[X] extends D2[T] . . .�de f ault = def d1 = (x:D1[X]) => d2(x)
~@
(
default | visit

)
(D) trait V� =

trait V extends D
(
Default | Visit

)
{ _:DV=> . . .}

val v : V
~@
(
default | visit

)
(D) trait V extends super[F].V� =

trait V extends D
(
Default | Visit

)
with super[F].V{ _:DV=> . . .}

~X� = 〈~X� | X ∈ X〉

Figure 6: Transformation.

36

Arith

Nat Bool

Untyped

VarApp

FullUntyped

Record Str Let

TyArith

TyBoolTyNat

SimpleBool

Typed

FullSimple

Variant

MoreExt

Bot

Top

FullError RcdSubBot

TyRcd

FullSub

Term

Type

TyStr TyLet

Extension

LEGEND

													Original	language

												Extracted	feature

				Dependency

Figure 7: Simplified language/feature dependency graph.

• Inconsistent definitions. Lambdas are printed as "lambda" in all languages
except for untyped, where lambdas are printed as "\".

• Feature leaks. Features introduced in the latter part of the book (e.g., System F)
leak to previous language implementations such as fullsimple.

Our refactoring focuses on syntax and core where datatypes and associated oper-1520

ations are defined. Figure 7 gives a simplified high-level overview of the refactored
implementation. The candidate languages are represented as gray boxes whereas ex-
tracted features/sub-languages are represented as white boxes. From Figure 7 we can
see that the interactions between languages (revealed by the arrows) are quite intense.
Take Arith for example, it is a sublanguage for tyarith, fulluntyped, fullerror, fullsimple1525

and fullsub. Unfortunately, without proper modularization techniques, the original
implementation repeats the definition of arith at least five times. In the refactored
implementation written with Castor, however, arith is defined only once and modularly
reused in other places.

7.2. Evaluation1530

We evaluate Castor by answering the following questions:

• Q1. Is Castor effective in reducing SLOC?

• Q2. How does Castor compare to EVF?

• Q3. How much performance penalty does Castor incur?

Q1. Table 2 reports the SLOC comparison results. With all the features/sublanguages1535

extracted, implementing a candidate language with Castor is merely done by compos-
ing features/sublanguages. Therefore, the more features/sublanguages the candidate

37

Table 2: SLOC evaluation of TAPL interpreters

Extracted Castor EVF Language Castor EVF Scala
bool 71 98 arith 31 33 106
extension 24 34 untyped 40 46 124
str 42 55 fulluntyped 18 47 256
let 48 47 tyarith 22 26 157
moreext 112 106 simplebool 24 38 212
nat 85 103 fullsimple 24 83 619
record 117 198 fullerror 68 105 396
top 79 86 bot 40 61 190
typed 82 138 rcdsubbot 30 39 257
varapp 40 65 fullsub 57 116 618
variant 136 161
misc 212 172 Total 1402 1857 2935

language uses, the more code Castor reduces. Compared to the non-modular Scala
implementation, for a simple language like arith, the reduction rate3 is 71%; for a
feature-rich language like fullsimple, the reduction rate can be up to 96%. Overall,1540

Castor reduces over half of the total SLOC with respect to the non-modular version.

Q2. Table 2 also compares Castor with EVF [21]. Castor reduces over 400 SLOC
compared to EVF. As we have shown in Section 2, the reduction comes from the
native support for pattern matching, generated dependency declarations, etc. More
importantly, the instantiation burden for EVF is heavy if there are a lot of visitors and1545

the dependencies are complex. In contrast, Castor completely removes the instantiation
burden by generating companion objects automatically.

Q3. To measure the performance, we randomly generate 10,000 terms for each language
and calculate the average evaluation time for 10 runs. The ScalaMeter4 microbenchmark
framework is used for performance measurements. The benchmark programs are1550

compiled using Scala 2.12.7, JDK version 1.8.0_211 and are executed on a MacBook
Pro with 2.3 GHz quad-core Intel Core i5 processor with 8 GB memory. Figure 8
compares the execution time in milliseconds. From the figure we can see that Castor
implementations have a 1.35x (arith) to 3.92x (fullsub) slowdown with respect to
the corresponding non-modular Scala implementations. The more features a modular1555

implementation combines, the more significant the slowdown is. Figure 9 further
compares the performance of the Scala Arith implementations discussed in Section 2.
Obviously, modular implementations are slower than non-modular implementations.
With the underlying optimizations, the implementation based on sealed case classes is
faster than the implementation based on conventional visitors.1560

We believe that the performance penalty is mainly caused by method dispatching. A
modular implementation typically has a complex inheritance hierarchy. Dispatching on

3Reduction rate =
Scala SLOC − Castor SLOC

Scala SLOC
× 100%

4http://scalameter.github.io

38

http://scalameter.github.io

Evaluation time (ms)

arith
untyped

fulluntyped
tyarith

simplebool
fullsimple

bot
fullerror

rcdsubbot
fullsub

0 150 300 450 600
124.8

135.4

89.6

133.4

124.4

160.6

65.2

120.3

126.6

62

488.6

341.2

272.7

316.2

357

570.7

97.3

355.3

248.2

83.6 Castor Scala

Figure 8: Performance evaluation of TAPL interpreters.

