Reusability and Modularity in Consumer, Producer,
and Transformation Operations

Haoyuan Zhang
Department of Computer Science

The University of Hong Kong

A thesis submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy
at The University of Hong Kong

June 2019

L_ﬁ%
ﬁ_%s
B 4 482 wu

Abstract of thesis entitled

“Reusability and Modularity in Consumer, Producer, and Transformation
Operations”

Submitted by
Haoyuan Zhang

for the degree of Doctor of Philosophy
at The University of Hong Kong
in June 2019

Since 1954 when the first high-level programming language FORTRAN was invented, the past
decades have witnessed several significant revolutions of modularization in programming areas: struc-
tured programming, modules and encapsulation, abstract objects and datatypes, inheritance, and
many other paradigms of type systems and recursion patterns. The essence of modularization is that,
by separating the functionality of a program into a network of independent or loosely dependent
components, each component is easier to be reused and maintained without affecting others. And
the ultimate goal of modularization, is to enhance the efficiency/productivity of programmers and
reduce the cost of software development and maintenance, and meanwhile ensure (type) safety and
execution performance as much as possible. Newly proposed modularization techniques in existing
languages, can in turn promote the development of new language features and even new language
paradigms.

In recent few years, researchers have put great effort on resolving the Expression Problem (coined
by Philip Wadler) in different languages. The requirements for modularization are well described in
the Expression Problem, especially it highlights two dimensions of extensibility at the same time: on
data variants and operations. Unfortunately, although existing approaches satisfy this primary re-
quirement, the term “operation” is not well identified; more specifically, most existing approaches
focus on the modularity of consumer operations that consume data structures and collect informa-
tion, but not producer operations that build data structures. Additionally, it is difficult to balance
modularity with other attributes, including type-safety, conciseness, expressiveness, and efficiency.

This dissertation investigates modularization techniques for consumers and producers with sim-
ple, type-safe and reusable patterns, without breaking the modularity of data variants. Specifically,
three research problems are studied in this dissertation: boilerplate traversals, type-safe modular pars-
ing and modular unfolds. As a result, this dissertation proposes: Shy, a Java library that captures
generic traversal patterns and automatically generates boilerplate traversal code with extensibility; a
type-safe pattern for writing modular parsers in object-oriented programming; and SCCL, a special-
ized coalgebra combinator library for modularizing producers by modularizing categorical f-coalgebras
in Haskell. Consequently, there is a significant reduction in client code due to modularity and reusabil-
ity, evidenced by a number of case studies and applications.

(An abstract of 351 words)

L_ﬁ%
ﬁ_%s
B 4 482 wu

10 my beloved parents

L_ﬁ%
ﬁ_%s
B 4 482 wu

Declaration

I declare that this thesis represents my own work, except where due acknowledgement is made, and
that it has not been previously included in a thesis, dissertation or report submitted to this University
or to any other institution for a degree, diploma or other qualifications.

Haoyuan Zhang
June 2019

vii

L_ﬁ%
ﬁ_%s
B 4 482 wu

Acknowledgements

First of all, I would like to give my sincere gratitude to my supervisor, Dr. Bruno C. d. S. Oliveira, for
his continued teaching, support and encouragement throughout my PhD study. In the early months
of my candidature, Dr. Oliveira led me to the area of programming languages step by step, from
simple tasks to complex projects and research problems, and helped me a lot with paper writing. He
set a very good image of being an independent researcher. It is my great honor being his student, I feel
fully respected, encouraged and appreciate a lot for his patient guidance in my research exploration.

I also feel fortunate having Prof. T. H. Tse as my co-supervisor. He provided many valuable
comments and feedback on my research work, paper and thesis writing, and especially I appreciate
his attendance in my probation and pre-graduation talk, where he showed his seriousness with chal-
lenging questions, but soon gave more suggestions and encouraged me to be confident.

I feel grateful to all my colleagues in the Programming Languages group at HKU, including (in
no particular order): Zhiyuan Shi, Tomas Tauber, Zewei Chu, Huang Li, Xuan Bi, Weixin Zhang,
Yanlin Wang, Yanpeng Yang, Ningning Xie, Jinxu Zhao, Xuejing Huang and Yaoda Zhou. My special
thanks to professors Tijs van der Storm, Marco Servetto, and Shin-Cheng Mu for the collaboration
in many research projects.

I would also like to thank Prof. Kenneth Wong, Prof. Cho-Li Wang and Prof. Zhenjiang Hu for
joining my defense examination and providing valuable comments on revision, and thank Prof. Ngai
Wong for being TEC chair.

Last but not least, I feel grateful to my parents for loving, supporting and respecting me uncon-
ditionally. Thank you for bringing me to the world. I'love you.

ix

L_ﬁ%
ﬁ_%s
B 4 482 wu

Contents

List of Figures
List of Tables
1 Introduction
1.1 Modular Programming: A Brief History
1.2 Classification of Modularization Techniques
1.3 IsModularity Everything? L
1.4 Modularity Issuesof Today
1.5 Contributions e
1.6 Organization e
2 Background
2.1 Algebraof Programming L Lo
2.2 SolutionstoEPinJava
2.2.1 A Non-Solution: The INTERPRETER Pattern.
2.2.2 The Opposite Side: The VisiTor Pattern
223 ObjectAlgebras. o
224 OtherApproaches
2.3 SolutionstoEPinHaskell
231 A Partial Solution: Polymorphic Datatypes and Type Classes
232 FinallyTagless
233 DataTypesalaCarte
2.4 Java Annotation Processing and Reflection
2.5 ScalaPackratParsing Lo L
2.6 Monad Transformers e e
27 QuickCheck
3 Scrap Your Boilerplate with Object Algebras
31 AnOverviewofShy
3.1.1 Traversing Object-Oriented ASTs
3.1.2 Modeling MiniQL with Object Algebras

3.1.3 Shy: An Object Algebra Framework for Traversals

Xi

XV

xvii

O N B W =

13
13
16
16
18
18
21
22
22
23
24
26
27
28
30

CONTENTS

32 Queries 40
3.21 Boilerplate Queries Lo Lo 40

322 GenericQueries o 41

3.2.3 Free Variables with Generic Queries 42

3.3 Generalized Queries 43
3.4 Transformations e e 45
3.4.1 Transformations, Object AlgebraStyle 45

3.4.2 GenericTraversal Code 46

3.5 Contextual Transformations 47
3.6 Desugaring Transformations 51
3.7 Extensible Queries and Transformations 52
371 LinearExtensibility oo oo 52

3.7.2 Independent Extensibility 53

3.8 Shylmplementation 54
39 CaseStudy. 54
391 QL Queries and Transformations 55

3.9.2 Chaining Transformations 55

39.3 ShyDPerformancevs VanillaASTs 56

39.4 Shyvs VanillaRegarding Code Size 57

300 Summary ... 58
4 Type-Sate Modular Parsing 61
4.1 Packrat Parsing for Modularity o o o oo 62
411 Algorithmic Challenges of Modularity 63

412 ASolution: PackratParsing 0L 64

4.2 OO AST Parsing with Multiple Inheritance 65
4.3 Full Extensibility with Object Algebras 67
431 Problem with Traditional OOASTs 67

432 Parsing with Object Algebras, 67

44 MoreFeatures e 69
441 Parsing Multi-Sorted Syntax L L L L 69

442 Overriding ExistingRules 70

443 Language Components 71

444 Alternative Techniques L L L. 72

45 CaseStudy. L 72
451 Implementation 0 oL 73

45.2 Comparison 74

46 Summary e 75
S Modular Unfolds: Seeing the Trees in the Product Forest 77
5.1 Overview e e e e e e e e e e e e e 78
5.1.1 A Motivating Example: QuickCheck Generators 78

5.1.2 Solution in SCCL for Random Generation 81

513 AnOverviewof SCCL i 85

xii

CONTENTS

5.2 Composability of Coalgebras, and Product Forests 86
5.21 The General Combinator for Coalgebras 86

522 ProductForests 88

5.3 From Product Forests to Sum-Of-Products 89
5.3.1 Natural Transformation 90

5.3.2 Deforesting Product Forests 91

533 Discussion e 92

5.4 MonadicVariants 93
5.4.1 MonadicFoldsand Unfolds 94

5.4.2 General Combinator for Monadic Coalgebras 94

5.4.3 Flow of Construction and Deforestation 95

54.4 Discussion e e e 97

5.5 Implementationof SCCL 100
55.1 BasicCombinators 101

5.5.2 Application I: Random Generation 102

5.5.21 Uniform Distribution 102

5.5.2.2 Weighted Random Distribution with Failure 104

5.5.2.3 Dynamic Distribution with Size Bound 107

5.5.3 Application II: Small-Step Evaluation 110

5.5.4 Application IIl: MonadicParsing 113

5.6 Summary ... 116

6 Case Study: Random Generators and Enumerators 117
6.1 OVerview e e e e e 117

6.2 Random Generatorsas Coalgebras 0 0. 119

6.3 Generating Well-Typed Expressions 122

6.4 Enumerating Expressions0 oo 124

6.5 Checking Properties with QuickCheck 124

6.6 Evaluation: Code Size and Execution Time 127

7 Related Work 129
7.1 Design Patterns for Extensibility and Modularity 129

7.2 Modularity of Operations in Functional Programming 131

7.3 Structure-Shy Traversals o o o oo 133

74 ModularParsing L 136

7.5 Modular Semanticsand Generators 138

8 Conclusion 141
81 Summary 141

82 FutureWork e 142
Bibliography 145

xiii

CONTENTS

A Complete Code for Chapter 3

A.l OO Approach for usedvars and rename

A.2 Rename implementing the QLA1lg interface

A3 QLAlgQuery:generatedcode
A4 QLAlgTransformand QLAlgTrans: generatedcode
A5 G_ExpAlgQuery:generatedcode. L.

B Complete Code for Chapter 5

B.1 weightedTrafo: the natural transformation for weighted distribution
B.2 weight: the weight function in dynamic distribution

B.3 IsNumericval, rdcRule, cgrRule,

B.4 Smart constructors for ArithF and BoolF

C Complete Code for Chapter 6

Cl Projection
C2 Typechecker
C.3 Evaluation e,

C.4 Checking if there are bounded variables

xiv

157
157
160
160
162
163

165
165
165
166
166

List of Figures

1.1

2.1
2.2
23
2.4
2.5
2.6
27
2.8
29
2.10
211

212
2.13
2.14

31
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
312
3.13
3.14
3.15

Printing the names of employeesinacompany.

Catamorphism. L
Thegenericfold.
Anamorphsim. L L
Thegenericunfold. L L o
The INTERPRETER pattern (left). Multiplication as an extension (right).
The Visitor pattern. L L
Pretty-printingasavisitor.o Lo oo
Encoding the expression language with algebraic datatypes and type classes.

The expression language using a finally-tagless representation.
Adding the pretty-printing algebrain DTC.
Compilation and execution process of Java programs. Annotations are handled in
“Annotation Processing”, while reflection takes place during “Execution”.
Parsing the expression language with Scala Packrat parsers.
Recursing a directory tree and outputallfiles. 0oL
Directory walker by monad transformers. 0oL

Example QL questionnaire: driver’slicense.
Implementing the “used variables” operation using traditional ASTs.
Implementing the “used variables” operation using Object Algebras.
Object Algebra interface of the MiniQL abstract syntax.
MiniQL used variables, implemented with Shy.
MiniQL renaming, implemented with Shy. o L.
Free variables asan Object Algebra.
Generic queriesusingamonoid. L L L L Lo
Default implementation of generalized queries over many-sorted statement algebra.
Dependency graph with a generalized query.
A normal algebra-based implementation of variable substitution.
Traversal-only base interface for implementing transformations of expressions. . . .
Generic template for generating boilerplate of transformations.
Generic template for generating boilerplate of contextual transformations.
Generated default contextual transformations of ExpAlg and LamAlg.

XV

14
14
15
15
17
19
20
22
24
26

27
29
30
30

LIST OF FIGURES

3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

7.1

Converting variables to De Bruijn indices. 50
Pretty-printing lambda expressions. o 000000 50
Extension of the FreeVars query (left) and the Unique transformation (right). . . . 53
Performance comparison of control dependencies query. 57
Performance comparison of inline conditions transformation. 58
Helper object for code demonstration in this chapter. 65
Pattern of modular parsing using Object Algebras. 68
Dependency graph of all calculi and components. Grey boxes are calculi; white boxes

ATECOMPONENTS. + & v v v v v v v v v e e e e e e e b e e e e e e e 73
Uniformly generating expressions on a specificsize. 79
Uniformly generating well-typed expressions on a specificsize. 80
Generating expressions in a dynamic distribution. o0 81
Uniformly generating expressions on a specific size (added multiplications). 82
Generic combinator foralgebras. o oL oo 86
Generic combinator for coalgebras. o o000 87
SCCL combinators and their type signatures. 87

The structure of forest, generated by unfold (hLit <> hAdd) (11, 1). The
subtree with underlined nodes and double-line edges reflects the expression 5 + 6.

And the subscript of Prod represents the input to the coalgebra at every node. . . . 89
Naturality of a transformation. 90
The genericmonadicfold.o o oL oo 94
The genericmonadicunfold.o o o 000 L 94
Two-step transformation from a monadic product forest to a monadic sum tree. . . 95
The implementation of monadic unfold-transformation pattern. 96
Enumerators of LitF and AddF up toacertaindepth. 97

Evaluation steps of foldM-based transformation (left) and unfoldM-based transfor-
mation (right), with input 1 + (2 + 3). The underlines highlight what dup does. .~ 99

The MonadRand library for randommness. 102
The code for figuring out the cardinality of afunctor. 103
The Monadweight library for weighted random distribution. 105
The combinator for weighted random distribution and the reset function. 106
Thearityofafunctor. L L 108
The combinator for dynamic distribution and the reset function. 109
The MonadPrior interface for priority-based composition. 1
The combinator for small-step semantics and the check function. 112
Coalgebras of ArithF and BoolF representing small-step semanticrules. 114
The lightweight MonadParserlibrary. 115
Combining query and transformation. 134

xvi

List of Tables

21

3.1

32

4.1

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Common combinators from the Scala standard parser combinator library.

Number of overridden cases per query and transformation in the context of the QL
implementation. L L L
Source Lines of Code (SLOC) statistics: Shy implementation vs Vanilla AST imple-
MeNtation. Lo e e e e e e e

Comparison of SLOC and execution time.
Anoverview of SCCL. e

The distribution of different constructors in 10000-round tests, showing the average
number of occurrences. For constructor size, the input is 100. For depth size the
inputisl0..
The distribution of different constructors in 10000-round tests, showing the average
depth of occurrences. For constructor size, the input is 100. For depth size the input
is10. Size bound 10000.
The distribution of different constructors in 10000-round tests, showing the average
number of occurrences. For constructor size, the input is 100. For depth size the
inputis 10. Sizebound 10000. L oL
The percentage of well-typed expressions generated with (CS + BV, WD) in 100000-
basedtesting.
The distribution of different constructors in a 10000-round well-typed expression
generation, withinput10. L L L L L Lo
SLOC of non-modular (QuickCheck) code vs modular (SCCL) code, on imple-
menting constructor/depth-size generators with weighted/dynamic distribution.
SLOC of non-modular (QuickCheck) code vs modular (SCCL) code, on imple-
menting arith, bool and lam generators. Lo o Lo
Mean execution time of SCCL approach and QuickCheck per round on 5 different
inputsizes. e

xvii

28

LIST OF TABLES

xviii

Chapter 1

Introduction

Recently on Hacker News', a social news website for the community of programmers, a user shared
his life in Oracle under the topic “What’s the largest amount of bad code you have ever seen work?”:

“Oracle Database 12.2. It is close to 25 million lines of C code... Very complex pieces of
logic, memory management, context switching, etc. are all beld together with thousands of
Sflags. The whole code is ridden with mysterious macros that one cannot decipher without
picking a notebook and expanding relevant pats of the macros by hand. It can take a
day to two days to really understand what a macro does... It takes 6 months to a year
(sometimes two years!) to develop a single small feature...”

Itis unfortunate yet unsurprising to see this phenomenon, especially in the development of large
software systems. Programming on millions of spaghetti code is rather cruel to engineers, and as a
consequence, adding a single extension may bring disastrous effects to the entire program. When the
fast growth of users and demands cannot be satisfied, extra budget has to be put to refactor old code,
hopefully improving the efficiency of software development.

People have long been conscious of the importance of modularization in programming. It is
widely acknowledged that modularity leads to code reusability, extensibility, comprehensibility, and
maintainability, and essentially to the enhancement of programming efficiency as well as the reduc-
tion of development cost. The initial architecture of a program takes the responsibility for separating
the functionality into a network of independent, or loosely dependent components. Modularization
enforces logical boundaries among the components, consequently each component can be developed
individually, and is even interchangeable without affecting other modules.

The past few decades have witnessed different manifestations of modularization along with the
evolution of programming language paradigms. The idea of modularity can be traced back to the
modular programming movement in around 1960s [Dijkstra, 1968].

1.1 Modular Programming: A Brief History

Since 1954 when the first high-level programming language FORTRAN [Backus, 1954] was invented,
the development of various programming languages and paradigms started to grow explosively. No-

"https://news.ycombinator.com/item?id=18442941

https://news.ycombinator.com/item?id=18442941

1. INTRODUCTION

tably the GOTO syntax, which still appears in some modern languages, offered flexible control of exe-
cution at that time. However, the 1960s have experienced a considerable debate on the use of GoTo".
Béhm and Jacopini [1966] proved the structured program theorem, stating that every computable
algorithm can be represented by a combination of only three control structures: sequence, selection,
and iteration. While B6hm and Jacopini showed the unnecessity of GOT0, Dijkstra [1968] was a firm
and iconic opponent of GOTO:

“.. our intellectual powers are rather geared to master static relations and that our powers
to visualize processes evolving in time are relatively poorly developed. For that reason we
should do... our utmost to shorten the conceptual gap between the static program and the
dynamic process...”

Additionally, he coined the term “structured programming”, which basically represents the modular
programming movement at that time with a sharp decrease of GOTO uses.

Later Parnas [1972] promoted modularization to a new direction, namely by introducing mod-
ules that encapsulate major calculations, and hide some information from clients but only reveal the
necessary interfaces to access them. The criterion, “izs interface or definition was chosen to reveal as
little as possible about its inner workings”, implies the concept of abstract objects with state.

Liskov and Zilles [1974] proposed abstract data types (ADTs) as a data abstraction technique,
which has significant impact on object-oriented programming (OOP) until nowadays. An abstract
data type captures the fundamental properties of a class of abstract objects, and those properties are
precisely the operations/behaviors that people are concerned about, while concrete implementations
are hidden. In OOP, ADTs are referred to as classes, and additional mechanisms including inheri-
tance, dynamic dispatch and polymorphism further facilitate code reuse. Design patterns [Gamma,
1995], on the other hand, provide specifications for the abstraction of certain systems by utilizing
existing language features.

More recently, the area has been broadened to functional programming (FP), a different paradigm
that takes functions as the essential elements. Functional programs draw a strong connection to the
mathematical logic from function abstraction and application, originating in lambda calculus [Church,
1932]. More importantly, bigher-order functions and lazy evaluation are powerful techniques to the
modularity of code, as argued by Hughes [1989]. As a result, functional programs are usually small
in magnitude. The connection to mathematical theory, and elimination of side effects (by modifying
state) in addition, make programs easier to reason about and predict.

As two representative programming paradigms at present, OOP and FP have different biases in
modularization. OOP has tendency in data abstraction and reuse, while FP naturally emphasizes
on the modularity of functions/operations. Discussion on a single paradigm can be lopsided, since
its advantages in modularity derive from the infrastructure and theoretical foundations. Further-
more, isomorphisms are ubiquitous among the modularization patterns or abstractions in different
languages. This dissertation is hence inspired to involve both OOP and FP, and to look into their
internal relations.

In the late twentieth century, the perceived need for modularity on both data abstractions and
operations on data structures was already in folklore, until it was coined by Wadler [1998] as the

"The timeline is partly referred to the course “Introduction to Programming Systems” by Dondero [2014] at Princeton
University.

1.2 Classification of Modularization Techniques

“Expression Problem”. To quote from his post:

“The Expression Problem is a new name for an old problem. The goal is ro define a
datatype by cases, where one can add new cases to the datatype and new functions over
the datatype, without recompiling existing code, and while retaining static type safety (e.g.,
no casts). For the concrete example, we take expressions as the data type, begin with one
case (constants) and one function (evaluators), then add one more construct (plus) and one
more function (conversion to a string)...”

To summarize, a solution to the Expression Problem is supposed to define data structures meeting
the following requirements:

* Extensibility in both dimensions: Both new data variants and new operations can be added to
the existing framework. Moreover, existing operations are extensible to further support those
new variants.

* Strong static type safery: The validity of interactions between data variants and operations is
ensured by static type checks.

* No modification or duplication: The code is highly reusable. Existing code cannot be modified
or duplicated.

* Separate compilation and type-checking: New extensions do not rely on recompilation of exist-
ing code. Static compilation can be done in a separate way.

Later Odersky and Zenger [2005a] added an additional requirement:

* Independent extensibility: It is expected that independently developed extensions are compos-
able, so that they can be used jointly.

There have been many solutions to this problem [Carette et al., 2007; Odersky and Zenger,
2005a; Oliveira and Cook, 2012a; Swierstra, 2008; Torgersen, 2004; Wang and Oliveira, 2016] in vari-
ous programming paradigms. Those techniques vary in multiple dimensions, and more interestingly,
such a distinction reveals the trade-off between modularity and other aspects, and guides our concerns
about modularization in new situations.

1.2 Classification of Modularization Techniques

Broadly speaking, there are two common research methodologies for modularization: proposing new
languages (or language features), and correspondingly designing compilation rules for them; or cap-
turing design patterns as reusable components or libraries in existing languages. The history has wit-
nessed that both approaches stimulate each other to breakthrough bottlenecks for modularity. Peo-
ple design complicated patterns to modularize certain functionality of programs, by writing large
amounts of code to fit in the current system. Later to simplify the code, those patterns are abstracted
into new concepts and inspire novel language features or even paradigms.

From a different perspective, existing techniques can also be divided into syntactic and semantic
modularization techniques. Some syntactic modularization approaches employ textual composition

1. INTRODUCTION

techniques such as superimposition [Apel and Kistner, 2009]. Others may even build an additional
layer on top of a target language with well-designed specifications; those specifications allow syn-
tactic modularity, and a subsequent meta-programming procedure generates code in the target lan-
guage for the whole. These syntactic techniques are quite popular in practice, due to their simplicity
of implementation and use. Examples include many tools for developing fearure-oriented Software-
Product Lines (SPLs) [Apel and Kistner, 2009; Kistner etal., 2011], some language workbenches [Erd-
weg et al., 2015], as well as extensible parser generators [Gouseti et al., 2014; Grimm, 2006; Parr and
Quong, 1995; Schwerdfeger and Van Wyk, 2009a; Viera etal., 2012; Warth etal., 2016a]. Yetas Kistner
etal. [2011] note, a typical drawback of feature-oriented SPL implementations, which more generally
applies to syntactic modularity approaches, is that such “implementation mechanisms lack proper in-
terfaces and support neither modular type checking nor separate compilation”. Accordingly, the entire
system becomes fragile and error-prone: a slight change at the front side can badly affect the generated
programs.

Semantic modularization techniques go one step further in terms of modularity. They enable
components or features to be modularly type-checked and separately compiled, which meets the de-
sire of software engineers. Modular type-checking reports errors earlier in terms of the modular code
people have written in the first place, thus enhancing robustness. Separate compilation avoids costly
global compilation on every single change, which makes programming and debugging considerably
efficient. Furthermore, semantic modularization enables the composition of compiled binaries as
well as ensuring the type-safety of the code composed of multiple components, also modularizing and
simplifying program reasoning. Examples include various approaches to family polymorphism [Ernst,
2001], virtual classes [Ernst et al., 2006] and so on.

Specifically, having realized the importance of separate compilation and modular type-checking,
this dissertation employs semantic modularization techniques for three concrete problems (to intro-
duce in Section 1.5) in existing programming languages, and hopefully motivate new language fea-
tures in the future.

1.3 Is Modularity Everything?

Modularization techniques for an initial architecture of software design should (arguably) take the
following aspects into consideration:

* Interchangeability: The modular components have the flexibility to be individually replaced
with their alternatives, without affecting other modules.

* Type-safety: The modularization patterns are well encoded in a statically typed language. Sep-
arate compilation and modular type-checking are desired.

* Conciseness: Modules are nicely encapsulated and connected in concise glue code. Or rather,
the underlying mechanism should be revealed as little as possible to clients.

* Expressiveness: The abstractions are expressive enough to deal with practical problems.

* Efficiency: Performance penalty from modularization is reasonable.

1.4 Modularity Issues of Today

The first two are considered essential requirements (in semantic modularization), as covered by
the Expression Problem. Nevertheless, existing techniques have reached different degrees regarding
the remaining three properties. The conciseness, or simplicity issue is common in modularization
approaches, for modularization usually integrates a couple of layers of abstractions, and for ensuring
type safety they introduce considerable complexity to the code. Examples include the boilerplate
composition code for data variants from different families in [Odersky and Zenger, 2005a], and the
heavy use of F-bounds [Canning etal.,1989] in [Torgersen, 2004]. To avoid boilerplate, people utilize
meta-programming techniques to generate code from templates, and further it spurs some extensions
to existing languages.

There is a trade-off between expressiveness and predictability from the use of abstraction for mod-
ularization. More expressiveness basically indicates that the abstraction enlarges the domain of solv-
able problems. For instance, generalized Object Algebras [Oliveira et al., 2013; Zhang and Oliveira,
2017] are more expressive than Object Algebras [Oliveira and Cook, 2012a] in terms of explicit traver-
sal control. And there are basic recursion patterns from category theory [Bird and de Moor, 1997;
Herrlich and Strecker, 1973], including catamorphism and anamorphism; they are later generalized
to paramorphism [Meertens, 1992], apomorphism [Vene and Uustalu, 1998] and even monadic vari-
ants [Fokkinga, 1994; Pardo, 1998], etc. Nonetheless, an abstraction with more genericity has fewer
properties to capture, and thus makes programs harder to predict or reason about (one may think of
“entropy” in information theory), and further makes it difficult to do optimization such as deforesta-
tion [Gill et al., 1993; Wadler, 1988].

The priority of efficiency somehow polarizes in industry and research. Industrial programs and
software take the performance of greatimportance (especially on big data), so as to improve user expe-
rience, until developers realize that the long-term maintenance of non-modular code becomes more
and more costly. However, the efficiency of a program can arguably be attributed to the infrastructure
of the project and the implementation of real functionality separately. Hence one has to argue that his
modularization techniques merely cause reasonable penalty on the efficiency. In some research areas,
the importance of modularity is over-exaggerated without proper experiments and measurements on
the execution time.

1.4 Modularity Issues of Today

Clearly the Expression Problem is not the destination, but a milestone in the history of modular pro-
gramming. Existing approaches have contributed a lot to modularizing both data variants and oper-
ations simultaneously, but there are still two remaining issues:

* The term “operation” is not identified clearly. In most related literature, it only refers to con-
sumer operations: operations that traverse a data structure, collect and integrate information.
Oppositely, there are producer operations that build data structures, unfortunately they have
not received much attention as they deserve. Note that a third category of operations, called
transformations, can be encoded into consumers or producers, based on the actual implemen-
tations.

* Modularization brings considerable boilerplate code in existing languages. Boilerplate [Lammel
and Jones, 2003] refers to verbose code that has to be repeated in many places with little or no

1. INTRODUCTION

alteration. It is prevalent in design patterns, yet brings much inconvenience to programmers
because of duplication.

