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Abstract

A polymorphic subtyping relation, which relates more general types to more
specific ones, is at the core of many modern functional languages. As those lan-
guages start moving towards dependently typed programming a natural question
is how can polymorphic subtyping be adapted to such settings.

This paper presents the dependent implicitly polymorphic calculus (λ∀I ): a
simple dependently typed calculus with polymorphic subtyping. The subtyp-
ing relation in λ∀I generalizes the well-known polymorphic subtyping relation
by Odersky and Läufer (1996). Because λ∀I is dependently typed, integrating
subtyping in the calculus is non-trivial. To overcome many of the issues arising
from integrating subtyping with dependent types, the calculus employs unified
subtyping, which is a technique that unifies typing and subtyping into a single re-
lation. Moreover, λ∀I employs explicit casts instead of a conversion rule, allowing
unrestricted recursion to be naturally supported. We prove various non-trivial
results, including type soundness and transitivity of unified subtyping. λ∀I and
all corresponding proofs are mechanized in the Coq theorem prover.

Keywords: Type Systems, Dependent Types, Subtyping, Polymorphism

1. Introduction

A polymorphic subtyping relation, which relates more general types to more
specific ones, is at the core of many modern functional languages. Polymor-
phic subtyping enables a form of (implicit) parametric polymorphism, where
type arguments to polymorphic functions are automatically instantiated and the
programmer does not specify them. Traditionally, variants of polymorphic sub-
typing (in the form of a more-general-than relation) have been used in functional
languages based on the Hindley-Milner (Hindley, 1969; Milner, 1978; Damas and
Milner, 1982) type system, which supports full type-inference without any type
annotations. However, the Hindley-Milner type system only supports rank-1
(or first-order) polymorphism, where all universal quantifiers only occur at the
top-level of a type. Modern functional programming languages, such as Haskell,
go beyond Hindley-Milner and support higher-ranked polymorphism (Odersky
and Läufer, 1996; Peyton Jones et al., 2007) with a more expressive polymorphic
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subtyping relation. With higher-ranked polymorphism there is no restriction on
where universal quantifiers can occur.

Odersky and Läufer (1996) proposed a simple declarative specification for
polymorphic subtyping, which supports higher-ranked polymorphism. Since
then several algorithms have been proposed that implement variants of this spec-
ification. Most notably, the algorithm proposed by Peyton Jones et al. (2007)
forms the basis for the implementation of type inference in the GHC compiler.
Dunfield and Krishnaswami (2013) (DK) provide an elegant formalization of
another sound and complete algorithm, which has also inspired implementa-
tions of type-inference in some polymorphic programming languages, such as
PureScript (Freeman, 2017) or DDC (Disciple Development Team, 2017). More
recently Zhao et al. (2019) have mechanized DK’s type system in a theorem
prover.

In recent years dependent types (Coquand and Huet, 1988; Augustsson, 1998;
Altenkirch et al., 2010; Sjöberg et al., 2012; Stump et al., 2008; Weirich et al.,
2013; Casinghino et al., 2014; Sjöberg and Weirich, 2015) have become a hot
topic in programming language research. Several newer functional programming
languages, most notably Agda (Norell, 2007) and Idris (Brady, 2013), are now
dependently typed. Moreover a number of existing functional languages, such as
Haskell, have started to move towards dependently typed programming (Weirich
et al., 2017). Dependent types naturally lead to a unification between types and
terms, which enables both additional expressiveness and economy of concepts.
The key enabler for unifying terms and types in dependently typed calculi is the
adoption of a style similar to Pure Type Systems (PTSs) (Barendregt, 1991).
In PTSs there is only a single level of syntax for terms, i.e. the types (or kinds)
are expressed using the same syntax as the terms. This is in contrast with more
traditional calculi, where distinct pieces of syntax (terms, types and kinds) are
separated.

Unified syntax, typical of dependently typed languages, poses some chal-
lenges for language design and implementation. A first challenge arises from
the interaction between recursion and dependent types. Essentially recursion
breaks strong normalization, which many common properties in dependently
typed calculi depend upon. One of the most typical properties among them is
the decidability of type checking, which simply cannot be guaranteed if some
type-level computations are non-terminating. However, this area has been ac-
tively investigated in the last few years, and a general approach (Stump et al.,
2008; Sjöberg et al., 2012; Kimmell et al., 2012; Sjöberg and Weirich, 2015; Yang
et al., 2016) based on explicit casts for type-level computations, has emerged
as an interesting solution for integrating general recursion in dependently typed
calculi. By avoiding the implicit type-level computation entirely, whether pro-
grams strongly normalize or not no longer matters for the decidability of type
checking. Current proposals for dependently typed versions of Haskell (Weirich
et al., 2017), for instance, adopt explicit casts for type-level computation.

The second challenge, for calculi that employ subtyping, is that smoothly
integrating dependent types and subtyping is difficult. Subtyping is a substan-
tial difference to traditional PTSs, which do not have this feature. The issue
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with subtyping is well summarized by Aspinall and Compagnoni (1996): “One
thing that makes the study of these systems difficult is that with dependent types,
the typing and subtyping relations become intimately tangled, which means that
tested techniques of examining subtyping in isolation no longer apply”. Recent
work on unified subtyping (Yang and Oliveira, 2017) provides a simple technique
to address this problem. Following the same spirit as Pure Type Systems, which
attempt to unify syntax and the typing and well-formedness relations, unified
subtyping suggests unifying typing and subtyping into a single relation. This
solves the problem of dependencies in that now there is only a single relation
that depends only on itself. Furthermore, it results in a compact specification
compared to a variant with multiple independent relations.

In this paper, we investigate how polymorphic subtyping can be adapted
into a dependently typed calculus with general recursion and explicit casts for
type-level computation. We employ unified subtyping to address the issues of
combining dependent types with subtyping. The use of explicit casts for type-
level computation means that type equality is essentially syntactic (or rather
up-to α-equivalence). This avoids the use of a traditional conversion rule that
allows concluding β-equivalent types to be equal. In essence, the use of the
conversion rule requires (implicit) type-level computation, since terms have to
be normalized using β-reduction to conclude whether or not they are equal.
Dependent type systems with a conversion rule have some major complications.
A well-known one is that type-inference for such systems requires higher-order
unification, which is known to be undecidable (Goldfarb, 1981). By employing a
system with α-equivalence only we stay closer to existing languages like Haskell,
where type equality (at least at the core language level) is also essentially only
up-to α-equivalence.

We present a calculus called λ∀I , and show three main results in this paper:
transitivity of subtyping, type soundness, and completeness of λ∀I ’s polymorphic
subtyping with respect to Odersky and Läufer’s formulation. Transitivity is a
non-trivial result (like in most calculi combining dependent types and subtyp-
ing) and requires a proof based on sizes and a property that guarantees the
uniqueness of kinds in our language. Type soundness is also non-trivial and
we need to take a different approach than that employed by existing work on
polymorphic subtyping (Odersky and Läufer, 1996; Peyton Jones et al., 2007),
where type-safety is shown by an elaboration to System F. In essence elabora-
tion into a target language brings significant complications to the metatheory in
a dependently typed setting. Thus, instead of elaboration, we use a direct oper-
ational semantics approach, which is partly inspired by the approach used in the
Implicit Calculus of Constructions (ICC) (Miquel, 2001; Barras and Bernardo,
2008), to prove type soundness. Similar to ICC, we adopt the restriction that
arguments for implicit function types are computationally irrelevant (i.e. they
cannot be used in runtime computation). However, our unified subtyping set-
ting is significantly different from ICC due to the presence of subtyping, which
brings complications the ICC does not have. We also prove that any valid sub-
typing statement in the Odersky and Läufer relation is valid in λ∀I . Thus λ∀I ’s
unified subtyping subsumes the polymorphic subtyping relation by Odersky and
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Läufer.
λ∀I and all the proofs reported in this paper are formalized in the Coq theo-

rem prover (Coq development team). This paper does not address decidability
or soundness and completeness of λ∀I to an algorithmic formulation, which are
outside of the scope of this work. Nonetheless, these are important and chal-
lenging questions for practical implementations of λ∀I , which are left open for
future work.

In summary, the contributions of this paper are:

• The λ∀I calculus, which is a dependently typed calculus with explicit
casts, general recursion and implicit higher-ranked polymorphism.

• Type-soundness and transitivity of subtyping. We show that λ∀I is
type-sound and unified subtyping is transitive.

• Subsumption of Odersky and Läufer’s polymorphic subtyping.
We show that λ∀I ’s unified subtyping can encode all valid polymorphic
subtyping statements of Odersky and Läufer’s relation.

• Mechanical formalization. All the results have been mechanically for-
malized in the Coq theorem prover. The formalization is available online
at: https://github.com/VinaLx/dependent-polymorphic-subtyping.

2. Overview

In this section, we introduce λ∀I by going through some interesting examples
to show the expressiveness and major features of the calculus. Then we discuss
the motivation, rationale of our design, and challenges. The formal system of
λ∀I will be discussed in Sections 3 and 4.

2.1. A Tour of λ∀I
The λ∀I calculus features a form of implicit higher-ranked polymorphism with

the power of dependent types. Thus the main feature of λ∀I is the ability to
implicitly infer universally quantified arguments.

A First Example of Implicit Polymorphism. Like most of functional languages,
λ∀I supports (implicit) parametric polymorphism. The first simple example is
the polymorphic identity function:

id : ∀(A:⋆). A → A
id = λ(x:A). x
answer : Nat
answer = id 42 -- No type argument needed at the call of id

The polymorphic parameter A is annotated with its type, which is ⋆. The
type ⋆ is the type of types (also known as kind). In λ∀I , the parameters of
lambda abstractions are annotated with their types, and the A in the definition
refers back to the polymorphic parameter. In the examples below, we drop the
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parentheses around variables and their type annotations such as λx:A. x for
conciseness.

Similar to implicit polymorphism in other languages, the polymorphic pa-
rameters of the ∀ types are implicitly instantiated during applications. Thus, in
the call of the identity function (id 42), we do not need to specify the argument
used for instantiation. In contrast, in an explicitly polymorphic language (such
as System F) we would need to call id with an extra argument that specifies
the instantiation of A: id Nat 42.

Recursion and Dependent Types. λ∀I is dependently typed, and universal quan-
tifications are not limited to work on arguments of type ⋆, but it allows ar-
guments of other types. This is a key difference compared to much of the
work on type-inference for higher-ranked polymorphism (Dunfield and Krish-
naswami, 2013; Le Botlan and Rémy, 2003; Leijen, 2008; Vytiniotis et al., 2008;
Peyton Jones et al., 2007) which has been focusing on System F-like languages
where universal quantification can only have arguments of type ⋆. Furthermore,
λ∀I supports general recursion at both the term and the type-level.

Using these features we can encode an indexed list, a map operation over
it , and we illustrate how the implicit instantiation allows us to use the map
function conveniently. However, because λ∀I is just a core calculus there is no
built-in support yet for algebraic datatypes and pattern matching. We expect
that a source language would provide a more convenient way to define the map
function using pattern matching and other useful source-level constructs. To
model algebraic datatypes and pattern matching in λ∀I , we use an encoding
by Yang and Oliveira (Yang and Oliveira, 2019), which is based on the Scott
Encodings (Mogensen, 1992). The Scott Encoding encodes datatypes with dif-
ferent cases via Continuation-Passing-Style (CPS) function types. The return
branches of these function types correspond to each case of the datatypes. Case
analyses of terms are encoded via applications of the CPS functions. Since the
details of the encoding are not relevant to this paper, here we omit the code for
most definitions and show only their types.

In a dependently typed language a programmer could write the following
definition for our formulation of indexed lists:

data Nat = Zero | Succ Nat
data List (a : ⋆) (n : Nat) = Nil | Cons a (List a (Succ n))

In this definition, the index grows towards the tail of the list, which is admit-
tedly not the most useful definition. The reason why we did not choose the more
practical example, where the index represents the length of the list, is that it
requires encodings of GADT-like datatypes (Cheney and Hinze, 2003; Xi et al.,
2003). Such encodings are more complex than encodings of regular algebraic
datatypes as they require explicit equality proofs and more language-level sup-
ports for such proofs (Yang and Oliveira, 2019). Thus we use the simpler, but
still dependently typed example here. Here we encode List and its constructors
as conventional terms. We show the definition for List, and the types for the
constructors next (implementation omitted):
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List : ⋆ → Nat → ⋆
List = µL:(⋆ → Nat → ⋆).λa:⋆.λn:Nat.Πr:⋆.

r -- Nil branch
→ (a → L a (Succ n) → r) -- Cons branch
→ r

Nil : ∀a:⋆.∀n:Nat. List a n
Cons : ∀a:⋆.∀n:Nat. a → List a (Succ n) → List a n

In subsequent examples we will just assume some Haskell-style syntactic sugar
for datatype definitions and constructors. Using the definitions above, we can
define a map function over List with the type:

map : ∀a:⋆.∀b:⋆.∀n:Nat. a → b → List a n → List b n

An example of application of map is:

map Succ (Cons 1 (Cons 2 Nil))

which increases every natural in the list by one. Note that since the type
parameters for map, Cons, and Nil are all implicit, they can be all omitted and
the arguments are instantiated implicitly. Thus the map function only requires
two explicit arguments, making it as convenient to use as in most functional
language implementations.