Evaluation time (ms)

Conventional visitor
Sealed case class

Open case class
Partial function

Castor
0 22.5 45 67.5 90

83.6
84.1

69.9
62

68.9

Figure 9: Performance evaluation of Arith.

a case needs to go across that hierarchy. Thus, the more complex the hierarchy is, the
worse the performance is. Another source of performance penalty might be the use of
functions instead of normal methods in visitors. Of course, more rigorous benchmarks1565

need to be conducted to verify our guesses. One possible way to boost the performance
is to turn TAPL interpreters into compilers via staging using the LMS framework [40].
This is currently not possible because LMS and Scalameta are incompatible in terms of
the Scala compiler versions.

Threats to Validity. There are two major threats to the validity of our evaluation. The1570

first threat is that measuring conciseness by counting SLOC may not be fair especially
when different languages are used. We mitigate this threat by making the code style and
the maximum character-per-line consistent for each implementation. The second threat
is the representativeness of the TAPL interpreters. They are small languages for teaching
purposes. It might still be questionable whether Castor scale to model larger languages1575

that are actually used in practice. Nevertheless, TAPL interpreters have already covered
a lot of core features that are available in mainstream languages.

39

*
inputs

IntegerVariable

BooleanVariable

Expression

operand1

operand2
IntegerExpression

BooleanExpression

operand1 operand2BooleanBinaryExpression

operator assignee

IntegerCalculationExpression

operator IntegerComparisonExpression

<<enumeration>>
IntegerCalculationOperator

ADD
SUBTRACT

<<enumeration>>
IntegerComparisonOperator

SMALLER
SMALLER_EQUALS
EQUALS
GREATER_EQUALS
GREATER

<<enumeration>>
BooleanUnaryOperator

NOT

<<enumeration>>
BooleanBinaryOperator

AND
OR

assignee

operand

BooleanUnaryExpression

operator

ActivityEdge
outgoing

source
incoming
target

ActivityNode

ControlNodeExecutableNode

InitialNodeAction

expressions

OpaqueAction

*

ControlFlow

guard: BooleanVariable
1 1

**

edges

nodes activity
1

locals

Activity
*

*

Variable

name: String

FinalNode

ActivityFinalNode

ForkNode JoinNode MergeNode DecisionNode

IntegerValue

value: Int

BooleanValue

value: Boolean

Value
initialValue0..1

*operator

Figure 10: Metamodel of UML Activity Diagrams (an excerpt adapted after the TTC’15 document [41]).

8. Case Study II: UML Activity Diagrams

In Section 7, we have evaluated the functional aspects of Castor. In this section, we
evaluate the imperative aspects of Castor. To do so, we conduct another case study on1580

a subset of the UML activity diagrams, which can be seen as a richer language than the
FSM language discussed in Section 5. This case study examines hierarchical datatypes,
imperative visitors and graphs.

8.1. Overview

An execution model of UML activity diagrams has been proposed as one of the1585

challenges of the Transformation Tool Contest (TTC’15).

Metamodel. Figure 10 shows the metamodel of UML activity diagrams, where Name
denotes abstract classes and Name denotes concrete classes. An Activity object

40

represents an instance of a UML activity diagram, which contains a sequence of
ActivityNodes and ActivityEdges. ExecutableNode and ControlNode are two inter-1590

mediate types of ActivityNode for classifying nodes that perform actions or control
the flow. There are several concrete nodes. InitialNode and ActivityFinalNode are
the start/end of activity diagrams; DecisionNode and MergeNode are the start/end of
alternative branches; ForkNode and JoinNode are the start/end of concurrent branches.
On the other hand, OpaqueAction sequentially executes a sequence of Expressions.1595

ActivityNodes are connected by ActivityEdges. Similar to GuardedTrans discussed
in Section 5.3, a ControlFlow is a specialized ActivityEdge, which is guarded by the
current BooleanValue stored in a BooleanVariable. Expressions are also organized in
a hierarchical way according to their types (Boolean or Integer) and the number of
operands (Unary or Binary).1600

Goal and Challenges. The goal is to extend this simplified metamodel of UML activity
diagrams with the dynamic execution semantics. The semantics is defined by performing
transitions on activity nodes step by step using an imperative style. Several runtime
concepts need to be introduced. Adding these runtime concepts poses two modularity
challenges: operation extensions and field extensions. One example of an operation1605

extension is execute, which is added to the Expression hierarchy for executing the
calculation. One example of a field extension is a mutable boolean value running, which
is added to ActivityNode for distinguishing triggered nodes from others.