This dissertation aims at modularizing consumers and producers with type-safety, reusability and
conciseness, without breaking the modularity of data variants. Specifically, this dissertation studies
three concrete research problems listed below:

I. BOILERPLATE TRAVERSALS. Various language processing tools or libraries for programming lan-
guages, domain-specific languages, mark-up languages like HTML, or data-interchange languages
like XML or JSON require complex Abstract Syntax Tree (AST) structures. Traversing those com-
plex ASTs typically requires large amounts of tedious boilerplate code. For many operations most
of the code simply walks the structure, and only a small portion of “interesting” code implements
the functionality that motivated the traversal in the first place; such operations are called structure-
shy [Lieberherr, 1996]. Having to explicitly write the entire traversal code is both tedious and error-
prone.

Take a simple AST example from [Lammel and Jones, 2003] that describe a company infrastruc-
ture, presented by Figure 1.1 in Java code. Note that constructors are omitted for simplicity. A com-
pany consists of a number of departments, while each department has a manager that takes charge
of a list of subunits. A unit can be either a single employee, or a department. Employees (includ-
ing managers) are all persons with name and address information, together with their salaries. In
the meantime, Figure 1.1 implements a consumer operation, which prints all employee names in a
company, by realizing printNames () methods for all the concrete classes.

Right at this moment, one may start to realize that some code in printNames () could be boiler-
plate. All those code simply delegates the task of traversal to their sub-nodes, except Person which
does the real interesting part: printing. This kind of structure-shyness forces programmers to dupli-
cate a lot of boilerplate traversal code. Think about another operation that collects the salary bill of
a company; most of the code will still do traversals tediously, except Exployee with its salary. Ad-
ditionally, another drawback of this programming style is that it does not really support extensibility
on operations, because new operations require modification on existing code across ASTs, violating
the requirements in the Expression Problem.

Although existing approaches including Adaptive Object-Oriented Programming [Lieberherr,
1996] and Strategic Programming [Borovansky etal., 1996; Visser and Benaissa, 1998a] aimed partly at
reducing such boilerplate, they mostly adopt meta-programming techniques, hence sacrificing other
desirable properties, including type-safety, separate compilation and even the extensibility specified
by the Expression Problem. In object-oriented programming, a standard way is to write default visi-
tors [Nordberg II1, 1996] that capture certain traversal patterns. For this, one may define a Visitor
interface with several visit- methods, and correspondingly inject accept () methods in ASTs. For
example, a visitDept () method may have the following default implementation:

public void visitDept(Dept d) {
d.manager.accept(this);
for (SubUnit u : d.units) u.accept(this);
}

And this is still unsatisfactory: the VISITOR pattern makes operations extensible, but simultaneously
breaks the extensibility of data variants. Furthermore, default visitors have to be manually written.

1.4 Modularity Issues of Today

class Company {
List<Dept> depts;
void printNames() {
for (Dept d : depts)
d.printNames();

class Dept {

String name;

Employee manager;

List<SubUnit> units;

void printNames() {
manager.printNames();
for (SubUnit u : units)

u.printNames();

abstract class SubUnit {
abstract void printNames();

}
class PUnit extends SubUnit {
Employee employee;

void printNames() { employee.printNames(); }

}
class DUnit extends SubUnit {

Dept dept;

void printNames() { dept.printNames(); }
}

class Employee {
Person person;
float salary;
void printNames() { person.printNames(); }

class Person {
String name, address;

void printNames() { System.out.println(name); }

Figure 1.1: Printing the names of employees in a company.

1. INTRODUCTION

[Lammel and Jones, 2003] provides simple generic traversal combinators in functional programming,
but the efficiency is affected significantly by the heave use of run-time casts, and the approach still does
not support extensibility on both data variants and operations.

II. TYPE-SAFE MODULAR PARSING. While modularization of consumers has received considerable
attention among researchers, there is almost no related work on modularizing producers, namely
the operations that build extensible ASTs, of which parsing is a typical representative. Existing ap-
proaches [Gouseti et al., 2014; Grimm, 2006; Parr and Quong, 1995; Schwerdfeger and Van Wyk,
2009a; Viera et al., 2012; Warth et al., 2016a] mostly support syntactic modularity, by allowing users
to write separate grammars/specifications, and later they are combined and processed by parser gen-
erators as a whole. Consequently, such syntactic techniques do not support separate compilation or
modular type-checking; the implementation becomes error-prone, and even a minor modification in
the grammar requires a whole time-consuming recompilation.

In contrast with syntactic modularization, semantic modularization is more desired, for exam-
ple when implementing the interpreters in the famous book Types and Programming Languages
(TAPL) [Pierce, 2002], where languages are built and composed from reusable components. Modu-
larizing parsers is not as easy as stacking bricks; additional challenges are introduced, when it involves
left-recursive grammars, backtracking and the order of composition.

III. MopuLAR UNFOLDS. The modularization of consumers and producers has a different mani-
festation in functional programming. Existing work, especially Algebra of Programming [Bird and
de Moor, 1997] and Data types a la carte [Swierstra, 2008] that have theoretical foundations in cat-
egory theory [Herrlich and Strecker, 1973], have demonstrated that data operations can be realized
by using recursion schemes. Specifically, consumers correspond to f-algebras and catamorphisms (the
generic fold), and dually producers correspond to f-coalgebras and anamorphisms (generic unfolds).
Unfortunately, although the work indicates that modularizing consumers comes from the compos-
ability of f-algebras (which further implies a solution to the Expression Problem), modularizing pro-
ducers by composing f-coalgebras has been much less explored despite the duality. Additionally, there
are few applications in this area. We expect to modularize the construction of data structures into
reusable components, and provide producer/coalgebra combinators to compose them in a conve-
nient and type-safe way without boilerplate code.

1.5 Contributions

To tackle the aforementioned research problems, this dissertation proposes a couple of semantic mod-
ularization approaches and libraries, together with a few case studies to demonstrate the practicality.
More aspects in Section 1.3 have been taken into concern. More precisely, contributions of this dis-
sertation for the three research topics are:

I. BOILERPLATE TRAVERSALS. This dissertation presents a Java framework called Shy that allows
users to define type-safe and extensible structure-shy consumers. Shy uses Object Algebras [Oliveira
and Cook, 2012a], a solution to the Expression Problem, as the underlying mechanism to describe
ASTs and to write operations over ASTs for traversals. As a result, both data variants and operations
are extensible in a semantically modular way. Shy captures four different types of consumers: gueries,

1.5 Contributions

transformations, generalized queries and contextual transformations. Those patterns are abstracted
into templates, and are expressive enough to address many practical problems. Furthermore, Shy uti-
lizes Java annotations to generate generic traversal code for those patterns; meta-programming in Shy
is merely for auxiliary use. Consequently, the amount of code that users need to write is significantly
smaller. The case study on a domain-specific language shows that for a large number of traversals,
only 4% to 21% of the AST cases had to be implemented in comparison with code written without
Shy, while the performance is comparable to the vanilla implementation.

II. TYPE-SAFE MODULAR PARSING. Thisdissertation investigates the algorithmic challenges of type-
safe modular parsing, including left-recursion, manual backtracking, and global ordering of composi-

tion. We also investigate the challenges in terms of extensibility and reusability. Finally, a technique for

writing type-safe modular parsers is presented, by integrating Packrat parsing [Ford, 2002], multiple

inheritance and Object Algebras [Oliveira and Cook, 2012a] together in Scala code. Consequently the

methodology allows multiple dimensions of extensibility, and implies a general approach for modu-

larizing producers with Object Algebras. The evaluation is conducted on a case study with parsers of
18 TAPL interpreters, showing its reasonable performance and 69% reduction of code size in total.

III. MopuLAR UNFOLDS. This dissertation investigates techniques for composing and modulariz-
ing f-coalgebras. We show that the natural and generic composition of f-coalgebras leads to products
(instead of sums) at the top-level nodes, which further gives product forests from the generic unfold.
We then show that the more familiar, and expected sums-of-product structure can be built as a second
step after the construction of a product forest. In order to eliminate the construction of the inter-
mediate product forest, and to directly build a sums-of-product structure, we show that specialized
composition combinators can be derived for coalgebras, and we further generalize this deforestation
to monadic variants. Such a methodology motivates the development of SCCL, a library of special-
ized coalgebra combinators for various composition strategies. To demonstrate the practicality of
SCCL, modular random generators, enumerators, and modular small-step semantics are encoded by
modularizing f-coalgebras. Finally, a case study on random generators and enumerators conducts our
evaluation.

SuMmmary Tosummarize, the contributions of this dissertation are listed as follows, of which some
are labelled with “ParT I/1I/III” for a correspondence to the three concrete problems:

* PART I: Design patterns for generic traversals. We provide a set of design patterns for various
types of traversals (consumers) using Object Algebras, including: gueries, transformations, gen-
eralized queries and contextual transformations. Both data variants and those patterns support
semantic extensibility.

* ParT I: The Shy Java framework. We show that those generic traversal patterns can be auto-
matically generated for a given Object Algebra interface. The Shy framework realizes this idea
by using Java annotations to automatically generate generic traversals.

* ParT II: A technique for modular parsing. We present a technique that allows the development
of semantically modular parsers. The technique relies on the combination of Packrat parsing,
multiple inheritance and Object Algebras, presented in Scala code.

1. INTRODUCTION

* ParT II: A methodology for writing modular parsers. We identify possible pitfalls using parser
combinators. To avoid such pitfalls, we propose guidelines for writing parsing code using lefz-
recursion and longest-match composition.

ParT II1: Product forests. We identify product forests as the natural result arising from unfold-
ing f-coalgebras composed with the general coalgebra combinator for product types, and show
how to recover a fixpoint of sums-of-products from a product forest in a subsequent step.

* Part III: Techniques for deforestation of product forests. We show a methodology for elimi-
nating product forests and directly obtaining a fixpoint of sums-of-products, by replacing the
generic f-coalgebra operator for product types by more specialized composition operators for
co-products.

* ParT III: Fusion and equivalence theorems. We identify several useful fusion theorems to show
the correctness of deforestation techniques. We also present and prove theorems that show
equivalent ways to transform product forests into fixpoints of sums-of-products.

* ParT III: Monadic variants. We also discuss monadic variants of our techniques together with
the corresponding fusion theorems. The monadic variants are interesting because they enable
more interesting selection functions.

* Part III: The SCCL library. We propose SCCL as a library of specialized coalgebra combina-
tors, with several useful composition strategies for modularizing producers. They are devel-
oped in Haskell, with the use of monad transformers for extensibility over functionality.

* Applications and examples. For modular generic traversals (consumers), We show various ex-
amples such as free variables and substitution operations, implemented concisely with Shy.
Moreover we illustrate how certain kinds of desugarings can be implemented using transfor-
mations, and how multiple transformations can be chained together in a pipeline. For modu-
lar producers, we show three applications that can be achieved by modularizing f-coalgebras:
modular random generators and enumerators, modular small-step semantics, and modular monadic
parsing. They require various composition strategies captured by our SCCL library. The result-
ing code is well encapsulated and concise to users.

* Case studies. For all three parts, case studies are conducted to illustrate modularity as well as
other concerns, including conciseness, expressiveness, and efficiency. For Part I, we illustrate
the benefits of Shy using a case study based on the QL domain-specific language. The results
of our case study show significant savings in terms of user-defined traversal code. The case
study also shows that Shy does not incur significant performance overhead compared to a reg-
ular AST-based implementation. For PartII, we conduct a case study with 18 interpreters from
the TAPL book. The case study shows the effectiveness of modular parsing in terms of reuse,
resulting in around 69% of code size reduction. For Part ITI, we model a set of random genera-
tors and enumerators for modular interpreters. In the case study, the generators are modelled
using monadic f-coalgebras, and composed under various strategies, showing great flexibility
and reusability.

10

1.6 Organization

* Investigation in different paradigms. We study the modularization of consumers and producers,
in both object-oriented programming and functional programming (Java, Scala, and Haskell).
Our discussion tries to explore the isomorphism between patterns implemented in different
paradigms, and connect the techniques in theoretical aspects.

All the source code is available online!.

1.6 Organization

This dissertation is generally organized as follows:
* Chapter 2 contains some necessary preliminaries to make the dissertation self-contained.

* Chapter 3 presents the Shy Java framework that abstracts consumers by capturing generic traver-
sal patterns in Object Algebras, and generates templates for those patterns with annotation
processing, hence removing much boilerplate code and meanwhile maintaining semantic mod-
ularity. The case study on the domain-specific language QL for questionnaires is also included.

* Chapter 4 presents the methodology for writing semantically modular parsers in Scala, by inte-
grating Packrat parsing, multiple inheritance and Object Algebras. Additionally, the case study
on parsing TAPL interpreters is included.

* Chapter 5 presents the methodology for modularizing producers (unfolds) by modularizing
f-coalgebras, and the SCCL library that contains several specialized coalgebra combinators.

* Chapter 6 presents the case study on modularizing random generators and enumerators using
SCCL.

* Chapter 7 reviews some related work on the areas we have touched.
* Chapter 8 concludes and discusses possible directions for future work.

The main body of this dissertation is partly based on two publications by the author and in col-
laboration with others. Specifically:

* Chapter 3: “Scrap your Boilerplate with Object Algebras”. Haoyuan Zhang, Zewei Chu, Bruno
C. d. S. Oliveira and Tijs van der Storm. In Proceedings of the 30th ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSIL.A 2015).

* Chapter 4: “Type-Safe Modular Parsing”. Haoyuan Zhang, Huang Li and Bruno C. d. S.
Oliveira. In Proceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering (SLE 2017).

while Chapter 5 is unpublished joint work with Bruno C. d. S. Oliveira and Shin-Cheng Mu.

'ParT I: https://github. com/ZeweiChu/ObjectAlgebraF ramework
ParT II: https://github.com/hy-zhang/parser
Part III: https://github.com/hy-zhang/SCCL

11

https://github.com/ZeweiChu/ObjectAlgebraFramework
https://github.com/hy-zhang/parser
https://github.com/hy-zhang/SCCL

1. INTRODUCTION

12

Chapter 2

Background

This chapter sets the stage for our studies in designing flexible and reusable programs, and present
prerequisite background for understanding this dissertation. Section 2.1 introduces the “Algebra of
Programming” pattern in Haskell. Following the detailed description of the Expression Problem (EP)
in Section 1.1, Section 2.2 and 2.3 discuss a few existing approaches/attempts for EP in Java (represen-
tative for object-oriented programming) and Haskell (representative for functional programming),
respectively. Section 2.4 briefly introduces two meta-programming techniques in Java: annotation
processing and reflection. Section 2.5 introduces the Scala Packrat Parsing as a primary technique
used in Chapter 4. Section 2.6 briefly mentions monad transformers in Haskell, which is a prerequi-
site for Chapter 5. Finally Section 2.7 presents the usage of QuickCheck for defining generators and
testing programs.

2.1 Algebra of Programming

There has been well-developed work on category theory [Herrlich and Strecker, 1973] and the “Alge-
bra of Programming” (AoP) [Bird and de Moor, 1997] for categorical representations of datatypes.
The Data Types a la Carte approach by [Swierstra, 2008] helped popularising various AoP concepts
in practice. This part illustrates some essential concepts and their implementations in the context of
Haskell.

FuncTor Theoretically, a functor is a homomorphism between categories [Bird and de Moor,
1997]. Haskell uses the Functor class to represent all endofunctors on its own category Hask, with
kind * -> *. A Functor requires an implementation of the generic mapping function:

fmap :: Functor f => (a ->b) ->f a ->fb

Functors can be composed flexibly in various ways. Besides the nested composition, products and
coproducts are also commonly used in Haskell:

data (f e g) a = Comp (f (g a))
data (f ® g) a = Prod (f a) (g a)
data (f & g) a = Inl (f a) | Inr (g a)

13

2. BACKGROUND

f a a
fmap (fold h) fold h
f (Fix f) In Fix f

Figure 2.1: Catamorphism.

fold :: Functor f => (f a -> a) -> Fix f -> a
fold h = h . fmap (fold h) . out

Figure 2.2: The generic fold.

Furthermore, taking the fixpoint of a functor represents inductive datatypes in AoP. The fixpoint
has the following definition:

data Fix f = In { out :: f (Fix f) }

where In and out witness the isomorphism Fix f ~ f (Fix f); they correspond to the initial
algebra and the final coalgebra respectively in category theory.

ALGEBRA AND CaTAMORPHISM Consumers, namely operations that consume data structures are
represented by algebras. An f-algebra has the following type:

type Alg fa=fa ->a

where a is called the carrier. By the type, an algebra only conducts a one-level calculation.

From category theory, there is a unique homomorphism from the initial algebra (Fix f, In) to
anarbitrary algebra (a, h),wherehhastypeAlg f a. Suchahomomorphism indicates the catamor-
phism (also known as the fold) shown in Figure 2.1. Catamorphism is a generic recursion pattern that
“lifts” a one-level algebra to a consumer that can readily take a Fix f structure, exhaustively fold/col-
lapse the structure and end up with a single result. It represents a bottom-up traversal strategy.

Figure 2.1 immediately derives the implementation of fold in Figure 2.2, since In and out are
inverse operations. Firstly, the operator out unpacksitto f (Fix f), before recursive calls in fmap
(fold f) turnitinto an f a structure. Finally, the algebra h is applied to yield the result of type a.
This combinator also appears as the banana brackets “(.|)” in some literature.

COALGEBRA AND ANAMORPHISM Oppositely to consumers, there are producers that build data
structures using certain recursion patterns. Coalgebras and the anamorphism elegantly dualize alge-
bras and catamorphism, respectively. A coalgebra takes a carrier a, and returns an f a value:

type CoAlg f a=a -> f a

14

2.1 Algebra of Programming

a f a
unfold c fmap (unfold c)
Fix f ” f (Fix f)

Figure 2.3: Anamorphsim.

unfold :: Functor f => (a -> f a) -> a -> Fix f
unfold ¢ = In . fmap (unfold c) . ¢

Figure 2.4: The generic unfold.

Similarly, the homomorphism from an arbitrary coalgebrac :: a -> f a, tothefinal coalgebraout
is called an anamorphism (or an unfold). Figure 2.3 shows the diagram of convertions between those
types. It observes that the unfold generates a Fix-value from an input a. Following the other path, the
implementation of such a generic unfold can be realized by Figure 2.4. The coalgebra is first applied
to a seed of type a, generating an f-structure of a’s. Then they are recursively used to build subtrees,
before wrapped up by constructor Inin the end. Some related literature uses a simpler notation “[(.)]”.
Anamorphism represents a basic top-down strategy of structure creation.

MoRE GENERALIZED RECURSION SCHEMES ~ Recursion schemes capture specific patterns of re-
cursion to process data structures. Programs that use recursion schemes can be written, transformed,
optimized and reasoned about in principled and concise ways. Besides the aforementioned catamor-
phism and anamorphism, there has already been well-developed research on exploring more general-
ized and expressive recursion schemes.

Worthy to be mentioned in the family of recursion schemes are the following ones. Hylomor-
phism is simply the combination of a catamorphism and an anamorphism:

hylo :: Functor f => (a -> fa) -> (fb ->b) ->a ->b
hylo ¢ h = h . fmap (hylo c h) . ¢

An equivalent definition composes fold htounfold c. Besides, paramorphism, first proposed by [Meertens,
1992], is a generalization of catamorphism, so that it can track the data substructures on which recur-
sive calls are applied. A Haskell implementation is given below:

para :: Functor f => (f (Fix f, a) -> a) -> Fix f -> a
para h = h . fmap (\n -> (n, para h n)) . out

Similarly, Vene and Uustalu [1998] proposed apomorphism as a generalization of anamorphism, where
the coalgebra can either generate new seeds or substructures (Fix f values) directly:

apo :: Functor f => (a -> f (Either (Fix f) a)) -> a -> Fix f
apo ¢ =In . fmap ¢’ . ¢

15

2. BACKGROUND

where c’' e = case e of
Left 1 > 1
Right r -> apo c r

On the other hand, Fokkinga [1994] and Pardo [1998] generalized catamorphism and anamor-
phism with side effects. In Haskell, they lead to the monadic fold and unfold as follows, using Traversable
[Gibbons and Oliveira, 2009; Mcbride and Paterson, 2008] instances:

type AlgM m f a = f a ->m a

foldM :: (Traversable f, Monad m) => AlgM m f a -> Fix f -> m a
foldM f = f <=< mapM (foldM f) . out

type CoAlgM m f a = a ->m (f a)

unfoldM :: (Monad m, Traversable f) => CoAlgM m f a -> a ->m (Fix f)
unfoldM h = fmap In . (mapM (unfoldM h) <=< h)

These variations are able to model more complicated calculations. Nevertheless, more powerful-
ness implies more generality, and hence implies less abstraction with fewer properties. There is always
a trade-off between abstraction and expressiveness.

2.2 Solutions to EP in Java

The Expression Problem (EP), firstly coined by Wadler [1998] for describing the requirements in
modularizing both data variants and operations, has been introduced in Section 1.1. Researchers from
the object-oriented area have proposed many solutions to the Expression Problem. In this section, we
choose Java as the language for our illustration. The following techniques are mostly not restricted
to Java though.

DEesigN GoaL We anticipate to model a simple arithmetic expression language in Java by embed-
ding. The initial configuration is comprised of two data variants: literals and additions, together with
an operation that evaluates an expression to a number. Later on, such a language may be extended
with multiplications, and an additional behavior: pretty-printing.

2.2.1 A Non-Solution: The INTERPRETER Pattern

The INTERPRETER pattern, one of the twenty-three well-known GoF design patterns [Gamma, 1995],
is perhaps a most commonly used approach for abstracting tree structures. Itis effectively a traditional
class-based approach, with expressiveness and simplicity of implementation using inheritance.

Figure 2.5 (left) gives an implementation of the expression language. Exp defines an interface
to integrate valid operations on the language. Here eval() represents the evaluation. Afterwards,
the abstract syntax tree (AST) is described by a number of classes implementing that interface. Note
that the COMPOSITE pattern is often used to encode recursive structures. Each class corresponds to
a data variant, with the members, the constructor as well as a concrete implementation of eval() by
method overriding.

16

2.2 Solutions to EP in Java

interface Exp { class Mul implements Exp {
public int eval(); Exp el, e2;
} public Mul(Exp el, Exp e2) {
this.el = el;
class Lit implements Exp { this.e2 = e2;
int i; }
public Lit(int i) { this.i = 1i; } public int eval() {
public int eval() { return el.eval() *x e2.eval();
return i; }
} }
}

class Add implements Exp {

Exp el, e2;

public Add(Exp el, Exp e2) {
this.el = el;
this.e2 = e2;

}

public int eval() {
return el.eval() + e2.eval();

Figure 2.5: The INTERPRETER pattern (left). Multiplication as an extension (right).

ExTENSION: NEW VARIANT Itis observed that Lit and Add can be developed independently, thus
the extensibility of data variants can be achieved by adding a new class. Figure 2.5 (right) shows mul-
tiplication as an extension.

ExTENSION: NEW OPERATION Unfortunately, traditional OO does not have natural extensibility
on operations. To allow pretty-printing of expressions, inserting an additional abstract method into
Exp breaks the third requirement of EP, namely “no modification on existing code”. Not doing so
but extending Exp with inheritance is still problematic, as shown below:

interface ExtExp extends Exp {
String print();

class ExtAdd extends Add implements ExtExp {
public ExtAdd(Exp el, Exp e2) {...}
public String print() {
return "(" + el.print() + " + " + e2.print() + ")";
// does not type-check!

17

2. BACKGROUND

The above code fails on type checking, since el and e2 belong to the old expression type. It is worth
mentioning that type-refinement can possibly be applied to those members in Java or Scala [Wang and
Oliveira, 2016], but the authors consider that approach to be restricted when binary and producer
methods are introduced. In short, the traditional OO approach merely realizes partial extensibility.
Interestingly, it reveals the key to the Expression Problem, namely how to untangle the design of data
representations from operations.

2.2.2 The Opposite Side: The Vis1TOR Pattern

Compared with functional programming where pattern-matching is a frequently used technique,
checking class membership is considered a violation of object-oriented programming. Nevertheless,
the VISITOR pattern [Gamma, 1995] simulates this functional decomposition style. It realizes a sep-
aration of designing operations from the abstract syntax structure. Yet this is still a non-solution to
EP; it only flips the coin to the opposite side, namely adding operations is easier while adding variants
becomes difficult.

There are various ways to classify visitors: imperative versus functional; internal versus external,
etc. [Oliveira, 2007; Oliveira et al., 2008]. Figure 2.6 implements internal functional visitors for a
representative. The Visitor interface is defined with respect to the shape of the abstract syntax,
where each method is specific to a data variant. Itis parametrized to abstract the operations applicable
to expressions, where E denotes the return type of an operation to be instantiated.

In the definition of Exp, with genericity, the accept () method is the entrance to execute a visitor
for a traversal. Since it is an nternal visitor, generic traversal code is encapsulated inside the classes
Lit and Add, by overriding accept (), threading the visitor on recursive structures, and calling the
corresponding visit method at the top. Consequently, the pattern conducts a bottom-up traversal
strategy.

Finally, as a concrete visitor, Eval instantiates the type parameter of Visitor into Integer, and
provides implementations for evaluating literals and additions.

ExTENs1ION: NEW OPERATION Similarly to Eval, adifferentinstantiation can be modularly added
to the existing framework. Figure 2.7 presents a pretty-printing behavior.

ExTENSION: NEW VARIANT Unfortunately, the traditional VISITOR pattern sacrifices the exten-
sibility on data variants. To extend the current abstract syntax, it is necessary to substitute Visitor
with a subtype that can handle new variants. Yet Visitor appears at a contravariant parameter posi-
tion in Exp, further requiring programmers to modify or duplicate the code where Exp is referred. In
a similar way to the INTERPRETER pattern, it merely realizes partial extensibility.

2.2.3 Object Algebras

Object Algebras are an actual solution to the Expression Problem, proposed by Oliveira and Cook
[2012a]. The original pattern of Object Algebras is strongly connected to internal visitors, Church
encodings [Church, 1936], and folds in functional programming. The relationship between inter-
nal visitors and Church encodings is discussed by [Buchlovsky and Thielecke, 2006], furthermore, a
generalized version of Object Algebras [Oliveira et al., 2013] can model external visitors, but this is
beyond the preliminaries of the thesis.

18

2.2 Solutions to EP in Java

interface Visitor<kE> {
E visitLit(int i);
E visitAdd(E el, E e2);

interface Exp {
<E> E accept(Visitor<E> v);

class Lit implements Exp {
int i;
public Lit(int i) { this.i = i; }
public <E> E accept(Visitor<E> v) {
return v.visitLit(i);

class Add implements Exp {
Exp el, e2;
public Add(Exp el, Exp e2) {
this.el = el;
this.e2 = e2;
}
public <E> E accept(Visitor<E> v) {
return v.visitAdd(el.accept(v), e2.accept(v));

class Eval implements Visitor<Integer> {
public Integer visitLit(int i) {
return i;
}
public Integer visitAdd(Integer el, Integer e2) {
return el + e2;

Figure 2.6: The Visitor pattern.

OBJECT ALGEBRA INTERFACE An Object Algebra interface representing expressions is isomorphic
to Visitor in Figure 2.6. For naming conventions, the interface is usually postfixed with "Alg":

interface ExpAlg<E> {
E lit(int 1i);
E add(E el, E e2);

19

2. BACKGROUND

class Print implements Visitor<String> {
public String visitLit(int i) {
return "" + i;
}
public String visitAdd(String el, String e2) {
return "(" + el + " + " +e2+ ")";

Figure 2.7: Pretty-printing as a visitor.