There are a few final points worth mentioning about the example. Firstly,
List is an example of a dependently typed function, since it is parameterized
by a natural value. Secondly, following the design of PITS (Yang and Oliveira,
2019), fixpoint operators (µ) in λ∀I serve a dual purpose of defining recursive
types and recursive functions. Besides its usual use of defining term-level general
recursive functions, fixpoint operators can be used to define recursive types, as
shown in the encoding of List above. Moreover, recursion is unrestricted and
there is no termination checking, much like approaches such as Dependently
Typed Haskell (Eisenberg, 2016), and unlike various other dependently typed
languages such as Agda (Norell, 2007) or Idris (Brady, 2013).

Implicit Higher-Kinded Types. The implicit capabilities also extend to the realm
of higher-kinded types (Pierce, 2002). For example, we can define a record type
Functor, to mimic the type class (Wadler and Blott, 1989; Kaes, 1988) Functor
in Haskell:

data Functor (F : ⋆→ ⋆) =
MkF { fmap : ∀a:⋆.∀b:⋆. (a → b) → F a → F b }

Here Functor is a record type with a single field. MkF is the data constructor,
and fmap is the field accessor (which encodes the type class method fmap). The
type of fmap is:

fmap : ∀F:⋆→ ⋆. Functor F → (∀a:⋆.∀b:⋆. (a → b) → F a → F b)

Importantly this example illustrates that universal variables can quantify over
higher-kinds (i.e. F : ⋆→ ⋆). We can define instances of functor in a standard
way:

6



data Id a = MkId { runId : a }
idFunctor : Functor Id
idFunctor =
MkF { fmap = λf:(a → b).λx:(Id a). MkId (f (runId x)) }

and then use fmap with three arguments:

fmap idFunctor Succ (MkId 0)

Note that, because our calculus has no mechanism like type classes we pass the
“instance” explicitly. Nonetheless, three other arguments (the F, a, and b) are
implicitly instantiated.

Higher-Ranked Polymorphic Subtyping. In calculi such as the ICC (Miquel,
2001), a form of implicit instantiation also exists. However, such calculi do not
employ subtyping, instead, they only apply instantiation to top-level universal
quantifiers. Our next example illustrates how subtyping enables instantiation
to be applied also in nested universal quantifiers, thus enabling more types to
be related.

When programming with continuations (Sussman and Steele, 1998) one of
the functions that are typically needed is call-with-current-continuation (callcc).
In a polymorphic language, there are several types that can be assigned to
callcc. One of these types is a rank-3 type, while another one is a rank-1 type.
Using polymorphic subtyping we can show that the rank-3 type is more general
than the rank-1 type. Thus the following program type-checks:

callcc’ : ∀a:⋆. ((∀b:⋆. a → b) → a) → a
callcc : ∀a:⋆.∀b:⋆. ((a → b) → a) → a
callcc = callcc’

The type ∀b:⋆. a → b appears in a positive position of the whole signature,
and it is a more general signature than a → b for an arbitrary choice of b.
Our language captures this subtyping relation so that we can assign callcc’ to
callcc (but not the other way around). In contrast, in approaches like the ICC,
the types of callcc and callcc’ are not compatible and the example above
would be rejected.

2.2. Key Features
We briefly discuss the major features of λ∀I itself and its formalization. More

formal and technical discussions will be left to Sections 3 and 4.

Polymorphic Subtyping Relation. Figure 1 shows the syntax of types, monomor-
phic types (or monotypes), and the polymorphic subtyping relation in Dunfield
and Krishnaswami (2013) variation of Odersky and Läufer’s declarative type
system (Odersky and Läufer, 1996). Although there are slight differences be-
tween the two versions of subtyping relations, since they essentially express the
same idea, we use DK’s and Odersky and Läufer’s polymorphic subtyping re-
lation interchangeably in this article. Here the syntax includes ∀ types that
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Types A,B ∶∶= x ∣ N ∣ A→ B ∣ ∀x.A
Monotypes τ, σ ∶∶= x ∣ N ∣ τ → σ

Γ ⊢DK A ≤ B (Polymorphic Subtyping)

≤Var
x ∈ Γ

Γ ⊢DK x ≤ x

≤Int

Γ ⊢DK N ≤ N

≤→

Γ ⊢DK B1 ≤ A1 Γ ⊢DK A2 ≤ B2

Γ ⊢DK A1 → A2 ≤ B1 → B2

≤∀L
Γ ⊢DK τ Γ ⊢DK [τ/x]A ≤ B

Γ ⊢DK ∀x.A ≤ B

≤∀R
Γ, x ⊢DK A ≤ B
Γ ⊢DK A ≤ ∀x.B

Figure 1: The Dunfield and Krishnaswami (2013) variation of the polymorphic subtyping
relation by Odersky and Läufer (1996).

represent polymorphic types (or polytypes), which are universally quantified
over type parameters. The definition of monotypes is standard and includes
all types without occurrences of universal quantifiers. Context Γ is a list of
type variables that are allowed to occur free in types A and B in the subtyp-
ing relation. The polymorphic subtyping relation captures a more-general-than
relation between types. The key rules in their subtyping relation are rules ≤∀L
and ≤∀R:

• In rule ≤∀L, a polytype (∀x.A) is considered more-general than another
type (B), when we can find an arbitrary monotype (τ) so that the instan-
tiation is more general than B. Importantly note that this relation does
not guess arbitrary (poly)types, but just monotypes. In other words, the
relation is predicative (Martin-Löf, 1998). This restriction ensures that
the relation is decidable.

• In rule ≤∀R a type (A) is considered more general than a polytype (∀x.B)
when it is still more general than the head of the polytype, with the type
parameter instantiated by an abstract variable x.

This subtyping relation sets a scene for our work, which generalizes this
relation to a dependently typed setting.

Generalizing Polymorphic Subtyping. The parameters of universal types can
only be types in the polymorphic subtyping relation by Odersky and Läufer.
In λ∀I , we generalize the polymorphic parameters so that they can be values or
other kinds of types as well. The first idea for a direct generalization is:
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≤∀L′

Γ ⊢ τ ∶ A Γ ⊢ [τ/x]B ≤ C
Γ ⊢ ∀x ∶ A .B ≤ C

≤∀R′

Γ, x ∶ B ⊢ A ≤ C
Γ ⊢ A ≤ ∀x ∶ B .C

The parameters for universal types can have any type (and not just ⋆). Hence,
instead of requiring the monotype τ to be a well-formed type in rule ≤∀L, in rule
≤∀L′ it is required that τ is well-typed regarding the type of the parameter in
the universal quantifier. Similarly, for rule ≤∀R′ the context for the subtyping
rule should include typing information for the universally quantified variable.
However, this idea introduces the issue of potential mutual dependency between
subtyping and typing judgments, so further adjustments have to be made to
formalize this idea, which is discussed later in this section, Sections 3.3 and 4.1.

Higher-Ranked Polymorphic Subtyping. As the callcc example in Section 2.1
shows, the subtyping rules based on polymorphic subtyping, combined with
other subtyping rules, are able to handle the subtyping relations that occur at
not only top-level but also at a higher-ranked level. This feature distinguishes
our λ∀I from the Implicit Calculus of Constructions (ICC) (Miquel, 2001) which
also discusses the implicit polymorphism of dependent type languages. The ICC
features these two related rules in their typing relation:

inst
Γ ⊢ e ∶ ∀ x ∶ A. B Γ ⊢ e1 ∶ A

Γ ⊢ e ∶ [e1/x ]B

gen
Γ, x ∶ A ⊢ e ∶ B Γ ⊢ ∀ x ∶ A. B ∶ k

Γ ⊢ e ∶ ∀ x ∶ A. B

Without an explicit subtyping relation, the ICC is not always able to handle
subtyping at higher-ranked positions. The approach taken by the ICC is similar
to that of the Hindley-Milner type system (Hindley, 1969; Damas and Mil-
ner, 1982), which is also designed for dealing only with rank-1 polymorphism.
Hindley-Milner’s declarative system also has a GEN rule to convert expressions
to polymorphic types, and an INST rule to instantiate polymorphic parame-
ters. Similar to rules GEN and INST shown above, both rules in HM work only
for polymorphic types at top-level positions. In Hindley-Milner the universal
quantifier can only quantify over types, whereas in the ICC it can quantify over
terms of an arbitrary type (including types themselves). In generalizations of
higher-ranked polymorphic type-inference (Dunfield and Krishnaswami, 2013;
Le Botlan and Rémy, 2003; Leijen, 2008; Vytiniotis et al., 2008; Peyton Jones
et al., 2007), it has been shown that rules like ≤∀L and ≤∀R generalize rules like
GEN and INST. Since we aim at higher-ranked polymorphic generalization, we
follow a similar, more general, approach in λ∀I .

Unified Subtyping. The revised subtyping relation with ≤∀L′ and ≤∀R′ rules
suffers from an important complication compared to the Odersky and Läufer
formulation: there is now a notorious mutual dependency between typing and
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subtyping. In Odersky and Läufer’s rules, the subtyping rules do not depend
on typing. In particular the rule ≤∀L depends only on well-formedness (Γ ⊢ τ).
In contrast, note that rule ≤∀L′ now mentions the typing relation in its premise
(Γ ⊢ τ ∶ A). Moreover, as usual, the subsumption rule of the typing relation
depends on the subtyping relation as shown below.

t-sub
Γ ⊢ e ∶ A Γ ⊢ A ≤ B

Γ ⊢ e ∶ B

This mutual dependency has been a significant problem when combining subtyp-
ing and dependent types (Aspinall and Compagnoni, 1996; Hutchins, 2010), and
presents itself on our way to the direct generalization of polymorphic subtyping.

To tackle this issue, we adopt a technique called the unified subtyping (Yang
and Oliveira, 2017). Unified subtyping merges the typing relation and subtyping
relation into a single relation to avoid this mutual dependency:

Γ ⊢ e1 ≤ e2 ∶ A

The interpretation of this judgment is: under context Γ, e1 is a subtype of e2
and they both are of type A. The judgments for subtyping and typing are both
special forms of unified subtyping:

Γ ⊢ A ≤ B ≜ Γ ⊢ A ≤ B ∶ ⋆ Γ ⊢ e ∶ A ≜ Γ ⊢ e ≤ e ∶ A

The technique simplifies the formalization of dependently typed calculi with
subtyping, and especially the proof of transitivity in the original work by Yang
and Oliveira (2017). After applying the technique, an ideal generalization of the
polymorphic subtyping would be:

≤∀L′′

Γ ⊢ τ ∶ A Γ ⊢ [τ/x]B ≤ C ∶ ⋆
Γ ⊢ ∀x ∶ A.B ≤ C ∶ ⋆

≤∀R′′

Γ, x ∶ B ⊢ A ≤ C ∶ ⋆
Γ ⊢ A ≤ ∀x ∶ B.C ∶ ⋆

The basic idea of our own formalization essentially follows a similar design,
although the actual rules in λ∀I are slightly more sophisticated. The details will
be discussed in Section 3.3.

“Explicit” Implicit Instantiation. With polymorphic subtyping the instantiation
of universally quantified type parameters is done implicitly instead of being
manually applied. In non-dependent type systems, implicit parameters are types
(i.e. terms are not involved in implicit instantiation). For example:

(λx.x) 42Ð→ 42

Here λx.x has type ∀A.A → A, and instantiation implicitly discovers that A =
Int. Notably, and in contrast with explicitly polymorphic languages like System
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F, implicit instantiation is not reflected anywhere at term level. The design that
we adopt still provides implicit instantiation, but it is more explicit regarding the
binding of implicit parameters. We adopt this design to ensure that polymorphic
variables are well-scoped in type annotations of terms. Thus we use another
binder, of the form Λ(x ∶ A).e, for terms. Nonetheless, instantiations are still
implicit as shown in the following example:

(ΛA ∶ ⋆. λx ∶ A.x) 42Ð→ 42

Here ΛA ∶ ⋆. λx ∶ A.x has type ∀A ∶ ⋆.A → A, and the polymorphic parameter
A is explicitly stated in the polymorphic term. However as the reduction shows,
the instantiations are still implicit. We purposely omitted the explicit binders
for implicit parameters for all the examples in Section 2.1 for conciseness. Such
explicit binders can be recovered with a simple form of syntactic sugar:

e ∶ ∀(x ∶ A).B ≜ Λx ∶ A. e ∶ ∀(x ∶ A).B

Computational Irrelevance. Implicit parameters in traditional languages with
polymorphic subtyping, the ICC (Miquel, 2001; Barras and Bernardo, 2008),
and λ∀I are computationally irrelevant. In traditional (non-dependently) typed
languages, types cannot affect computation, thus computational irrelevance is
quite natural and widely adopted. Furthermore, computational irrelevance can
benefit performance, since irrelevant arguments can simply be erased at runtime.
In dependently typed systems, however, there can be some programs where it
is useful to have computationally relevant implicit parameters. For example,
accessing the length of a length-indexed vector in constant time:

length : ∀n:Nat. Vector n → Nat
length = Λn:Nat.λv:(Vector n). n

Here the implicit parameter n is computationally relevant as it is used as the
return value of the function which is likely to be executed at runtime. Languages
like Agda, Coq, and Idris support such programs. However, computationally
relevant implicit parameters are challenging for proofs of type soundness. Due to
such challenges (see also the discussion in Section 3.2), the ICC has a restriction
that parameters for implicit function types must be computationally irrelevant.
Since we adopt a similar technique for the type soundness proof, we also have
a similar restriction and thus cannot encode programs such as the above.