Reference Implementation. The reference implementation5 is written in Java with
EMF [42]. The metamodel is described in Ecore from which Java interfaces are gen-1610

erated. Then semantics is encoded by defining classes that implement those interfaces
using the Interpreter pattern [18]. The reference is non-modular because the Inter-
preter pattern facilitates adding new classes but lacks the ability to add new operations.
Therefore, the reference implementation has to anticipate the operations on the meta-
model. Moreover, consistent with what Figure 10 shows, operators were modeled as1615

enumerations and recognized using switch-case clauses in Java, which are closed for
extensions.

Refactored Implementation. Our refactoring only focuses on the metamodel and the
semantics parts. Since the original implementation is written in Java, we first port it into
Scala and then refactor it using Castor. Figure 11 gives an overview of the refactored1620

implementation, which consists of four Castor components. Concretely, we make the
following changes to the ported implementation for increasing modularity:

1. Separate metamodel and operations. With Castor, we do not need to fore-
see the operations on the metamodel since operations can be modularly added
afterwards. Thus, the refactored implementation separates the metamodel and1625

operations upon it respectively in *Model and *Lang.
2. Expression language as an independently reusable component. Values, vari-

ables and expressions are essentially a sublanguage independent of the UML

5https://github.com/moliz/moliz.ttc2015

41

https://github.com/moliz/moliz.ttc2015

ExpLang

UmlLang

UmlModel

ExpModel

Figure 11: Refactored implementation.

activity diagrams. Instead of defining the expression sublanguage together with
UML activity diagrams within a single @family component, we extract its meta-1630

model into ExpModel and its semantics into ExpLang and let UmlModel and
UmlLang extend them respectively. This allows the expression sublanguage to
be reused or extended individually.

3. Overridden methods as visitors. Methods that are overridden in the subclasses
are rewritten as visitors, such as isReady and fire on ActivityNode and execute1635

on Expression. Since only a few cases of isReady and fire are overridden
whereas every case of execute is overridden, we use the default visitor (annotated
as @default) for the former and the ordinary visitor (annotated as @visit) for
the latter. For non-overridden methods, we move them out of a class and use an
explicit argument to capture this.1640

4. Operators as open datatypes. Operators are refactored as @adt hierarchies and
their semantics are given by visitors for enabling extensions. This allows new
kinds of operators such as multiplication to be added later.

8.2. Evaluation

We evaluate Castor by answering the following questions:1645

• Q1. Does the refactoring preserve the behavior of the ported implementation?

• Q2. Can Castor solve the modularity challenges?

• Q3. How does the refactoring affect the SLOC?

• Q4. Is the performance overhead reasonable?

Q1. To make sure that our refactoring does not affect the correctness of the implemen-1650

tation, we ran the test suite provided by the TTC’15 document. The test suite contains 6
small activity diagrams where all kinds of ActivityNodes and Expressions are covered.
The refactored implementation passes all the tests in the test suite. This gives us some
confidence that the refactored implementation preserves the behavior of the ported
implementation.1655

42

Table 3: Performance evaluation in milliseconds.

Name Description Interpreter Castor
test1 1000 sequential actions 22.1 56.6
test2 100 parallel branches each with 10 actions 20.7 39.8
test3 Similar to test2 with a variable increased 22.8 39.9

Q2. For the operation extension challenge, the answer is yes. Operations are added
by defining new visitors, which are fully modular. However, Castor does not ad-
dress the field extension challenge very well. With the current version of Castor, we
cannot extend existing classes with additional fields while keeping their names. The
workaround is to introduce subclasses of different names. For example, if we want to1660

extend ActivityNode with a field called running, we have to define a new class called
RuntimeActivityNode that extends ActivityNode with running. The drawback is that
RuntimeActivityNode and ActivityNode coexist and all existing operations need to be
modified for handling RuntimeActivityNode. It is possible to have an alternative design
for Castor, which does not introduce a new name while accomplishing field extensions1665

in Castor. However, this brings some other complications. Such alternative design is
discussed in Section 9.2.

Q3. The SLOC of the ported version and the refactored version are 489 and 411
respectively. Surprisingly, the refactoring brings extra modularity while reducing the
SLOC. One reason is that in the ported version, methods are first declared in traits and1670

then implemented in classes while the refactored version needs no prior declarations.
Another reason is that by properly using Castor’s default visitors and combined visitors,
some definitions can be shortened. For example, Execute in the refactored version is a
combined visitor for Expression and 4 operators.

Q4. We reuse the test suite provided by the TTC’15 document, which includes 3 large1675

activity diagrams for measuring the performance. Table 3 gives a simple description for
each test case and the average execution time for 10 runs (measured in milliseconds) for
the two implementations. The benchmark is executed using the same machine specified
in Section 7. The Castor’s implementation is around 2 to 3 times slower than the
non-modular ported implementation. These results are similar to the results we get1680

in Section 7 and further confirm that Castor’s modular implementation introduces an
acceptable performance penalty.