}

where E is often called a carrier, for capturing recursive structures.

One key difference between Object Algebras and the VISITOR pattern, is that Exp and its accept
() method are no longer required, unless for encapsulation. Thus Object Algebra interfaces are re-
sponsible to describe the shape of data variants; in fact, they have a strong connection to ABSTRACT
FacTory [Gamma, 1995] interfaces. The difference is that, for the VISITOR pattern, Lit and Add in
Figure 2.6 will be defined as factory methods instead, with return type Exp; in Object Algebra inter-
faces, however, the return type is generic. Later an Object Algebra interface will be instantiated into
a concrete factory, called an Objecr Algebra.

Rather than building explicit Exp objects, Object Algebras provide “recipes” for creating val-
ues [Oliveira and Cook, 2012a], based on Church encodings. As a concrete example, the following
code defines a polymorphic function standing for "2 + 3", ready to accept any concrete factory and
produce results accordingly:

<E> E build(ExpAlg<E> alg) {
return alg.add(alg.lit(2), alg.lit(3));

OjecT ALGEBRAS Object Algebras encode the behaviors on data structures. An Object Algebra
instantiates the abstract carriers to certain types, and correspondingly provides implementations for
all variants. As a result, implementing an Object Algebra is no different from implementing a visitor.
For instance, the evaluation algebra is equivalent to the Eval in Figure 2.6:

class Eval implements ExpAlg<Integer> {
public Integer lit(int i) {
return i;

}
public Integer add(Integer el, Integer e2) {
return el + e2;

}
To apply an evaluation, such a factory is fed to the above build function:

Integer x = build(new Eval());

20

2.2 Solutions to EP in Java

yielding 5 as expected.

ExTENSION: NEwW VARIANT =~ An Object Algebra interface can easily be extended with new data
variants by inheritance. Theoretically, data extension as a sum of types, manifests as the product
in Church-encoded functions, and OO inheritance can be used to model such products [Buchlovsky
and Thielecke, 2006; Oliveira and Cook, 2012a]. The following code extends the expression language
with multiplication:

interface MulAlg<E> extends ExpAlg<E> {
E mul(E el, E e2);
}

And correspondingly, an abstract factory taking MulAl1g<E> as a parameter can use mul for construct-
ing multiplications.

ExTENSION: NEW OPERATION Object Algebras allow both dimensions of extensibility. Adding
a new operation is as easy as the Visitor pattern. Below code defines a pretty-printing algebra as in
Figure 2.7:

class Print implements ExpAlg<String> {
public String lit(int i) {
return "" + i;

}
public String add(String el, String e2) {
return "(" + el + " + " + 2+ ")";

}

Algebras are further reusable when the abstract syntax expands. It is straightforward to modularly
add pretty-printing on multiplications:

class MulPrint extends Print implements MulAlg<String> {
public String mul(String el, String e2) {
return n (n + el + n * n + e2 + ") n ;

2.2.4 Other Approaches

There has been lots of other related work on finding solutions to the Expression Problem in object-
oriented programming [Odersky and Zenger, 2005a; Torgersen, 2004; Wang and Oliveira, 2016].
Some of them have a requirement for advanced language features, including multi-methods [Cham-
bersand Leavens, 1995], open classes [Clifton etal., 2000], abstract type members [Odersky and Zenger,
2005b], F-bounded polymorphism [Canning etal.,1989], and so on. While details of those approaches
will not be covered in the thesis, we briefly review them in Chapter 7.

21

2. BACKGROUND

Lit Int
Add a b

data Lit
data Add a b

class Expr x
instance Expr Lit
instance (Expr a, Expr b) => Expr (Add a b)

class Expr x => Eval x where
eval :: x -> Int

instance Eval Lit where
eval (Lit n) =n

instance (Eval a, Eval b) => Eval (Add a b) where
eval (Add x y) = eval x + eval y

Figure 2.8: Encoding the expression language with algebraic datatypes and type classes.

2.3 Solutions to EP in Haskell

The problem of extensibility has also been heavily studied in functional programming. Below are a
few representatives of the solutions using Haskell. It is interesting to observe the strong connection
between object-oriented programming and functional programming; the same notion manifests dif-
ferently in both contexts.

2.3.1 A Partial Solution: Polymorphic Datatypes and Type Classes

Before introducing the EP solutions more related to this dissertation, there is a folklore approach in
Haskell which uses algebraic data types tor variants, and type classes to process operations. Tradition-
ally, the definition of datatypes is closed in Haskell; it has to be opened for extension by polymor-
phism. Besides, type classes allow an object-oriented style in functional programming, where func-
tions are packed and dispatched with respect to types. The advantage of using type classes, compared
to object-oriented programming, is that it separates operations from data definition.

Consider an encoding of the expression language in Figure 2.8. Literals and additions are defined
by data constructors, respectively. Add takes two type parameters for its sub-terms, thereby an expres-
sion like "3 + 5" is expressed by Add (Lit 3) (Lit 5). Furthermore, Expr adds a constraint on
those data variants, so as to encode multiple different syntax in future extensions.

In this approach, valid data operations are captured by type classes. Eval packs an eval function
for the evaluation. The semantics on literals and additions are provided in a modular style. Finally,
running "eval (Add (Lit 3) (Lit 5))"in GHCi yields 5 immediately.

EXTENSION: NEwW VARIANT ~ Multiplications and the corresponding semantics are free to be added
to the current framework modularly. As follows:

data Mul a b =Mul a b

22

2.3 Solutions to EP in Haskell

instance (Expr a, Expr b) => Expr (Mul a b)

instance (Eval a, Eval b) => Eval (Mul a b) where
eval (Mul x y) = eval x * eval y

EXTENSION: NEW OPERATION Pretty-printing is further applicable with another type class:

class Expr x => Print x where
pprint :: x -> String

instance Print Lit where
pprint (Lit n) = show n

instance (Print a, Print b) => Print (Add a b) where
pprint (Add x y) = "(" ++ pprint x ++ " + " ++ pprint y ++ ")"

instance (Print a, Print b) => Print (Mul a b) where
pprint (Mul x y) = "(" ++ pprint x ++ " * " ++ pprint y ++ ")"

Denote e for the expression "Mul (Lit 2) (Add (Lit 3) (Lit 5))". Executing eval and
pprint on e gives the desired results 16 and " (2 * (3 + 5))", respectively. Nevertheless, this ap-
proach does not solve the Expression Problem totally. By checking the type of e, we obtain Mul Lit

(Add Lit Lit). Itindicates that the type of an expression depends on its value; consequently, it is
hard to unify different expressions with the same type, for example when defining a parse function
for the syntax.

2.3.2 Finally Tagless

The idea originates in [Hinze, 2006] which represents different encodings of datatypes using Haskell
type classes. Later Oliveira et al. [2006] applied some variations to the encodings and implied a solu-
tion to the Expression Problem, before Finally tagless (or tagless final) [Carette et al., 2007] actually
popularized the technique in realizing interpretation of simple embedded DSLs in functional pro-
gramming.

In this approach, an abstract syntax is Church-encoded into a type class, which is isomorphic
to an Object Algebra interface; and operations are realized by instances of the type class. While the
original paper gives a more complicated representation of interpreters, Figure 2.9 simplifies it a bit for
expressions. The code clearly indicates the relationship between finally tagless and Object Algebras.
The expression "2 + 3" is represented by an abstract Church-encoded value, with the constraint
Expr e. Running "eval twoPlusThree" yields 5 correctly.

ExTENSION: NEW VARIANT Haskell emulates OO inheritance between type classes, allowing an
extension of multiplication:

class Expr e => MulExpr e where
mul :: e ->e -> e

23

2. BACKGROUND

class Expr e where
1lit :: Int -> e
add :: e ->e -> ¢

newtype Eval = Eval { eval :: Int }
instance Expr Eval where
litn = Eval n

add x y = Eval $ eval x + eval y

twoPlusThree :: Expr e => e
twoPlusThree = add (lit 2) (lit 3)

Figure 2.9: The expression language using a finally-tagless representation.

instance MulExpr Eval where
mul x y = Eval $ eval x * eval y

ExTENSION: NEwW OPERATION The extensibility on operations is straightforward by defining new
instances of Expr and MulExpr:

newtype Print = Print { pprint :: String }

instance Expr Print where
lit n = Print $ show n
add x y = Print $ "(" ++ pprint x ++ " + " 4+ pprint y ++ ")"

instance MulExpr Print where
mul x y = Print $ "(" ++ pprint x ++ " % " ++ pprint y ++ ")"

2.3.3 Data Types a la Carte

Finally tagless and Object Algebras realize both dimensions of extensibility in EP, at the cost of repre-
senting data in the form of functions based on Church encoding. Such a representation, however, can
be reified into free structures in the Data Types a la Carte (DTC) approach. The relationship between
both approaches has a correspondence to shallow embeddings versus deep embeddings [Gibbons and
Wu, 2014].

Swierstra [2008] proposed DTC as another solution to EP in the context of Haskell. In fact, the
approach is a realization of categorical concepts from Algebra of Programming [Bird and de Moor,
1997]. His work innovatively increases the practicability of AoP in Haskell.

REPRESENTATION DTC represents inductive data types as the fixpoint of functors, and certain
operations by defining algebras. Firstly, a functor for encoding literals and additions can be defined
as follows:

24

2.3 Solutions to EP in Haskell

data ExpF e = Lit Int | Add e e deriving Functor

Notice that it still looks similar to an Object Algebra interface, or a tagless final type class, whereas
Haskell algebraic datatypes are used for reification of the structure.

As the second step, taking the fixpoint of ExpF gives the type of expression objects. Construct
"2 + 3" for example:

e :: Fix ExpF
e =In $ Add (In $ Lit 2) (In $ Lit 3)

ALGEBRA AND GENERIC FOLD Operations, more specifically consumers, are defined as algebras
with the generic fold. For instance, the following type class defines the evaluation of expressions,
where evalAlgebra instantiates the carrier to Int:

class Functor f => Eval f where
evalAlgebra :: f Int -> Int

Then eval feeds the evaluation algebra to the generic fold from Figure 2.2:

eval :: Eval f => Fix f -> Int
eval = fold evalAlgebra

Now we instantiate f to ExpF in Eval and attach an implementation:

instance Eval ExpF where
evalAlgebra (Lit n) =n
evalAlgebra (Add x y) = x + vy

In that case, applying eval to e yields 5 instantly.
ExTENSION: NEw VARIANT ~ Multiplication is introduced by another functor, together with its
evaluation algebra:

data MulF e = Mul e e deriving Functor

instance Eval MulF where

evalAlgebra (Mul x y) = x x y

In DTG, the key idea of composite structure is taking the coproduct (or sum) of functors:

data (f & g) e = Inl (f e) | Inr (g e) deriving Functor

where Inl and Inr are injections. A linearization of coproducts can be wrapped into a single fix-
point. Additionally, the following code realizes automatic composition of evaluation algebras for a
coproduct:

instance (Eval f, Eval g) => Eval (f & g) where
evalAlgebra (Inl e) = evalAlgebra e
evalAlgebra (Inr e) = evalAlgebra e

NowFix (ExpF & MulF) involvesliteralsand addition, butalso multiplication. Subsequently, eval
is ready to consume Fix (ExpF @ MulF) structures due to its genericity.

25

2. BACKGROUND

class Functor f => Print f where
printAlgebra :: f String -> String

instance (Print f, Print g) => Print (f & g¢g) where
printAlgebra (Inl e) printAlgebra e
printAlgebra (Inr e) printAlgebra e

instance Print ExpF where
printAlgebra (Lit n) show n
printAlgebra (Add x y) = "(" ++ X ++ " + " ++ y ++ ")"

instance Print MulF where
printAlgebra (Mul x y) = "(" ++ X ++

* ++y ++)"

Figure 2.10: Adding the pretty-printing algebra in DTC.

EXTENSION: NEwW OPERATION Algebras can beindependently defined for modularity. Figure 2.10
presents an implementation of pretty-printing. It demonstrates that DTC settles the Expression
Problem. Importantly, one shall notice that the use of type classes in DTC is not as necessary as
the traditional FP approach in Section 2.3.1. In the previous approach, type classes define operations
as recursive functions; the recursion is opened and the computation is automatically conducted by
instances. In DTG, they are merely used for the automatic composition of algebras; alternatively, it is
sufficient to define and compose algebras using simple functions. The recursion pattern is captured
by the generic fold.

2.4 Java Annotation Processing and Reflection

This section introduces some prerequisite knowledge about Java annotation processing and Java re-
flection. They are both commonly used meta-programming techniques, involved in some existing
libraries including JUnit [Beck and Gamma, 1998], Lombok!, Retrofit?, etc. In Java, the APIs for
both mechanisms are:

* Annotation processing: APIlocated in javax.annotation.processing package. Annotations
are defined in the form of “@XXX”, implemented for certain behaviors, and processed during
compilation. They can generate code into new source files, or even manipulate the abstract
syntax tree before .class files are generated, using Lombok for example. The generated code
will require another compilation process, hence type safety is guaranteed by the Java compiler.

* Reflection: API located in java.lang.reflect together with other related packages. Reflec-
tion allows programs to introspect and modify themselves at the runtime execution, on in-
ternal properties such as classes, members and methods dynamically. Compared with annota-
tions, reflection can easily raise runtime errors.

https://projectlombok.org/
2https://square.github.io/retrofit/

26

https://projectlombok.org/
https://square.github.io/retrofit/

2.5 Scala Packrat Parsing

AN

Source Code

1 Compile Time

1 Syntactic Analysis
1 (Parsing)

] —) [Ama,;mcnFrmezzmg] -[Semantic Analysis } — [Generation }

Machine Code Byte Code

Figure 2.11: Compilation and execution process of Java programs. Annotations are handled in “Annota-
tion Processing”, while reflection takes place during “Execution”.

Figure 2.11 illustrates where they take place in the compilation and execution of Java programs.

2.5 Scala Packrat Parsing

Parsing is a fundamental procedure in the design of compilers and interpreters, to connect abstract
syntax with concrete syntax. A conventional approach for its implementation is to use parser gener-
ators, where the overall syntax is encoded into special grammar rules, before code generation pro-
duces the real parsing code automatically. On the other hand, parser combinators, originating in
[Burge, 1975], are another popular technique for functional programming. Parser combinators en-
courage small parsers to be represented as functions, and combined into larger ones with higher-order
functions. Consequently, they ensure type safety in the host language mostly for parsing embedded
domain-specific languages.

Normally, parser combinators are restricted to recursive descent parsing in a top-down manner.
Although they bring great convenience for maintaining and manipulating parsers, there are two long-
standing issues: lack of support for left-recursion, and bad efficiency with backtracking. And they
have shown to be thorny even in the famous Parsec [Leijen and Meijer, 2001] library of Haskell.
People have put great efforts in tackling those issues. Asa representative, Packrat parsing [Ford, 2002]
manages to support left-recursive grammars and guarantees linear-time complexity by memoization.
It is a general algorithm that can be implemented in lazy functional languages.

Chapter 4 will focus closely on the Scala language. Scala has a standard Packrat-parsing library
1 of combinators for sequencing, choice, repetition and so on. Table 2.1 presents some common
combinators with documentation. For better illustration, below is a simple example.

ExamPLE We want to parse the expression language for literals and additions. The concrete syntax
is shown below as a left-recursive grammar:

"https://github.com/scala/scala-parser-combinators

27

https://github.com/scala/scala-parser-combinators

2. BACKGROUND

Table 2.1: Common combinators from the Scala standard parser combinator library.

def ~[U](q: => Parser[U]): Parser[~[T, U]]

- A parser combinator for sequential composition.

def ™ [U](f: (T) => U): Parser[U]

- A parser combinator for function application.

def <~[U](q: => Parser[U]): Parser[T]

- A parser combinator for sequential composition which keeps only the left result.
def ~>[U](q: => Parser[U]): Parser[U]

- A parser combinator for sequential composition which keeps only the right result.

def ident: Parser[String]

- A parser which matches an identifier.

def |[U >: T](q: => Parser[U]): Parser[U]

- A parser combinator for alternative composition.

def |||[U >: T1(g0: => Parser[U]): Parser[U]

- A parser combinator for alternative with longest match composition.

<expr> ::= <int>
| <expr> ‘+' <expr>

Figure 2.12 defines the AST in a traditional OO style using traits and classes, and also defines the
parser. The AST supports pretty-printing as a valid operation on expressions. In ExpParser, Parser
[E] denotes the synonym for a Packrat parser, where E indicates the type of results it produces. parse
is a generic function for testing. lexical represents the lexer. pLit parsesan integer for the literal case.
pAdd handles the addition case and creates an object of Add, where the two sub-expressions are parsed
with a recursive call of pExpr. Finally, pExpr composes pLit and pAdd; the composition is achieved
by |||, the longest-match alternative combinator which ignores the order of parser components. A
test in main gives its output as expected:

println(ExpParser.parse("2 + 3 + 5").print) // (2 + (3 + 5))

2.6 Monad Transformers

Monacds are widely considered as a practical and type-safe technique for encoding side effects in func-
tional programming. They abstract computations at a high level with a couple of operations, thus
simplifying client code significantly. Furthermore, monad transformers, firstly proposed by Liang
etal. [1995] in an implementation of modular interpreters, are used to construct monads in a mod-
ular way. Transformers are rolled into a stack, composing those individual features together into full
functionality, while each component is still easily accessible.

A monad transformer takes an underlying monad as a type parameter, and defines the modified
behavior on such a monad. Haskell provides a monad transformer library (MTL), including StateT
for mutable state, ExceptT for exceptions, ContT for continuations, and so on.

28

2.6 Monad Transformers

import scala.util.parsing.combinator._
import scala.util.parsing.combinator.syntactical._

trait Expr { def print: String }
class Lit(n: Int) extends Expr {
def print = n.toString

}
class Add(el: Expr, e2: Expr) extends Expr {

def print = "(" + el.print + " + " + e2.print + ")"
}

object ExpParser extends StandardTokenParsers with PackratParsers {
type Parser[E] = PackratParser[E]
def parse(input: String) = {
val t = phrase(pExpr) (new lexical.Scanner(input))
t.getOrElse(sys.error(t.toString))
}

lexical.delimiters += "+"
val pLit: Parser[Expr] = numericLit ™ { x => new Lit(x.toInt) }
val pAdd: Parser[Expr] = pExpr ~ ("+" ~> pExpr) ™"
{ case el ~ e2 => new Add(el, e2) }
val pExpr: Parser[Expr] = pLit ||| pAdd

Figure 2.12: Parsing the expression language with Scala Packrat parsers.

ExamprLE Ourillustration takes such an operation as an example: we want to exhaustively traverse a
directory, and list all included files in absolute paths. A conventional implementation requires the I0
environment, together with System.FilePathand System.Directory packages. Figure 2.13 defines
ListDir for the directory walker. With the root directory dir, listDirectory collects all the sub-
directories into a list. Then it checks whether each sub-directory is a single file, or a folder. The paths
of files will be stored into the result, while folders are recursively traversed by ListDir. Finally, concat
merges all results into a single list.

An equivalent implementation uses monad transformers shown in Figure 2.14. As an input,
the root directory can be encoded with a reader monad, while outputting file information refers to
a writer monad. Consequently listDir’ forms a single monadic value, with I0 at the innermost
position. In that definition, ask retrieves the input directory, and local runs a recursive listDir’
with a new input, while tell simply dumps a file path to the writer. It can be proved that 1istDir
behaves identically to

execWriter . runReaderT listDir’

Furthermore, monad transfomers contribute to code reusability. The above 1istDir’ can instead
have the following generic type signature

29

2. BACKGROUND

listDir :: FilePath -> I0 [FilePath]
listDir dir = do
dirs <- listDirectory dir
1iftM concat . forM dirs $ \d -> do
let path = dir </>d
isDir <- doesDirectoryExist path
if isDir then listDir path else return [path]

Figure 2.13: Recursing a directory tree and output all files.

listDir’ :: ReaderT FilePath (WriterT [FilePath] IO0) ()
listDir’ = do
dir <- ask
dirs <- 1iftI0 $ listDirectory dir
forM_ dirs $ \d -> do
let path = dir </> d
isDir <- 1iftIO0 $ doesDirectoryExist path
if isDir then local (_ -> path) listDir’ else tell [path]

Figure 2.14: Directory walker by monad transformers.

listDir’ :: (MonadReader FilePath m,
MonadWriter [FilePath] m,
MonadIO m) =>m ()

without changing the body. It implies adaptivity to future extensions of functionality.

2.7 QuickCheck

QuickCheck [Claessen and Hughes, 2000] is widely known as a combinator library for testing Haskell
programs. Programmers write specifications for their programs, in the form of logical properties,
and QuickCheck automatically generates a large number of test cases to check those properties. This
section only introduces some features preliminary for understanding this dissertation.

PROPERTIES Properties are basically functions with return type Bool, but can also have Property
type with conditionals and quantifiers provided by QuickCheck. For example:

prop_HeadlLast :: Eq a => [a] -> Property
prop_HeadLast xs = not (null xs) ==> head (reverse xs)

The above proposition states that if a list is non-empty, taking the head element is equivalent to
taking the last element of the reversed list. To check the property:

> quickCheck prop_HeadlLast
+++ OK, passed 100 tests.

where the input lists are randomly generated by QuickCheck.

30

2.7 QuickCheck

GENERATORS FOR CUSTOM DATATYPES The precondition of letting QuickCheck randomly gen-
erate objects for a specific type, is to make the type an instance of Arbitrary. Besides the built-in
instances for primitive types, users can also implement custom generators for their own datatypes.
QuickCheck offers a number of auxiliary combinators, which deal with sized parameters, random
distribution and so on.

For instance, an arithmetic language with literals and additions is represented by the following
recursive datatype:

data Exp = Lit Int | Add Exp Exp
And the Arbitrary interface is defined as follows:

class Arbitrary a where
arbitrary :: Gen a

where Gen a represents a generator for type-a values. For Exp, one implementation could be:

instance Arbitrary Exp where
arbitrary = sized genExp
where genExp n | n <= 0 1iftM Lit $ choose (0, 100)
| otherwise = do el <- genExp (n - 1)
e2 <- genkExp (n - 1)
elements [Add el e2, Mul el e2?]

Note that sized allows a generator to hold a size parameter. When the input n is non-positive, a literal
is randomly picked from 0 to 100. On the other hand, when n is greater than 0, two sub-expressions
are recursively generated from genExp, both with size n - 1. Then elements combines them by
choosing between addition and multiplication with equal probability. Such a generator constructs a
complete binary tree of a certain depth.

31

2. BACKGROUND

32

Chapter 3

Scrap Your Boilerplate with Object
Algebras

This chapter presents Shy, a type-safe Java framework for the purpose of removing boilerplate code
in traversing abstract syntax trees (ASTs). Complex ASTs are commonly used for processing real-life
programming languages, with dozens or even hundreds of kinds of nodes. They typically require
large amounts of traversal code, whereas in most situations, only a small portion implements the real
functionality, leaving much boilerplate code that simply walks the structure.

Object Algebras [Oliveira and Cook, 2012a], briefly described in Section 2.2.3 as a solution to
the Expression Problem, are the underlying mechanism of representing ASTs in Shy. As a result, Shy
supports modular and type-safe extensibility on both ASTs and their traversal operations. In order
to reduce boilerplate traversal code, Shy captures four different patterns of generic traversals: gueries;
transformations; generalized queries; and contextual transformations. These patterns are represented
by Object Algebras, and are automatically generated from a simple Java annotation @Algebra put on
top of ASTs. Programmers who want to implement structure-shy traversals can then inherit from
one of these four Object Algebras, and override only the cases that deal with the interesting parts of
the traversal. Consequently traversals written in Shy are:

* Small in size: With Shy the amount of code that programmers need to write a structure-shy
traversal is significantly smaller. Often traversals in Shy are implementable in just a few lines of
code, even for complex ASTs with hundreds of different types of nodes.

* Adaptive and structure-shy: Traversals written with Shy can omit boilerplate code, making
traversals more adaptive to future changes or extensions to the data type.

* Type-safe: Shy traversals are directly written in Java and the Java type-system ensures type-safety.
No run-time casts are needed for generic traversal code or for user-defined traversal code.

* Extensible with separate compilation: Traversals inherit type-safe extensibility from Object Al-
gebras. Both traversals and the AST structures are extensible. Thusitis possible to reuse traver-
sal code for ASTs extended with additional node types. Furthermore Shy traversals support
separate compilation.

33

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

form DriverLicense {
name: "What is your name?" string
age: "What is your age?" integer
if (age >= 18)
license: "Have a driver’s license?" boolean

Figure 3.1: Example QL questionnaire: driver’s license.

* Implemented in plain Java: Shy traversals do not require a new tool or language. The approach
is library based and only uses Java annotations.

To prove the effectiveness of the approach, Shy has been applied in the implementation of QL, a
domain-specificlanguage (DSL) for defining questionnaires that has been used before as a benchmark
language [Erdweg et al., 2013; Gouseti et al., 2014]. The results show that for a large number of
traversals there was a significant reduction in the amount of user-defined code: only 4% to 21% of the
AST cases had to be implemented in comparison with code written without Shy.

This chapter is organized as follows: Section 3.1 gives the motivation and an overview of Shy
with concrete examples. Section 3.2 to 3.5 illustrate in detail the four generic traversal patterns, in the
context of Object Algebra encoding. Section 3.6 describes an additional scenario of traversals called
desugaring transformations. Section 3.7 takes an insight into the extensibility from Shy. Section 3.8
briefly introduces the implementation of Shy. Finally the case study is presented in Section 3.9 to
illustrate the utility of the Shy framework.

3.1 An Overview of Shy

This section starts by illustrating the problem of boilerplate code when implementing traversals of
complex structures. It then shows how Shy addresses the problem using a combination of Object
Algebras [Oliveira and Cook, 2012a] and Java annotations.

3.1.1 Traversing Object-Oriented ASTs

We start by introducing the problem of boilerplate code by considering a simplified variant of the QL
language used in our case study [Gouseti et al., 2014], called MiniQL. Just like QL, MiniQL can be
used to describe interactive questionnaires.

An example MiniQL program is shown in Figure 3.1. The questionnaire first asks for the user’s
name and age, and then, if the age is greater than or equal to 18, asks if the user has a driver’s license. Be-
cause of the conditional construct, the last question will only appear when the user is actually eligible
to have driver’s license.

MiniQL’s abstract syntax contains forms, statements (if-then and question) and expressions (only
literals, variables and greater-than-or-equal). A traditional OO implementation adopts the Inzer-
preter pattern, shown in Figure 3.2. A form (class Form) has a name and consists of alist of statements.
Statements are conditionals (If) which contain an expression and a statement body, and questions

34

3.1 An Overview of Shy

class Form {
String name; List<Stmt> body;
Set<String> usedVars() {
Set<String> vars = new HashSet<>();
body.forEach(s -> vars.addAll(s.usedVars()));
return vars;

class If extends Stmt {
Exp cond; Stmt then;
Set<String> usedVars() {
Set<String> vars=new HashSet<>(cond.usedVars());
vars.addAll(then.usedVars());
return vars;

class Question extends Stmt {
String name, label, type;
Set<String> usedVars() { return emptySet(); }

class Lit extends Exp {
int n;
Set<String> usedVars() { return emptySet(); }

class Var extends Exp {
String x;
Set<String> usedVars() { return singleton(x); }

class GEgq extends Exp {
Exp lhs, rhs;
Set<String> usedVars() {
Set<String> vars = new HashSet<>(lhs.usedVars());
vars.addAll(rhs.usedVars());
return vars;

Figure 3.2: Implementing the “used variables” operation using traditional ASTs.