Type-level Computation and Casts. λ∀I features the fixpoint operator that sup-
ports general recursion at both type and term level. In order to avoid diverging
computations at type checking, we do not provide the conversion rule (or con-
gruence rule) like other dependently typed systems such as the Calculus of
Constructions (Coquand and Huet, 1988) to support implicit type-level reduc-
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tion.

Cong
Γ ⊢ e ∶ A A =β B

Γ ⊢ e ∶ B

The presence of the conversion rule makes the decidability of type checking rely
on the strong normalization of type-level computation (to determine whether
two types are β-equivalent). But the presence of general recursion denies the
strong normalization property of our language.

Instead of using a conversion rule, we adopt the call-by-name design of Pure
Iso-Type Systems (PITS) (Yang et al., 2016; Yang and Oliveira, 2019), and
provide cast⇓ and cast⇑ operators to explicitly trigger one-step type reductions
or expansions as shown in the typing rules below.

Castup
Γ ⊢ e ∶ B AÐ→ B Γ ⊢ A ∶ k

Γ ⊢ cast⇑ [A] e ∶ A

Castdn
Γ ⊢ e ∶ A AÐ→ B Γ ⊢ B ∶ k

Γ ⊢ cast⇓ e ∶ B

Now, since reductions only perform one step per use of cast operators, whether
a term strongly normalizes or not no longer affects the decidability of type
checking. Note that there are some other cast designs in the literature (Stump
et al., 2008; Sjöberg et al., 2012; Kimmell et al., 2012; Sjöberg and Weirich,
2015), we adopt the PITS design here for simplicity. We believe that other cast
designs could also be adopted instead, but leave this for future work.

3. The Dependent Implicitly Polymorphic Calculus

This section introduces the static and dynamic semantics of λ∀I : a depen-
dently typed calculus with type casts and implicit polymorphism. The calculus
employs unified subtyping (Yang and Oliveira, 2017) and has a single relation
that generalizes both typing and subtyping. The calculus can be seen as a vari-
ant of the Calculus of Constructions (Coquand and Huet, 1988), but it uses a
simple form of casts (Yang et al., 2016; Yang and Oliveira, 2019) with cast⇑ and
cast⇓ operators instead of the conversion rule and features unrestricted recur-
sion with the fixpoint operator. We present the syntax, the unified subtyping
relation, and operational semantics for λ∀I .

3.1. Syntax
Figure 2 shows the syntax of λ∀I . The syntax is similar to the Calculus of

Constructions, featuring unified terms and types, and a kind hierarchy with ⋆
and ◻. The kind ⋆ is the type (or kind) of other types like N and Π types, the
kind ◻ is the type of ⋆, but ◻ itself has no type/kind. Due to the unified syn-
tax, types and expressions (e, A and B) are used interchangeably, but we mostly
adopt the convention of using A and B for contexts where the expressions are
used as types and e for contexts where the expressions represent terms. The
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Kinds k ∶∶= ⋆ ∣ ◻
Expressions e,A,B ∶∶= x ∣ n ∣ k ∣ N ∣ e1 e2 ∣ λ x ∶ A. e ∣ Π x ∶ A. B

∣ Λ x ∶ A. e ∣ ∀ x ∶ A. B ∣ µ x ∶ A. e
∣ cast⇑ [A] e ∣ cast⇓ e

Mono-Expressions τ, σ ∶∶= x ∣ n ∣ k ∣ N ∣ τ1 τ2 ∣ λx ∶ τ. σ ∣ Πx ∶ τ. σ
∣ Λx ∶ τ. σ ∣ µx ∶ τ. σ ∣ cast⇑ [τ] σ ∣ cast⇓ τ

Values v ∶∶= k ∣ n ∣ N ∣ λ x ∶ A. e ∣ Π x ∶ A. B ∣ Λ x ∶ A. e
∣ ∀ x ∶ A. B ∣ cast⇑ [A] e

Contexts Γ ∶∶= ∅ ∣ Γ, x ∶ A
Syntactic Sugar A→ B ≜ Π x ∶ A. B where x ∉ FV(B)

Figure 2: Syntax of λ∀I .

syntax includes all the constructs of the calculus of constructions: variables (x ),
kinds (k), function applications (e1 e2), lambda expressions (λ x ∶ A. e), depen-
dent function types (Π x ∶ A. B) as well as integer types (N) and integers (n).
Moreover, there are several additional language constructs to support implicit
polymorphism, recursion, and explicit type-level computation via casts. These
constructs are discussed next.

Implicit Polymorphism. In λ∀I , universal types ∀ x ∶ A. B generalize implicit
polymorphic types (∀x.A) in conventional functional languages. The parameter
x in ∀ x ∶ A. B ranges over all well-typed expressions besides well-formed types
(i.e. x can have any type A instead of just kind ⋆). The idea of monomorphic
types (or monotypes) is also generalized. Mono-expressions τ exclude polymor-
phic types (∀ x ∶ A. B) from the syntax, which follows a similar design in various
work about predicative higher-ranked polymorphism (Odersky and Läufer, 1996;
Dunfield and Krishnaswami, 2013; Peyton Jones et al., 2007). With dependent
types, only generalized universal types are excluded, but not any other related
expressions.

Notably, generalized “polymorphic types” are naturally dependent, and ∀
types can be viewed as the implicit counterpart of Π types. So we also have
implicit lambda expressions (Λ x ∶ A. e), which is different from the “usual” λ
expressions and explicit function types (Π types), for which arguments should
be explicitly passed. The arguments of implicit lambda (Λ) expressions are
deduced during type checking. This is a similar design to the Implicit Calculus
of Constructions (ICC∗) (Barras and Bernardo, 2008), which employs similar
constructs for implicit dependent products.

Recursion and Explicit Type-level Computation. The λ∀I calculus adopts iso-
types (Yang et al., 2016; Yang and Oliveira, 2019), featuring explicit type-level
computation with cast operators cast⇓ and cast⇑. These operators respectively
perform one-step type reduction and expansion based on the operational seman-
tics. The reduction in cast operators is deterministic, thus type annotations are
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only needed during type expansions (cast⇑). We add fixpoints (µ x ∶ A. e) to
support general recursion for both term-level and type-level. Iso-recursive types
are supported by cast⇑ and cast⇓ operators, which correspond to the fold and
unfold operations when working on conventional iso-recursive types.

3.2. Operational Semantics
For the operational semantics we employ two different, but closely related

reduction relations. The first reduction relation is non-deterministic, and it is
used at the type-level to allow type conversions induced by the cast operators.
The second reduction relation is deterministic and is employed to give the run-
time semantics of expressions.

Non-deterministic Implicit Instantiations. Figure 3 presents the small-step op-
erational semantics of λ∀I . It mostly follows the “Call-By-Name” (CBN) variant
of Pure Iso-Type Systems (PITS) (Yang and Oliveira, 2019) corresponding to
the calculus of constructions. In such variant the arguments of the β-reduction
(rule r-beta) and expressions in the rule r-cast-elim are not required to be
values. Reductions can be performed inside cast⇓ terms (rules r-castdn and
r-cast-inst). Note that here rule r-castdn reflects the term-level reduction of
cast⇓ terms themselves, the one-step type-level reductions triggered by the cast⇓
operator are reflected in the typing rules. Following the CBN semantics of PITS,
cast⇑ terms are considered to be values to avoid nondeterministic reduction of
terms like cast⇓(cast⇑[A] e), where e is reducible (either performing reduction
on e, or the reduction via rule r-cast-elim could be the choice, should cast⇑
terms be reducible). There is an alternative design following the “call-by-value”
variant of PITS, which we will discuss in Section 5.2. Also, the unfold operation
of the fixpoint operator is supported by rule r-mu.

Due to the presence of instantiation of implicit parameters, the direct op-
erational semantics is not deterministic, and potentially not type-preserving
because of rules r-inst and r-cast-inst. The indeterminacy is caused by the
guess of τ , which can be an arbitrary mono-expression, since we do not have
access to any typing information in the dynamic semantics.

Deterministic Erased Reduction. We address the issue of determinacy of the
dynamic semantics with a design similar to ICC∗ (Barras and Bernardo, 2008),
employing type-erased expressions. The erased expressions essentially mirror
the syntax and semantics of normal expressions, except for the elimination of
type annotations in λ, Λ, µ, and cast⇑ expressions. Figure 4 shows the syntax of
the erased expressions and the companion operational semantics. Restrictions
are imposed in the typing rules to forbid the implicit parameter occurring in
runtime-relevant parts of the expression, i.e. the erased expressions (see Section
3.3). With such restriction, implicit parameters can be directly eliminated in
rules er-elim and er-cast-inst. For a well-typed expression, the reduction of
its erasure is deterministic. Although the implicit parameter does not matter at
runtime, the erasure function preserves the structure of the original syntax by
not eliminating the implicit binder altogether. This design has the advantage
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e1 Ð→ e2 (Operational Semantics)

r-app
e1 Ð→ e2

e1 e3 Ð→ e2 e3

r-beta

(λ x ∶ A. e1) e2 Ð→ [e2/x ] e1

r-inst

(Λ x ∶ A. e1) e2 Ð→ ([τ/x ] e1) e2

r-mu

µ x ∶ A. e Ð→ [µ x ∶ A. e/x ] e

r-castdn
e1 Ð→ e2

cast⇓ e1 Ð→ cast⇓ e2

r-cast-inst

cast⇓ (Λ x ∶ A. e)Ð→ cast⇓ ([τ/x ] e)

r-cast-elim

cast⇓ (cast⇑ [B] e)Ð→ e

Figure 3: Operational semantics of λ∀I .

that the correspondence between the original and the erased expression can be
established more easily, when the reductions of erased expressions correspond
directly to their erased counterpart. The proof of type safety of our system is
built around this idea of correspondence, which is discussed in Section 4.4.

3.3. Unified Subtyping
Figure 5 shows the (sub)typing rules of the system. We adopt a simplified

design based on unified subtyping (Yang and Oliveira, 2017). The subtyping
rules and typing rules are merged into a single judgment Γ ⊢ e1 ≤ e2 ∶ A.

Unified subtyping solves the challenging issue of mutual dependency between
typing and subtyping in a dependent type system. The interpretation of this
judgment is “under context Γ, e1 is a subtype of e2 and they are both of type
A”. In this form of formalization, the typing judgment Γ ⊢ e ∶ A is a special
case of the unified subtyping judgment Γ ⊢ e ≤ e ∶ A, and the well-formedness
of types Γ ⊢ A is expressed by Γ ⊢ A ∶ ⋆.

Subtyping Rules for Universal Quantifications. The subtyping rules for univer-
sal quantifications (rules s-forall-l and s-forall-r) follow the spirit of the
Odersky and Läufer’s polymorphic subtyping (Odersky and Läufer, 1996; Dun-
field and Krishnaswami, 2013), where the subtyping relation is interpreted as
a “more-general-than” relation. A polymorphic type ∀ x ∶ A. B is more general
than another type C when its well-typed instantiation is more general than C
(rule s-forall-l). A polymorphic type ∀ x ∶ B . C is less general than a type
A, if C is less general than A when the argument with the polytype (x ∶ B) is
instantiated abstractly (rule s-forall-r).
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Erased Expressions E,A,B ∶∶= x ∣ n ∣ k ∣ N ∣ E1E2 ∣ λ x . E ∣ Π x ∶ A. B
∣ Λ x . E ∣ ∀ x ∶ A. B ∣ µ x . E ∣ cast⇑E ∣ cast⇓E

Erased Values ev ∶∶= k ∣ n ∣ N ∣ λ x . E ∣ Π x ∶ A. B ∣ Λ x . E
∣ ∀ x ∶ A. B ∣ cast⇑E

∣x ∣ = x ∣n ∣ = n ∣k ∣ = k ∣N∣ = N
∣e1 e2∣ = ∣e1∣ ∣e2∣ ∣µ x ∶ A. e ∣ = µx. ∣e ∣

∣λ x ∶ A. e ∣ = λx. ∣e ∣ ∣Π x ∶ A. B ∣ = Πx ∶ ∣A∣. ∣B ∣
∣Λ x ∶ A. e ∣ = Λx. ∣e ∣ ∣∀ x ∶ A. B ∣ = ∀x ∶ ∣A∣. ∣B ∣