Threats to Validity. One threat to the validity of the evaluation is that the test suite is
very small and might not be able to find out bugs that are introduced by refactoring.
Also, directly comparing a Castor’s implementation with respect to the reference1685

implementation may be unfair since different programming languages are used. To
exclude such language-wise factor on evaluation, we compared to the ported Scala
implementation. As our focus is on the semantics part, irrelevant code like parsing is
ignored.

43

9. Limitations and Design Options1690

In this section, we first discuss the limitations of Castor, which affect some of the
design decisions we made that lead Castor to its current form. We then discuss other
design options and compromises.

9.1. Limitations

Castor has some limitations due to the use of metaprogramming and the restrictions1695

from the current Scalameta library:

• Unnecessary annotations. With the current version of Scalameta, we are not
able to get information from annotated parents. If parents’ information were
accessible, the inherited datatypes and visitors could be analyzed and @adts and
@ops annotations could be eliminated.1700

• Boilerplate for nested composition. Lacking of parents’ information also disal-
lows automatically composing nested members. Assuming that automatic nested
composition is available, Arith can be simplified as:
@family trait Arith extends Nat with Bool {

@adt trait Tm { ... }1705

@visit(Tm) trait Eval1 { ... }
}

where the extends clause is expressed only once in the family level and extends
clauses for nested members such as super[Nat].Tm with super[Bool].Tm are
inferred.1710

• Imprecise error messages. As Castor modifies the annotated programs, what
the compiler reports are errors on the modified program rather than the origi-
nal program. Reasoning about the error messages becomes harder as they are
mispositioned and require some understanding of the generated code.

9.2. Design Options1715

Nested Patterns. There is an alternative way of writing nested patterns. For example,
tmIf can be rewritten in the following way:
override def tmIf = x => x.t1 match {

case TmTrue => x.t2
case TmFalse => x.t31720

case t1 => TmIf(this(t1),x.t2,x.t3)
}
Instead of directly pattern matching on an TmIf object, we capture it first using a variable
x and then explicitly match on its subterm t1. For the case of tmIf, this alternative
implementation is arguably less intuitive than the version we presented in Section 2.9.1725

Nevertheless, this approach comes in handy when: 1) the object being matched contains
a lot of fields and most of them are not interesting in nested patterns; 2) there are a lot of
case clauses for nested patterns and repeating the top-level pattern in each case clause
becomes tedious.

44

Specialized Visitors. Programming with visitors can be simplified using specialized1730

visitors. The default visitors generated by Castor (annotated as @default) are an
instance. In fact, there are more such specialized visitors. For example, visitors can be
combined with visitor combinators [43]; boilerplate for querying and transforming data
structures can be eliminated by traversal templates [21]. Essentially, these specialized
visitors can also be generated by Castor. Currently, only default visitors are generated1735

because 1) in our experience they are most frequently used; 2) generating all other
infrequently used specialized visitors increases the time of code generation and the size
of generated code. Ideally, specialized visitors should be generated by need. Limited by
current Scalameta, this is impossible for the moment.

Refinable Variants. As our visitor encoding shows, the key to extensibility is capturing1740

concrete types with bounded type members for allowing future refinements. The same
idea can also be applied to variants, where the visitor method signature refers to a
type member instead of a class name. By doing this, we are able to extend that class
with additional fields seamlessly by covariantly refining the type member to the new
class. An application of refinable variants would be guarded transitions discussed in1745

Section 5.3:
class Trans(event: String, to: State, var tm: Tm[Boolean] = TmTrue)

extends super.Trans(event, to)
Instead of adding a new variant called GuardedTrans, we refine the existing Trans. The
benefit is that existing visitors that do not concern about the additional parameter tm can1750

be unchanged. In contrast, for the case of GuardedTrans, we have to update all existing
visitors with an implementation of guardedTrans. However, the downside of supporting
refinable variants in Castor is that it brings more book-keeping burden on variants for
the user. We consider the price to pay is higher than the benefit it brings.

10. Related Work1755

Object-Oriented Pattern Matching. There are many attempts to bring notions similar
to pattern matching into OOP. Multimethods [3, 44] allow a series of methods of
the same signature to co-exist. The dispatching for these methods additionally takes
the runtime type of arguments into consideration so that the most specific method is
selected. Pattern matching on multiple arguments can be simulated with multimethods.1760

However, it is unclear how to do deep patterns with multimethods. Also, multimethods
significantly complicate the type system. As we have discussed in Section 2, case
classes in Scala [31] provide an interesting blend between algebraic datatypes and class
hierarchies. Sealed case classes are very much like classical algebraic datatypes, and
facilitate exhaustiveness checking at the cost of a closed (non-extensible) set of variants.1765