35

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

class UsedVars implements QLAlg<Set<String>, Set<String>, Set<String>> {
Set<String> Form(String n, List<Set<String>> b) {
Set<String> vars = new HashSet<>();
b.forEach(s -> vars.addAll(s));
return vars;

Set<String> If(Set<String> c, Set<String> t) {
Set<String> vars = new HashSet<>(c);
vars.addAll(t);
return vars;

Set<String> Question(String n,String 1,String t) {
return Collections.emptySet();

Set<String> Lit(int x) {
return Collections.emptySet();

Set<String> Var(String x) {
return Collections.singleton(x);

Set<String> GEq(Set<String> 1, Set<String> r) {
Set<String> vars = new HashSet<>(1);
vars.addAll(r);
return vars;

Figure 3.3: Implementing the “used variables” operation using Object Algebras.

(Question) which have a name, label and type. Expressions are standard, but limited to literals (Lit),
variables (Var) and greater-than-or-equal (GEq).

BOILERPLATE IN QUERIES Queries are one typical pattern of traversals. Figure 3.2 already shows a
query over MiniQL structures, namely the collection of used variables. The operation is defined using
the method usedVars, declared in the abstract superclasses Stmt and Exp (omitted for brevity), and
implemented in the concrete statement and expression classes. As can be seen, the only interesting bit
of code is the usedVars method in class Var. All other implementations merely deal with aggregating
results of their child nodes, or returning a default empty set.

36

3.1 An Overview of Shy

@Algebra
public interface QLAlg<E, S, F> {
F Form(String name, List<S> body);
If(E cond, S then);
Question(String name,String label,String type);
Lit(int n);
Var(String x);
GEq(E lhs, E rhs);

m mm »n »n

Figure 3.4: Object Algebra interface of the MiniQL abstract syntax.

BOILERPLATE IN TRANSFORMATIONS The boilerplate code exhibited in the usedVars query of-
ten also applies to transformations. Consider for example a rename transformation which takes a
Form and returns another form where the occurrences of the specified variable are renamed. Again,
the only interesting cases would be in the Var and Question classes, where the actual renaming is
applied. All other classes, however, require boilerplate to recreate the structure. The full code in Ap-
pendix A.1 contains a simple example of such a rename operation as well.

In addition to the significant amount of boilerplate code, there is another drawback to the tra-
ditional OO solution, as discussed in Section 2.2.1, that it does not support extensibility along the
dimension of operations. Each new operation requires pervasive changes across the AST classes.

3.1.2 Modeling MiniQL with Object Algebras

Figure 3.3 shows the used variables operation implemented using Object Algebras. The operation is
a class implementing the Object Algebra interface (QLAlg) shown in Figure 3.4.

The UsedVars class provides an implementation for each of the methods in the Object Algebra
interface, which together define the full used variables operation. Since the result of collecting those
variables is Set<String>, all the type parameters are set to that type. Most of the method imple-
mentations simply traverse the child nodes and accumulate the variable names. That is the case, for
example, for Form. Again, the only method implementation that does something different is Var,
which returns the x argument.

Unlike the standard OOP implementation, Object Algebras support adding operations without
changing existing code. For instance, the renaming operation mentioned above could be realized as
follows:

class Rename<E, S, F> implements QLAlg<E, S, F> {
QLAlg<E, S, F> alg;
String from, to;

F Form(String n, List<S> b) {
return alg.Form(n, b);

37

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

class UsedVars implements QLAlgQuery<Set<String>> {
public Monoid<Set<String>> m() {
return new SetMonoid<String>();
}
public Set<String> Var(String name) {
return Collections.singleton(name);

}
}
Figure 3.5: MiniQL used variables, implemented with Shy.
S Question(String n, String 1, String t) {
n = n.equals(from) ? to : n;
return alg.Question(n, 1, t);
}
E Var(String x) {
x = x.equals(from) ? to : x;
return alg.Var(x);
}
}

Each constructor reconstructs a new node using an auxiliary MiniQL algebra alg. Almost all the
method implementations reconstruct the structure with no changes using the methods of alg. For
instance, the Form method just recreates the form in the algebra alg. The other boilerplate cases are
omitted for brevity; the full code can be found in Appendix A.2. The two exceptions are the methods
Question and Var, where the identifiers with the given name from are renamed to to.

Although the Object Algebra encoding of MiniQL solves the problem of extensibility, the traver-
sal code still contains boilerplate code. In both UsedVars and Rename, the only interesting code is in
a small number of cases. Ideally, we would like to write only the code for the interesting cases, and
somehow “inherit” the tedious traversal code.

3.1.3 Shy: An Object Algebra Framework for Traversals

To deal with the boilerplate problem we created Shy: a Java Object Algebras framework, which pro-
vides a number of generic traversals at the cost of a single annotation. The key idea in Shy is to au-
tomatically create highly generic Object Algebras, which encapsulate common types of traversals. In
particular Shy supports generic gueries and transformations. The two types of traversals are, for in-
stance, sufficient to capture the used variables and renaming operations.

AuTOMATIC GENERATION OF GENERIC TRAVERSALs With Shy, programmers just need to add
the@Algebraannotation to the definition of QLA1g to get the code for generic queries and transforma-
tions. An example of that annotation is already shown in Figure 3.4. Triggered by the annotation, Shy
generates base traversal interfaces with Java 8 default methods which can then be overridden to im-
plement specific behavior. For instance, for the MiniQL algebra, Shy generates interfaces QLAlgQuery

38

3.1 An Overview of Shy

class Rename<E, S, F> extends QLAlgTrans<E, S, F> {
String from, to;
Rename (QLAlg<E,S,F> alg, String from, String to) {
super(alg);
this.from = from;
this.to = to;
}
public S Question(String n, String 1, String t) {
n = n.equals(from) ? to : n;
return qLAlg().Question(n, 1, t);
}
public E Var(String x) {
x = x.equals(from) ? to : x;
return gqLAlg().Var(x);

Figure 3.6: MiniQL renaming, implemented with Shy.

and QLAlgTrans which can be used to implement UsedVars and Rename in only a fraction of the
codel.

The Shy-based implementation of both operations is shown in Figure 3.5 and 3.6. In contrast to
Figure 3.3, the code in Figure 3.5 is much shorter. By implementing the QLAlgQuery and QLAlgTrans
interface, only the methods Question and Var need to be overridden: all the other methods perform
basicaccumulation for queries and basic reconstruction in the case of transformations. For queries the
only extra thing a programmer has to do is to provide an instance of a monoid, which is used to specify
how to accumulate the results during the traversal. Similarly, for transformations, the programmer
needs to pass an algebra for providing the constructors for creating the result of a transformation.

CrieNT CoDE To use the queries and operations on a questionnaire like the one in Figure 3.1, we
need a function to create a structure using the generic MiniQL interface:

<E, S, F> F makeQL(QLAlg<E, S, F> alg) {
return alg.Form("DriverLicense", Arrays.asList(

alg.Question("name", "Name?", "string"),

alg.Question("age", "Age?", "integer"),

alg.If(alg.GEg(alg.Var("age"), alg.Lit(18)),
alg.Question("license", "License?", "boolean"))));

}

Since both queries and transformations are implementations of the MiniQL interface, they can
be passed to the makeQL function defined above:

println(makeQL(new UsedVars()));

"The generated code is available in Appendix A.3 and A 4.

39

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

println(makeQL (new Rename<>(new UsedVars(), "age", "AGE")));

This code prints out [age] and [AGE], which are the set of used variables before and after re-
naming, respectively. Note how the Rename transformation transforms the questionnaire into the
UsedVars algebra.

The remainder of this chapter provides the details and implementation techniques used in Shy.
Besides basic queries and transformations, Shy also supports two generalizations of these types of
traversals called generalized queries and contextual transformations.

3.2 Queries

This section shows the ideas behind generic queries and how they are implemented in Shy. A query
is an operation that traverses a structure and computes some aggregate value. The inspiration for
queries comes from similar types of traversals used in functional programming libraries, such as “Scrap
your Boilerplate” [Lammel and Jones, 2003].

AN ExPRESSION LANGUAGE ~ The following code shows a simple expression language represented
as the Object Algebra interface ExpAlg.

@Algebra
interface ExpAlg<Exp> {

Exp Var(String s);

Exp Lit(int i);

Exp Add(Exp el, Exp e2);
}

We will use this minimal Object Algebra interface throughout the rest of the chapter to illustrate
the various different types of traversals supported by Shy. Three different kinds of nodes exist: a
numeric literal, a variable or the addition of two expressions. Queries are illustrated by implementing
an operation to compute the free variables in an expression.

3.21 Boilerplate Queries

Figure 3.7 shows a standard approach for computing free variables using Object Algebrasl. A set of
strings is used to collect the names of the free variables. The Var method returns a singleton set of s,
whereas the Lit method returns an empty set. The more interesting case is in the Add method, where
the two sets are joined into one.

The typical pattern of a query is to collect some information from some of the nodes of the struc-
ture, and to aggregate the information that comes from multiple child nodes. For example, in the case
of free variables, the strings from the Var nodes are collected, and in the Add nodes the information
from multiple children is merged into a single set.

An important observation about queries is that the code to aggregate information tends to be the
same: if we had a subtraction node, the code would be essentially identical to Add. Moreover, there are

"Here and in the following we will use interfaces with default methods (as introduced in Java 8) to combine queries
and transformations using multiple inheritance.

40

3.2 Queries

interface FreeVars extends ExpAlg<Set<String>> {
default Set<String> Var(String s) {
return Collections.singleton(s);
}
default Set<String> Lit(int i) {
return Collections.emptySet();
}
default Set<String> Add(Set<String> el, Set<String> e2) {
return Stream.concat(el.stream(),e2.stream()).collect(Collectors.toSet());

Figure 3.7: Free variables as an Object Algebra.

only very few types of nodes that contain relevant information for the query. For nodes that contain
information that is not relevant to the query, we simply return a neutral value (such as the empty set
in Lit). Nonetheless, a programmer has to write this boring boilerplate code handling the traversals.
While for the small structure presented here this may not look too daunting, in a large structure with
dozens or even hundreds of constructors such code becomes a significant burden.

3.2.2 Generic Queries

A better approach would be to abstract the generic traversal and accumulation code for queries. This
way, when programmers need to implement query operations, they can simply reuse the generic
traversal code and focus only on dealing with the nodes that do something interesting.

The code that captures the aggregation and collection of information can be captured by a well-
known algebraic structure called a monoid. Monoids are commonly used in functional programming
for such purposes, but they are perhaps less commonly known in object-oriented programming. The
interface of a monoid is defined as follows:

interface Monoid<R> {
R join(R x, R y);
R empty();

}

Intuitively, the join () method is used to combine the information from substructures, and empty ()
is an indicator of “no information”.

GenEeric QUERIES Using the monoid operations alone, it is possible to write a generic query. Fig-
ure 3.8 shows how this is achieved. In nodes that contain child nodes, such as Add, the information is
aggregated using join. In nodes that contain other information, such as Var and Lit, the query re-
turns empty. This allows concrete queries to be implemented by overriding methods from multiple,
different algebras.

41

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

interface ExpAlgQuery<Exp> extends ExpAlg<Exp> {
Monoid<Exp> m();

default Exp Var(String s) { return m().empty(); }
default Exp Lit(int i) { return m().empty(); }
default Exp Add(Exp el, Exp e2) { return m().join(el, e2); }

Figure 3.8: Generic queries using a monoid.

3.2.3 Free Variables with Generic Queries

The ExpAlgQuery interface provides an alternative way to define the free variables operation. Instead
of directly defining the free variables operation, ExpAlgQuery can be inherited, provided that the
method m() is implemented. In the case of free variables, the monoid returned by m() is an imple-
mentation of the Monoid interface for sets:

class SetMonoid<X> implements Monoid<Set<X>> {
public Set<X> empty() {
return Collections.emptySet();

}

public Set<X> join(Set<X> x, Set<X> y) {
Set<X> tmp = new HashSet<>(x);
tmp.addAll(y);
return tmp;

}

The method empty () corresponds to the empty set, and join() is implemented as union. Using this
monoid the free variables operation is defined as follows:

interface FreeVars extends ExpAlgQuery<Set<String>> {
default Monoid<Set<String>> m() {
return new SetMonoid<String>();

}
default Set<String> Var(String s) {
return Collections.singleton(s);

}

There are two important differences to the implementation in Figure 3.7. The first difference is that
the monoid to be used needs to be specified. However, the code for the monoid is still quite short
(only requires two method implementations) and, more importantly, it is highly reusable. Indeed
the SetMonoid is reused on various examples of queries. Because monoid instances are so general
purpose, the Shy library already contains many common monoid implementations. Users do not
usually have to define these instances themselves. The second difference is that now only the case for
variables needs to be defined: the other cases are inherited from ExpAlgQuery.

42

3.3 Generalized Queries

GeNERIC TEMPLATE FOR QUERIES ~ The traversal code in ExpAlgQuery is entirely mechanical and
can be automatically generated. This is precisely what Shy does. Annotating algebra interfaces, such
as ExpAlg, with the annotation @Algebra, triggers automatic generation of generic query interfaces,
such as ExpAlgQuery. The general template in Shy for an algebra Alg<X;, ..., X,>, with construc-
tors f;, ..., f,,isshown next:

interface Algp<R> extends Alg<R,...,R> {

Monoid<R> m();

default R f;() {
return m().empty();

}
default R fJ(R pPi, ---» Rpr) {

return m().join(py, m().join(p2, ..., m().join(px—1, Pk)---)));
}

}

Note that interface Algg extends Alg so that all type parameters are unified as type R. All argu-
ments to a constructor f; are combined with join from the monoid m(). Arguments with primitive
types, like int, boolean or String, are ignored by default.

3.3 Generalized Queries

The previous section introduced simple queries where each constructor contributes to a single monoid.
Recursive data types, however, often have multiple syntactic categories, for instance expressions and
statements. In such multi-sorted Object Algebras each sort is represented by a different type parame-
ter in the algebra interface. In this section we present generalized queries, where each such type param-
eter can be instantiated to different monoids. It turns out that, for some operations, this generalized
version of queries is needed.

ExAaMPLE: DATA DEPENDENCIES A simple example of a generalized query is the extraction of the
data dependencies between assignment statements and variables in simple imperative programs. To
express this query, the simple ExpAlg is first extended with statements using the StatAlg interface
defined as follows:

@Algebra

public interface StatAlg<Exp, Stat> {
Stat Seq(Stat sl1, Stat s2);
Stat Assign(String x, Exp e);

}

The StatAlg interface defines statement constructors for sequential composition (Seq) and as-
signment (Assign). The interface does not extend the ExpAlg interface; we rely on multiple inheri-
tance of Java interfaces to combine implementations of these interfaces later (see Figure 3.10).

43

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

interface G_StatAlgQuery<Exp, Stat> extends StatAlg<Exp, Stat> {
Monoid<Exp> mExp();
Monoid<Stat> mStat();

default Stat Assign(String x, Exp e) {
return mStat().empty();

}

default Stat Seq(Stat sl1l, Stat s2) {
return mStat().join(sl, s2);

Figure 3.9: Default implementation of generalized queries over many-sorted statement algebra.

GENERALIZED QUERIES ~ The generated defaultimplementation of queries over statements is shown
in Figure 3.9, while the generated code for expressions (G_ExpAlgQuery) is presented in Appendix A.S.
Note that the interface declares two monoids, one for each sort. Since the Assign and Seq construc-
tors create statements, they return elements of the mStat () monoid. Furthermore, because it is im-
possible to automatically join a monoid over one type with a monoid over another type, the e argu-
ment in Assign is ignored. As a result, a concrete implementation normally has to override this case
to deal with the transition from expressions to statements.

Data dependencies are created by assignment statements: for a statement Assign(String x,
Exp e) method, the variable x will depend on all variables appearing in e. The result of extracting
such dependencies can be represented as binary relation (a set of pairs). In expressions we need to
collect the free variables, which can be stored in a set of strings. Thus in this traversal two monoids
are involved: a monoid for a set of pairs of strings; and a monoid for a set of strings.

To implement the extraction of data dependencies only two cases have to be implemented: the
variable (Var) case from the ExpAlg signature; and the assignment (Assign) case from the StatAlg
signature. The implementation is shown in Figure 3.10. Note that the Assign case takes the input Set
<String> e and uses it to create the dependency relation. The propagation of dependencies across
sequential composition is automatic, as is the propagation of the set of variables through the different
types of expressions.

CLiENT CODE A structure using the generic interfaces ExpAlg and StatAlg is created as follows:

<E, S, A extends ExpAlg<E> & StatAlg<E, S>> S makeStat(A a) {
return a.Seq(a.Assign("x", a.Add(a.Var("x"), a.Lit(3))),
a.Assign("y", a.Add(a.Var("x"), a.Var("z"))));
}

Note that here the argument of makeStat must implement both ExpAlg and StatAlg. To achieve
this in Java, makeStat has a type parameter A which is required to implement both interfaces. Using
makeStat we can pass an instance of DepGraph to compute the dependencies of the statement.

println(makeStat(new DepGraph(){}));

44

3.4 Transformations

interface DepGraph extends
G_ExpAlgQuery<Set<String>>,
G_StatAlgQuery<Set<String>, Set<Pair<String, String>>> {
default Monoid<Set<String>> mExp(){
return new SetMonoid<>();
}
default Monoid<Set<Pair<String, String>>> mStat(){
return new SetMonoid<>();
}
default Set<String> Var(String x){
return Collections.singleton(x);
}
default Set<Pair<String, String>> Assign(String x, Set<String> e){
Set<Pair<String, String>> deps = new HashSet<>();
e.forEach(y -> deps.add(new Pair<>(x, y)));
return deps;

Figure 3.10: Dependency graph with a generalized query.

The resultis [<x, x>, <y, x>, <y, z>],asexpected.

3.4 ‘Transformations

Queries are a way to extract information from a data structure. Transformations, on the other hand,
allow data structures to be transformed into new structures. Just as with queries, we can distinguish
code that deals with traversing the data structure from code that actually transforms the structure. In
this section we show how to avoid most traversal boilerplate code in the context of transformations

using Shy.

3.4.1 Transformations, Object Algebra Style

A simple example of a transformation algebra, using the Object Algebra interface ExpAlg, is substi-
tuting expressions for variables. A manual implementation based on Object Algebras is shown in
Figure 3.11.

The expression to be substituted, and the variable to substitute for are provided by the methods
e() and x() respectively. The method expAlg() is an instance of ExpAlg on which the transforma-
tion is based. Since Object Algebras are factories, the transformation is executed immediately during
construction of tree structures. For instance, calling Var("x") on a SubstVar object with x () return-
ing "x" immediately returns the result of e () (the original variable expression is never created). In the
other cases, the original structure is recreated in the algebra expAlg().

The following code shows how the transformation could be used:

45

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

interface SubstVar<Exp> extends ExpAlg<Exp> {
ExpAlg<Exp> expAlg();
String x(); Exp e();
default Exp Var(String s) {
return s.equals(x())? e(): expAlg().Var(s);
}
default Exp Lit(int i) { return expAlg().Lit(i); }
default Exp Add(Exp el, Exp e2) {
return expAlg().Add(el, e2);

Figure 3.11: A normal algebra-based implementation of variable substitution.

FreeVars fv = new FreeVars() {};
SubstVar<Set<String>> subst = new SubstVar<Set<String>>() {
public ExpAlg<Set<String>> expAlg() {
return fv;

}
public String x() { return "x"; }
public Set<String> e() {

return fv.Add(fv.Lit(1),fv.Var("y"));

};

Set<String> res = subst.Var("x");

The SubstVar interface is instantiated with expAlg() returning an instance of the FreeVars
algebra defined earlier (e.g., Figure 3.7). The x () method returns the variable to be substituted ("x").
Finally, the e() returns a new expression 1 + y over the fv algebra. When expressions are created
on the subst algebra, the result is the set of free variables afzer the substitution has taken place. Asa
result, res will contain only "y".

Note that this allows pipelining of transformations: there is no reason expAlg() cannot return
yet another transformation algebra, for instance, a another instance of SubstVar realizing a different
substitution. We elaborate on composing transformations this way in Section 3.9.2.

Unfortunately, we again observe the problem of traversal-only boilerplate code: the Lit and Add
methods of Figure 3.11 simply delegate to the base algebra expAlg (), without doing any real work.

3.4.2 Generic Traversal Code

The boilerplate code in transformations can be avoided by creating a super-interface containing de-
fault methods performing the traversal (shown in Figure 3.12). A concrete transformation can then
selectively override the cases of interest. Variable substitution can now be implemented as follows:

interface SubstVar<Exp> extends ExpAlgTransform<Exp> {
String x(); Exp e();

46

3.5 Contextual Transformations

interface ExpAlgTransform<Exp> extends ExpAlg<Exp> {
ExpAlg<Exp> expAlg();
default Exp Var(String s) {
return expAlg().Var(s);
}
default Exp Lit(int i) { return expAlg().Lit(i); }
default Exp Add(Exp el, Exp e2) {
return expAlg().Add(el, e2);

Figure 3.12: Traversal-only base interface for implementing transformations of expressions.

interface Algr<Xy,...,X,> extends Alg<Xy,...,X,> {

Alg<Xy, ..., Xp> alg();

default X; f; (X! p1, ..., X£ pp) {
return alg().f;(p1, ..., Px);

}

Figure 3.13: Generic template for generating boilerplate of transformations.

default Exp Var(String s) {
return s.equals(x())? e(): expAlg().Var(s);

}

In this case, only the method Var () is overridden.

GENERIC TEMPLATE FOR TRANSFORMATIONS Just like in the case of queries, the traversal code
in ExpAlgTransform is entirely mechanical and can be automatically generated by Shy. Figure 3.13
shows the general template for the generated code. Here Algr extends Alg with the same type pa-
rameters and the base algebra alg() is declared inside.

3.5 Contextual Transformations

The previous section introduced a simple template for defining transformations. Transformations
in this style may only depend on global context information (e.g., x(), e()). Many transformations,
however, require context information that might change during the traversal itself. In this section
we instantiate algebras over function types to obtain transformations which pass information down
during traversal. Instead of having the algebra methods delegate directly to base algebra (e.g., expAlg
()), this now happens indirectly through closures that propagate the context information.

47

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

interface Algcr<C,Xq,...,X,> extends Alg<Function<C,X;>,...,Function<C,X,>> {
Alg<Xi, ..., Xp,> alg();

default Function<C, X;> fj(Function<C,X11)> P1, - Function<C,X’;> pr) {
return (c) -> alg().f;(pi.apply(c), ..., px.apply(c));
}

Figure 3.14: Generic template for generating boilerplate of contextual transformations.

GENERIC TEMPLATE FOR CONTEXTUAL TRANSFORMATIONS Figure 3.14 shows the general tem-
plate for an Alg<X;, ..., X,>, with constructors f1, ..., f,,. Note that interface AlgcT extends
Alg and instantiates the type parameters to Functions from the context argument C to the corre-
sponding sort X;. Each constructor method now creates an anonymous function which, when in-
voked, calls the functions received as parameters (p; to pi) and only then creates a structure over the
alg() algebra.

ExamPLE: CONVERSION TO DE BRUIJN INDICES An example of a contextual transformation is
converting variables to De Bruijn indices in the lambda calculus [De Bruijn, 1972]. Using De Bruijn
indices, a variable occurrence is identified by a natural number equal to the number of lambda terms
between the variable occurrence and its binding lambda term. Lambda terms expressed using De
Bruijn indices are useful because they are invariant with respect to alpha conversion.

The conversion to De Bruijn indices uses an object algebra interface LamAlg with constructors
for lambda abstraction (Lam) and application (Apply). See below:

@Algebra

public interface LamAlg<Exp> {
Exp Lam(String x, Exp e);
Exp Apply(Exp el, Exp e2);

}

Shy automatically generates the traversal code for transformation for both LamAlg and ExpAlg:
G_LamAlgTransformand G_ExpAlgTransform, respectively. The generated transformation code can
be found in Figure 3.15, where the auxiliary function cons for inserting an element to the head of a
list is defined as follows:

public class Util {
public static <X> List<X> cons(X x, List<X> 1) {
1 = new ArraylList<>(1);
1.add(0, x);
return 1;

48

3.5 Contextual Transformations

public interface G_ExpAlgTransform<A, BO> extends ExpAlg<Function<A, BO>> {
ExpAlg<B0O> expAlg();
default List substListExpAlg(List<Function<A, B>> list, A acc) {
List res = new ArraylList();
for (Function<A, B> i : list)
res.add(i.apply(acc));
return res;

}
default Function<A, BO> Add(Function<A, BO> p@, Function<A, B0O> pl) {

return acc -> expAlg().Add(p0O.apply(acc), pl.apply(acc));
}
default Function<A, BO> Lit(int p0) {
return acc -> expAlg().Lit(p0);
}
default Function<A, BO> Var(java.lang.String p0) {
return acc -> expAlg().Var(p0);

public interface G_LamAlgTransform<A, BO> extends LamAlg<Function<A, BO>> {
LamAlg<B0O> lamAlg();
default List substlListLamAlg(List<Function<A, B>> list, A acc) {
List res = new ArraylList();
for (Function<A, B> i : list)
res.add(i.apply(acc));
return res;

}
default Function<A, BO> Apply(Function<A, BO> p0@, Function<A, B0> pl) {

return acc -> lamAlg().Apply(p0.apply(acc), pl.apply(acc));

}
default Function<A, BO> Lam(java.lang.String p®, Function<A, B0O> pl) {

return acc -> lamAlg().Lam(pO, pl.apply(acc));

Figure 3.15: Generated default contextual transformations of ExpAlg and LamAlg.

Using these interfaces, the conversion to De Bruijn indices is realized as shown in Figure 3.16.
Note again that only the relevant cases are overridden: Var (from ExpAlg) and Lam (from LamAlg).

CLiENT CODE A structure using the generic interfaces ExpAlg and LamAlg is created as follows:

<E, A extends ExpAlg<E> & LamAlg<E>> E makeLamExp(A alg) {
return alg.Lam("x", alg.Lam("y", alg.Add(alg.Var("x"), alg.Var("y"))));

49

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

interface DeBruijn<E> extends G_ExpAlgTransform<List<String>, E>,
G_LamAlgTransform<List<String>, E> {
default Function<List<String>, E> Var(String p0) {
return xs -> expAlg().Var("" + (xs.indexOf(p@) + 1));

default Function<List<String>,E> Lam(String x, Function<List<String>, E> e) {
return xs -> lamAlg().Lam("", e.apply(cons(x, Xs)));

Figure 3.16: Converting variables to De Bruijn indices.

class PrintExpLam implements ExpAlg<String>, LamAlg<String> {
public String Lam(String x, String e) {

return "\\" + x + "." + e;
}
public String Apply(String el, String e2) {
return n (n + el + n n + e2 + n) n ;
}
public String Var(String s) { return s; }
public String Lit(int i) { return i + ""; }

public String Add(String el, String e2) {
return n (" + el + n + n + e2 + n) n ;

Figure 3.17: Pretty-printing lambda expressions.

It simply generates “Az.\y. + y” as a generic lambda expression. By instantiating the DeBruijn
interface with a PrintExpLam algebra (shown in Figure 3.17) passed in as the base algebra, we can
write the client code as follows:

DeBruijn<String> deBruijn = new DeBruijn<String>() {
PrintExpLam alg = new PrintExpLam();
public ExpAlg<String> expAlg() { return alg; }
public LamAlg<String> lamAlg() { return alg; }
b
println(makeLamExp(deBruijn).apply(Collections.emptyList()));

The printed outputis “\.\. (2 + 1)”, which corresponds to original lambda term, but without
variables.