∣cast⇑ [A] e ∣ = cast⇑ ∣e ∣ ∣cast⇓ e ∣ = cast⇓ ∣e ∣

E1 Ô⇒ E2 (Erased Semantics)

er-app
E1 Ô⇒ E2

E1E3 Ô⇒ E2E3

er-beta

(λ x . E1)E2 Ô⇒ [E2/x ]E1

er-elim

(Λ x . E1)E2 Ô⇒ E1E2

er-mu

µ x . E Ô⇒ [µ x . E/x ]E

er-castdn
E1 Ô⇒ E2

cast⇓E1 Ô⇒ cast⇓E2

er-cast-inst

cast⇓ (Λ x . E)Ô⇒ cast⇓E

er-cast-elim

cast⇓ (cast⇑E)Ô⇒ E

Figure 4: Erased Expressions and Operational Semantics
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⊢ Γ (Well-formed Context)

wf-nil

⊢ ∅

wf-cons
⊢ Γ x fresh in Γ Γ ⊢ A ∶ k

⊢ Γ, x ∶ A

Γ ⊢ e1 ≤ e2 ∶ A (Unified Subtyping)

s-var
⊢ Γ x ∶ A ∈ Γ

Γ ⊢ x ≤ x ∶ A

s-lit
⊢ Γ

Γ ⊢ n ≤ n ∶ N

s-int
⊢ Γ

Γ ⊢ N ≤ N ∶ ⋆

s-star
⊢ Γ

Γ ⊢ ⋆ ≤ ⋆ ∶ ◻

abs
Γ ⊢ A ∶ k1

Γ, x ∶ A ⊢ B ∶ k2 Γ, x ∶ A ⊢ e1 ≤ e2 ∶ B
Γ ⊢ λ x ∶ A. e1 ≤ λ x ∶ A. e2 ∶ Π x ∶ A. B

s-app
Γ ⊢ τ ∶ A

Γ ⊢ e1 ≤ e2 ∶ Π x ∶ A. B
Γ ⊢ e1 τ ≤ e2 τ ∶ [τ/x ]B

s-pi
Γ ⊢ A2 ≤ A1 ∶ k1

Γ, x ∶ A1 ⊢ B1 ∶ k2
Γ, x ∶ A2 ⊢ B1 ≤ B2 ∶ k2

Γ ⊢ Π x ∶ A1. B1 ≤ Π x ∶ A2. B2 ∶ k2

s-mu
Γ ⊢ τ ∶ k Γ, x ∶ τ ⊢ σ ∶ τ

Γ ⊢ µ x ∶ τ. σ ≤ µ x ∶ τ. σ ∶ τ

s-bind
Γ ⊢ A ∶ k

Γ, x ∶ A ⊢ B ∶ ⋆ Γ, x ∶ A ⊢ e1 ≤ e2 ∶ B
x ∉ FV(∣e1∣) ∪ FV(∣e2∣)

Γ ⊢ Λ x ∶ A. e1 ≤ Λ x ∶ A. e2 ∶ ∀ x ∶ A. B

s-castup
Γ ⊢ A ∶ k AÐ→ B

Γ ⊢ e1 ≤ e2 ∶ B
Γ ⊢ cast⇑ [A] e1 ≤ cast⇑ [A] e2 ∶ A

s-castdn
Γ ⊢ B ∶ k AÐ→ B

Γ ⊢ e1 ≤ e2 ∶ A
Γ ⊢ cast⇓ e1 ≤ cast⇓ e2 ∶ B

s-forall-l
Γ ⊢ A ∶ k Γ ⊢ τ ∶ A

Γ, x ∶ A ⊢ B ∶ ⋆ Γ ⊢ [τ/x ]B ≤ C ∶ ⋆
Γ ⊢ ∀ x ∶ A. B ≤ C ∶ ⋆

s-forall-r
Γ ⊢ B ∶ k

Γ ⊢ A ∶ ⋆ Γ, x ∶ B ⊢ A ≤ C ∶ ⋆
Γ ⊢ A ≤ ∀ x ∶ B . C ∶ ⋆

s-forall
Γ ⊢ A ∶ k Γ, x ∶ A ⊢ B ≤ C ∶ ⋆
Γ ⊢ ∀ x ∶ A. B ≤ ∀ x ∶ A. C ∶ ⋆

s-sub
Γ ⊢ e1 ≤ e2 ∶ A Γ ⊢ A ≤ B ∶ k

Γ ⊢ e1 ≤ e2 ∶ B

Syntactic Sugars
Γ ⊢ e ∶ A ≜ Γ ⊢ e ≤ e ∶ A Γ ⊢ A ≜ Γ ⊢ A ≤ A ∶ ⋆ Γ ⊢ A ≤ B ≜ Γ ⊢ A ≤ B ∶ ⋆

Figure 5: Unified Subtyping Rules of λ∀I .

17



Notably, our formalization is not the direct generalization of Odersky and
Läufer’s polymorphic subtyping, as we mentioned in Section 2.2. As highlighted
in Figure 5: we add rule s-forall that axiomatizes the subtyping relation
between two universal types, and additional premises are added to rules s-
forall-l and s-forall-r besides the ones that appear in rules ≤∀L′′ and
≤∀R′′ in Section 2.2. We discuss the motivations for these changes in more
detail in Section 4.1.

Mono-expression Restrictions. As in other predicative relations (such as the
one by Odersky and Läufer), the type arguments for instantiation in rule s-
forall-l are required to be mono-expressions, which has cascading effects on
typing rules of other expressions. The arguments for applications are required
to be mono-expressions, and the whole fixpoint expression is required to be a
mono-expression. We shall discuss the rationale to impose these restrictions in
Section 4.

Kind Restriction for Universal Types. For the kinding of types, we mainly fol-
low the design of the Calculus of Constructions (Coquand and Huet, 1988).
However, we specifically restrict the polymorphic type ∀ x ∶ A. B to only have
kind ⋆, but not ◻. Without this restriction, types of kind ⋆ (such as N) are
able to have “polymorphic kinds” like ∀ x ∶ N. ⋆ through rules s-forall-l, s-
forall-r, and s-sub, which significantly complicates the kinding reasoning in
the metatheory. Practically speaking, “polymorphic kinds” are not very com-
mon, so this restriction has little impact on the expressiveness of our language.

Since we expect the types of well-typed expressions to be well-kinded, the
restriction propagates to the introduction rule of ∀ types (rule s-bind). In this
rule, B is required to only have kind ⋆ but not ◻. In contrast, for rule s-abs, the
type B at a similar position can have any kind. As a result, implicit polymorphic
functions at type level are never well-typed. For example, Λa ∶ ⋆. λb ∶ n. a is not
well-typed since it would have been a polymorphic function of type ∀a ∶ ⋆. a →
⋆, which is not well-kinded due to the kinding restriction of universal types.
Moreover, type-level function applications that involve implicit abstractions (Λ
expressions) are also never well-typed because of the restriction. So well-typed
non-deterministic implicit instantiation can never occur at the type-level.

Computational Irrelevance of Implicit Parameters. As mentioned in Section 2.2,
our language does not handle computationally relevant implicit parameters.
The direct operational semantics shown in Figure 3 chooses arbitrary mono-
expressions to instantiate the implicit arguments, which potentially breaks type
safety. Thus, we adopt a restriction in rule s-bind that is similar to the Implicit
Calculus of Constructions (ICC) (Miquel, 2001). We only allow the implicit
parameters to occur in type annotations in the body of implicit abstraction, so
that the choices of implicit parameters are not relevant at runtime. The type
safety of the direct operational semantics is proved indirectly in Section 4.4 with
the help of the erasure of expressions.
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Redundant Premises. All the premises boxed by dash lines are redundant in
a way that the system without them is proved equivalent to the system with
them. These redundant premises are there to simplify the mechanized proofs of
certain lemmas, but can be safely dropped in an actual implementation.

4. The Metatheory of λ∀
I

This section presents the metatheory of λ∀I , and discusses several challenges
that arose during the design of the typing rules to ensure desired subtyping
and typing properties in our system. The three main results of the metathe-
ory are: transitivity of unified subtyping, type-soundness and completeness with
respect to Odersky and Läufer’s polymorphic subtyping. Transitivity of sub-
typing is a general challenge for dependent type systems due to the mutual
dependency of typing and subtyping, and the Odersky and Läufer style subtyp-
ing brings new issues to the table. For type-soundness, the key challenge is the
non-deterministic and non-type-preserving nature of the reduction relation. To
address this issue, we employ a type soundness proof technique that makes use
of the erased reduction relation shown in Figure 4.

4.1. Polymorphic Subtyping in a Dependently Typed Setting
The polymorphic subtyping relation by Odersky and Läufer features the

following two rules:

Γ ⊢DK τ Γ ⊢DK [τ/x]A ≤ B
Γ ⊢DK ∀x.A ≤ B

≤∀L
Γ, x ⊢DK A ≤ B
Γ ⊢DK A ≤ ∀x.B

≤∀R

In order for the well-formedness (Dunfield and Krishnaswami, 2013) property
(If Γ ⊢DK A ≤ B, then Γ ⊢DK A and Γ ⊢DK B) to hold in Läufer and Odersky’s
system, these two rules rely on certain properties that do not hold in our depen-
dently typed generalization. So we make several adjustments in our adaptation
to address these issues, which result in the difference between our current system
and a direct generalization mentioned in Section 2.2.

Reverse Substitution of Well-Formedness. Rule ≤∀L relies on the reverse substi-
tution property, but this property does not hold in a dependently typed setting.
Thus we need an alternative design that still ensures well-formedness, but with-
out relying on the reverse substitution property.

The reverse substitution property is: If Γ ⊢DK [B/x]A and Γ ⊢DK B, then
Γ, x ⊢DK A. That is if we have a type A with all occurrences of x substituted by
B and B is well-formed, we can conclude that A is well-formed under Γ, x. In
a dependently typed setting, a possible form of generalization of this property
would be: If Γ ⊢ [B/x ]A ∶ ⋆ and Γ ⊢ B ∶ C , then Γ, x ∶ C ⊢ A ∶ ⋆, which unfor-
tunately does not hold. In a dependent type system, the values of expressions
also matter during type checking besides their types, a counter-example of the
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property is:

F ∶ N→ ⋆, a ∶ F 42 ⊢ (λy ∶ F 42 .N) a ∶ ⋆

F ∶ N→ ⋆, a ∶ F 42, x ∶ N ⊢ (λy ∶ F x .N) a ∶ ⋆

We cannot “reverse substitute” the 42 in the type annotation to a variable of
the same type: the application expression depends specifically on the value 42
in order for the type of argument a to match the type of the parameter. So
we add a premise Γ, x ∶ A ⊢ B ∶ ⋆ in rule s-forall-l to directly ensure the
well-formedness of types in the conclusion.

Strengthening of Contexts. Rule ≤∀R relies on a strengthening lemma: if Γ, x ⊢
A and x does not occur in A, then Γ ⊢ A, which is trivial to prove in their
system. However the admissibility of its generalization: if Γ, x ∶ B ⊢ A ∶ ⋆ and
x does not occur in A, then Γ ⊢ A ∶ ⋆, is much more complicated to reason
about. We can construct the following example:

F ∶ N→ ⋆, A ∶ ⋆, a ∶ A ⊢ F ((Λ x ∶ A. λ y ∶ N. y) 42) ∶ ⋆

The variable a does not appear in any expression, but plays a crucial role when
considering the subtyping statement Γ ⊢ ∀x ∶ A.N → N ≤ N → N, which arises
when type-checking the application (Λ x ∶ A. λ y ∶ N. y) 42. In this case, we
cannot apply rule s-forall-l unless we find a well-typed instance for the poly-
morphic parameter. So the variable a in the context is needed even though it
does not occur anywhere in the final judgment. Note that, since our system
has a fixpoint operator, theoretically we could construct a diverging program
µ x ∶ A. x to instantiate the implicit parameter, but this possibility leads to
several other issues which we will discuss in Section 5.6. Furthermore, such an
approach would not work for calculi without fixpoints.

Due to these complications, we assume that strengthening does not hold in
our system for now. We add a premise Γ ⊢ A ∶ ⋆ to rule s-forall-r to work
around this issue, requiring A to be a well-kinded type without the help of the
fresh variable. A consequence of adding this premise is that we will encounter a
circular proof while trying to prove Γ ⊢ ∀ x ∶ A. B ≤ ∀ x ∶ A. B ∶ ⋆, for arbitrary
A and B by first applying rule s-forall-r. We resolve this issue by adding
rule s-forall.

4.2. Typing Properties of λ∀I
With our rules properly set up, we can prove most of the basic properties

using techniques borrowed from the unifed subtyping (Yang and Oliveira, 2017)
approach. We introduce reflexivity, weakening, context narrowing, substitution
and type correctness in this section.

Theorem 1 (Reflexivity). If Γ ⊢ e1 ≤ e2 ∶ A, then Γ ⊢ e1 ∶ A and Γ ⊢ e2 ∶ A.

Usually, a subtyping relation is reflexive when any well-formed type is a sub-
type of itself. With unified subtyping, the well-formedness of types is expressed
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by subtyping relation as well, so the reflexivity looks more like the generalized
well-formedness mentioned in the previous section. Reflexivity breaks down into
two parts, left reflexivity and right reflexivity.

Lemma 2 (Left Reflexivity). If Γ ⊢ e1 ≤ e2 ∶ A, then Γ ⊢ e1 ∶ A.

Lemma 3 (Right Reflexivity). If Γ ⊢ e1 ≤ e2 ∶ A, then Γ ⊢ e2 ∶ A.