Open case classes support pattern matching for class hierarchies, which can modularly
add new variants. However no exhaustiveness checking is possible for open case classes.
Besides case classes, extractors [32] are another alternative pattern matching mechanism
in Scala. An extractor is a companion object with a user-defined unapply method that
specifies how to tear down that object. Unlike case classes whose unapply method1770

is automated and hidden, extractors are flexible, independent of classes but verbose.
There are also proposals to extend mainstream languages with pattern matching such as

45

Java. JMatch [45] extends Java with pattern matching using modal abstraction. JMatch
methods additionally have backward modes that can compute the arguments from a given
result, serving as patterns. Follow-up work [46] extends JMatch with exhaustiveness1775

and totality checking on patterns in the presence of subtyping and inheritance. However,
it requires a non-trivial language design with the help of an SMT solver. More recent
OO languages like Newspeak [47] and Grace [48] are designed with first-class pattern
matching, where patterns are objects and can easily be combined. To the best of our
knowledge, none of these approaches fully meet the desirable properties summarized in1780

Section 2.1.

Modular Church-Encoded Interpreters. Solutions to the Expression Problem based on
Church encodings can also be used for developing modular interpreters. Well-known
techniques are Finally Tagless [11], Object Algebras [9] and Polymorphic Embed-
ding [12]. However, these techniques do not support pattern matching or dependencies,1785

making it hard to define operations like small-step semantics discussed in Section 2.
Although Kiselyov [23] shows that operations requiring nested patterns can be rewritten
as context-sensitive operations, the operations become much more convoluted. Typical
workarounds on dependent operations are defining the operation together with the depen-
dencies or using advanced features like intersection types and a merge operator [49, 50].1790

In contrast, Castor allows us to implement operations that need nested patterns and/or
with dependencies in a simple, modular way.

Polymorphic Variants. OCaml supports polymorphic variants [51]. Unlike traditional
variants, polymorphic variant constructors are defined individually and are not tied to a
particular datatype. Garrigue [52] presents a solution to the Expression Problem using1795

polymorphic variants. To correctly deal with recursive calls, open recursion and an
explicit fixed-point operator must be used properly. Otherwise, the recursion may go
to the original function rather than the extended one. This causes additional work for
the programmer, especially when the operation has complex dependencies. In contrast,
Castor handles open recursion easily through OO dynamic dispatching, reducing the1800

burden of programmers significantly.

Open Datatypes and Open Functions. To solve the Expression Problem, Löh and
Hinze [53] propose to extend Haskell with open datatypes and open functions. Different
from classic closed datatypes and closed functions, the open counterparts decentralize
the definition of datatypes and functions and there is a mechanism that reassembles the1805

pieces into a complete definition. To avoid unanticipated captures caused by classic
first-fit pattern matching, a best-fit scheme is proposed, which rearranges patterns
according to their specificness rather than the order (e.g. wildcards are least specific).
However open datatypes and open functions are not supported in standard Haskell and
more importantly, they do not support separate compilation: all source files of variants1810

belonging to the same datatype must be available for code generation.

Data Types à la Carte (DTC). DTC [54] encodes composable datatypes using existing
features of Haskell. The idea is to express extensible datatypes as a fixpoint of co-
products of functors. While it is possible to define operations that have dependencies

46

or require nested pattern matching with DTC, the encoding becomes complicated and1815

needs significant machinery. There is some follow-up work that tries to equip DTC
with additional power. Bahr and Hvitved [55] extend DTC with GADTs [37] and
automatically generates boilerplate using Template Haskell [56]. Oliveira et al. [57]
use list-of-functors instead of co-products to better simulate OOP features including
subtyping, inheritance, and overriding.1820

Language Workbenches. To reduce the engineering effort involved in software language
development, language workbenches [58, 59] have been proposed. Modularity is an
important concern in language workbenches for allowing existing language components
to be reused in developing new languages [60]. Traditionally most of the work on
language workbenches has focused on syntactic modularity approaches. More semantic1825

modularity aspects such as separate compilation and modular typechecking are not
well addressed. However, more recent work on language workbenches has started
to incorporate semantic modularity techniques. We compare our work next, to the
language workbenches that employ semantic modularization techniques. With Nev-
erlang [61], users do not directly program with visitors. Instead, they have to use a1830

DSL and learn specific concepts such as slice and roles. MontiCore [62] generates
the visitor infrastructure from its grammar specification. To address the extensibility
issue, MontiCore overrides the accept method and uses casts for choosing the right
visitor for extended variants, thus is not type-safe. Also, MontiCore supports imperative
style visitors only. Alex [63] also provides a form of semantic modularity based on1835

the Revisitor pattern [64], which can be viewed as a combination of Object Algebras
and Walkabout [65]. By moving the dispatching method from the class hierarchy to the
visitor interface, the Revisitor pattern can work for legacy class hierarchies that do not
anticipate the usage of visitors. However, the dispatching method generated by Alex
is implemented using casts and has to be modified whenever new variants are added,1840

thus is neither modular nor type-safe. Castor fully supports semantic modularity and
allows users to do the development using their familiar language with a few annotations.
For the moment, Castor still lacks much of the functionality for various other aspects
of language implementations that are covered by language workbenches. Nevertheless,
the modularization techniques employed by Castor could be useful in the context of1845

language workbenches to improve reuse and type-safety of language components, in the
same way that visitors are used in Neverlang and Revisitors are used in Alex.