50

3.6 Desugaring Transformations

3.6 Desugaring Transformations

In Section 3.4, we presented transformations, as well as the generic traversals generated by Shy. Al-
though different constructors can be used in transforming a data structure, the generic transforma-
tions generated by Shy are type-preserving: they transform structures over one type (e.g., expressions)
to different structures in the same type.

Desugaring transformations eliminate syntactic constructs by transforming them to a combina-
tion of constructs in a smaller base language. In this section we describe how Shy can be applied to
implement compositional desugarings in a type-safe and extensible manner. In particular, the type
system will enforce that the resulting language is indeed “smaller”, and that consequently the desug-
ared construct is guaranteed to be fully eliminated.

As an example, consider extending ExpAlg with a doubling construct which multiplies its ar-
gument expression by two. The Object Algebra interface that implements doubling is defined as
follows:

@Algebra

public interface DoubleAlg<E> {
E Double(E e);

}

An expression Double (e) can be desugared to Add (e, e). The following code realizes this trans-
formation by extending the ExpAlgTransform interface, generated by Shy:

interface Desugar<kE> extends DoubleAlg<E>, ExpAlgTransform<E> {
default E Double(E e) {
return expAlg().Add(e, e);

}

The interface Desugar exports the language DoubleAlg and ExpAlg, butexpAlg () (whichisused
as a factory for output expressions) has type ExpAlg. Since ExpAlg does not contain Double, the
Double constructor cannot be used to construct the output. As a result, the algebra Desugar trans-
forms into is guaranteed to be without any occurrences of Double.

CLiENT CoDE Expressions are created over the combined languages DoubleAlg and ExpAlg:

<E, Alg extends DoubleAlg<E> & ExpAlg<E>> E makeExp(Alg a) {
return a.Add(a.Lit(5), a.Double(a.Var("a")));
}

To illustrate the use of the Desugar algebra, here is the code to print an expression in desugared form:

ExpAlg<String> print = new PrintExp();
Desugar<String> desugar = new Desugar<String>() {
@Override
public ExpAlg<String> expAlg() {
return print;

51

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

System.out.println(makeExp(desugar));

The kind of desugarings presented in this section are limited to bottom-up, compositional desug-
aring, corresponding to factory methods directly invoking methods in a different algebra. Asa result,
these desugarings are executed in a bottom-up fashion: the arguments are always desugared before an
expression itselfis transformed. Because the transformations are generic with respect to the carrier ob-
ject of the argument (as indicated by the type parameter E) it is impossible to look at the arguments.
This prevents desugarings to perform complex, deep pattern matching on the argument structure.
An added benefit, however, is that the desugaring is automatically deforested: intermediate expres-
sion trees are never created.

3.7 Extensible Queries and Transformations

Shy queries and transformations inherit modular extensibility from the Object Algebra design pat-
tern. New transformations or queries are simply added by extending the interfaces generated by Shy.
More interestingly, however, it is also possible to extend the data type with new constructors. Here
we briefly describe how queries and transformations can be extended in this case.

3.7.1 Linear Extensibility

Consider again the extension of the expression language with lambda and application constructs (cf.
Section 3.5). This requires changing the free variables query, since variables bound by Lam expressions
need to be subtracted from the set of free variables of the body. Instead of reimplementing the query
from scratch, it is possible to modularly extend the existing FreeVars query:

interface FreeVarsWithLambda extends FreeVars, LamAlgQuery<Set<String>> {
default Set<String> Lam(String x,Set<String> f) {
return f.stream().filter(y -> l!ly.equals(x)).collect(toSet());

}

Theinterface FreeVarswWithLambda extends both the original FreeVars query and the base query
implementation that was generated for the LamAlg interface defining the language extension. Note
again, that only the relevant method (Lam) needs to be overridden.

For transformations the pattern is similar. To illustrate extension of transformation, consider the
simple transformation that makes all variable occurrences unique, to distinguish multiple occurrences
of the same name:

interface Unique<E> extends ExpAlgTransform<E> {
int nextInt();
default E Var(String s) {
return expAlg().Var(s + nextInt());

}

The Unique transformation uses a helper method nextInt which returns consecutive integers
on each call. The basic transformation simply renames Var expressions. If, again, the expression

52

3.7 Extensible Queries and Transformations

ExpAlg<E>

m() /' m()

LamAlIg<E>
A\

|
|
\ |
ExpAlg<E> ,’/ \ LamAIg<E> i expAlg()
\
A / \ !
/ Y - { EprIgTransform<E> { LamAIgTransform<E>
ExpAlgQuery<E> LamAIgQuery<E>
A\
Unique<E>
FreeVars
FreeVarsWithLambda ’ UnlquerthLambda<E>

Figure 3.18: Extension of the FreeVars query (left) and the Unique transformation (right).

language is extended with lambda constructs, the transformation needs to be updated as well to make
the variable in the binding position of lambda expression unique. The following code shows how this
can be done in a modular fashion:

interface UniqueWithLambda<E> extends Unique<E>, LamAlgTransform<E> {
default E Lam(String x, E e) {
return lamAlg().Lam(x + nextInt(), e);

}

Note that the transformation uses the lamAlg () algebra (from LamAlgTransform), to create lambda
expressions.

Figure 3.18 gives a high level overview of query and transformation extension using the examples
for Freevars and Unique, respectively. In the case of queries, the abstract m() method will be shared
by both the FreeVars and FreeVarswithLambda interfaces. On the other hand, transformations are
based on multiple base algebras, for sets of data type constructors (e.g., expAlg() and lamAlg()).

Note finally that, in the current implementation of Shy transformations, it is assumed that the
language signatures ExpAlg and LamAlg are completely independent. This is however, notan essential
requirement. An alternative design could have LamAlg be a proper extension of ExpAlg (i.e. LamAlg
<E> extends ExpAlg<E>). In that case, the generated LamAlgTransform would need to refine the
return type of the expAlg () method.

3.7.2 Independent Extensibility

Figure 3.18 shows extensions of queries and transformations where the extensions directly inherit
from the concrete implementation of the operations (i.e. FreeVars and Unique, respectively). It is
also possible to make the extensions more independent using multiple inheritance of interfaces with
default methods.

For instance, the Unique transformation for the LamAlg language could also have been imple-
mented independently of Unique:

interface UniquelLam<E> extends LamAlgTransform<E> {

53

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

int nextInt();
default E Lam(String x, E e) {
return lamAlg().Lam(x + nextInt(), e);
}
}

Note that this interface declares the required dependency on nextInt(). Both transformations
are combined independently through multiple inheritance of interfaces. Both Unique and UniqueLam
declare the method nextInt (), butsince the declarations are abstract, they are identified. Implemen-
tations of the combined interface need to provide concrete implementations for nextInt (), expAlg
() and lamAlg():

class Combine<E> implements Unique<E>, UniquelLam<E> {

public int nextInt() { ... }

public ExpAlg<E> expAlg() { ... }

public LamAlg<E> lamAlg() { ... }
}

For queries the pattern is the same, except that only a concrete implementation of m() has to be
provided for the combined interface.

3.8 ShyImplementation

Shy is implemented using the standard Java annotations framework (javax.annotation) packaged
in the Java Development Kit. All of the generic traversals are automatically generated by Shy for Ob-
ject Algebrainterfaces annotated with @1gebra. When an Object Algebra interface is annotated with
@Algebra, Shy retrieves the required information from the interface (such as the names and types of
factory methods) using reflection. Shy then generates the code based on the templates shown earlier.
Furthermore, the Shy framework includes the Monoid interface as well as several useful implementa-
tions of it.

A major advantage of using standard Java annotations is that the code generation of the generic
traversals can be done transparently: users do not need to use or install a tool to generate that code.
As a result Shy is as simple to use as a conventional library. With little configuration effort, the code
generation is automatically enabled in IDEs like Eclipse or Intelli]. Finally, the framework is very small
(around 885 source lines of code), so it can be easily be customized, if needed.

3.9 Case Study

To illustrate the utility of Shy we have implemented a number of queries and transformations in
the context of QL, a DSL for questionnaires which has been implemented using Object Algebras
before [Gouseti et al., 2014]. QL is similar to MiniQL, except that it additionally features an if-then-
else construct, computed questions (which will appear read only), and a richer expression language.
For more information on the features of QL we refer to [Erdweg et al., 2013].

54

3.9 Case Study

Table 3.1: Number of overridden cases per query and transformation in the context of the QL implemen-
tation.

Operation Template Exp(18) Stmt(5) Form (1) %
Collect variables query 1 4%
Type environment query 2 8%
Data dependencies generalized query 3 1 17%
Control dependencies generalized query 4 1 21%
Rename variable transformation 1 2 13%
Inline conditions contextual transformation 4 17%
Desugar “repeat” contextual transformation 1 3 16%
Desugar “unless” desugaring transformation 1 4%

3.9.1 QL Queries and Transformations

The queries extract derived information from a QL program, such as the set of used variables, the data
and control dependencies between questions, and the global type environment. The transformations
include two transformations of language extensions to the base language. The first realizes a simple
to “if(not(c))...”. The second desugaring statically unfolds a constant

»

desugaring of “unless(c)...
bound loop construct (“repeat (i)...”) and renames variables occurring below it accordingly. Finally,
we have implemented a simple rename variable operation, and a flattening normalizer which inlines
the conditions of nested if-then constructs.

Table 3.1 shows the number of cases that had to be overridden to implement each particular op-
eration. The top row shows the number of constructs for each syntactic category in QL (Exp, Stmt,
and Form). As can be seen, none of the operations required implementing all cases. The last column
shows the number of overridden cases as a percentage. For this set of queries and transformations,
almost no expression cases needed to be overridden, except the “Var” case in collect variables, rename
variable and desugar “repeat”l. The cases required for desugaring include the case of the language
extension (e.g. Unless and Repeat, respectively). These cases are not counted in the total in the first
row but are used to compute the percentage.

3.9.2 Chaining Transformations

A typical compiler consists of many transformations chained together in a pipeline. Shy transforma-
tions support this pattern by passing transformation algebras as the base algebra to the implementa-
tion of another transformation. For instance, the desugar unless transformation desugars the “unless”
statement to “if” statements in another algebra. The latter can represent yet another transformation.

In the context of QL, “unless” desugaring, condition inlining and variable renaming can be chained
together as follows:

alg = new Desugar<>(
new Inline<>(
new Rename<>(Collections.singletonMap("x", "y"), new Format())));

"Note, however, that the dependency extraction queries reuse the collect variables query on expressions.

55

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

The chained transformation alg first desugars “unless”, then inlines conditions, and finally re-
names xs to ys. The Rename transformation gets as base algebra an instance of Format, a pretty printer

for QL.

The algebra alg can now be used to create questionnaires:

Function<IFormatWithPrecedence, IFormat> pp = alg.form("myForm",
Arrays.asList(alg.unless(alg.var("x"),
alg.question("x", "X?", new TBoolean()))));

Since inlining is a contextual transformation, the result of constructing this simple questionnaire
isa function object representing the “to be inlined” representation of the questionnaire after desugar-
ing. The IFormatWithPrecedence and IFormat types are formatting operations, respectively repre-
senting expressions and statements; these types originate from the Format algebra passed to Rename.

Calling the function with a boolean expression representing true will trigger inlining of condi-
tions and renaming. The result is then a formatting object (IFormat) which can be used to print out
the transformed questionnaire:

form myForm { if (true && 'y) y "X?" boolean }

As can be seen, the variable x has been renamed to y. The (renamed) condition y is now negated,
because of the desugaring of “unless”. Finally, the result of inlining conditions can be observed from
the conjunction in the if statement.

3.9.3 Shy Performance vs Vanilla ASTs

We compared the performance characteristics of the operations implemented using Shy with respect
to vanilla implementations based on ordinary AST classes with ordinary methods representing the
transformations and queries. In the vanilla implementation, the program was parsed into an AST
structure, and then the operation was invoked and measured. In the case of the Shy queries, con-
structing the “AST” corresponds to executing the query, so we measured that. For context-dependent
transformations, however, building the “AST” corresponds to constructing the function to execute
the transformation, hence we only measured invoking this function. The vanilla query implementa-
tions use the same monoid structures as in Shy.

The operations were executed on progressively larger QL programs (up to 140Kb). The QL pro-
grams represent questionnaires describing a binary search problem (a number guessing game) and are
automatically generated, with increasing search spaces. The benchmarks were executed on a 2.6GHz
MacBook Pro Intel Core i5 with 8GB memory. The JVM was run in 64bit server mode and was given
4Gb of heapspace to minimize the effect of garbage collection pauses. Each benchmark was run with-
out measuring first, to warm-up the JVM. The measurements presented here do notinclude warm-up
time.

The comparison of the control dependencies query is shown in Figure 3.19. The plot shows that
the performance is quite comparable. On average, the Shy implementation of the query seems a little
slower. This is probably caused by the extensive use of interfaces in the Shy framework, whereas the
AST-based implementation only uses abstract and concrete classes. For transformations the perfor-
mance difference is slightly more pronounced. Figure 3.20 shows the performance comparison of

56

3.9 Case Study

Control dependencies

0.035 T T
AST + o
Linear (AST) ------ o
L Shy © 0.0°
0.03 Linear (Shy) s eo
OO o °
ooCOo o
0.025 o < #*,
—~ 5y LT +
) ot +4+ T +~F"',
g o002 AQ: T
= /O/Ow‘V + + ey +
2 SO 0 ,t++";+
c 0.
% 0.015 /o/cﬁod:b ,+++++
x PR M
e
agl o +rt
0.01 P s
[oJproto) +
O o—db+ t
+- Qo T
- QOQQ'» +
0.005 " *+
- OGCQC" +
G+
0
0 20000 40000 60000 80000 100000 120000 140000

Input size (bytes)

Figure 3.19: Performance comparison of control dependencies query.

the inline conditions transformation. The greater difference can be explained by the fact that creat-
ing a new structure in a Shy transformation involves dynamically dispatched method calls instead of
statically bound constructor calls.

3.9.4 Shyvs Vanilla Regarding Code Size

The percentages shown in Table 3.1 illustrate the structure-shyness of queries and transformations
implemented using Shy. Table 3.2 shows the absolute number of source lines of code (SLOC, lines of
code without counting empty lines and comments). For the vanilla AST-based implementation we
only show the total SLOC count, since all operations are scattered over the respective AST classes. For
the Shy implementation, each query and operation is realized a separate class or interface, extending
the interfaces generated by Shy. In total, one can observe that the Shy-based implementation requires
less than half of the number of lines of code required in the vanilla implementation. Note also that
Shy supports a much more modular design, where both the AST data type and the set of operations
can be extended without having to modify existing code.

57

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

Inline conditions

0.0012 T T
AST + o
Linear (AST) ------
Shy o
0.001 - Linear (Shy)
[}
® &P
° o
— 0.0008 Josd
)
g ° o o CQOOD °
S 0 8 o ©
= 0.0006 s o0
£ > [o) O° [o]
7 o © Bec)
0.0004 o -
I°) o o%dx o ©
& ° + +
0.0002 pasic P BT
° 6@15}069d © + . +++#;*++ﬂﬂi-t+; o
M gy +++++t#++4“! e o
A g
0 +WM+
0 20000 40000 60000 80000 100000 120000 140000

Input size (bytes)

Figure 3.20: Performance comparison of inline conditions transformation.

Table 3.2: Source Lines of Code (SLOC) statistics: Shy implementation vs Vanilla AST implementation.

Component SLOC
Object Algebra interfaces 71
Collect variables 10
Data dependencies 30
Control dependencies 58
Type environment 15
Rename variable 27
Inline conditions 48
Desugar “unless” 10
Desugar “repeat” 35
TOoTAL SHY-BASED OPERATIONS 304
AST-BASED IMPLEMENTATION 661

3.10 Summary

This chapter showed how various types of default traversals for complex structures can be automat-
ically provided by Shy. Shy traversals are written directly in Java and are type-safe, extensible and

58

3.10 Summary

separately compilable. There has always been a tension between the correctness guarantees of static
typing, and the flexibility of untyped/dynamically-typed approaches. Shy shows that even in type
systems like Java’s, it is possible to get considerable flexibility and adaptability for the problem of
boilerplate code in traversals of complex structures, without giving up modular static typing.

59

3. SCRAP YOUR BOILERPLATE WITH OBJECT ALGEBRAS

60

Chapter 4

Type-Safe Modular Parsing

In most related work on the Expression Problem [Wadler, 1998] and its extended areas, people are
usually concerned about semantic modularity on consumer operations that traverse or process data
structures. In contrast, there is surprisingly little focus on producers that build extensible ASTs with
type-safe modularity, of which parsing is a representative. Even for the tip of the iceberg, most existing
parsing techniques merely focus on syntactic modularization of grammars before code generation.

This chapter presents a technique to achieve semantic modularization of parsing. That is, the
approach not only allows complete parsers to be built out of modular parsing components, but also
enables those parsing components to be modularly type-checked and separately compiled. Developing
techniques for modular parsing is not without challenges. In developing our techniques we encoun-
tered two different classes of challenges: algorithmic challenges; and typing/reuse challenges.

ArcorrTHMIC CHALLENGES A first challenge was to do with the parsing algorithms themselves,
since they were usually not designed with extensibility in mind. The most widely used tools for pars-
ing are parser generators [Gouseti et al., 2014; Grimm, 2006; Parr and Quong, 1995; Schwerdfeger
and Van Wyk, 2009a; Viera et al., 2012; Warth et al., 2016b], but they mostly require full information
about the grammar to generate parsing code. Moreover, actions associated with grammar produc-
tions are typically only type-checked after the parser has been generated. Both problems go against
our goals of semantic modularity.

An alternative to parser generators are parser combinators [Burge, 1975; Wadler, 1985]. At a first
look, parser combinators seem very suitable for our purpose. Each parser combinator is represented
by a piece of code directly in the programming language. Thus, in a statically typed programming lan-
guage, such code is statically type-checked. However many techniques regularly employed by parser
combinators cause difficulties in a modular setting. In particular, many parser combinator approaches
(including Parsec [Leijen and Meijer, 2001]) routinely use left-recursion elimination, priority-based
matching, and avoid backtracking as much as possible. All of these are problematic in a modular set-
ting as illustrated in Section 4.1.1.

To address such algorithmic challenges, we propose a methodology for implementing modular
parsers built on top of an existing Packrat [Ford, 2002] parsing library for Scala [et al., 2004]. Such
a library directly supports left-recursion, memoization, and a longest-match composition operator.
Some examples will be shown in Section 4.1.2.

61

4. TYPE-SAFE MODULAR PARSING

TyPING AND REUSABILITY CHALLENGES The second class of challenges was problems related
to modularity, reusability and typing of parsing code. An immediate concern is how to extend a
parser for an existing language or, more generally, how to compose parsing code for two languages. It
turns out that OO mechanisms that provide some form of multiple inheritance, such as traits/mix-
ins [Bracha and Cook, 1990; Schirli et al., 2003], are very handy for this purpose. Essentially, trait-
s/mixins can act as modules for the parsing code of different languages. This enables an approach
where ASTs can be modelled using standard OO techniques such as the Composite pattern, while
retaining the possibility of adding new language constructs. Section 4.2 gives the details of this ap-
proach. Our ultimate goal is to allow for full extensibility: it should be possible to modularly add not
only new language constructs, but also new operations. To accomplish this goal one final tweak on
our technique is to employ Object Algebras to allow fully extensible ASTs. Thus a combination of
Packrat parsing, multiple inheritance and Object Algebras enables a solution for semantically mod-
ular parsing. Section 4.3 gives the details of the complete approach. To evaluate our approach we
conduct a case study based on the “Types and Programming Languages” (TAPL) [Pierce, 2002] in-
terpreters. The case study shows that our approach is effective at reusing parsing code from existing
interpreters, and the total parsing code is 69% shorter than an existing code base using non-modular
parsing code.

Overall, this chapter presents code in Scala, due to the use of Scala Packrat parsing library. Sec-
tion 4.1 studies the main algorithmic challenges in achieving modular parsing, to motivate Packrat
parsing as an eligible technique. Section 4.2 demonstrates how OO inheritance tackles the recursion
problem in defining extensible parsers. Section 4.3 discusses full extensibility from Object Algebras
as the representation of data structures. Section 4.4 explores more interesting features from the as-
pect of implementation. Finally Section 4.5 presents our case study based on TAPL interpreters, and
shows significant reuse in parsing code by our technique.

4.1 Packrat Parsing for Modularity

This section discusses the algorithmic challenges introduced by modular parsing and argues that
Packrat parser combinators [Ford, 2002] are suitable to address them. The algorithmic challenges
are important because they rule out various common techniques used by non-modular code using
parser combinators. To avoid pitfalls related to those algorithmic challenges, we propose the follow-
ing methodology:

* Modular parsers should support left-recursion.

* Modular parsers should use a longest match composition operator.

Moreover, the underlying parsing formalism should make backtracking cheap, due to its perva-
siveness in modular parsing. Although we chose Packrat parsing, any other parsing formalism that
provides similar features should be ok.

"https://github.com/ilya-klyuchnikov/tapl-scala/

62

https://github.com/ilya-klyuchnikov/tapl-scala/

4.1 Packrat Parsing for Modularity

4.1.1 Algorithmic Challenges of Modularity

For the goal of modular parsing, parser combinators seem suitable because they are naturally mod-
ular for parser composition, but also they ensure type safety. Unfortunately many parser combina-
tors have important limitations. In particular, several parser combinators including the famous Par-
sec [Leijen and Meijer, 2001] library, require programmers to manually do left-recursion elimination,
longest match composition, and require significant amounts of backtracking. All of those are problem-
atic in a modular setting.

LEFT-RECURSION ELIMINATION The top-down, recursive descent parsing strategy adopted by
those parser combinator libraries cannot support left-recursive grammars directly. For instance, we
start with a simple arithmetic language containing only integers and subtractions, with the following
concrete syntax:

<expr> ::= <int>
| <expr> ‘-’ <int>

And part of the parsing code with Parsec would be:

parseExpr = parseSub <|> parselnt

parseSub = do
e <- parseExpr

Such a left-recursive implementation will cause an infinite loop, since parseExpr and parseSub call
each other and never stop. A common solution is to rewrite the grammar into an equivalent but
non-left-recursive one, called left-recursion elimination:

<expr> <int> <expr’>

<expr'> <empty>

| '-' <int> <expr’>

After left-recursion elimination, the structure of grammar is changed, as well as its corresponding
parser. In a modular setting, it is possible but unnecessarily complicated to analyse the grammar
and rewrite it when doing extensions. Anticipating that every non-terminal has left-recursive rules
is helpful for extensibility but overkill, since it is inconvenient and introduces extra complexity for
representation of grammars and implementation of parsers.

Another issue of left-recursion elimination is that it requires extra bookkeeping work to retain
the original semantics. For example, the expression 1 - 2 - 3isparsedas (1 - 2) - 3in the left-
recursive grammar, but after rewrite the information of left-associativity is lost. The parse tree must
be transformed to recover the correct syntactic structure.

LoNGEST MaTcH CoMPOSITION — Another problematic issue in parser combinator libraries is the
need for manually prioritizing/ordering alternatives in a grammar. Consider the grammar:

<expr> ::= <int>

P,

| <int> '+’ <expr>

63

4. TYPE-SAFE MODULAR PARSING

In Parsec, for instance, the parser "parseInt <|> parseAdd" will only parse the input "1 + 2" to
"1", as parseInt successfully parses "1" and terminates parsing.

Traditional alternative composition will only find the first parser that succeeds on a prefix of the
input, even if subsequent parsers may parse the whole input. In contrast to the previous parser, "
parseAdd <|> parseInt" works as expected with because the two cases are swapped. In this case,
reordering the alternatives ensures that the longest match is picked among the possible results. How-
ever, manual reordering for the longest match is inconvenient, and worst still, it is essentially non-
modular. When the grammar is extended with new rules, programmers should manually adjust the
order of parsers, by rewriting previously written code.

BAackTRACKING Theneed for backtracking can also be problematic in a modular setting. Consider
a grammar with "import..from", and is extended with an "import..as" case:

<stmt> ::= ‘import’ <ident> ‘from’ <ident>

| ‘import’ <ident> ‘as’ <ident>

Since the two cases share a common prefix, when the former fails, we must backtrack to the beginning.
For example, the choice combinator in Parsec only tries the second alternative if the first fails without
any token consumption. We have to use try for explicit backtracking.

oldParser = parselmpFrom <|>
newParser = try parseImpFrom <|> ... <|> parseImpAs

Similarly, this violates a modular setting because it also requires a global view of the full grammar.
Hence the worst case where all alternatives may share common prefixes with future cases should al-
ways be anticipated. Therefore we need to backtrack for all the branches. To avoid failures in the
future, we have to add try everywhere. However this results in the worst-case exponential time com-

plexity.

412 A Solution: Packrat Parsing

Fortunately, some more advanced parsing techniques such as Packrat parsing [Ford, 2002] have been
developed to address limitations of simple parser combinators. Section 2.5 has introduced the nec-
essary background about Packrat parser combinators with a concrete example. Packrat parsing uses
memoization to record the result of applying each parser at each position of the input, so that repeated
computation is eliminated. Moreover, it supports both direct left-recursion and (in theory) indirect
left-recursion [Warth et al., 2008]. Additionally, the standard Scala Packrat parsing library [Moors
et al., 2008] provides a number of parser combinators, including the longest match alternative com-
binator. All of these properties are very suitable for modularity, thus we decided to use Packrat parsers
as the underlying parsing technique for modular parsing.

For more concise demonstration, we assume that all Scala code in the rest of this chapter is in the
object Code shown in Figure 4.1. It extends StandardTokenParsers and PackratParsers from the
Scala parser combinator library. Furthermore, we use Parser as a type synonym for PackratParser
and a generic parse function for testing.

Asaresult, we simplify the ExpParser from Section 2.5 into the following trait that only contains
the actual parsing code:

64

4.2 OO AST Parsing with Multiple Inheritance

import scala.util.parsing.combinator._
import scala.util.parsing.combinator.syntactical._

object Code extends StandardTokenParsers with PackratParsers {
type Parser[E] = PackratParser[E]
def parse[E](p: Parser[E]): String => E = in => {
val t = phrase(p)(new lexical.Scanner(in))
t.getOrElse(sys.error(t.toString))
}

// Any Scala code in this chapter comes here

Figure 4.1: Helper object for code demonstration in this chapter.

trait AParser {
lexical.delimiters += "+"
val pLit: Parser[Expr] = numericLit * { x => new Lit(x.tolInt) }
val pAdd: Parser[Expr] = pExpr ~ ("+" ~> pExpr) ™"
{ case el ~ e2 => new Add(el, e2) }
val pExpr: Parser[Expr] = pLit ||| pAdd
}

4.2 OO AST Parsing with Multiple Inheritance

Before we address the problem of full modular parsing, we first address a simpler problem: how to
parse Object-Oriented ASTs. To solve this problem we employ multiple inheritance, which is sup-
ported in Scala via traits.

Part of the modular parsing problem is how to obtain an extensible parser. It is natural to make
use of OO ASTs because adding new data constructs is cheap for them. Hence we have used OO traits
and inheritance to represent the AST in Section 2.5. Furthermore, we would like to write extensible
parsing code on extensions of a grammar. That s to say, new extensions would not require modifying
the existing code, and we can even reuse the old code.

To illustrate such extensibility, we continue with the arithmetic language from Section 2.5, and
introduce variables as a new case. It is easy to extend the corresponding OO AST together with its
parser in a modular way:

class Var(x: String) extends Expr {
def print = x

}

Here one may quickly define a new parser pvar in AParser for variables, and parse new expressions
with "pExpr ||| pVar". Unfortunately, even "1 + x" cannot be parsed, which is obviously valid
in the new grammar. The reason is that pAdd makes two recursive calls to pExpr for parsing sub-
expressions, whereas the newly added pVar is not observed, unless we replace all the occurrences of

65

4. TYPE-SAFE MODULAR PARSING

pExpr with "pExpr ||| pVar". Yet modifying existing code breaks semantic modularity.