Both of the branches are proved by induction on the derivation of Γ ⊢ e1 ≤ e2 ∶ A.
Left reflexivity and right reflexivity when derivations end with rule s-forall-l
and rule s-forall-r respectively are directly solved by rule s-forall.

Theorem 4 (Weakening). If Γ1, Γ3 ⊢ e1 ≤ e2 ∶ A and ⊢ Γ1, Γ2, Γ3, then
Γ1, Γ2, Γ3 ⊢ e1 ≤ e2 ∶ A.

Weakening is proved by induction on the derivation of Γ1, Γ3 ⊢ e1 ≤ e2 ∶ A. The
redundant premises discussed in Section 3.3 help to simplify the proof, by creat-
ing the induction hypotheses about the type annotation of various expressions.
Otherwise, we are not able to prove ⊢ Γ1, Γ2, Γ3, x ∶ A with only ⊢ Γ1, Γ3, x ∶ A
given and no help from induction hypotheses.

Theorem 5 (Context Narrowing). If Γ1, x ∶ B , Γ2 ⊢ e1 ≤ e2 ∶ C and Γ1 ⊢
A ≤ B ∶ k , then Γ1, x ∶ A, Γ2 ⊢ e1 ≤ e2 ∶ C .

Lemma 6 (Well-formedness of Narrowing Context). If ⊢ Γ1, x ∶ B , Γ2

and Γ1 ⊢ A ≤ B ∶ k , then ⊢ Γ1, x ∶ A, Γ2.

Theorem 5 and Lemma 6 are proved by mutual induction on the derivations of
Γ1, x ∶ B , Γ2 ⊢ e1 ≤ e2 ∶ C and ⊢ Γ1, x ∶ B , Γ2. Rule s-var is the only non-trivial
case to solve: it relies on weakening to conclude Γ1, x ∶ A, Γ2 ⊢ A ≤ B ∶ k from
Γ1 ⊢ A ≤ B ∶ k , in order to derive Γ1, x ∶ A, Γ2 ⊢ x ∶ B through rule s-sub.

Theorem 7 (Substitution). If Γ1, x ∶ A, Γ2 ⊢ e1 ≤ e2 ∶ B and Γ1 ⊢ τ ∶ A, then
Γ1, [τ/x ]Γ2 ⊢ [τ/x ] e1 ≤ [τ/x ] e2 ∶ [τ/x ]B .

Notably substitution has a mono-expression restriction on the substituted ex-
pression. This is due to the mono-expression restriction on the instantiation of
polymorphic parameters in rule s-forall-l.

Take the following derivation as an example:

A ∶ ⋆, F ∶ A→ ⋆, a ∶ A ⊢ [ a /x]F x ≤ F a ∶ ⋆
A ∶ ⋆, F ∶ A→ ⋆, a ∶ A ⊢ ∀x ∶ A.F x ≤ F a ∶ ⋆

s-forall-l

Assuming that we have no mono-expression restrictions on substitution and
rule s-app. If we substitute a with an arbitrary poly-expression, the derivation
stops working because rule s-forall-l requires a mono-expression instantiation
and rule s-app requires the argument of both sides to be syntactically the same.
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Worth mentioning is that while substitution of poly-expressions breaks the
subtyping aspect of the language, a special case of the substitution theorem
that discusses the typing of one expression (If Γ1, x ∶ A, Γ2 ⊢ e ∶ B and Γ1 ⊢
e1 ∶ A, then Γ1, [e1/x ]Γ2 ⊢ [e1/x ] e ∶ [e1/x ]B) does not hold for similar reasons.
Because, in dependently typed languages, substitutions are also involved in the
types of expressions as well. Due to the presence of rule s-sub, we still have
to maintain the potential subtyping relation of the types of expressions after
substitution, for example:

A ∶ ⋆, F ∶ A→ ⋆, a ∶ A, b ∶ ∀x ∶ A.F x ⊢ b ∶ ∀x ∶ A.F x

A ∶ ⋆, F ∶ A→ ⋆, a ∶ A, b ∶ ∀x ∶ A.F x ⊢ b ∶ F a
s-sub

As a result, the substitution theorem only holds with the mono-expression re-
striction. This has a cascading effect on typing rules like rules s-app and s-
mu whose expressions trigger substitutions during reduction. So the mono-
expression restriction has to be added for those rules for the system to be type-
safe.

Lemma 8 (Context Well-formedness of Substitution). If ⊢ Γ1, x ∶ A, Γ2

and Γ1 ⊢ τ ∶ A, then ⊢ Γ1, [τ/x ]Γ2.

After understanding the mono-expression restriction on substitution, the actual
proof is not complicated: it proceeds by mutual induction with Lemma 8 on the
derivations of Γ1, x ∶ A, Γ2 ⊢ e1 ≤ e2 ∶ B and ⊢ Γ1, x ∶ A, Γ2. When the deriva-
tion ends with rules s-castup and s-castdn, the proof requires the reduction
relation to preserve after the substitution. This property should usually hold,
but it puts an interesting constraint which we have to consider when designing
the reduction rules (see Section 5.2).

Lemma 9 (Reduction Substitution). If AÐ→ B , then [τ/x ]AÐ→ [τ/x ]B

Theorem 10 (Type Correctness). If Γ ⊢ e1 ≤ e2 ∶ A, then ∃k.Γ ⊢ A ∶ k or
A = ◻.

Type correctness is a nice property that ensures that what appears in the po-
sition of a type is actually a type. The theorem is proved by induction on the
derivation of Γ ⊢ e1 ≤ e2 ∶ A. The only non-trivial case is when the derivation
ends with rule s-app. We make use of the substitution lemma and the induc-
tive hypothesis to demonstrate the head of a Π type preserves its kind after the
argument is applied.

4.3. Transitivity
Transitivity is typically one of the most challenging properties to prove in

calculi with subtyping and it was also one of the harder proofs in λ∀I . The proof
of transitivity requires a generalization of the usual transitivity property:
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Theorem 11 (Generalized Transitivity). If Γ ⊢ e1 ≤ e2 ∶ A and Γ ⊢ e2 ≤
e3 ∶ B , then Γ ⊢ e1 ≤ e3 ∶ A.

where the types of the premises are potentially different. To prove this property
we employ sizes for the inductive argument. Moreover we rely on a subtle
property of uniqueness of kinds.

Uniqueness of Kinds. Assuming that the second premise of generalized transi-
tivity is derived by rule s-forall-r, then we face the following problem:

Γ ⊢ e1 ≤ e2 ∶ A Γ, x ∶ B ⊢ e2 ≤ C ∶ ⋆
Γ ⊢ e1 ≤ ∀ x ∶ B . C ∶ A

Before applying rule s-forall-r to the conclusion, we have to establish the
relationship between A and ⋆. Were there no restrictions on the kinding of ∀
types, this would be a much more complicated situation, where the inversion
lemmas of about kinds and transitivity depend on each other. This is one of
the main reasons why we forbid ∀ types having kind ◻. Then we can have the
following theorem:

Theorem 12 (Kind Uniqueness). If Γ ⊢ e ∶ k and Γ ⊢ e ∶ A, then A = k.

The proof is achieved by generalizing the shape of k to be Πx ∶ A. . . .Πx ∶ B. . . . k
for obtaining useful inductive hypotheses when Γ ⊢ e ∶ k is derived by rule s-
app. Then the proof proceeds with induction on the derivation of the generalized
Γ ⊢ e ∶ k and assembling various lemmas of kinding to solve different cases.

With the help of kind uniqueness, we ensure the equivalence of A and ⋆ on
this and other similar situations.

The Induction. We prove generalized transitivity by performing a strong induc-
tion on the ordered 3-tuple of measures:

⟨#∀(e1) +#∀(e2) +#∀(e3), size(e1) + size(e3), D1 +D2⟩

where

• #∀(e) counts the number of ∀ quantifiers in expression e, which solves
cases when either side of the premise is derived by rules s-forall, s-
forall-l, and s-forall-r.

• size(e) measures the size of the syntax tree of expression e. The sum of
expression sizes solves most of the other standard recursive cases.

• D1 and D2 denote the sizes of the derivation trees of the first and the
second premise respectively. The sum of sizes of derivation tree solves the
case involving rule s-sub where the sizes of expressions do not decrease.
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The proof is mainly inspired by DK’s transitivity proof of their declarative
subtyping system of induction on the pair of ⟨#∀(e2), D1 +D2⟩ (Dunfield and
Krishnaswami, 2013), with some adjustments to fit in our system.

The most problematic case to solve is when the first premise is derived by
rule s-forall-r, and the second is derived by rule s-forall-l. Essentially we
have to show the following:

Γ, x ∶ A ⊢ e1 ≤ B ∶ ⋆ Γ ⊢ [τ/x ]B ≤ e3 ∶ ⋆ Γ ⊢ τ ∶ A
Γ ⊢ e1 ≤ e3 ∶ ⋆

Here the only decreasing measure we can rely on is that #∀([τ/x ]B) is one
less than #∀(∀ x ∶ A. B) (since τ is a monotype which does not contain any ∀
quantifier). To solve this case, we first perform a substitution on the premise
Γ, x ∶ A ⊢ e1 ≤ B ∶ ⋆ with the help of the fact that x does not occur in e1,
obtaining Γ ⊢ e1 ≤ [τ/x ]B ∶ ⋆, then we use the inductive hypothesis provided
by #∀(e2).

The reason why we cannot directly copy DK’s proof measure is because of the
case when both premises end with rule s-pi, where we encounter the following
problem:

Γ, x ∶ A2 ⊢ B1 ≤ B2 ∶ k Γ, x ∶ A3 ⊢ B2 ≤ B3 ∶ k Γ ⊢ A3 ≤ A2 ∶ k2
Γ, x ∶ A3 ⊢ B1 ≤ B3 ∶ k

The first and the second premise above do not share the same context, which
must be unified with the context narrowing theorem to be able to use the induc-
tive hypothesis. However context narrowing potentially increases the size of the
derivation tree, so we are not able to use the inductive hypothesis of D1 +D2,
and resort to the sizes of expressions (size(e1) + size(e3))

We have to make adjustments to solve the cases which preserve the size of
derivation tree, but not the sizes of the expressions, which is when the first
premise is derived by rule s-forall-l:

Γ ⊢ [τ/x ]B ≤ e2 ∶ ⋆ Γ ⊢ e2 ≤ e3 ∶ C
Γ ⊢ ∀ x ∶ A. B ≤ e3 ∶ ⋆

In this case, #∀([τ/x ]B) is one less than #∀(∀ x ∶ A. B), so it can be solved by
applying rule s-forall-l and the inductive hypothesis of #∀(e1). Additionally,
#∀(e3) is added to make the measure “symmetric” to handle the contravariance
case of rule s-pi.

Then, most of the cases that do not involve ∀ can be solved by applying the
inductive hypothesis corresponding to size(e1)+size(e3). Finally, D1+D2 solves
the cases where either premise ends with rule r-sub, where the only decreasing
measure is the size of the derivation trees when the sizes of expressions remain
the same.
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Corollary 13 (Transitivity). If Γ ⊢ e1 ≤ e2 ∶ A and Γ ⊢ e2 ≤ e3 ∶ A, then
Γ ⊢ e1 ≤ e3 ∶ A.

Transitivity is a special case of generalized transitivity where A = B.

4.4. Type Safety
Since the reduction rules of λ∀I do not have access to typing information,

they cannot perform valid instantiation checks of the implicit arguments during
applications. Thus, the runtime semantics is non-deterministic and potentially
non-type-preserving. We tackle this issue by employing designs that make the
choices of implicit instantiations irrelevant at runtime with the occurrence re-
strictions in rule s-bind. We define an erasure function (shown in Figure 4)
that eliminates the type annotations in some expressions (λ, Λ, µ and cast⇑),
and keep implicit parameters from occurring in the erased expressions. This
way the choices of implicit instantiations only affect type annotations, which
are not relevant for runtime computation.

We show that λ∀I is type-safe in the sense that, if an expression is well-typed,
then the reduction of its erased version does not “go wrong”. Figure 4 shows
the semantics of erased expressions. The erasure semantics mostly mirrors the
semantics shown in Figure 3, except for rules er-elim and er-cast-elim, which
conveys the idea of the irrelevance of implicit instantiation by eliminating the
parameter directly.

Progress. We show the progress property for both the original expressions and
the erased expressions.

Theorem 14 (Generalized progress). If ∅ ⊢ e1 ≤ e2 ∶ A, then ∃ e′1. e1 Ð→ e′1
or e1 is a value, and ∃ e′2. e2 Ð→ e′2 or e2 is a value.

Theorem 15 (Generalized progress on erased expressions). If ∅ ⊢ e1 ≤
e2 ∶ A, then ∃E′1. ∣e1∣Ô⇒ E′1 or ∣e1∣ is an erased value, and ∃E′2. ∣e2∣Ô⇒ E′2 or
∣e2∣ is an erased value.

We prove a generalized version of progress that involves both sides of the expres-
sions with unified subtyping. Note that they are not necessarily simultaneously
reducible or irreducible due to the presence of rules s-forall-l and s-forall-
r. The left-hand-side may be reducible with the right-hand-side being a value
or vice versa.