11. Conclusion and Future Work

In this paper, we have presented Castor, a Scala framework for programming with
extensible, generative visitors using simple annotations. Visitors written with Castor are1850

type-safe, concise, exhaustive, extensible and composable. Moreover, both functional
and imperative style visitors are supported. We have shown how to use Castor in
designing a better pattern matching mechanism in an OOP context, developing modular
well-typed EDSLs, doing extensible programming on graphs, etc. The effectiveness
of Castor is validated by our case studies on TAPL interpreters and UML activity1855

diagrams. While Castor is practical and serves the purpose of programming with
visitors, there are important drawbacks on such a meta-programming, library-based

47

approach: error reporting is imprecise; the syntax and typing of Scala cannot be changed
to enforce certain restrictions. In future work, we would like to design a language with
a better surface syntax that supports first-class visitors. Another direction of future work1860

is to grow Castor into a language workbench by additionally supporting syntax and
associated tools development.

Acknowledgement

We thank the anonymous reviewers and James Noble for their helpful comments
that significantly improve the presentation of this paper. This work was funded by Hong1865

Kong Research Grant Council projects number 17210617 and 17209519.

References

[1] P. Wadler, The Expression Problem, Email, discussion on the Java Genericity
mailing list (Nov. 1998).

[2] O. L. Madsen, B. Moller-Pedersen, Virtual classes: A powerful mechanism in1870

object-oriented programming, in: Proceedings on Object-oriented Programming
Systems, Languages and Applications, OOPSLA ’89, 1989. doi:10.1145/
74877.74919.

[3] C. Chambers, Object-oriented multi-methods in cecil, in: Proceedings of the
European Conference on Object-Oriented Programming, ECOOP ’92, 1992. doi:1875

10.5555/646150.679216.

[4] E. Ernst, Family polymorphism, in: Proceedings of the 15th European Conference
on Object-Oriented Programming, ECOOP ’01, 2001.

[5] G. Bracha, W. Cook, Mixin-based inheritance, in: Proceedings of the European
Conference on Object-oriented Programming on Object-oriented Programming1880

Systems, Languages, and Applications, OOPSLA/ECOOP ’90, 1990.

[6] A. Moors, F. Piessens, M. Odersky, Generics of a higher kind, in: Proceedings
of the 23rd ACM SIGPLAN Conference on Object-oriented Programming Sys-
tems Languages and Applications, OOPSLA ’08, 2008. doi:10.1145/1449764.
1449798.1885

[7] K. K. Thorup, Genericity in java with virtual types, in: European Conference on
Object-Oriented Programming, 1997.

[8] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, A. P. Black, Traits: A mechanism
for fine-grained reuse, ACM Trans. Program. Lang. Syst. (2006). doi:10.1145/
1119479.1119483.1890

[9] B. C. d. S. Oliveira, W. R. Cook, Extensibility for the masses: Practical extensibility
with object algebras, in: Proceedings of the 26th European Conference on Object-
Oriented Programming, 2012.

48

https://doi.org/10.1145/74877.74919
https://doi.org/10.1145/74877.74919
https://doi.org/10.1145/74877.74919
https://doi.org/10.5555/646150.679216
https://doi.org/10.5555/646150.679216
https://doi.org/10.5555/646150.679216
https://doi.org/10.1145/1449764.1449798
https://doi.org/10.1145/1449764.1449798
https://doi.org/10.1145/1449764.1449798
https://doi.org/10.1145/1119479.1119483
https://doi.org/10.1145/1119479.1119483
https://doi.org/10.1145/1119479.1119483

[10] B. C. d. S. Oliveira, Modular visitor components, in: Proceedings of the 23rd
European Conference on Object-Oriented Programming, 2009.1895

[11] J. Carette, O. Kiselyov, C.-c. Shan, Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages, Journal of Functional Program-
ming 19 (5) (2009) 509–543.

[12] C. Hofer, K. Ostermann, T. Rendel, A. Moors, Polymorphic embedding of dsls, in:
Proceedings of the 7th International Conference on Generative Programming and1900

Component Engineering, GPCE ’08, 2008.

[13] A. Church, An unsolvable problem of elementary number theory, American journal
of mathematics 58 (2) (1936) 345–363.

[14] D. Scott, A system of functional abstraction, Unpublished manuscript (1963).

[15] R. Hinze, Generics for the Masses, Journal of Functional Programming 16 (4-5)1905

(2006) 451–483. doi:10.1017/S0956796806006022.

[16] B. C. d. S. Oliveira, R. Hinze, A. Löh, Extensible and Modular Generics for the
Masses, in: Trends in Functional Programming, 2006.