OVERRIDING FOR EXTENSIBILITY Itisactually quite simple to let pExpr cover the newly extended
case without modifying existing code. Method overriding is a standard feature which often comes
with inheritance, and it allows us to redefine an inherited method, such as pExpr. We can build the
new parser which correctly parses "1 + x" through overriding:

trait VarParser extends AParser {
val pVar: Parser[Expr] = ident ™" (new Var(_))
override def pExpr: Parser[Expr] =

super.pExpr ||| pVar
}
val p = new VarParser {}
val r = parse(p.pExpr) ("1 + x").print // "(I+x)"

Now VarParser successfully represents the parser for the extended language, because Scala uses
dynamic dispatch for method overriding in inheritance. When the input "1 + x" is fed to the parser
this.pExpr, it firstly delegates the work to super. pExpr, which parses literals and additions. How-
ever, the recursive call pExpr in pAdd actually refers to this.pExpr again due to dynamic dispatch,
and it covers the variable case. Similarly, all recursive calls can be updated to include new extensions

if needed.

INDEPENDENT EXTENSIBILITY A nice feature of Scala is its support for the linearized-style multi-
ple inheritance on traits [et al., 2004]. This can be very helpful when composing several languages,
and to achieve independent extensibility [Odersky and Zenger, 2005a]. Suppose now we want to
compose the parsers for expressions from pre-defined languages LanguageA and LanguageB using
alternative. The new parser can be built by inheriting both parsers at the same time:

trait LanguageA {...}
trait LanguageB {...}
trait LanguageC extends LanguageA with LanguageB {
override def pExpr = super[LanguageA].pExpr ||| super[LanguageB].pExpr
}

The super[T].x syntax in Scala, so-called static super reference, refers to the type or method x in
the parent trait T. Under multiple inheritance, it can be used to distinguish the methods of the same
name. Therefore in the new parser, we use super to specify which pExpr we are referring to.

CONFLICTS AND/OR AMBIGUITY In a modular setting, conflicts and ambiguity could be intro-
duced to the grammar. In that case, the help parser combinators can offer is quite restricted. Yet users
can override those problematic methods to resolve such conflicts, and rely on dynamic dispatch. We
will discuss it in Section 4.4.2.

As demonstrated, inheritance with method overriding is the key technique to obtain semantic
modularity. It enables type-safe code reuse and separate compilation for parsing OO style ASTs.

66

4.3 Full Extensibility with Object Algebras

4.3 Full Extensibility with Object Algebras

The inheritance-based approach allows building extensible parsers, based on an OO class hierarchy.
Nevertheless, the addition of new operations over ASTs is problematic using traditional OO ASTs. In
this section, we show how to support both forms of extensibility on ASTs (easy addition of language
constructs, and easy addition of operations) using Object Algebras [Oliveira and Cook, 2012a].

431 Problem with Traditional OO ASTs

Section 2.5 uses the conventional Interpreter pattern to represent data, and this again refers to the
Expression Problem [Wadler, 1998]. It has been discussed in Section 2.2.1 that such a pattern makes
it difficult to add new operations. To modularly add an operation like collecting free variables, one
attempt would be extending Expr with the new operation to obtain a new abstract type for ASTs:

trait NewExpr extends Expr { def free: Set[String] }

Firstly, such an approach is known to be problematic in terms of type-safety (but see recent work
by Wang and Oliveira [2016], which shows a technique that is type-safe in many cases). More impor-
tantly, a second problem is that even if that approach would work, the parsing code in VarParser is
no longer reusable! The types Expr, Lit, Add,and so on,areall old types without the free variables
operation. To match the new ASTs, we have to substitute NewExpr for Expr (the same for Lit, Add,
...). This requires either code modification or type casts. The goal of semantic modularity motivates
us to adopt a different approach for building ASTs.

4.3.2 Parsing with Object Algebras

Due to the object-oriented context, Scala provides a nice platform for realizing Object Algebras. In
that case, we can separate the definition of data variants from operations, while retaining extensibility
in both dimensions.

OBJECT ALGEBRAS FOR BOTH EXTENSIBILITY Firstly, the AST is refactored with an Object Al-
gebra interface:

trait Alg[E] {

def lit(n: Int): E

def add(el: E, e2: E): E
}

Next comes the pretty-printing by instantiating the above trait into an algebra:

trait Print extends Alg[String] {

def lit(n: Int) = n.toString

def add(el: String, e2: String) = "(" + el + " + " +e2 + ")"
}

Subsequently, variables can be modularly added without modifying existing code:

trait VarAlg[E] extends Alg[E] {
def varE(x: String): E

67

4. TYPE-SAFE MODULAR PARSING

trait OAParser[E] {

lexical.delimiters += "+"

val alg: Alg[E]

val pLit: Parser[E] = numericLit ™"
{ x => alg.lit(x.toInt) }

val pAdd: Parser[E] = pE ~ ("+" ~> pE) ™
{ case el ~ e2 => alg.add(el, e2) }

val pExpr: Parser[E] = pLit ||| pAdd

val pE: Parser[E] = pExpr

Figure 4.2: Pattern of modular parsing using Object Algebras.

trait VarPrint extends VarAlg[String] with Print {
def varE(x: String) = x
}

Nevertheless, object as the result of parsing, have a different representation in Object Algebras,
namely a function Alg[E] => E. When Object Algebras are used to build ASTs, an Object Algebra
containing the constructor/factory methods has to be used by the parsing function. Thus, a first
attempt at defining the parser for the small arithmetic language is:

trait Attempt[E] {
lexical.delimiters += "+"
val pLit: Alg[E] => Parser[E]
{ x => alg.lit(x.toInt) }
val pAdd: Alg[E] => Parser[E] = alg => pExpr(alg) ~ ("+" ~> pExpr(alg)) ™
{ case el ~ e2 => alg.add(el, e2) }
val pExpr: Alg[E] => Parser[E] = alg => pLit(alg) ||| pAdd(alg)
}

Such a parser looks fine, but it is not extensible. For example, we have demonstrated in Section 4.2
that method overriding is essential to update pExpr for an extended syntax. However, trying to do
a similar method overriding for pExpr would require a type VarAlg[E] => Parser[E], which is a

alg => numericLit ™"

supertype of the old type ALg[E] => Parser[E], since the extended Object Algebra interface appears
in contravariant position. This violates overriding in Scala.

A SoLUTION A solution to this problem is to declare a field of Object Algebra interface in the
parser. Figure 4.2 shows the code of true modular parser, whose methods can be overridden for future
extension.

That is precisely the pattern that we advocate for modular parsing. One important remark is
we introduce pE for recursive calls. The reason why we use it as an extra and seemingly redundant
field, is due to a subtle issue caused by Scala language and its parser combinator library. There is a
restriction of super keyword in Scala that super can only use methods defined by keyword def, but

68

4.4 More Features

cannot access fields defined by val, while the parser combinator library suggests using val to define
parsers, especially for left-recursive ones. Our workaround is that we use different synonyms for pE
in different traits, so that we can directly distinguish them by names without using super.

ExTENSIONs Now let’s try on the variables extension:

trait VarOAParser[E] extends OAParser[E] {
override val alg: VarAlg[E]
val pVar: Parser[E] = ident ~" alg.varE
val pVarExpr: Parser[E] = pExpr ||| pVar
override val pE: Parser[E] = pVarExpr

}

The type of the Object Algebra field alg is first refined to VarAlg[E], to allow calling the additional
factory method for variables. Unlike the previous attempt, such a type-refinement is allowed. Now,
the code for parsing variables (pvar) can call alg. varE. The following code illustrates how to use the
parser from a client’s perspective:

val p = new VarOAParser[String] {
override val alg = new VarPrint {}

}
val r = parse(p.pE) ("1 + x") // "(1 + x)"

In the client code above, we pick the pretty-printing algebra VarPrint to initialize the alg field,
butany other Object Algebra thatimplements VarAlg would work. Withaninstance of VarOAParser
in hand, we can call pE to obtain the parser to feed to the parse method. Such a pattern provides
modular parsing as expected.
Note that, similar to the approach in Section 4.2, independent extensibility is also supported via
multiple trait inheritance. Since it is achieved using essentially the same technique as in Section 4.2,
we omit the code here.

4.4 More Features

The use of inheritance-based approach and Object Algebras enables us to build modular parsers,
which are able to evolve with syntax together. This section explores more interesting features, includ-
ing parsing multi-sorted syntax, overriding existing parsing rules, language components for abstract-
ing language features, and alternative techniques under the whole framework.

4.4.1 Parsing Multi-Sorted Syntax

Using Object Algebras, it is easy to model multi-sorted languages. If the syntax has multiple sorts, we
can distinguish them by different type parameters. For instance, we extend the expression language
from the end of Section 4.3, with a primitive type int type and typed lambda abstractions:

<type> ::= ‘int’

<expr> ::= ...
| “\’' <ident> ‘:’' <type>

“«

<expr>

69

4. TYPE-SAFE MODULAR PARSING

The code below illustrates the corresponding Scala code that extends the Object Algebra interface,
pretty-printing operation and parser.

trait LamAlg[E, T] extends VarAlg[E] {
def intT(): T
def lam(x: String, t: T, e: E): E

}

trait LamOAParser[E, T] extends VarOAParser[E] {
lexical.reserved += "int"
lexical.delimiters += ("->", "\\", ":", ".")
override val alg: LamAlg[E, TI]
val pIntT: Parser[T] = "int" ™ { _ => alg.intT }
val pTypedLamT: Parser[T] = pIntT
val pLam: Parser[E] =

(II\\II ~> ident) _~ (II:II ~> pT) _ (II.II ~> pE) AN
{ case x ~ t ~ e => alg.lam(x, t, e) }
val pTypedLamE: Parser[E] = pVarExpr ||| pLam

val pT: Parser[T] = pTypedLamT
override val pE: Parser[E] = pTypedLamE
}

We use two type parameters E and T for expressions and types. The type system guarantees that
invalid termssuchas int + int will be rejected. Besides lexing, the trait LamOAParser also introduces
parsers for types, and the new case for expressions. We use pTypedLamT and pTypedLamE as copies of
current pT and pE, due to the issue with super in Scala (see discussion in Section 4.3.2). pT and pE are
used for recursion.

4.4.2 Overriding Existing Rules

As many syntactically extensible parsers, our approach also supports modifying part of existing parsers,
including updating or eliminating existing rules, but in a type-safe way. This can be useful in many
situations, for instance when conflicts or ambiguities arise upon composing languages. As an illustra-
tion, suppose we have an untyped lambda abstraction case in a base parser, defined as a value:

val pLam: Parser[E] = ("\\" ~> ident) ~ ("." ~> pE) ™ ...

Here pLam parses a lambda symbol, an identifier, a dot and an expression in sequence. Then we want
to replace the untyped lambda abstractions by typed lambdas. With inheritance and method over-
riding, it is easy to only change the implementation of pLam in the extended parser. Due to dynamic
dispatch, our new implementation of lambdas will be different without affecting the other parts of
the parser.

override val pLam: Parser[E] =
("\\" ~> ident) ~ (":" ~> pT) ~ ("." ~> pE) ™ ...

One can even “eliminate” a production rule in the extension, by overriding it with a failure parser.
The lexer can also be updated, since keywords and delimiters are represented by sets of strings.

70

4.4 More Features

4.4.3 Language Components

Modular parsing not only enables us to build a corresponding parser which evolves with the language
together, but also allows us to abstract language features as reusable, independent components. Gen-
erally, a language feature includes related abstract syntax, methods to build the syntax (parsing), and
methods to process the syntax (evaluation, pretty-printing, etc.). From this perspective, not only one
language, but many languages can be developed in a modular way, with common language features
reused.

Instead of designing and building a language from scratch, we can easily add a new feature by
reusing the corresponding language component. For example, if a language is composed from a com-
ponent of boolean expressions, including if-then-else, it immediately knows how to parse, traverse,
and pretty-print the if-then-else structure. Grouping language features in this way can be very useful
for rapid development of DSLs.

LANGUAGE CoMPONENTS For implementation, a language component is represented by a Scala
object, and it consists of three parts: Object Algebra interface, parser, and Object Algebras.

* Object Algebra interface: defined as a trait for the abstract syntax. The type parameters repre-
sent multiple sorts of syntax, and methods are constructs.

* Parser: corresponding parser of the abstract syntax, written in a modular way as we demon-
strated before.

* Object Algebras (optional): concrete operations on ASTs, such as pretty-printing.

We take the example in Section 4.3.2 again. It can be defined as a language component VarExpr.
For space reasons we omit some detailed code.

object VarExpr {
trait Alg[E] { // Abstract syntax
def lit(n: Int): E

}

trait Parse[E] { ... } // Parser

trait Print extends Alg[String] {
. // Pretty-printer

}

For the extension of types and lambda abstractions in Section 4.4.1, instead of inheriting from the
previous language directly, we can define it as another independent language component TypedLam.

object TypedLam {
trait Alg[E, T] { // Abstract syntax
def intT(): T

}
trait Parse[E, T] { ... } // Parser

71

4. TYPE-SAFE MODULAR PARSING

trait Print extends Alg[String, String] {
... // Pretty-printer

}

The code below shows how we merge those two components together to obtain the language we
want. Furthermore, the new language is still a modular component ready for future composition. In
that case modularity is realized over higher-order hierarchies.

object VarLamExpr {
trait Alg[E, T] extends VarExpr.Alg[E] with TypedLam.Alg[E, T]
trait Parse[E, T] extends VarExpr.Parse[E] with TypedLam.Parse[E, T] {
override val alg: Alg[E, TI]
override val pE: Parser[E] = ...

}
trait Print extends VarExpr.Print with TypedLam.Print

}

The only drawback is that the glue code of composition appears to be boilerplate. As shown
above, we are combining ASTs, parsers and pretty-printers of VarExpr and TypedLam respectively.
Such a pattern refers to family polymorphism [Ernst, 2001] which is unfortunately not fully supported
in Scala, since nested classes/traits have to be manually composed.

4.4.4 Alternative Techniques

Our prototype uses Packrat parsing as the underlying parsing technique, OO inheritance for com-
posing and extending parsers, and Object Algebras for parsing extensible ASTs. Yet such a frame-
work is itself flexible and modular, because those techniques can have alternatives. For example, as
we mentioned before, any parsing library that resolves the algorithmic challenges in modular parsing
can work well. Regarding OO inheritance for the extensibility, an alternative approach, called open
recursion [Cook, 1989] can be used in other languages, by introducing explicit “self-reference” param-
eters for the recursion. Furthermore, besides Object Algebras, Data types a la carte (DTC) [Swierstra,
2008] and the Cake pattern [Odersky and Zenger, 2005a] also support extensible data structures. For
the goal of modular parsing a custom combination of those alternatives can be adopted.

4.5 Case Study

To demonstrate the utility of our modular parsing approach, we implemented parsers for the first 18
calculi! from the Types and Programming Languages (TAPL) [Pierce, 2002] book. We compared our
implementation with a non-modular implementation available online, which is also written in Scala
and uses the same Packrat parsing library. We counted source lines of code (SLOC) and measured
execution time for both implementations. The result suggests that our implementation saves 69%
code comparing with that non-modular one, but there is a 43% slowdown due to code modularity.

"There are some more calculi in the book, but they are either not ported by the implementation we compare with, or
just repeats the syntax of former ones.

72

4.5 Case Study

‘ TypedBool ‘ UntypedAbs ‘ ‘ VarApp H Record H TypedNat ‘

Arith Untyped / |FloatString | TyArith ‘TypeVar"ExtensionﬂTypedHTypedRecord"RecType‘ ‘TopBot‘

FullRecon FullError FullSimple | SourceSink | FullSub RcdSubBot FullOmega FullPoly

FullEquiRec FullRef

FulllsoRec

Figure 4.3: Dependency graph of all calculi and components. Grey boxes are calculi; white boxes are
components.

451 Implementation

TAPL introduces several calculi from simple to complex, by gradually adding new features to syn-
tax. These calculi are suitable for our case study for mainly two reasons. Firstly, they capture many
of the language features required in realistic programming languages, such as lambdas, records and
polymorphism. Secondly, the evolution of calculi in the book reveals the advantages of modular rep-
resentation of abstract syntax and modular parsing, which is the key functionality of our approach.
By extracting common components from those calculi and reusing them, we obtain considerably
code reuse as shown later.

We extract reusable components from all the calculi using the pattern in Section 4.4.3. Each com-
ponent, which may contain several syntactical structures, represents a certain feature. They are com-
bined together as needed to build a calculus. For example, the calculus Untyped in our case study,
representing the famous untyped lambda calculus, consists of component VarApp (for variables and
applications) and component UntypedAbs (for untyped lambdas).

Figure 4.3 shows the dependency of all the components and calculi in our case study. Grey boxes
are calculi and white boxes are components. An arrow starting from box A to box B denotes that B
includes and thus reuses A.

Each component or language is represented by a Scala object which includes Alg for the abstract
syntax, Print for pretty-printing, and Parse for parsing. Since calculi and components have similar
signatures, each calculus can also be extended and reused directly. For example, calculus FullRef
extends from calculus FullSimple.

73

4. TYPE-SAFE MODULAR PARSING

Table 4.1: Comparison of SLOC and execution time.

Calculus Name SLOC Time (ms)

NonMod Modoa (+/)% NonMod Modoa (+/-)% NonMod || (+/-)% Modcass (+/)%
Arith 77 77 +0.0 741 913 +23.2 793 +7.0 932 +25.8
Untyped 48 53 +10.4 770 1018 +32.2 821 +6.6 1007 +30.8
FullUntyped 131 75 -42.7 1297 1854 +42.9 1343 +3.5 1767 +36.2
TyArith 89 54 -39.3 746 888 +19.0 772 +3.5 918 +23.1
SimpleBool 20 42 -53.3 1376 1782 +29.5 1494 +8.6 1824 +32.6
FullSimpIe 244 127 -48.0 1441 2270 +57.5 1574 +9.2 2226 +54.5
Bot 87 48 -44.8 1080 1287 +19.2 1078 -0.2 1306 +20.9
FullRef 277 65 -76.5 1438 2291 +59.3 1544 +7.4 2142 +49.0
FullError 112 41 -63.4 1410 1946 +38.0 1524 +8.1 1981 +40.5
RedSubBot 125 22 -82.4 1247 1524 +22.2 1285 +3.0 1612 +29.3
FullSub 225 22 -90.2 1320 1979 +49.9 1393 +5.5 1899 +43.9
FullEquiRec 250 36 -85.6 1407 2200 +56.4 1561 +10.9 2156 +53.2
FulllsoRec 259 40 -84.6 1492 2253 +51.0 1648 +10.5 2236 +49.9
EquiRec 81 22 -72.8 994 1254 +26.2 1048 +5.4 1304 +31.2
Recon 138 22 -84.1 1044 1482 +42.0 1128 +8.0 1506 +44.3
FullRecon 142 22 -84.5 1094 1645 +50.4 1161 +6.1 1652 +51.0
FullPoly 248 68 -72.6 1398 2086 +49.2 1511 +8.1 2019 +44.4
FullOmega 315 68 -78.4 1451 2352 +62.1 1582 +9.0 2308 +59.1
Total 2938 904 -69.2 21746 31024 +42.7 23260 +7.0 30795 +41.6

4.5.2 Comparison

We compared our implementation (named Modga) with an implementation available online! (named
NonMod). NonMod is suitable for comparison, because it is also written in Scala using the same parser
combinator library. NonMod implements parsers 18 calculi in TAPL in a non-modular way. Thus
NonMod is not able to reuse existing code when those calculi share common features. Modga imple-
ments the same 18 calculi, but reuse is possible due to modularity.

The comparison is made from two aspects. First, we want to discover the amount of code reuse
using our modular parsing approach. For this purpose, we measured source lines of code (SLOC) of
two implementations. Second, we are interested to assess the performance penalty caused by modu-
larity. Thus we compared the execution time of parsing random expressions between two implemen-
tations.

STANDARD OF COMPARISON In terms of SLOC, all blank lines and comments are excluded, and
we formatted the code of both implementations to ensure that the length of each line does not exceed
120 characters. Furthermore, because NonMod has extra code like semantics, we removed all irrelevant
code, only kept abstract syntax definition, parser and pretty-printer for each calculus, to ensure a fair
comparison.

For the comparison of execution time, we built a generator to randomly generate valid expres-
sions for each calculus, according to its syntax. These expressions are written to test files, one file per
calculus. Each test file consists of 500 expressions randomly generated, and the size of test files varies
from 20KB to 100KB. We run the corresponding parser to parse the file and the pretty-printer to
print the result. The average execution time of 5 runs excluding reading input file was calculated, in
milliseconds.

"https://github.com/ilya-klyuchnikov/tapl-scala/

74

https://github.com/ilya-klyuchnikov/tapl-scala/

4.6 Summary

ComrarisoN REsurts Table 4.1 shows results of the comparison. Let us only check Modga and
NonMod for now. The overall result is that 69.2% of code is reduced using our approach, and our
implementation is 42.7% slower.

The good SLOC result is because of that the code of common language features are reused many
times in the whole case study. We can see that in the first two calculi Arith and Untyped we are not
better than NonMod, because in such two cases we do not reuse anything. However in the following
16 calculi, we indeed reuse language components. In particular, the calculi EquiRec and some others
are only 22 lines in our implementation, because we only compose existing code.

To discover the reasons of slower execution time, we made experiments on two possible factors,
which are Object Algebras and the longest match alternative combinator. We use Object Algebras
for ASTs and the longest match alternative combinator | | | for parsing, while NonMod uses case class
and the ordinary alternative combinator. Therefore, we implemented two more versions. One is a
modified version of our implementation, named Modciass, with Object Algebras replaced by case
class for the ASTs. The other is a modified version of NonMod, named NonMod | |, using the longest
match alternative combinator instead of the ordinary one.

The right part of Table 4.1 suggests that the difference of running time between using Object Al-
gebras and class is little, roughly 1%. The use of longest match combinator slows the performance by
7%. The main reason of slower execution time may be the overall structure of the modular parsing
approach, because we indeed have more intermediate function calls and method overriding. How-
ever, it is worth mentioning that because of the memoization technique of Packrat parsers, we are
only constant times slower, the algorithmic complexity is still the same. Since the slowdown seems
to be caused by extra method dispatching, in future work we wish to investigate techniques like par-
tial evaluation or meta-programming to eliminate such cost. The work by Béguet and Jonnalagedda
[2014] is an interesting starting point.

4.6 Summary

This chapter presents a solution for type-safe modular parsing. The solution not only enables parsers
to evolve together with the abstract syntax, but also allows parsing code to be modularly type-checked
and separately compiled. We identify the algorithmic challenges of building modular parsers, and use
standard OO techniques including inheritance and overriding for our goal. However, the extensibil-
ity issue of traditional OO ASTs motivates us to adopt Object Algebras for full extensibility and more
useful features. Then language feature abstraction further enhances code reuse and modularity.

75

4. TYPE-SAFE MODULAR PARSING

76

Chapter 5

Modular Unfolds: Seeing the Trees in the
Product Forest

The type-safe modular parsing approach, presented in Chapter 4, implies a general way to modularize
producer operations using inheritance (or open recursions). However, this chapter gives a different
perspective of modularizing producers in functional programming, by modularizing coalgebras.

Based on AoP [Bird and de Moor, 1997] and DTC [Swierstra, 2008], it is known that the modu-
larization of consumer operations can be achieved by modularizing algebras. Thus the duality between
algebras and coalgebras motivates our exploration in modularizing coalgebras. However, composing
coalgebras is not as obvious as composing algebras, since the natural, generic composition operator
produces a structure with products (instead of sums) at the top-level nodes. Taking the fixpoint of
such structure results in a so called product forest, instead of the more familiar and expected fixpoint
of sums-of-products. One possible interpretation of a product forest is as a collection of possible
sums-of-product structures that can be generated from the coalgebras. This chapter will show that,
to recover a particular tree (i.e. a sum-of-product structure), we can define a selection function that
extracts the desired tree(s) from the product forest. There are many possible ways to define such a
selection function. For example, one can randomly choose between the various products, or simply
generate a list of all possible trees. We show how to build tree structures as a second step after the
construction of a product forest, by defining corresponding selection functions.

In order to eliminate the construction of product forests, and directly build a sums-of-product
structure, specialized composition combinators can be derived for coalgebras. These combinators can
then be used instead of the generic composition operator to compose coalgebras, avoiding the inter-
mediate data structure. The correctness of such deforestation [Wadler 1988] process is validated by
corresponding fusion theorems. Selection functions become much more interesting in the presence
of effects, which motivates the generalization of our work to monadic coalgebras.

As a consequence, we provide SCCL, a Haskell library to present some specialized combinators
for practical use. It includes some basic combinators that reveal general composition strategies, and
a few more specialized combinators for several applications: modular random generators, modular
small-step semantics and modular monadic parsing. Consequently, with SCCL we are able to achieve:

* Modularity of AST and producers: Data variants are modularized with functors, and produc-
ers can be defined as coalgebras, composable via the general coalgebra combinator.

77

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

* Untangling of strategies: Using coalgebras and the generic unfold, production strategies get
untangled with composition strategies.

* Encapsulation and reusability of composition strategies: Composition strategies can be imple-
mented as natural transformations, which further derive specialized coalgebra combinators
with genericity on the carrier type.

« Reusability of producer coalgebras: With monad transformers, coalgebras become reusable com-
Y 4 g
ponents for different composition strategies.

* Code conciseness: The specialized combinators free programmers from duplicating boilerplate
composition code, and hence simplify client code significantly.

This chapter is organized as follows. Section 5.1 motivates the modularity issue by an example of
random generators, and gives an overview of the SCCL library. Section 5.2 shows the generic coalge-
bra combinator and illustrates the resulting product forests from unfolding. Section 5.3 shows that
the more desired sum-of-products trees can be derived from product forests using natural transforma-
tions. Section 5.4 further generalizes the theory to monadic variants. And finally Section 5.5 presents
the implementation of SCCL, including the basic combinators and the specialized combinators for
the three applications.

5.1 Overview

This section gives an overview of SCCL (Specialized Coalgebras Combinator Library). We start with
QuickCheck generators as a motivating example, showing the problem of code modularity and reusabil-
ity. Then we presenthow SCCL modularizes random generators with coalgebras and specialized com-
binators, and further present an overview of SCCL combinators.

5.1.1 A Motivating Example: QuickCheck Generators

QuickCheck [Claessen and Hughes, 2000] is a Haskell library well-known for random testing of
programs. Programmers define some properties that they expect their programs to satisfy, in a logical
form with boolean functions, operators and quantifiers. Then QuickCheck automatically generates
a number of values or structures to test if the properties hold.

Besides primitive types, QuickCheck also allows generators to be implemented for custom datatypes.
Our motivating example is a simple language that supports numeric and boolean literals, addition,
and equality, defined as follows by a recursive datatype:

data Exp = Lit Int | BoolLit Bool | Add Exp Exp | Equal Exp Exp

A property can be, for example, the type preservation of evaluating such expressions, namely if an
expression is well-typed, then performing evaluation rules on the expression does not change its type.
However, the effectiveness of random testing depends highly on the implementation of generators.
Often, a “good” generator is at least expected to cover all the constructs, and ensure some randomness.
In related work [Claessen et al., 2014; Duregard etal., 2012; Fetscher et al., 2015; Grygiel and Lescanne,
2013; Patka et al., 2011], people have different opinions on how a good generator looks like. Below
we give three possible implementations.