Both theorems are proved by induction on the derivation of ∅ ⊢ e1 ≤ e2 ∶ A.
The proof is mostly straightforward except when the derivation ends with cast⇓,
where we have to show that the inner expressions e of cast⇓ e either reduces, or
is a cast⇑ or a Λ-expression. We prove another fact to solve the situation: for
a well-typed expression whose type reduces, that expression cannot be a value
unless it is a cast⇑ or Λ-expression.

Lemma 16 (Reducible Type). If Γ ⊢ e ∶ A, AÐ→ B and e is not cast⇑ or a
Λ-expression, then e is not a value.
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e ∶ A e′ ∶ A

E E′

Erasure Annotation

Figure 6: Diagram for Erased Preservation without Subtyping

Lemma 17 (Erased Value to Value). If ∣e∣ is an erased value, then e is a
value.

This lemma is also useful for the proof of progress for erased expressions.
Since the value definitions are very similar, we can use the property of values
on erased values.

Lemma 18 (Value to Erased Value). If e is a value, then ∣e∣ is an erased
value.

Corollary 19 (Progress). If ∅ ⊢ e ∶ A, then ∃ e′. eÐ→ e′ or e is a value.

Corollary 20 (Progress on erased expressions). If ∅ ⊢ e ∶ A, then ∃E′. ∣e∣Ô⇒
E′ or ∣e∣ is an erased value.

Both corollaries directly follow from their generalized versions.

Preservation. The direct operational semantics is not generally type-preserving
and deterministic because of the implicit instantiations. Thus, we show preser-
vation with the help of the erased expressions (where implicit parameters do
not matter to the computation). For other reduction rules that do not involve
such issues, we discuss them as though we are proving a normal preservation
for brevity.

Theorem 21 (Subtype Preservation). If Γ ⊢ e1 ≤ e2 ∶ A, ∣e1∣ Ô⇒ E′1 and
∣e2∣ Ô⇒ E′2, then ∃ e′1 e′2. ∣e′1∣ = E′1, ∣e′2∣ = E′2, e1 Ð→ e′1, e2 Ð→ e′2 and Γ ⊢ e′1 ≤
e′2 ∶ A.

The theorem might look a little complicated at first glance. It breaks down into
two aspects: the erasure-annotation process and the subtype preservation.

Figure 6 shows the idea of our preservation lemma without considering the
subtyping aspect (assuming Γ ⊢ e ∶ A instead of Γ ⊢ e1 ≤ e2 ∶ A). Here we
use annotation as the reverse process of erasure. If an expression (e) is well-
typed, and its erasure (E) reduces to another erased expression (E′), we can
find a “annotated” expression of E′ (e′) that is reduced by e and also preserves
the type A. When no implicit instantiation happens in the reduction, then
eÐ→ e′ is deterministic: i.e. it is just normal type preservation. When there are
implicit instantiations, if the erased expression can reduce, we show that there
exists a valid instantiation for e that preserves its type after the reduction, and
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this instantiation only affects type annotations. In other words, the runtime
semantics of λ∀I can be implemented only with erased expressions.

Aside from the erasure aspect of our preservation lemma, we also consider the
generalized version of preservation in our unified subtyping system, the subtype
preservation, where reductions not only preserve the type of expressions, they
also preserve the subtyping relation between expressions as well.

The theorem is proved by induction on the derivation of Γ ⊢ e1 ≤ e2 ∶ A,
cases for rules r-beta and r-mu are solved with the substitution theorem, cases
rules r-app and r-castdn are solved by inductive hypotheses. The interesting
cases to prove are rule r-cast-elim and cases involving implicit instantiation
(rules r-inst and r-cast-inst).

Cast Elimination. The main issue of the cast elimination case can be demon-
strated by the following derivation:

B1 Ð→ B2

Γ ⊢ A1 ≤ B1 ∶ k
A1 Ð→ A2 Γ ⊢ e ∶ A2

Γ ⊢ cast⇑ [A1] e ∶ A1

s-castup

Γ ⊢ cast⇑ [A1] e ∶ B1

s-sub

Γ ⊢ cast⇓ (cast⇑ [A1] e) ∶ B2

s-castdn

Here the typing of the inner cast⇑ is not directly derived by rule r-castup,
but by the subsumption rule instead. We want to show that after the cast
elimination (following rule r-cast-elim), expression e has type B2, while in
reality it has type A2 (as highlighted). Therefore want to show Γ ⊢ A2 ≤ B2

with the information that Γ ⊢ A1 ≤ B1, A1 Ð→ A2 and B1 Ð→ B2, which depends
on the property we want to prove initially, subtype preservation. Since subtype
preservation needs to solve the cast elimination case, here we have a circular
dependency of properties. This problem was also observed by Yang and Oliveira
(2017). They solved this situation by a delicate approach with the help of an
essential lemma reduction exists in the middle (If Γ ⊢ e1 ≤ e2 ∶ A, Γ ⊢ e2 ≤ e3 ∶ A
and e1 Ð→ e′1, e3 Ð→ e′3, there exists e′2 such that e2 Ð→ e′2). Unfortunately
this lemma does not hold in our system since universal types, which are not
reducible, can appear in the middle of two reducible types, so we cannot adopt
their proof on this case.

We tackle this problem from another direction, with the observation that
the demand for subtype preservation property shifts from the term-level to the
type-level. With the Calculus-of-Constructions-like kind hierarchy, our system
only has limited layers in types (type N has kind ⋆, kind ⋆ has kind ◻). In
fact, we only need to go up one layer in the type hierarchy to be able to obtain
subtype preservation directly, since there is no subtyping at the kind level, hence
no problem for the cast elimination there. Even better, we show that by going
up one level in the type hierarchy (only discussing the types of terms), the
options for the reduction that can be performed by a well-typed term are very
limited. Implicit abstractions cannot occur in type computation due to the kind
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A1 Ð→D A2 (Deterministic Reduction)

dr-app
e1 Ð→D e2

e1 e3 Ð→D e2 e3

dr-beta

(λ x ∶ A. e1) e2 Ð→D [e2/x ] e1

dr-mu

µ x ∶ A. e Ð→D [µ x ∶ A. e/x ] e

Figure 7: Deterministic Reduction.

restriction of universal types as explained in Section 3.3. Furthermore, we also
prove that well-typed reductions never occur for kinds, so cast operators also
do not occur in type-level computation.

Figure 7 shows the effective reduction rules inside cast operators.

Lemma 22 (Deterministic Reduction). If A Ð→D A1 and A Ð→D A2,
then A1 = A2.

Lemma 23 (Deterministic Type Reduction). If Γ ⊢ A1 ∶ k and A1 Ð→
A2, then A1 Ð→D A2.

The cases for implicit abstractions are easy to prove. For the cast operators
we have the following lemma.

Lemma 24 (Expressions of kind ◻ are never reduced). If A Ð→ B and
Γ ⊢ e ∶ A, then B does not have kind ◻.

At first sight, the result of this lemma may be surprising because it means
that we cannot construct a reducible expression like: (λ x ∶ N. ⋆) 42 which
has kind ◻. In reality, the lambda expression must be of type N → ◻ for the
application to be well-typed. However, as we employ the conventional typing
rule for lambda abstractions of Calculus of Constructions (Coquand and Huet,
1988), the function types of the lambda abstractions themselves must be well-
kinded (see rule s-abs). Since ◻ itself does not have a kind, N → ◻ is not
well-kinded, therefore the whole application is not well-typed. For this reason,
the position where kind ⋆ can occur in a well-typed expression is very restricted,
hence the lemma is provable.

With the previous lemmas, the subtype preservation lemma for type com-
putation is easily shown.

Lemma 25 (Subtype Preservation for Types). If Γ ⊢ A1 ≤ B1 ∶ k , A1 Ð→D
A2 and B1 Ð→D B2, then Γ ⊢ A2 ≤ B2 ∶ k .
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Implicit Instantiations. The proof of two cases for implicit instantiations (rules r-
inst and r-cast-inst) are quite similar. In our language, implicit instantiations
of implicit functions are only triggered by rule s-forall-l, which is exactly
where polymorphic types are instantiated. The implicit argument is the same
mono-expression (τ) that instantiates the polymorphic type in rule s-forall-l.
The type of the instantiation result of Λ expression is the same as the instanti-
ation of the polymorphic types, with the same argument.

With the observations above, the remaining proofs are finished by standard
inversion lemmas, with the help of the substitution theorem to handle type
preservation after the instantiations.

4.5. Equivalence to a Simplified System
We mentioned in Section 3.3 that the premises boxed by dashed lines in

the unified subtyping rules are redundant. They help in the formalization,
but the calculus is equivalent to a variant of the calculus without them. We
define unified subtyping relation Γ ⊢s e1 ≤ e2 ∶ A, whose rules are the same as
the unified subtyping rules of λ∀I , but with all redundant premises eliminated.
Also, rules s-castdn and s-castup are simplified to use deterministic reduction
(A Ð→D B) instead of the reduction rule A Ð→ B as shown below (other rules
are omitted):

Γ ⊢s e1 ≤ e2 ∶ A (Simplified Unified Subtyping)

ss-castdn
Γ ⊢s e1 ≤ e2 ∶ A

AÐ→D B Γ ⊢s B ∶ k
Γ ⊢s cast⇓ e1 ≤ cast⇓ e2 ∶ B

ss-castup
Γ ⊢s e1 ≤ e2 ∶ B

AÐ→D B Γ ⊢s A ∶ k
Γ ⊢s cast⇑ [A] e1 ≤ cast⇑ [A] e2 ∶ B

We prove that the two system are equivalent in terms of expressiveness.

Theorem 26 (Equivalence of λ∀I and the Simplification). If Γ ⊢ e1 ≤ e2 ∶
A then Γ ⊢s e1 ≤ e2 ∶ A. And if Γ ⊢s e1 ≤ e2 ∶ A then Γ ⊢ e1 ≤ e2 ∶ A.

4.6. Subsumption of Polymorphic Subtyping
Finally we show that the subtyping aspect of λ∀I subsumes Odersky and

Läufer’s polymorphic subtyping (Odersky and Läufer, 1996). To be more pre-
cise we show that our unified subtyping relation subsumes DK’s declarative
subtyping relation (Dunfield and Krishnaswami, 2013), whose syntax and sub-
typing relation are shown in Figure 1.

Figure 8 shows the transformation from DK’s types to λ∀I ’s types. Then
we prove the subsumption in terms of type well-formedness and subtyping by
following the interpretation of unified subtyping.

Theorem 27 (Subsumption of Type Well-formedness). If Γ ⊢DK A, then
⌈Γ⌉ ⊢ ⌈A⌉ ∶ ⋆
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⌈x⌉ = x ⌈N⌉ = N ⌈A→ B⌉ = ⌈A⌉→ ⌈B⌉ ⌈∀x.A⌉ = ∀x ∶ ⋆. ⌈A⌉

⌈∅⌉ = ∅ ⌈Γ, x⌉ = ⌈Γ⌉, x ∶ ⋆

Figure 8: Lifting Types and Contexts in Polymorphic Subtyping to λ∀I

Straightforward. For the case where A = ∀x.B, rule s-forall can be used
directly bypassing the complications of rule s-forall-l and rule s-forall-r.

Theorem 28 (Subsumption of Polymorphic Subtyping). If Γ ⊢DK A ≤
B, then ⌈Γ⌉ ⊢ ⌈A⌉ ≤ ⌈B⌉ ∶ ⋆

The interesting cases are when the premise is derived by ≤∀L or ≤∀R, be-
cause of the addition of premises in our generalized system (Γ, x ∶ A ⊢ B ∶ ⋆
in rule s-forall-l, Γ ⊢ A ∶ ⋆ in rule s-forall-r). Both cases can be solved
with the help of the well-formedness lemma in DK’s system. We can conclude
Γ, x ⊢DK A from Γ ⊢DK ∀x.A ≤ B for the ≤∀L case, and conclude Γ ⊢DK A from
Γ ⊢DK A ≤ ∀x.B for the ≤∀R case. Then Theorem 27 can be used to solve the
additional premises in λ∀I .

5. Discussions and Future Work

In this section we discuss some design choices and alternatives, as well as
possible future work.