[17] B. C. d. S. Oliveira, J. Gibbons, Typecase: A design pattern for type-indexed
functions, in: Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell,1910

Haskell ’05, 2005.

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns : Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

[19] P. Buchlovsky, H. Thielecke, A type-theoretic reconstruction of the visitor pattern,
Electron. Notes Theor. Comput. Sci. 155 (2006) 309–329. doi:10.1016/j.1915

entcs.2005.11.061.

[20] J. Gibbons, Origami programming, 2003, pp. 41–60.
URL http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/
publications/origami.pdf

[21] W. Zhang, B. C. d. S. Oliveira, Evf: An extensible and expressive visitor frame-1920

work for programming language reuse, in: 31st European Conference on Object-
Oriented Programming, Leibniz International Proceedings in Informatics (LIPIcs),
2017. doi:10.4230/LIPIcs.ECOOP.2017.29.

[22] B. C. Pierce, Types and programming languages, MIT press, 2002.

[23] O. Kiselyov, Typed tagless final interpreters, in: Generic and Indexed Program-1925

ming, Springer, 2012, pp. 130–174.

[24] T. Millstein, C. Bleckner, C. Chambers, Modular typechecking for hierarchically
extensible datatypes and functions, ACM Trans. Program. Lang. Syst. 26 (5) (Sep.
2004).

49

https://doi.org/10.1017/S0956796806006022
https://doi.org/10.1016/j.entcs.2005.11.061
https://doi.org/10.1016/j.entcs.2005.11.061
https://doi.org/10.1016/j.entcs.2005.11.061
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/origami.pdf
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/origami.pdf
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/origami.pdf
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/origami.pdf
https://doi.org/10.4230/LIPIcs.ECOOP.2017.29

[25] W. Zhang, B. C. d. S. Oliveira, Pattern matching in an open world, in: Proceedings1930

of the 17th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, 2018. doi:10.1145/3278122.3278124.

[26] R. Milner, M. Tofte, R. Harper, D. Macqueen, The definition of standard ml-revised
(1997).

[27] S. P. Jones, Haskell 98 language and libraries: the revised report, Cambridge1935

University Press, 2003.

[28] B. Meyer, K. Arnout, Componentization: the visitor example, Computer 39 (7)
(2006) 23–30.

[29] T. Pati, J. H. Hill, A survey report of enhancements to the visitor software design
pattern, Software: Practice and Experience 44 (6) (2014) 699–733.1940

[30] R. C. Martin, The Principles, Patterns, and Practices of Agile Software Develop-
ment, Prentice Hall, 2002.

[31] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, M. Zenger, An overview of the scala programming
language, Tech. rep. (2004).1945

[32] B. Emir, M. Odersky, J. Williams, Matching objects with patterns, in: European
Conference on Object-Oriented Programming, 2007.

[33] M. Zenger, M. Odersky, Extensible algebraic datatypes with defaults, in: Pro-
ceedings of the Sixth ACM SIGPLAN International Conference on Functional
Programming, 2001.1950

[34] M. Odersky, M. Zenger, Independently extensible solutions to the expression
problem, in: The 12th International Workshop on Foundations of Object-Oriented
Languages, 2005.

[35] C. Hofer, K. Ostermann, Modular domain-specific language components in scala,
in: Proceedings of the Ninth International Conference on Generative Programming1955

and Component Engineering, GPCE ’10, 2010.

[36] M. E. Nordberg III, Variations on the visitor pattern, in: PLoP’96 Writer’s Work-
shop, Vol. 154, 1996.

[37] H. Xi, C. Chen, G. Chen, Guarded recursive datatype constructors, in: Proceedings
of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming1960

Languages, POPL ’03, 2003.

[38] F. Pfenning, C. Elliott, Higher-order abstract syntax, in: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementa-
tion, PLDI ’88, 1988. doi:10.1145/53990.54010.

[39] E. Burmako, Unification of compile-time and runtime metaprogramming in scala,1965

Ph.D. thesis, EPFL (2017).

50

https://doi.org/10.1145/3278122.3278124
https://doi.org/10.1145/53990.54010

[40] T. Rompf, M. Odersky, Lightweight Modular Staging: A Pragmatic Approach to
Runtime Code Generation and Compiled DSLs, in: In GPCE, 2010.

[41] T. Mayerhofer, M. Wimmer, The ttc 2015 model execution case., in: TTC@ STAF,
2015, pp. 2–18.1970

[42] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: eclipse modeling
framework, Pearson Education, 2008.

[43] J. Visser, Visitor combination and traversal control, in: Proceedings of the 16th
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’01, 2001. doi:10.1145/504282.504302.1975

[44] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein, Multijava: Modular open
classes and symmetric multiple dispatch for java, in: ACM Sigplan Notices,
Vol. 35, ACM, 2000, pp. 130–145.