78

5.1 Overview

instance Arbitrary Exp where
arbitrary = sized genl
where genl :: Int -> Gen Exp
genln | n<=20 frequency [(1, gLit), (1, gBool)]
| otherwise = frequency [(1, gLit), (1, gBool),
(1, gAdd n), (1, gEqual n)]

gLit 1iftM Lit $ choose (0, 100)

gBool = 1iftM BoolLit $ choose (False, True)

gAdd n =do eA <- genl (n - 1)
eB <- genl (n - 1)
return (Add eA eB)

gEqual n = do eA <- genl (n - 1)
eB <- genl (n - 1)
return (Equal eA eB)

Figure 5.1: Uniformly generating expressions on a specific size.

1. Generating expressions up to a specific size, with a uniform distribution. The uniform distribution
is arguably a most common strategy of random generation [Claessen et al., 2014; Duregird et al.,
2012; Fetscher etal., 2015; Grygiel and Lescanne, 2013]. Furthermore, generators are usually restricted
with an input size, though such a size may have different interpretations. Figure 5.1 shows a possible
implementation, where n stands for the depth size; here it represents the upper bound of the beight
of the tree to generate. The height of a tree is precisely the maximum distance between the root and
a leaf. When n is non-positive, only leaf nodes can be generated: a number (between 0 and 100) or
a boolean value, each with 0.5 probability. When n is greater than 0, all four cases share the same
probability, and in Add or Equal, the sub-expressions are recursively built from a smaller sizen - 1.
The uniformity here is not for all functors, but for the candidates that satisfy certain conditions.

II. Generating well-typed expressions up to a specific size, with a uniform distribution. When testing
compilers or interpreters, people sometimes would like the generator to generate only well-typed ex-
pressions [Claessen et al., 2014; Fetscher et al., 2015; Grygiel and Lescanne, 2013; Patka et al., 2011].
Figure 5.2 shows one implementation for Exp, considering that the language only has two types: in-
teger and boolean. Compared with gen1, gen2 takes an additional parameter for the expected type,
and it is initialized as Any.

III. Generating expressions up to a specific size, with a dynamic distribution. Inspired by [Fetscher
et al., 2015], a random generation can also follow a dynamic distribution, where constructors with
more branches (like Add and Equal) tend to be selected at the beginning of construction for expan-
sion, and constructors with fewer branches (like Lit and BoolLit) are more likely to be selected when
the tree goes deeper for quick convergence. In Figure 5.3, gen3 takes two arguments, where n repre-
sents the current size, and m records the original input (maximum size). When n becomes smaller
during tree generation, the weights are changed dynamically.

Overall, those strategies can be chosen for different situations flexibly. Unfortunately, by comparing

79

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

instance Arbitrary Exp where
arbitrary = sized $ gen2 Any
where gen2 :: Type -> Int -> Gen Exp

gen2 TInt n | n <=0 = gLit

| otherwise = frequency [(1, gLit), (1, gAdd n)]
gen2 TBool n | n <= 0 = gBool

| otherwise = frequency [(1, gBool), (1, gEqual n)]
gen2 Any n | n<=20 = frequency [(1, glLit), (1, gBool)]

| otherwise = frequency [(1, gLit), (1, gBool),
(1, gAdd n), (1, gEqual n)]

gLit = 1iftM Lit $ choose (0, 100)
gBool = 1iftM BoolLit $ choose (False, True)
gAdd n = do eA <- gen2 TInt (n - 1)
eB <- gen2 TInt (n - 1)
return (Add eA eB)
gEqual n = do t <- elements [TInt, TBool]

eA <- gen2 t (n - 1)
eB <- gen2 t (n - 1)
return (Equal eA eB)

Figure 5.2: Uniformly generating well-typed expressions on a specific size.

the three pieces of code, we have noticed two critical issues in terms of modularity and code reuse:
entanglement of strategies, and non-extensibility of generators.

ENTANGLEMENT OF STRATEGIES ~ We have noticed that there are two orthogonal dimensions of
strategies. The first one is the strategy of generation, which represents the behavior of each individual
producer (gLit, gBool, gAdd and gEqual). For this, I and III are basically the same; they both gen-
erate well-formed expressions up to a certain size. However, II is different from I, since it takes the
additional type information to generate expressions that always type-check. The second dimension
of strategy refers to how those individual generators are composed (i.e. the composition/distribu-
tion strategy). For this, I and II both adopt the uniform distribution, by setting equal weights in
frequency. Whereas III uses a dynamic distribution algorithm to generate expressions of a similar
shape. It is unfortunate to see that these two dimensions of strategies entangled in the code without
reusability, as a consequence, a lot of code has to be duplicated.

NoON-EXTENSIBILITY OF GENERATION Another critical issue is that the above code lacks extensi-
bility and modularity. The language constructs are defined in Exp, a non-extensible abstract syntax
tree. Furthermore, the generators are defined as a family of mutually recursive functions; they are
non-modular because such recursion is closed. Nowadays, with the rise of modular compilers and
interpreters [Ekman and Hedin, 2007; Inostroza and Storm, 2015; Liang et al., 1995; Nystrom et al.,
2003], there is also need for modularization in producer operations, including this random genera-
tion. The non-extensibility of the above code, however, results in significant code duplication.
Suppose we extend Exp with multiplications. The AST might be redefined as follows:

80

5.1 Overview

instance Arbitrary Exp where
arbitrary = getSize >>= \n -> gen3 n n
where gen3 :: Int -> Int -> Gen Exp
gen3 n m = frequency [(n, gAdd n m),
(n, gEqual n m),
(m+ 1 - n, gLit),
(m+ 1 - n, gBool)]
gLit 1iftM Lit $ choose (0, 100)
gBool 1iftM BoolLit $ choose (False, True)
gAdd n m =do eA <-gen3 (n - 1) m
eB <- gen3 (n - 1) m
return (Add eA eB)
do eA <- gen3 (n - 1) m
eB <-gen3 (n - 1) m
return (Equal eA eB)

gEqual n m

Figure 5.3: Generating expressions in a dynamic distribution.

data Exp = Lit Int | BoolLit Bool | Add Exp Exp | Equal Exp Exp
| Mul Exp Exp -- extension: multiplication

Figure 5.4 gives a modified implementation of generator I for this AST. The code is mostly the
same as Figure 5.1, except that gMul is added. Clearly modifying existing code is not expected, but
instead we have to duplicate much code, for neither the AST nor the recursive functions are open
to extensions. Additionally, programmers have to take responsibility for carefully rearranging and
checking the distribution with extensions, which is especially error-prone when the distribution strat-
egy gets complicated. Hence our wish is to modularize generator code, and also to free programmers
from dealing with the strategies manually, resulting in lightweight and type-safe composition.

5.1.2 Solution in SCCL for Random Generation

The aforementioned issues have motivated our exploration on modular unfolds, and the implementa-
tion of our SCCL library. In SCCL, producer functions (such as generators) are defined as coalgebras,
composed by specialized combinators, and finally fed to a generic #nfold to build data structures.

COALGEBRAS AND UNFOLD FOR PRODUCERS From DTC [Swierstra, 2008] and Section 2.3.3,
we know that functors and their co-products can represent extensible data structures in Haskell. The
previous Exp type can be separated into four functors:

data LitF x = Lit Int
data BoolF x = BoolLit Bool
data AddF x = Add x x
data EqualF x = Equal x Xx

By default we make all those functors instances of Functor. Here x is the carrier to capture recursive
structures. As the second step, taking the fixpoint of a functor gives us the real data type for abstract

81

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

instance Arbitrary Exp where
arbitrary = sized genl

where genl :: Int -> Gen Exp
genln | n<=20 = frequency [(1, glLit), (1, gBool)]
| otherwise = frequency [(1, gLit), (1, gBool),
(1, gAdd n), (1, gEqual n),
(1, gMul n)]

gLit = 1iftM Lit $ choose (0, 100)
gBool = 1iftM BoolLit $ choose (False, True)
gAdd n =do eA <- genl (n - 1)
eB <- genl (n - 1)
return (Add eA eB)
gEqual n = do eA <- genl (n - 1)
eB <- genl (n - 1)
return (Equal eA eB)
gMul n =do eA <- genl (n - 1)

eB <- genl (n - 1)
return (Mul eA eB)

Figure 5.4: Uniformly generating expressions on a specific size (added multiplications).

syntax. In this example, Fix (LitF @& BoolF & AddF & EqualF) isisomorphic Exp.

Since generators build data structures, this assumes that they can be captured by (top-down) un-

folds. With this assumption, a generator should be represented by a (monadic) coalgebra. Using

coalgebras and the generic unfold pattern gives us the following benefits:

* The AST and its generator become extensible. Language constructs are now encouraged to
be defined by individual functors, and composed with sums. This allows extensibility on the
AST; and meanwhile, generators (coalgebras) become by modular components. This modu-
larization makes the foundation for code reuse.

* Producers are separated from the generic recursion pattern. The use of coalgebras and unfold
gives an additional benefit: the real production process is separated from the recursion pattern.
In Figure 5.1, genl is manually invoked several times, and so are gen2 and gen3. Yet such
boilerplate can be captured by unfold, a generic recursion for building data structures. Making
use of generic recursion schemes, instead of ad-hoc recursive functions, gets programs easier to
reason about and optimize.

* The two dimensions of strategies get untangled antomatically. Coalgebras represent the pro-
duction strategies; and the composition of coalgebras, though not as easy as composing alge-
bras, can be achieved by specialized combinators which reveal certain composition/distribu-
tion strategies. By adding a bit of abstraction, the two kinds of strategies get untangled, and
can further form various combinations with flexibility and reusability. Meanwhile, specialized
combinators make the composition more concise and less error-prone in client code.

82

5.1 Overview

GENERATORS AS REUSABLE COALGEBRAS ~ Recall thata monadic coalgebra has the following type:
type CoAlgM m f a =a ->m (f a)

At this point, one may want to instantiate m with Gen. However, in order to define coalgebras as
reusable components, we use monad transformers [Liang et al., 1995] to abstract the monad. Hence
the generator in Figure 5.1 is refactored into the following coalgebras:

gLitF :: MonadRand m => CoAlgM m LitF Int
gLitF _ = 1iftM Lit $ choose (0, 100)

gBoolF :: MonadRand m => CoAlgM m BoolF Int
gBoolF _ = 1iftM BoolLit $ choose (False, True)

gAddF :: (MonadMaybe m, MonadRand m) => CoAlgM m AddF Int
gAddF n | n <=0 = none
| otherwise = return $ Add (n - 1) (n - 1)

gEqualF :: (MonadMaybe m, MonadRand m) => CoAlgM m EqualF Int
gEqualF n | n <=0 none
| otherwise return $ Equal (n - 1) (n - 1)

where
none :: MonadMaybe m => m a
stands for a failure, and
choose :: MonadRand m => Random a => (a, a) ->m a

is a generalization of the choose in QuickCheck for random selection in a specific range. Those coal-
gebras are polymorphic on the monad, and all have the same carrier type, namely Int for depth size.

ComrosING CoaLGEBRAS SCCL provides a number of specialized coalgebra combinators. For a
uniform distribution, the monad is instantiated to

type Weighted = MaybeT (WeightT (RandT Identity))

where MaybeT corresponds to MonadMaybe for encoding failure. WeightT, defined in SCCL, models
a weighted distribution by maintaining a list of weights in state; it is similar to frequency, but de-
signed for coalgebra composition in a binary form. RandT, also from SCCL, is like a generalization
of "QuickCheck.Gen" using monad transformers; some auxiliary functions, including choose, are
captured by MonadRand.

SCCL defines the combinator |*|,, specialized for Weighted, with the following signature:

(|*]w) :: Cardinality g =>
CoAlgM Weighted f a -> CoAlgM Weighted g a -> CoAlgM Weighted (f @ g) a
It realizes such a composition strategy: to perform a weighted random distribution over successful
generators for each construction. The constraint Cardinality g is used to check the border in a

chained composition; it will be introduced later. The generator can be modularly constructed and
tested in the I0 environment:

83

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

generateW :: (Cardinality f, Traversable f) =>
[Double] -> a -> CoAlgM Weighted f a -> I0 (Fix f)
generateW = ...

testW :: Int -> I0 (Fix (LitF & BoolF & AddF & EqualF))
testW n = generateW [1, 1, 1, 1] n gen
where gen = gLitF |*]|, gBoolF |x*|, gAddF |*|, gEqualF

Here generateW is an auxiliary function; it takes three arguments: the list of weights, the input, and
the (composed) coalgebra. It applies the generic monadic unfold to the coalgebra, and then evaluates
the monad under I0. Finally testW has the same functionality as Figure 5.1, since all weights are set
tol.

Besides | * | ,, SCCL provides another combinator for a dynamic distribution (different from III).
When the monad is instantiated to Dynamic:

type MaxArity = Int

type MaxDepth Int

type ReadEnv = (MaxArity, MaxDepth)
type Acc = Double

type Bound = Int

type StateEnv = (Acc, Bound)

type Dynamic = MaybeT (StateT StateEnv (ReaderT ReadEnv (RandT Identity)))
The specialized combinator

(|*]q) :: (Cardinality g, Arity f, Arity g, Derive a Int) =>
CoAlgM Dynamic f a -> CoAlgM Dynamic g a -> CoAlgM Dynamic (f & g) a

samples a binomial distribution over functors, based on their arities and the depth of tree generation.
We use the term “arity” to represent the number of sub-nodes/branches in a construct. In the above
example, LitF and BoolF have arity 0, while Add and Equal have arity 2. Similar to Figure 5.3, this
strategy arranges more probability to high-arity constructs near the root, and more preference on low-
arity constructs when the generation goes deeper. The carrier type is still abstract, but the constraint
"Derive a Int" requires that it includes an integer for observing the depth of generation. By the
binomial distribution, the probabilities are changed more smoothly.
Now the generators can instantly be composed by | | 4:

gen’ = gLitF |*|4 gBoolF |*|; gAddF |*|4; gEqualF
before fed to unfoldM. This reflects the reusability of coalgebras with different composition strategies.
REUSABILITY OF COMBINATORS Since the combinators have abstracted the carrier type, they can

be reused to compose new coalgebras. To generate well-typed expressions as in Figure 5.2, taking
EqualF as an example, the new coalgebra would be:

gEqualF’' :: (MonadMaybe m, MonadRand m) => CoAlgM m EqualF (Type, Int)
gEqualF' (t, n) | t == TInt = none
| n <=0 = none

84

5.1 Overview

| otherwise = do t <- elements [TInt, TBool]
return $ Equal (t, n - 1) (t, n - 1)

Such a generator can be composed with other well-typed generators by either ||, or [*]4. It
is observed that by untangling production strategies with composition strategies, each part becomes
reusable components, and can flexibly be combined in various ways.

MonNAD TRANSFORMERS FOR FULL EXTENSIBILITY The use of monad transformers not only
achieves reusability in coalgebras, but also provides a third dimension of extensibility: the function-
ality (computational behaviors) of programs is made extensible. In this way, more specialized combi-
nators can be developed to encode new composition strategies.

5.1.3 An Overview of SCCL

Our methodology, to be presented in the following sections, shows that composition strategies should
have the foundation in natural transformations from the product of functors to the sums-of-products.
Moreover, specialized combinators can be derived from the natural transformations, and are directly
applicable to coalgebras. The previous example on random generators has shown that, specialized
combinators are responsible for encapsulating composition/distribution strategies without revealing
the implementation to the users. As a consequence, client code can be simplified significantly.

CHALLENGES OF MODULARIZATION Although modularizing producers with coalgebras and spe-
cialized combinators offers many benefits, such modularization can be challenging in terms of imple-
mentation. Firstly, for different applications, the challenges can be different, and various composition
strategies have to be identified and generalized into algorithms, patterns or modules. For example, for
the random distributions, |*|,, and | |4 have to deal with the weights, cardinalities, arities of func-
tors, as well as the interaction with inputs. Also recall thatin Chapter 4, we have identified three algo-
rithmic challenges in modularizing parsing: left-recursion elimination, ordering and backtracking. A
similar ordering issue also appears in modularizing small-step semantic evaluation, another application
of producers. To avoid verbose manual ordering, SCCL encapsulates the strategy of a priority-based
deterministic composition. Secondly, to ensure type-safety introduces additional difficulty in mod-
ularization. In SCCL, since functors are composed by binary co-products, the combinators are also
designed in a binary form, which increases the difficulty of implementation.

AprrricaTION OF THE SCCL L1BRARY Fortunately, SCCL has been designed for utility in the fol-
lowing three applications:

* Modular random generation;
* Modular small-step semantics;
* Modular monadic parsing.

A detailed description of SCCL is shown in Table 5.1. There are two basic strategies of compo-
sition. The list monad models non-determinism, and [++| merges all results together; this can be
used in data enumerators. The Maybe monad models possible failure of computations, and corre-
spondingly |<| is the combinator for selecting the first successful result. For the three applications,

85

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

Table 5.1: An overview of SCCL.

Modules Monad Transformers Monad Combinators Strategy
[1 |++4]| Merging all possible results.
Basic Combinators MonadMaybe
Maybe 1< Selecting the first successful result
Uniform ¥ Random selection with uniform distribution.

. RandT - MonadRand . N . .
Random Generation WeightT - MonadWaight Weighted ||, resetW | Weighted distribution on successful generators

Applications Dynamic |*la, resetD | Dynamic distribution with size bound
Small-Step Semantics PriorT - MonadPrior Eval |<>|, check | Single-step deterministic reduction.
Monadic Parsing ParserT - MonadParser Parser |<<| First successful parser.
a
IS
i
I
aF ! aG
| aF<+>aG
I
I
I
Inl Inr
fa—>(f@g) a<—— g a

Figure 5.5: Generic combinator for algebras.

we define new monad transformers by using Haskell monad transformer library (MTL), construct
specialized monads and design the corresponding combinators to meet our needs.

For quick reference, the type signatures of the combinators are presented in Figure 5.7. The first 7
are specialized coalgebra combinators, while the last 3 combinators provide auxiliary use in producers.
Detailed definitions will be introduced later.

5.2 Composability of Coalgebras, and Product Forests

Our exploration begins from this section on the essence of modularizing f-coalgebras. The inspira-
tion comes from the fact that Data Types a la Carte [Swierstra, 2008] implies a generic combinator
for composing f-algebras. However, f-coalgebras are no longer naturally composable to form a co-
product coalgebra, but instead they form a product coalgebra. Executing such a coalgebra results in
a special form of data structure called a product forest. Section 5.3 then discusses how to extract the
desired sums-of-product tree from a product forest.

5.21 The General Combinator for Coalgebras

Recall that Section 2.3.3 witnesses how DTC [Swierstra, 2008] achieves modular evaluation. Specif-
ically, the evaluation algebra evalAlgebra is put under the type class Eval. By implementing an
instance of Eval over the co-product type, it allows algebras to be automatically composed. An alter-
native for this is to make the composition explicit:

(<+>) :: (fa->a) >(ga->a) > (fdg)a->a
(<+>) aF _ (Inl x) = aF x

86

5.2 Composability of Coalgebras, and Product Forests

a
1
I
I
I
I
I

+

/ c\

fa+—"+ —(f®g) a—=2—3ga

Figure 5.6: Generic combinator for coalgebras.

|++] :: CoAlgM [] f a -> CoAlgM [] g a -> CoAlgM [] (f @ g) a
|<] :: CoAlgM Maybe f a -> CoAlgM Maybe g a -> CoAlgM Maybe (f & g) a

|*], :: (Cardinality f, Cardinality g) =>
CoAlgM Uniform f a -> CoAlgM Uniform g a -> CoAlgM Uniform (f & g) a

|*|, :: Cardinality g =>
CoAlgM Weighted f a -> CoAlgM Weighted g a -> CoAlgM Weighted (f & g) a

|*|q :: (Cardinality g, Arity f, Arity g, Derive a Int) =>
CoAlgM Dynamic f a -> CoAlgM Dynamic g a -> CoAlgM Dynamic (f @ g) a

|<>] :: CoAlgP h Eval f a -> CoAlgP h Eval g a -> CoAlgP h Eval (f & g) a
|<<| :: CoAlgM Parser f a -> CoAlgM Parser g a -> CoAlgM Parser (f & g) a
resetW :: Weighted a -> Weighted a

resetD :: Dynamic a -> Dynamic a
check :: CoAlgP f Eval f (Fix f) -> CoAlgP f Eval f (Fix f)

Figure 5.7: SCCL combinators and their type signatures.

(<+>) _ aG (Inr x) = aG x

This generic combinator <+> combines an f-algebra and a g-algebra into an (f & g)-algebra. The
resulting algebra can then be fed to the generic fold function, to perform a traversal on Fix (f &
g) trees. This combinator is based on the type isomorphism between (f a -> a) X (g a -> a)
and (f @ g) a -> a, demonstrated by Figure 5.5 with a categorical-style diagram. Using such a
combinator exposes the underlying mechanism of composition explicitly.
From the perspective of duality, it is natural to ask the question: can we build trees of type Fix
(f @ g),given an f-coalgebra and a g-coalgebra?
Generally speaking, to produce such trees from the generic unfold, we need a coalgebra of type
a -> (f @ g) a. Unfortunately, (a -> f a) X (a -> g a) isnotisomorphictoa -> (f & g)
a,buttoa -> (f ® g) a. Here ® is the product of two functors:

data (f ® g) a = Prod (f a) (g a)

87

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

And the general combinator for coalgebras should be defined by:

(<x>) :: (@ ->fa) ->(a->ga) ->a->(f®g4g)a
cF <x> ¢cG = \a -> Prod (cF a) (cG a)

However, itis seemingly of little use. In practice, a composite functor usually has a “sum-of-products”
form, as below:
f=a1 xXas X ... Xa,+by Xby X ... Xbp+ ...

where each product represents a constructor. For example, the expression functor in Section 2.3.3 is
denoted by F(X) = Int + X * X, combining the literal case with the addition case. The binary sum
describes the extensibility of the abstract syntax, and hence each product is considered as an indivisible
unit. When we define a coalgebra for generating expressions of height n, it would return

Add (n - 1) (n - 1)
to generate a complete binary tree, or return
Add 0 (n - 1)

foralinear tree. It does not make much sense to define coalgebras for the left and right sub-expressions
separately. But if we really define coalgebras for every product, and compose them with (<*>), the
unfold will generate a “product-of-products” structure. What does such a structure look like?

5.2.2 Product Forests

To be more concrete, we define two functors for literals and the addition, separately. Also, we will
use the type synonym below for coalgebras throughout this chapter.

type CoAlg f a=a -> f a
data LitF a = Lit Int
data AddF a = Add a a

We anticipate to generate a complete binary tree from input (n, h), such thatit has height h and
denotes an expression whose sum is n. For that goal, two coalgebras are defined separately for LitF
and AddF as follows:

hLit :: CoAlg LitF (Int, Int)

hLit (n, h) = Lit n

hAdd :: CoAlg AddF (Int, Int)

hAdd (n, h) = Add (n ‘div‘’ 2, h - 1) (n ‘div' 2 + n ‘mod‘ 2, h - 1)

where hLit simply returns a literal of n, and hAdd tries to separate n in half for the two children of
Add, with height h decreased by 1.
Now we intend to test the (<*>) combinator:

forest :: Fix (LitF &® AddF)
forest = unfold (hLit <*> hAdd) (11, 1)

And forest will have the following structure (code for pretty-printing omitted):

88

5.3 From Product Forests to Sum-Of-Products

PI’Od(11 1)

7

I+

V\/

VN VN
a PN

Prod (2,-1) PI"Od(3,_1) Prod (3,-1) Prod(3,_1)

/

Figure 5.8: The structure of forest, generated byunfold (hLit <*> hAdd) (11, 1). Thesubtree
with underlined nodes and double-line edges reflects the expression 5 + 6. And the subscript of Prod
represents the input to the coalgebra at every node.

In (Prod (Lit 11)
(Add (In (Prod (Lit 5) (Add (In (Prod (Lit 2
(In (Prod (Lit 3
(In (Prod (Lit 6) (Add (In (Prod (Lit 3
(In (Prod (Lit 3

) ..))

) o))

) ..))

) .)))))))

It is, in fact, an infinite structure. The root of the tree is a pair consisting of Lit 11, generated by
hLit, and a tree starting with Add, generated by hAdd. The latter tree has two subtrees, both of them
also start with a pair. The left components of the pairs are respectively Lit 5and Lit 6, which are
what the result would be if we choose to use hLit at this level. The right components are trees built
using Add, as the results of hAdd.

PropucT ForesTs We call the structures of form Fix (f ® g ® ...) product forests, where
the top-level functor has a product form. It is called a forest, rather than a tree, because it actually
represents 4 family of trees with sharing.

It is hard to deal with this composite structure directly, but one may walk through the forest to
obtain a more familiar sum-of-products tree, of type Fix (LitF & AddF). In Figure 5.8, the subtree
with underlined nodes and double-line edges stands for the tree 5 + 6. It seems that we are making
choices at every node of Prod. So what is the general method for extracting sums-of-product trees
from a product forest?

5.3 From Product Forests to Sum-Of-Products

After unfold generates a product forest from the combined coalgebra, it is necessary to walk through
the forest, make a decision at every node of Prod, and consequently recover a desired sum-of products

89

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

fmap h

fb fc

tp te

fmap, h
gb— g c

Figure 5.9: Naturality of a transformation.

tree, which truly represents the composite abstract syntax. Such a decision maker can be realized by a
natural transformation.

5.3.1 Natural Transformation

A natural transformation t :: f = g is a collection of arrows that, for each type a, transforms a
structure f atog ainaway such that the following naturality holds for any functionh :: b -> c:

tc. fmapy,h = fmap, h.tp

Itisalso depicted in Figure 5.9 with a categorical diagram. Operationally, a natural transformation can
be understood as a transformation that changes only the shape, but not the content of the structure.
In Haskell, this is modelled by the following type synonym:

type f - g = forall a. f a ->g a

where the universal quantification ensures that a program having this type will not examine the ele-
ments of type a stored in f.

EXTRACTING TREES FROM PRODUCT FORESTS A natural transformation t :: f -3 g can be
used to convert Fix f to Fix g by either a fold or an unfold:
Theorem 1. Lett :: f = g, we have that:
fold (In . t) = unfold (t . out)
Proof. Immediate from the hylo-shift law [Hinze et al., 2011]. O

Asacorollary,aFix (f ® g) valuecanbe convertedtoaFix (f @ g) value by eithera fold or
an unfold, if we have a natural transformation from the product to the co-product:

Corollary 2. LetcF :: CoAlg f a,¢cG :: CoAlg g a,andt :: f @ g = f @ g. We have

fold (In . t) . unfold (cF <x> cG) = unfold (t . out) . unfold (cF <x> cG)

UNFOLD-TRANSFORMATION PATTERN Theabove corollary suggests a pattern for extracting a sum-
of-products tree from a product forest, in the following steps:

* Composing coalgebras with the generic combinator <x>;
* Feeding the composed coalgebra to unfold to produce a product forest;

* Applying a fold/unfold-based transformation, to get the sum tree.

20

5.3 From Product Forests to Sum-Of-Products

5.3.2 Deforesting Product Forests

Unfortunately, the unfold-transformation pattern has two main drawbacks:

L. It produces intermediate product forests. In the general case, modularizing coalgebras requires
building product forests. However, these product forests only appear in the middle of computation,
but are absent in the final result. It would be good to eliminate/deforest the product forest, which
may benefit us in terms of time and space efficiency.