5.1. Open Terms Reduction
Usually, only closed terms are considered when designing the operational

semantics, and irreducible open terms like variables are not considered to be
values. However, since in λ∀I the reduction relation e1 Ð→ e2 is also used in
the unified subtyping relation, the reduced expressions can be open terms and
well-typed under contexts. Yang and Oliveira (2017) observed this issue and
included inert terms (Accattoli and Guerrieri, 2016) as values to handle the sit-
uation that open terms like x e (applying variable x to the argument e) is also
irreducible, which considerably complicates their metatheory around the oper-
ational semantics. Fortunately, our call-by-name reduction rules do not rely on
the notion of value, which for closed terms, represents irreducible forms. In other
words, there is no premise in our reduction rules that require some expression
to be a value or irreducible. Thus, the definition of values or irreducible terms
does not matter when reasoning about type-level call-by-name reductions, and
we do not have to complicate the metatheory of our system with inert terms.
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5.2. Call-by-value Semantics of Cast Operators
An alternative design around cast operators is the call-by-value (CBV) style (Yang

and Oliveira, 2019), by not considering all cast⇑ terms as values, and perform-
ing cast elimination only when the expression inside two casts is a value. Such
design requires us to have a more general definition of value, and there would
be a need for inert terms as mentioned in Section 5.1

However, a simple design with CBV-style cast semantics and inert terms
potentially leads to a system where reduction substitution (see Section 4.2) does
not hold. With the CBV-style reduction rules, which consist of the following
rules:

cbv-r-castdn
e1 Ð→cbv e2

cast⇓ e1 Ð→cbv cast⇓ e2

cbv-r-castup
e1 Ð→cbv e2

cast⇑ [A] e1 Ð→cbv cast⇑ [A] e2

cbv-r-cast-elim
value e

cast⇓ (cast⇑ [A] e)Ð→cbv e

Assuming that the notion of value is properly defined to capture irreducible
open terms, these rules allow reductions like:

cast⇓ (cast⇑ [A] (f x))Ð→cbv f x

The reduction substitution property breaks if we substitute f to a lambda ex-
pression:

[λy ∶ B.x/f] cast⇓ (cast⇑ [A] (f x))Ð→cbv cast⇓ (cast⇑ [A]x)

The reduction rule prioritizes reducing the inner expression of two casts, while
reduction substitution expects [λy ∶ B.x/f] cast⇓ (cast⇑ [A] (f x)) to reduce to
(λy ∶ B.y) x.

So we stick with the call-by-name style semantics for cast operators for now
and leave the discussion of other possibilities of design in future work.

5.3. Kind Restrictions on Polymorphic Types
Currently, we impose restrictions on the kinding of polymorphic types (∀x ∶

A.B) to require that they only have kind ⋆ but not ◻. We believe that this
has little impact on the usability of our system since polymorphic kinds such
as ∀ x ∶ N. ⋆ do not appear frequently in practice. It would be reasonable
not to have this restriction, but this would complicate the development of the
metatheory significantly.

One of the obstacles to removing the kind restriction is that there is a mutual
dependency between the transitivity theorem and the subtyping reasoning of
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polymorphic kinds. We wish to have some lemma like this:

Γ ⊢ e ∶ A Γ ⊢ e ∶ ⋆
Γ ⊢ ⋆ ≤ A ∶ ◻

which depends on transitivity when the derivation of Γ ⊢ e ∶ A ends with sub-
sumption rule (rule s-sub).

Note that the reverse variant of the lemma (If Γ ⊢ e ∶ A and Γ ⊢ e ∶ ⋆ then
Γ ⊢ A ≤ ⋆ ∶ ◻) is not generally true. A counter example is A ∶ ⋆ ⊢ ∀a ∶ A.⋆ ≤ ⋆,
which does not hold if we are unable to find a well-typed instantiation of an
arbitrary type A. In turn, this breaks transitivity, when the derivation of the
first premise ends with rule s-forall-l:

Γ ⊢ [τ/x ] e1 ≤ e2 ∶ ⋆ Γ ⊢ e2 ≤ e3 ∶ B Γ ⊢ τ ∶ A
Γ ⊢ ∀ x ∶ A. e1 ≤ e3 ∶ ⋆

We cannot apply rule s-forall-l unless we can show e3 is of type ⋆. One of
the possibilities in this scenario is to show Γ ⊢ B ≤ ⋆ ∶ ◻, which does not always
hold for the reason discussed above.

Moreover, we expect complexities while reasoning about the kinding of types
after we lose the kinding uniqueness in other parts of the metatheory. Therefore
we leave the relaxation of the kinding restrictions for future work.

5.4. Runtime Relevance of Implicit Arguments
In our language, the implicit arguments have no computational impact at

runtime and only provide the necessary scoping for type annotations. This is
a similar design to ICC (Miquel, 2001) and ICC* (Barras and Bernardo, 2008)
to simplify the development of a direct operational semantics for our language.
Such a restriction can be lifted if we prove the runtime type-safety by elaboration
to a second language, such as the Calculus of Constructions (Coquand and Huet,
1988), instead of providing the direct operational semantics.

We can elaborate implicit function types (universal types) to Π types, im-
plicit abstractions to lambda expressions, and implicit instantiations to explicit
applications during type checking (when we have full information about the
choice of implicit instantiations). However the elaboration on a unified sub-
typing system is not an easy task. The subtyping relation cannot simply be
interpreted as a coercion between values of different types, since some of our
subtyping rules involve a relation between terms instead of types. In other
words, unified subtyping generalizes conventional subtyping relations that are
defined on types only, to a relation defined on general terms. Therefore we leave
the exploration of how elaboration can be done on a unified subtyping system
as future work.

5.5. Algorithmic System and Challenges
λ∀I does not currently have an algorithmic system since we consider a formal-

ized algorithm for dependent type system itself a substantial challenge. Thus, an
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algorithmic formulation it is left for future work. While comparing to existing
algorithmic systems for higher-ranked polymorphic type inference for System
F-like languages (Dunfield and Krishnaswami, 2013; Zhao et al., 2019), we
identify one of the interesting challenges to develop an algorithmic system for
λ∀I .

In dependent type systems, the type of applications potentially depends on
the values of their arguments. Therefore the unification problem we meet is
potentially inside binders and depends on the value of the arguments. For an
example in λ∀I , consider:

λF ∶ N→ ⋆. λf ∶ F 42→ N. f((ΛA ∶ ⋆. µx ∶ A.x) 42)

Here the type of ΛA ∶ ⋆. µx ∶ A.x should be ∀A ∶ ⋆.A. In a non-dependent
setting, one can easily conclude the instantiation for type A to be F 42 → N.
However in our system, the type of A is a dependent function type, with the
shape of (Πx ∶ N. F e), where expression e satisfies the equation [42/x] e = 42
according to rule s-app. Here we have two choices for the instantiation of e,
namely x and 42, but neither choice (Πx.F x or Πx.F 42) for type A leads to
a more general solution than choosing the other.

Notably, for a similar reason, the decidable pattern fragment of higher-order
unification (Miller, 1991a) specifically forbids scenarios where a unification vari-
able applies to constants. The case shown above is similar, where the “appli-
cation” is A 42 (dependent function type A “applies” to 42) with unification
variable A. Nonetheless, because our system does not allow implicit type-level
computation (hence unifications remain at first-order), the choices of A are re-
stricted to Πx ∶ N. F e1 where [42/x] e1 = 42. With higher-order unification, we
would instead have Πx ∶ N. e2 where [42/x] e2 = F 42.

There are potentially multiple approaches to this problem. For example, we
can impose a similar restriction to the pattern unification and refuse to solve this
kind of conflict entirely. Alternatively, we can only infer non-dependent function
types when facing a unification variable, which is the choice by Eisenberg (2016).
But which is the better method for our system remains to be studied.

5.6. The Issues of Strengthening
The current lack of a proof for strengthening leads to non-trivial changes dur-

ing the generalization of polymorphic subtyping relation as described in Section
4.1. It would be nice to be able to have strengthening to simplify λ∀I . However
the issues are quite tricky.

Type Inhabitation. As we mentioned earlier, one of the issues is centered around
not being able to find a well-typed instantiation for an arbitrary type in general.
Some instantiations can only be found in the presence of seemingly unused
variables, which is a key reason for strengthening not holding in general. For
example:

A ∶ ⋆, a ∶ A ⊢ (Λ x ∶ A. λ y ∶ N. y) 42 ∶ N
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Here, to conclude that Λ x ∶ A. λ y ∶ N. y has type N → N, we want to
derive ∀x ∶ A.N → N ≤ N → N by using rule s-forall-l. That would require
a well-typed instantiation for the abstract type A, which is where the variable
a in the context comes to rescue, although not being used anywhere in the
original conclusion. Thus, unlike other calculi where it is possible to drop unused
variables in the context and still have a valid typing statement, in λ∀I , it is
not always possible. In the example above dropping a ∶ A from the context
sabotages the subtyping relation ∀x ∶ A.N → N ≤ N → N we rely on to conclude
the typing relation. (unless we can find another inhabitant for type A somehow).

However, since λ∀I supports fixpoints, all monotypes in our system are easily
inhabited with diverging programs as inhabitants (recall that, due to the issue
discussed in Section 4.1, our fixpoints only support monotypes). For instance,
we do not need the variable a in the context in the example above, we can just
find the instantiation µ x ∶ A. x to satisfy rule s-forall-l for any monotype A.
Moreover, it is likely that any polytype is inhabited with the help of monotype
fixpoints. For example, type ∀A ∶ ⋆.A → B with B being an abstract type, has
an inhabitant ΛA ∶ ⋆. λ x ∶ A. µ y ∶ B . y .

Nevertheless, since polymorphic types in our system also serve as “implicit
function types”, it would be weird to infer diverging programs as their implicit
arguments. Inferring infinite loops is not a big deal for the time being, because
we guarantee the runtime irrelevance of all the implicit arguments. But this
design will not be reasonable if we are going to relax the restriction of runtime
irrelevance of implicit parameters in the future. Furthermore, it is also rea-
sonable to consider similar language designs without fixpoints (for instance, if
our goals are to develop theorem provers or strongly normalizing languages). In
this case, the approach of finding inhabitants by creating non-terminating terms
would not be possible. Thus such an approach would not be very generalizable.

Occurrences of variables that matter. Another issue for the strengthening is
that even if we have the issue of inhabitability covered, it is tricky to guarantee
that a variable unused in the final subtyping conclusion, does not matter for
the whole derivation. For example, in rule s-app, where type A in the premises
does not occur at all in the conclusion, we cannot guarantee that a variable not
occurring in the conclusion, does not occur in type A. We can construct the
following example:

T ∶ ⋆ ⊢ 42 ∶ ∀y ∶ T → T.N T ∶ ⋆ ⊢ λ x ∶ N. x ∶ (∀y ∶ T → T.N)→ N
T ∶ ⋆ ⊢ (λ x ∶ N. x) 42 ∶ N

s-app

Here the variable T does not occur in the conclusion (other than in the context,
of course), but occurs in the premises. The interesting part is that although it oc-
curs in the premises, without it, the conclusion holds with a different derivation
tree (by directly deriving ⊢ 42 ∶ N). For this example, although the strength-
ening property holds, we do not currently know how to determine whether a
variable really matters for a derivation in general, so that we can safely remove
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it from the context.
So for the two issues we discussed above, we decide to live with the lack

of strengthening property in our system for now, at the cost of a slightly more
complicated system with additional kinding premises in rule s-forall-r and
the addition of rule s-forall.

6. Related Work

Implicit Dependent Type Calculus. Implicit polymorphism in a dependently
typed setting is discussed in the implicit calculus of constructions (ICC) (Miquel,
2001) and ICC*(Barras and Bernardo, 2008). The ICC features generalized
polymorphic types and typing rules to express the idea of implicit instantiation.
The ICC does not explicitly have a subtyping relation between polymorphic
types. Therefore the expressiveness of reasoning between polymorphic types is
limited to top-level polymorphic types. Like in λ∀I , implicit parameters does not
impact the runtime semantics of the ICC.

Implicit function types in ICC* are not interpreted as polymorphic function
types. The main focus is on the distinction between implicit functions (univer-
sal types and implicit abstraction) and explicit functions (Π-types and lambda
abstraction). The typing rules about the implicit part and explicit part of the
language mirror each other. The generalization and instantiation aspect of the
implicit function types are not featured. ICC* depends on its transformation to
ICC to obtain type safety of the language, therefore the parameters of implicit
functions have no impact on runtime behaviour as well.

Type-inference and unification with dependent types. There has been little work
on formalizing type inference for calculi with dependent types, although essen-
tially all implementations of theorem provers or dependently typed languages
perform some form of type-inference. One important challenge for type in-
ference in systems with dependent types and a conversion rule is that they
require higher-order unification, which is known to be undecidable (Goldfarb,
1981). The pattern fragment (Miller, 1991b) is a well-known decidable frag-
ment. Much literature on unification for dependent types (Reed, 2009; Abel
and Pientka, 2011; Gundry and McBride, 2013; Cockx et al., 2016; Ziliani and
Sozeau, 2015; Coen, 2004) is built upon the pattern fragment. Algorithms for
type-inference used in Agda and (Dependent) Haskell have been described and
formalized to some degree in various theses (Norell, 2017; Gundry, 2013; Eisen-
berg, 2016). However, as far as we know there is not a clear specification and
complete metatheory (let alone mechanized) for such algorithms.

The current GHC Haskell’s language of types and kinds is already depen-
dently typed, but has no type conversion. Thus it is able to avoid higher-order
unification. Recent work by Xie et al. (2020) describes algorithms and specifi-
cations for the form of (dependently typed) kind-inference currently present in
GHC Haskell. The dependently typed language of types and kinds is closely
related to λ∀I . In particular in both calculi type equality is based only on α-
equivalence. One difference is that in GHC Haskell and, more precisely, in the
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core language employed by GHC, there are no type-level lambdas. The GHC
Haskell source language does allow type families (Chakravarty et al., 2005),
which mimic type-level functions. However, type families, unlike lambda func-
tions, are not first class, and do not support partial application. They are
encoded in terms of equality constraints, casts and mechanisms similar to those
employed by type classes. There is some work to make type-level functions
provided type families first-class (Kiss et al., 2019) and also partially applied,
but this still does not enable full type-level lambdas (see also the discussion in
Section 8.1 of Kiss et al. (2019) for more details). In our work we do allow
type-level lambdas but lambdas can only be equal up to α-equivalence. An-
other difference is that the kind-inference system formalized by Xie et al. is
not higher-ranked like ours. In this way Xie et al. manage to avoid the mutual
dependency issue that we have in our polymorphic subtyping relation.