[45] J. Liu, A. C. Myers, Jmatch: Iterable abstract pattern matching for java, in: PADL,
2003.1980

[46] C. Isradisaikul, A. C. Myers, Reconciling exhaustive pattern matching with ob-
jects, in: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, 2013.

[47] F. Geller, R. Hirschfeld, G. Bracha, Pattern Matching for an object-oriented and
dynamically typed programming language, no. 36, Universitätsverlag Potsdam,1985

2010.

[48] M. Homer, J. Noble, K. B. Bruce, A. P. Black, D. J. Pearce, Patterns as objects in
grace, in: Proceedings of the 8th Symposium on Dynamic Languages, DLS ’12,
New York, NY, USA, 2012, pp. 17–28.

[49] B. C. d. S. Oliveira, T. v. d. Storm, A. Loh, W. R. Cook, Feature-oriented program-1990

ming with object algebras, in: Proceedings of the 27th European Conference on
Object-Oriented Programming, 2013.

[50] T. Rendel, J. I. Brachthäuser, K. Ostermann, From object algebras to attribute
grammars, in: Proceedings of the 2014 ACM International Conference on Object-
Oriented Programming Systems Languages and Applications, 2014.1995

[51] J. Garrigue, Programming with polymorphic variants, in: ML Workshop, 1998.

[52] J. Garrigue, Code reuse through polymorphic variants, in: Workshop on Founda-
tions of Software Engineering, 2000.

[53] A. Löh, R. Hinze, Open data types and open functions, in: Proceedings of the 8th
ACM SIGPLAN international conference on Principles and practice of declarative2000

programming, 2006.

[54] W. Swierstra, Data types à la carte, Journal of functional programming 18 (4)
(2008) 423–436.

51

https://doi.org/10.1145/504282.504302

[55] P. Bahr, T. Hvitved, Compositional data types, in: Proceedings of the seventh
ACM SIGPLAN workshop on Generic programming, ACM, 2011, pp. 83–94.2005

[56] T. Sheard, S. P. Jones, Template meta-programming for haskell, in: Proceedings
of the 2002 ACM SIGPLAN workshop on Haskell, 2002.

[57] B. C. d. S. Oliveira, S.-C. Mu, S.-H. You, Modular reifiable matching: A list-of-
functors approach to two-level types, in: Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell, Haskell ’15, 2015.2010

[58] M. Fowler, Language workbenches: The killer-app for domain specific languages
(2005).
URL http://martinfowler.com/articles/languageWorkbench.html

[59] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook,
A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al., The state of the art in language2015

workbenches, in: International Conference on Software Language Engineering,
2013.

[60] B. Combemale, J. Kienzle, G. Mussbacher, O. Barais, E. Bousse, W. Cazzola,
P. Collet, T. Degueule, R. Heinrich, J.-M. Jézéquel, et al., Concern-oriented
language development (cold): Fostering reuse in language engineering, Computer2020

Languages, Systems & Structures 54 (2018) 139–155.

[61] E. Vacchi, W. Cazzola, Neverlang: A framework for feature-oriented language
development, Computer Languages, Systems & Structures 43 (2015) 1–40.

[62] R. Heim, P. M. S. Nazari, B. Rumpe, A. Wortmann, Compositional language
engineering using generated, extensible, static type-safe visitors, in: European2025

Conference on Modelling Foundations and Applications, 2016.

[63] M. Leduc, T. Degueule, B. Combemale, Modular language composition for the
masses, in: Proceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering, 2018.

[64] M. Leduc, T. Degueule, B. Combemale, T. Van Der Storm, O. Barais, Revisiting2030

visitors for modular extension of executable dsmls, in: 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems
(MODELS), 2017.

[65] J. Palsberg, C. B. Jay, The essence of the visitor pattern, in: Proceedings of the
22nd International Computer Software and Applications Conference, 1998.2035

52

http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

	Introduction
	Open Pattern Matching
	Desirable Properties of Open Pattern Matching
	Running Example: Arith
	The Visitor Pattern
	Sealed Case Classes
	Open Case Classes
	Partial Functions
	Extensible Visitors
	EVF
	Castor

	Hierarchical Datatypes
	Flat Datatypes versus Hierarchical Datatypes
	Explicit Delegations
	Default Visitors

	GADTs and Well-Typed EDSLs
	GADTs and Well-Typed Terms
	Well-Typed Big-Step Evaluator
	Well-Typed Small-Step Evaluator
	Extension: Higher-Order Abstract Syntax for Name Binding

	Graphs and Imperative Visitors
	The Difficulties in Modeling Graphs
	FSM in Castor
	Language Composition and Memoized Traversals

	Formalized Code Generation
	Syntax
	Transformation
	Implementation

	Case Study I: Types and Programming Languages
	Overview
	Evaluation

	Case Study II: UML Activity Diagrams
	Overview
	Evaluation

	Limitations and Design Options
	Limitations
	Design Options

	Related Work
	Conclusion and Future Work