Type-inference for higher-ranked polymorphism. Type-inference for higher-ranked
polymorphism (HRP) (Dunfield and Krishnaswami, 2013; Le Botlan and Rémy,
2003; Leijen, 2008; Vytiniotis et al., 2008; Peyton Jones et al., 2007; Serrano
et al., 2018; Odersky and Läufer, 1996; Zhao et al., 2019) extends the clas-
sic Hindley-Milner algorithm (Hindley, 1969; Milner, 1978; Damas and Milner,
1982), removing the restriction of top-level (let) polymorphism only. Type in-
ference for HRP aims at providing inference for System F-like languages. In
particular existing HRP approaches allow synthesis of type arguments and use
type annotations to aid inference, since type-inference for full System F is well-
known to be undecidable (Wells, 1999).

The work on HRP is divided into two strands: predicative HRP (Dun-
field and Krishnaswami, 2013; Peyton Jones et al., 2007; Odersky and Läufer,
1996; Dunfield and Krishnaswami, 2019; Zhao et al., 2019) and impredicative
HRP (Le Botlan and Rémy, 2003; Leijen, 2008; Vytiniotis et al., 2008; Serrano
et al., 2018). In predicative HRP instantiations can only synthesize monotypes,
whereas in impredicative HRP there’s no such restriction. However, impred-
icative HRP is quite complex because the polymorphic subtyping relation for
impredicative HRP is undecidable (Tiuryn and Urzyczyn, 1996). Thus reason-
able restrictions that work well in practice are still a focus of active research.
The monotype restriction on predicative instantiation is considered reasonable
and practical for most programs. It is currently in use by languages such as
(GHC) Haskell, Unison (Chiusano and Bjarnason, 2015) and PureScript (Free-
man, 2017). The original work on polymorphic subtyping by Odersky and Läufer
also enforces the monotype restriction in their subtyping rules (rule ≤∀L) to pre-
vent choosing a polytype in the instantiation. Based on polymorphic subtyping
as their declarative system, Dunfield and Krishnaswami (2013) (DK) develop
an algorithmic system for predicative HRP type inference. DK’s algorithm was
manually proved to be sound, complete, and decidable. With a more complex
declarative system (Dunfield and Krishnaswami, 2019), DK extended their orig-
inal work with new features. Recently Zhao et al. (2019) formalized DK’s type
system in the Abella theorem prover.
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Dependent Types and Subtyping. A major difficulty in languages with subtyping
is that the introduction of dependent types makes typing and subtyping depend
on each other. This causes several difficulties in developing the metatheory
for calculi that combine dependent types and subtyping. Almost all previous
work (Aspinall and Compagnoni, 1996; Zwanenburg, 1999; Castagna and Chen,
2001; Chen, 1997, 2003) attempts to address such problem by somehow un-
tangling typing and subtyping, which has the benefit that the metatheory for
subtyping can be developed before the metatheory of typing. Nevertheless,
several results and features prove to be challenging.

Our work builds on the work done on Pure Iso-Type Systems (PITS) (Yang
and Oliveira, 2019), and unified subtyping (Yang and Oliveira, 2017). PITS
is a variant of pure type systems (PTSs), which captures a family of calculi
with iso-types. Iso-types generalize iso-recursive types (Pierce, 2002), and pro-
vide a simple form of type casts to address the combination of recursion and
dependent types. Yang and Oliveira (2017) introduce a calculus, called λI , sup-
porting OOP features such as higher-order subtyping (Pierce and Steffen, 1997),
bounded quantification and top types. To address the challenges posed by the
combination of dependent types and subtyping, λI employs unified subtyping: a
novel technique that unifies typing, subtyping and well-formedness into one rela-
tion. Therefore, λI takes a significantly different approach compared to previous
work, which attempts to fight the entanglement between typing and subtyping.
In contrast, λI embraces such tangling by collapsing the typing and subtyping
relations into the same relation. This approach is different from Hutchins’ tech-
nique, which eliminates the typing relation and replaces it with a combination
of subtyping, well-formedness and reduction relations. In contrast, unified sub-
typing retains the traditional concepts of typing and subtyping, which are just
two particular cases of the unified subtyping relation.

Although the λI calculus formalized by Yang and Oliveira shares the use of
unified subtyping with λ∀I , there are substantial differences between the two cal-
culi. Most importantly, λI only has explicit polymorphism via Π types. There
are no implicit functions and universal quantification (∀ types) in λI , and also
no guessing of monotypes. λ∀I supports implicit polymorphism, and guessing the
monotypes used for instantiation brings significant complications, for instance
for proving type safety (as discussed in Section 4.4). The subtyping rules for
universal quantification (which do not exist in λI) also bring considerable chal-
lenges for transitivity, and the proof technique used by λ∀I differs considerably
from the proof technique used in λI. Unlike λI , λ∀I does not support bounded
quantification, which brings some welcome simplifications to some of the unified
subtyping rules. Besides these differences other differences include the use of a
call-by-name semantics in λ∀I (see also the discussion in Sections 5.1 and 5.2),
and the use of the ⋆ ∶ ◻ axiom in λ∀I versus the use of ⋆ ∶ ⋆ in λI .

Dependent Types with Explicit Casts. Another problem is the interaction be-
tween dependent types and recursion. For this problem, a general solution that
has recently emerged is the use of type casts to control type-level computation.
In such an approach explicit casts are used for performing type-level compu-
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tations. A motivation for using type casts is to decouple strong normalization
from the proofs of metatheory, which also makes it possible to allow general
recursion. There have been several studies (Stump et al., 2008; Sjöberg et al.,
2012; Kimmell et al., 2012; Sjöberg and Weirich, 2015; Weirich et al., 2013; van
Doorn et al., 2013; Yang et al., 2016) working on using explicit casts instead
of conversion rule in a dependently typed system. In λ∀I we adopt a simple
formulation of casts based on iso-types (Yang et al., 2016), but we believe that
more powerful notions of casts could work too.

Dependent Object Types. Dependent Object Types (DOT) (Amin et al., 2012,
2014; Rompf and Amin, 2016) is another family of systems that discusses sub-
typing in a dependently typed setting. Unlike the traditional dependent type
systems that are based on lambda calculus, DOT embraces the idea of “every-
thing is an object” and features the path-dependent types. The path-dependent
type is a restricted form of dependent types. Path-dependent types support
return types of functions to mention their parameters, but only member access-
ing operations are allowed for the “depended value”, and instead of all terms,
only variable names can occur in the accessing path. This restriction rules out
traditional problems in dependent type systems like handling type-level compu-
tation, and allows DOT to focus more on the subtyping aspect like reasoning
about type bounds. Also, thanks to this restriction, DOT can more easily sepa-
rate the concept of terms and types unlike conventional dependent type systems.
Therefore, the mutual dependency of typing and subtyping is also not an issue
for DOT.

DOT with Implicit Functions (DIF) (Jeffery, 2019) is an interesting exten-
sion of DOT that adds implicit functions. Since path-dependent types can
encode parametric polymorphism, adding implicit functions implies adding im-
plicit polymorphism. The treatment of implicit parameters in DIF is quite
similar to ICC (Miquel, 2001) in terms of the generalization (GEN) and instan-
tiation (INST) rules shown in Section 2.2. Hence their system shares a similar
constraint of being unable to handle implicits at higher-ranked positions. How-
ever in DIF, implicit arguments are runtime relevant, and can be retrieved by a
special variable. This comes with a restriction that implicit arguments can only
be variables in the typing context when inferred.

Refinement Types and Manifest Systems. Manifest systems (Greenberg et al.,
2010) is one of the styles of contract-oriented programming (in contrast to the
latent systems (Hinze et al., 2006)), where contracts (the conditions that pro-
grammers expect to satisfy) are expressed in the type system. λH (Flanagan,
2006; Greenberg et al., 2010) is one calculus that includes dependent types and
subtyping simultaneously. The subtyping relation expresses the implication re-
lation between contract satisfaction conditions. Unfortunately, this brings the
difficulty of potential mutual dependency between typing and subtyping. To
overcome this issue, λH builds another layer of denotational semantics on top
of subtyping rules to avoid that subtyping depends on typing. However, this
introduces other complications in their metatheory. System FH (Belo et al.,
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2011) and FσH (Sekiyama et al., 2017) provide another interesting idea to deal
with this mutual dependency. They get rid of the subtyping aspect in their
type system, but later “recover” it after the system is defined to prove the ideas
expressed by subtyping hold for their systems. Sekiyama et al. (2017) called
this technique the subsumption-free formulation. However, it is likely that such
technique is difficult to apply for systems that reason about implicit polymor-
phism, since systems like ICC (Miquel, 2001) that mentions subtyping relations
post facto often fail to reason about polymorphism at higher ranks.

Feature Comparison. Lastly we present a summary comparing λ∀I and some of
the closest related calculi in the literature in Table 1. Table 2 contains the
shorthand and references for the calculi used in the comparison in Table 1. We
select the following features for the comparison:

• Dependent types: Whether the system supports dependent types.

• Subtyping: Whether there is a subtyping relation in the typing rules.
The complexity of subtyping relations varies but we do not dive into details
here.

• Implicit arguments: Whether some form of implicit polymorphism is
supported. The monotype restriction on instantiation is assumed.

• Relevant arguments: Whether implicit instantiations can be runtime
relevant.

• Rank-n polymorphism: Whether polymorphic subtyping supports higher-
ranked polymorphism.

• Mechanization: Whether the correctness of metatheory (and algorithm,
if available) is mechanically checked instead of manually.

We use ✓, if a feature is supported, × if it is not supported. The features
of relevant (implicit) arguments and rank-n polymorphism only make sense in
calculi with implicit arguments. Thus for calculi without implicit arguments we
use − to mean “does not apply”.

7. Conclusion

In this article, we presented a design of a dependently typed calculus called
λ∀I . λ∀I generalizes non-dependent polymorphic subtyping by Odersky and
Läufer (Odersky and Läufer, 1996) and contains other features like general re-
cursion and explicit casts for type-level computations. We adopt the techniques
of the Unified Subtyping (Yang and Oliveira, 2017) to avoid the mutual de-
pendency between typing and subtyping relation to simplify the formalization.
Besides other relevant theorems about typing and subtyping, transitivity and
type safety are proved mechanically with the Coq proof assistant.
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ICC λI≤ Zhao19 DK19 DH λ∀I
Dependent types ✓ ✓ × Equalitya ✓ ✓
Subtyping × ✓ ✓ ✓ × ✓
Implicit arguments ✓ × ✓ ✓ ✓ ✓
Relevant arguments × - × × ✓ ×
Rank-n polymorphism × - ✓ ✓ ✓ ✓
Mechanization × ✓ ✓ × × ✓

Table 1: Feature Comparison of calculi closely related to λ∀I .

aOnly type-level equality is dependent, other parts of the system are not.

Shorthand Reference/Description
ICC Implicit Calculus of Constructions (Miquel, 2001).
λI≤ Unified Subtyping calculus by Yang and Oliveira (2017).
Zhao19 Zhao et al. (2019) mechanization of DK’s type system.
DK19 Dunfield and Krishnaswami (2019)
DH Dependent Haskell (Eisenberg, 2016).
λ∀I Our calculus.

Table 2: Description of the calculi in Table 1.

In the future, we will attempt to lift various restrictions that originally sim-
plify the metatheory, such as the kind restriction on polymorphic types and the
runtime irrelevance of implicit arguments. We would also like to study the im-
pact to the metatheory of adding ⊺ types to our language, which is a common
feature of a subtyping relation. Most importantly, we consider the development
of a well-specified algorithmic system a major challenge in our future work. The
current formulation of λ∀I is declarative due to the mono-expression guesses.

While λ∀I still has some limitations, we believe that it already includes many
of the core features that are important for typed functional languages. As-
suming that we have an implementation of a core language based on λ∀I , we
expect that interesting and expressive functional languages can be built on
top of such core language. For instance, all the features of Haskell 98, in-
cluding higher-kinds, algebraic datatypes and type classes (Kaes, 1988; Wadler
and Blott, 1989) should be easily encodable in λ∀I . Furthermore, some fea-
tures not in Haskell 98, but available in modern versions of GHC Haskell, such
as higher-ranked polymorphism or certain kinds of dependent types are also
supported in λ∀I . GADTs (Cheney and Hinze, 2003; Xi et al., 2003) and type-
families (Chakravarty et al., 2005) are more challenging as they require a more
powerful form of casts and additional support for equality. Previous work on
PITS has shown how some forms of GADTs and equality can be modelled using
a variant of cast operators that employ a more powerful parallel reduction re-
lation. We believe that λ∀I can also employ such variant of casts, although this
also remains future work.
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