1. It is hard to transform product forests with n-ary products. In the transformation/selection func-
tion there are two functors involved:

t:: f®g=>1FBg
The function is genericon f and g. Nevertheless, if a product forest is built on the nested composition
of three coalgebras,

triForest :: Fix (fl ® (f2 ® f3))
one layer of transformation can only transform the outermost product:

unfold (t . h) triForest :: Fix (fl @& (f2 ® f3))

For a deep transformation, one option is to tediously define transformation functions for different
arities. For example:

t3 :: fTR (g®h) > fd (gD h)

Although t3 can be generated by t, it is still inconvenient to use since the arity can be unfixed. A
better approach could be using the list-of-functor approach by [Oliveira et al., 2015] to replace the
binary products and co-products, so that we obtain a global view of all functors. Nevertheless, it still
requires cumbersome code. While this drawback is more of a technical matter, it requires significant
additional sophistication to be dealt with properly.

Both of the drawbacks motivate us to simplify the construction of sum-of-products by deforesta-
tion [Wadler, 1988]. Formally,

Theorem 3. Forallh :: CoAlg f aandt :: f = g, we have that
unfold (t . out) . unfold h = unfold (t . h)

Proof. This is called functor fusion law for unfolds in [Hinze, 2010]. A simple proof uses the ana-
fusion law from [Hinze, 2010; Pardo, 1998]:

h . k= fmap k . h’ = unfold h . k = unfold h’
It suffices to prove that t . out . unfold h = fmap (unfold h) . t . h:

t . out . unfold h

{- definition of unfold h -}
t . fmap (unfold h) . h
= {- naturality of t -}

fmap (unfold h) t . h

91

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

Corollary 4. LetcF :: CoAlg f a,¢cG :: CoAlg g a,andt :: f ®@ g = f @& g. We bave

fold (In . t) . unfold (cF <x> cG)

unfold (t . out) . unfold (cF <x> cG)
unfold (t . (cF <x> cG))

The above corollary shows that the unfold-transformation pattern can be replaced with a single
unfold, where the natural transformation is earlier applied to the product coalgebra. It simplifies and
enhances the efficiency of construction.

5.3.3 Discussion

A natural transformation plays the role of a selector, which reflects some certain selection strategy
in real applications. Nevertheless, it is worth noticing that, since naturality is the pre-condition of
deforestation, our selection strategies are restricted to the following scenarios:

I. THE SELECTION IS DETERMINED BY FUNCTORS OR CONSTRUCTORS. There are not many ex-
amples for transformations of type t :: f ® g = f @ g. One could be the following function
that always chooses the first functor in the product:

alwaysFirst :: f ® g = f & ¢
alwaysFirst (Prod x _) = Inl x

which is not very useful in practice. While alwaysFirst is polymorphicon f and g, a specialized selec-
tor can instantiate both functors, and perform pattern-matching on their constructors respectively.
It is, however, considered ad-hoc and harmful, thus is not common in practice.

II. THE SELECTION IS DETERMINED BY INPUTS. Although inputs are not involved in the previous
theorems, we can generalize the definition of product to store input values:

data (f ® g) a b =Prod a (f b) (g b)
while the new generic combinator becomes

(<x>) :: CoAlg f a -> CoAlg g a -> CoAlg ((f ® g) a) a
cF <x> ¢cG = \a -> Prod a (cF a) (cG a)

Correspondingly, Theorem 3 can be adapted to the transformation
t:: (f®g)a—=>TFfdg
as well, and the difference is that now t also allows inputs to make the decision.
III. THE SELECTION INVOLVES PARTIALITY OF FUNCTIONS. One way to select from several coal-
gebras is to think of them as partial functions: some of the coalgebras may fail, and we wish to choose

the first one that succeeds. In Haskell, partiality is often modelled by Maybe so as to catch the failure.
The first step is to introduce the composition of functors:

92

5.4 Monadic Variants

data (f e g) a = Comp { unComp :: f (g a) }

instance (Functor f, Functor g) => Functor (f e g) where
fmap h = Comp . fmap (fmap h) . unComp

Then a f-coalgebra that may fail can be represented by a (Maybe e f)-coalgebra. For instance, vari-
ants of hLit and hAdd in Section 5.2.2 are defined as below:

hLit’ :: CoAlg (Maybe e LitF) (Int, Int)
hLit’ (n, h) | h <=0 = Comp . Just $ Lit n
| otherwise = Comp Nothing

hAdd' :: CoAlg (Maybe e AddF) (Int, Int)
hAdd’ (n, h) = Comp . Just $ Add (n ‘div‘ 2, h - 1)
(n ‘div‘ 2 + n ‘mod’ 2, h - 1)

where hLit’ rejects any positive h compared with hLit. And the following natural transformation

represents our “first-succeed” strategy:

firstSucceed :: (Maybe e f) ® (Maybe e g) = f @ ¢
firstSucceed (Prod (Comp (Just x)) _)
firstSucceed (Prod _ (Comp (Just y)))

Inl x
Inry

which is possible to raise runtime exceptions on non-exhaustiveness. As a result, by Theorem 1 and
Theorem 3,

fold (In . firstSucceed) . unfold (hLit’ <%> hAdd’)
unfold (firstSucceed . out) . unfold (hLit’ <x> hAdd’)
unfold (firstSucceed . (hLit’ <> hAdd’))

Applying the above function to (11, 1) yields expression (5 + 6), of type Fix (LitF & AddF).
In this way, our initial goal is achieved, namely to generate a complete binary tree of a certain height
and certain sum.

Besides the above scenarios, in a more general case, it is possible to define more specialized trans-
formations that have knowledge of the overall structure, together with all the content inside the prod-
uct forest. That is to say, such transformations are non-natural. Fortunately, our study supports that
natural transformations are more commonly used in practice, but have to involve side effects that
take the main responsibility for selection. The above partiality example is actually a special case of
side effects, but it succeeds in representing a general selection strategy. It is used here to whet the
appetite before we introduce more exploration on monadic variants in later sections, together with
some specialized combinators in our library with applications.

5.4 Monadic Variants

In this section, we generalize the approach for composing coalgebras to the effectful world. While
pure coalgebras are restricted in terms of practicality, with monadic coalgebras, the side effects take
the responsibility for realizing sophisticated selection strategies, and deriving specialized combinators
for certain operations with proper encapsulation of strategies.

93

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

type AlgM m f a = f a ->m a

foldM :: (Traversable f, Monad m) => AlgM m f a -> Fix f -> m a
foldM h = h <=< mapM (foldM h) . out

Figure 5.10: The generic monadic fold.

type CoAlgM m f a =a ->m (f a)

unfoldM :: (Traversable f, Monad m) => CoAlgM m f a -> a -> m (Fix f)
unfoldM h = fmap In . (mapM (unfoldM h) <=< h)

Figure 5.11: The generic monadic unfold.

5.4.1 Monadic Folds and Unfolds

Monapic ALGEBRAS A monadic algebra has type signature f a -> m a, where f is a functor, m
a monad, and a is the carrier. For instance, when m is the Maybe monad, an algebra can represent
evaluation on arithmetic expressions with possible failure. Generalizing the generic fold, a monadic
catamorphism requires a lifting of functor f in [Pardo, 1998], while in Haskell this is achieved by
making f an instance of Traversable, so as to allow applications to be performed and collected over
the functor. An implementation is given in Figure 5.10. Noticeable is the use of mapM, provided by
Traversable f. The fish operator <=< denotes the right-to-left Kleisli composition.

It is worth mentioning that monadic algebras are still naturally composable as pure ones; the
general combinator below witnesses one direction of the type isomorphism:

(<++>) :: AlgM m f a -> AlgM m g a -> AlgM m (f ® g) a
(<++>) aF _ (Inl x) = aF x
(<++>) _ aG (Inr x) = aG x

Monapic CoALGEBRAS A monadic coalgebra has typea -> m (f a), given monad m, functor
f and carrier a. [Pardo, 1998] proposed monadic anamorphism as the dual operation to monadic
catamorphism. In the context of Haskell, an implementation is presented in Figure 5.11. Just like
unfold, the coalgebra is applied first to the input, resulting in a top-down procedure.

Having known that the composition of pure coalgebras results in a product type, we need to
figure out how such composability is generalized to the monadic case.

5.4.2 General Combinator for Monadic Coalgebras

For the composition of two monadic coalgebras, one might consider to have a combinator with the
following signature:

comp :: CoAlgM m f a -> CoAlgM m g a -> CoAlgM m (f ® g) a

But somewhere it requires to producem ((f ® g) a) fromm (f a) andm (g a). One possible
implementation could be:

94

5.4 Monadic Variants

Fix ((mef) @ (meg)) == Fix (me(f @& g)) —=2= m (Fix (f & g))

Figure 5.12: Two-step transformation from a monadic product forest to a monadic sum tree.

comp :: Applicative m => CoAlgM m f a -> CoAlgM m g a -> CoAlgM m (f ® g) a
comp f g = \a -> 1iftA2 Prod (f a) (g a)

which sequentially composes two monadic values as applications. Nevertheless, this does not repre-
sent a general composition; it mixes the effects of both values in an irreversible way and often behaves
unexpectedly. For example, when mis the list monad, a lot of duplicate results are produced. The real
solution is to keep the two effects independent with a pair, and delegate effect handling to a subse-
quent transformation. It is due to the isomorphism between (a -> m (f a)) X (a -> m (g a))
anda -> (m (f a), m (g a)).

Instead of defining a new datatype for the pair, we can reuse the product combinator (®) with
functor composition (e), to model monadic coalgebras with pure ones. The general combinator for
pure coalgebras can be reused here:

(<*>) :: CoAlg (mef) a -> CoAlg (meg) a -> CoAlg ((mef) ® (meg)) a
cF <*> ¢G = \a -> Prod (cF a) (cG a)

This is connected to the previous study and is thus helpful for reusing the properties.

5.4.3 Flow of Construction and Deforestation

Given monadic coalgebras of functor f and functor g, our final desired result would be a sum-of-
products tree with effects, namely with typem (Fix (f & g)). Yet the above general combinator
generates a Fix ((mef) ® (meg)) value from unfold. This is an effectful product forest, with side
effects hidden inside. Asbefore, we expecta transformation to select the sum tree from product forest.
Seemingly, both foldMand unfoldM are eligible:

foldM alg :: Fix ((mef) ® (meg)) -> m (Fix (f @ g))
unfoldM coalg :: Fix ((mef) ® (meg)) -> m (Fix (f @ g))

To explore it further, we expand the single step into two steps (see Figure 5.12):

* P1: a pure transformation from the product forest, to the fixpoint of monadic co-product.
This step does not thread side effects.

* DP2: atraversal throughout the structure, to evaluate the monadic actions and collect the results.
This step threads the effects and finally produces the desired monadic sum tree.

The more interesting part is P1, as it is where selection strategies are involved. P2 can be accom-
plished by a simple unfoldM operation to thread the effects throughout the structure. As a whole,
the complex unfold-transformation pattern can be implemented by a single function in Figure 5.13.
Note that the unfoldM relies on an instance of Traversable over (f @ g), which can be automati-

cally derived by Haskell.

95

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

type Trafom f g = (mef) ® (meg) — me(f & g)

build :: (Monad m, Traversable f, Traversable g) =>
CoAlg (mef) a -> CoAlg (meg) a -> Trafom f g ->a ->m (Fix (f & g))
build cF cG t = unfoldM (unComp . out) . unfold (t . out) . unfold (cF <x> cG)

Figure 5.13: The implementation of monadic unfold-transformation pattern.

DEFORESTATION The previous deforestation technique in Section 5.3.2 is also adaptable here to
replace the unfold-transformation pattern. The formal theorem is presented as follows:

TheoremS. Forallh :: CoAlg f aandt :: forall x. f x ->m (g x), we bhave

unfoldM (t . out) . unfold h = unfoldM (t . h)
Proof. This is a generalization of Theorem 3 for monadic anamorphisms. To prove it we use the
monadic ana-fusion law in [Pardo, 1998], which states thatforallj :: b ->m (g b),k :: a ->
b,j’ :: a ->m (g a), wehave

j . k = fmap,, (fmapy; k) . j' == unfoldM j . k = unfoldM j’

For this case weneed t . out . unfold h = fmap,, (fmap, (unfold h)) . t . h. The proof

goes:
t . out . unfold h
= {- definition of unfold -}
t . fmapy (unfold h) . h
= {- naturality of t -}
fmap,, (fmap, (unfold h)) . t . h
O]
Corollary 6. Given two monadic coalgebras and a natural transformation t :: Trafo m f g, the

build function in Figure 5.13 can be deforested into a single unfold, since

build cF cG t
= {- definition of build -}

unfoldM (unComp . out) . unfold (t . out) . unfold (cF <x> cG)
= {- Theorem 3 -}

unfoldM (unComp . out) . unfold (t . (cF <x> cG))
= {- Theorem 5 -}

unfoldM (unComp . t . (cF <x> cG))

96

5.4 Monadic Variants

enumLit :: CoAlg ([] e LitF) ([Int], Int)
enumLit (xs, n) = Comp $ map Lit xs

enumAdd :: CoAlg ([] e AddF) ([Int], Int)
enumAdd (xs, n) | n <=0 = Comp []
| otherwise = Comp [Add (xs, n - 1) (xs, n - 1)]

Figure 5.14: Enumerators of LitF and AddF up to a certain depth.

ExampLE Whenmisinstantiated to the list monad, the operations are able to describe a collection of
results, which exposes the underlying non-determinism. Following the previous arithmetic expression
language in Section 5.2.2, an example of monadic coalgebras is defining enumerators that exhaustively
enumerate all valid expressions up to a certain depth. Figure 5.14 defines two coalgebras of LitF and
AddF respectively. Note that an input (xs, n) implies that the generated expressions have depth at
most n, and their leaves (literals) are extracted from list xs.

Since we intend to collect all valid results, the selection strategy here is to combine the results from
both sides by concatenation. The natural transformation is as follows:

mergeResults :: Trafo [] f g
mergeResults (Prod (Comp fs) (Comp gs)) = Comp $ map Inl fs ++ map Inr gs

Consequently the final enumerator of the combined language is obtained either from the unfold-
transformation pattern, or the deforestation approach:

genEnum :: ([Int], Int) -> [Fix (LitF & AddF)]
genEnum = build enumLit enumAdd mergeResults

genEnum’ :: ([Int], Int) -> [Fix (LitF & AddF)]
genEnum’ = unfoldM (unComp . mergeResults . (enumLit <*> enumAdd))

Feeding ([1, 2], 1) toeither functionyields [1, 2, (1 + 1), (1 + 2), (2 + 1), (2 + 2)],
a list of all 6 expressions within depth 1 as expected.

S5.4.4 Discussion

This section gives more insights into monadic unfolds, and draws a connection to the approach in
Chapter 4.

How ABouT foldM? We have not mentioned the fold-based transformation in monadic unfolds.
Looking back at Figure 5.12, P1 can instead be a fold-transformation, since Theorem 1 ensures the
equivalence. However, P2 cannot be an instance of foldM. On the one hand, foldM requires the
constraint Traversable (me(f & g)), but it is not clear how it holds for an arbitrary m. On the
other hand, even if foldM is applicable, Theorem 1 does not immediately carry over to a monadic
setting. Someone might assume that

foldM (fmap In . t) = unfoldM (t . out)

97

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

for any natural transformation t, this does not hold in general. In the pure setting, the naturality is
the key property to ensure Theorem 1. Whereast :: forall x. f x -> m (g x) is not sufficient
to guarantee the corresponding property

trizg =<< mapMy h z = mapMy; h =<< tp;r 2

wherez :: f (Fix f),andh :: Fix f -> m (Fix g) standing for the recursive transformation.
The real reason for this inequality comes from the essence of foldM and unfoldM: one threads and
collects effects in a bottom-up manner, while the other does the same top-down. Also in the above
property, we could see that the left-hand side (for foldM) applies traversal and sequencing before the
transformation, while the right side (for unfoldM) goes in the opposite direction.

ExaMpPLE A quick counter-example for the equality is given below. For the transformation, we
instantiate both fand g to LitF & AddF, and m to the list monad. In such a self-transformation dup
duplicates each branch of Add and returns two additions in total, but puts any Lit into a singleton
list:

dup :: (LitF & AddF) a -> [(LitF ¢ AddF) al
dup n@(Inl _) = [n]
dup (Inr (Add x y)) = [Inr $ Add x x, Inr $ Add y y]

Now feeding "1 + (2 + 3)"to "foldM (fmap In . dup)" yields
[1+1, (2+2)+(2+2), 1+1, (3+3)+(3+3)]
Yet the same input on "unfoldM (dup . out)" gives
[1+1, (2+2)+(2+2), (2+2)+(3+3), (3+3)+(2+2), (3+3)+(3+3)]

Step-by-step evaluation is presented in Figure 5.15.

Two-STEP TRANSFORMATION? Figure 5.12 uses a two-step transformation to describe the process
of selecting an effectful sum tree from a product forest, since they play different roles therein. The
second step, however, is merely an identity traversal over the structure to collect the effects. The
reason for separating this step is that, in some special situations, we may not anticipate to perform
such a traversal.

Recall the enumeration example in Section 5.4.3. For the list monad, P2 behaves like a flattening;
while Fix ([]ef) stores shared structures, the unfoldM expands the effectful structure into a list of
expressions. It is equivalent to the following recursive function:

flatten :: Traversable f => Fix (mef) -> m (Fix f)
flatten (In (Comp xs)) = [Iny | x <- xs, y <- mapM flatten x]

which uses monad comprebensions [Wadler, 1990]. Now suppose that we implement an enumerator
for areal-world language, which incorporates a large number of functors (constructors). The enumer-
ator will generate a lot of tree structures, but there is considerable sharing on sub-trees. In that case, it
would be much inefficient to check properties on the large list produced by flatten, because shared
structures will be copied during flattening, consequently the calculations of property checking will
be duplicated. Instead, for those calculations that can be modelled by bottom-up traversals, one may
implement a f-algebra, lift it into an effectful ([]ef)-algebra, and directly apply it to Fix ([]ef)
with fold. That results in a considerable reduction to the execution time.

928

5.4 Monadic Variants

1+(2+3) 1+(2+3)
recurse % transform
[]+[2+2,3+3] [L+1(@2+3)+(@2+3)
sequence i recurse
L+(@2+2),1+(@3+3) M1+0][2+23+3]+[2+2,3+3]]

sequence
transform

M+1L[2+2)+(2+2),(2+2) + (3 +3),

[I+1@2+2)+(@2+2) L+1(3+3)+(@E+3)] (3+3)+(2+2),(3+3)+(3+3)]]
ljuin ljcin
+1,2+2)+(2+2),1+1,(3+3)+(3+3)] +1,(2+2)+(2+2),(2+2)+(3+3),

(3+3)+(2+2),(3+3)+(3+3)]

Figure 5.15: Evaluation steps of foldM-based transformation (left) and unfoldM-based transformation
(right), withinput1 + (2 + 3). The underlines highlight what dup does.

ComPARISON WITH TYPE-SAFE MODULAR PARSING In Chapter 4 we have introduced our ap-
proach for modular parsing in Scala. In fact, parsing is only one representative among the applications
of building structures (producers). While this chapter discusses a more general composition of coal-
gebras in functional programming, it is interesting to observe the essence and connection between
both approaches across different programming languages.

In short, the Scala approach uses a more general recursion pattern to modularize producers, while
the Haskell approach aims at modularizing coalgebras with generic unfolds. Recall that in the Scala
approach, an extensible parser has the following type signature:

def parser[E]: Alg[E] => Parser|[E]

where Alg[E] represents an abstract syntax tree from an Object Algebra interface, and Parser[E]
stands for a packrat parser. The type parameter E makes parser polymorphic. This function does
not require a String parameter for the input, for it has been incorporated into Parser. To put it
more general, an extensible producer has the following type:

def build[E]: A => Alg[E] => E

where A is the input type. In Object Algebras, an object is represented by a generic function Alg[E]

=> E rather than a real structure. Although we could connect this type signature to hylomorphisms
in functional programming, it is better to understand that Alg[E] => E is isomorphic to Fix f in
Haskell. Furthermore, the extensibility of parser also relies on inheritance and dynamic dispatch in
Scala, for which open recursion is the alternative in Haskell. To summarize, an equivalent form in
Haskell would be:

type Open x = X -> X
build :: Open (a -> Fix f)
and a combinator would have type

compose :: Open (a -> Fix f) -> Open (a -> Fix f) -> Open (a -> Fix f)

99

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

While modularizing coalgebras requires a top-down unfold, compose is able to perform bottom-up
selection strategies, since Fix f structures are accessible. This corresponds to a more specialized (non-
natural) transformation in the unfold-transformation pattern.

Although compose is eligible for more general situations, it has to sacrifice some properties due
to such generality. In contrast, recursion schemes like unfold separate the generic recursion from the
definition of coalgebras, thus they guarantee more properties including productivity, since a coalge-
braa -> f aalways produces its outermost constructor without any consumption. Consequently,
programs get easier to be reasoned about and optimized.

EncapsurLaTiON The Scala code encapsulates parsing into the Parser type, and defines combi-
nators over that type. Similarly, we can port the enumeration example in Section 5.4.3 to Scala as
follows:

trait Enum[E] {
def enum(i: Int): List[E]

def or[E](x: Enum[E], y: Enum[E]) = new Enum[E] {
def enum(i: Int) = x.enum(i) ++ y.enum(1i)

}

Correspondingly, an enumerator has type ALg[E] => Enum[E], and is extensible via the or combi-
nator.

5.5 Implementation of SCCL

This section presents the implementation of our SCCL library. It starts with two basic combinators,
known to express some fundamental strategies of selection to be used in more complicated behaviors.
Then the basic infrastructure adopts monad transformers [Liang et al., 1995] to make the function-
ality extensible in eftectful computations, and also to make coalgebras reusable. Besides the use of
Haskell monad transformer library (MTL), SCCL further combines some transformers and packs
them into new monad transformers for general purpose, and later they are used for our applications:
random generation, small-step evaluation, and monadic parsing. SCCL defines several specialized com-
binators for those applications, all of which are based on effectful natural transformations. The design
of SCCL aims to convey the idea that, for those unfold-shape operations that build data structures,
users have the power to achieve:

* extensibility on functionality;
* reusability of coalgebras;
* modularization in selection strategies.

Furthermore, specialized combinators can be designed to free users from explicitly handling compo-
sition in a cumbersome way.

100

5.5 Implementation of SCCL

5.5.1 Basic Combinators

The two basic combinators are specialized for []1 and Maybe respectively.

I. LIST MONAD: MERGING ALL POSSIBLE RESULTS. In Section 5.4.3, mergeResults is the trans-
formation that carries out such a strategy. While the Applicative instance of list expands non-
determinism in the form of a Cartesian product, it performs concatenation here justas the Alternative
or MonadPlus instance does.

Deriving Specialized Combinators By Corollary 6, we can use the general coalgebra combinator | |
for composition, followed by mergeResults to produce a monadic sum coalgebra directly, before
it is fed to unfoldM. Fusing the general combinator and the transformation gives us a second de-
forestation: the product type can be eliminated. In general, a natural transformation t results in a
combinator that directly composes two monadic coalgebras CoAlgM m f aand CoAlgM m g ainto
CoAlgM m (f & g) a:

(]*]¢) :: CoOAlgM m f a -> CoAlgM m g a -> CoAlgM m (f @ g) a

And one possible definition of this combinator, building directlyont :: Trafo m f g, is:
cF |*]; ¢G = \x -> unComp . t $ Prod (Comp $ cF x) (Comp $ cG x)

Taking mergeResults as an example, the specialized combinator |++| would be:

cF |++| cG
{- derivation from mergeResults -}

\x -> unComp . mergeResults $ Prod (Comp $ cF x) (Comp $ cG x)
{- expanding mergeResults: fs := cF x, gs := ¢cG x -}

\X -> map Inl (cF x) ++ map Inr (cG x)

Such a combinator can be used to implement data enumerators.

I1. Maybe MONAD: SELECTING THE FIRST SUCCESSFUL RESULT. ~ When both coalgebras give op-
tional values, one strategy is to choose the first successful result in order:

(]<|) :: CoAlgM Maybe f a -> CoAlgM Maybe g a -> CoAlgM Maybe (f & g) a
cF |<] ¢G = \x -> fmap Inl (cF x) ‘mplusMaybe’ fmap Inr (cG x)
where Just x ‘mplusMaybe’ _ = Just x
Nothing ‘mplusMaybe‘ y =y

The mplusMaybe behaves the same as mplus of the Maybe monad. At this point, one may feel
that a monadic combinator (or its natural transformation) can be generalized with the MonadP1lus
instance. The generalization could be as follows:

combine :: MonadPlus m => CoAlgM m f a -> CoAlgM m g a -> CoAlgM m (f @ g) a
cF ‘combine’ ¢G = \x -> fmap Inl (cF x) ‘mplus’ fmap Inr (cG x)

Although it seems that both |++] and |<| can rely on MonadPlus, we argue that it does not work in
general. For example, the mplus of I0 is a function that deals with I0OError exceptions. It is unclear
how it can be used in real applications. Furthermore, in the following sections, some combinators will
need to identify the functors for grasping necessary information; the functors are hidden in mplus,
however. Under those circumstances, individual mplus implementations are considered unreliable.

101

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

class Monad m => MonadRand m where
seed :: m StdGen

choose :: Random a => (a, a) ->m a

choose range = 1iftM (fst . randomR range) seed
elements :: [a] -> m a

elements [] = error "elements applied to empty list"
elements xs = (xs !!) ‘fmap‘’ choose (0, length xs - 1)
frequency :: [(Int, m a)] ->m a

frequency [] = error "frequency applied to empty list"
frequency xs = choose (1, total) >>= (‘pick’ xs)

where total = sum (map fst xs)

pick n ((k, x):ys) | n <=k = X
| otherwise = pick (n - k) ys

binomial :: (Double, m a) -> (Double, m a) ->m a
binomial (wl, x) (w2, y) = do

r <- choose (0, 1)

if r <wl / (wl + w2) then x else y

instance Monad m => MonadRand (RandT m) where
seed = RandT $ do s <- get
let (s1, s2) = split s
put s2
return sl

Figure 5.16: The MonadRand library for randomness.

5.5.2 Application I: Random Generation

The first application of modular unfolds is modularizing random data generators. For different fea-
tures, SCCL adopts different strategies represented by combinators.

5.5.2.1 Uniform Distribution

Besides the basic combinators, randomness is in fact another fundamental and commonly-used selec-
tion strategy. SCCL defines RandT as the transformer for randomness, and MonadRand for the library
of auxiliary functions.

TaE RANDOM MoNAD TrRANSFORMER ~ The definition of RandT contains a StdGen! state for the
random seed:
newtype RandT m a = RandT { unRandT :: StateT StdGen m a }

Theinstances for Functor, Applicative, Monad and MonadTrans are straightforwardly implemented;
thus detailed code is omitted here.

"The random seed type comes from System.Random in Haskell.

102

5.5 Implementation of SCCL

class Cardinality (f :: * -> x) where
card :: Proxy f -> Int

instance {-# OVERLAPPABLE #-} Cardinality (f & g) where
card _ = card (Proxy :: Proxy f) + card (Proxy :: Proxy g)

instance {-# OVERLAPPABLE #-} Cardinality f where
card _ 1

getCard :: Cardinality f => CoAlgM m f a -> Int
getCard = card . proxy

proxy :: CoAlgM m f a -> Proxy f
proxy _ = Proxy

Figure 5.17: The code for figuring out the cardinality of a functor.

Then it comes the MonadRand interface, presented in Figure 5.16. Some of the names are bor-
rowed from MonadGen and the QuickCheck [Claessen and Hughes, 2000] library. There is also some
similarity to the QuickCheck-GenT! library. Compared with GenT, RandT removes the size parame-
ter, for sizes are supposed to be maintained by coalgebras in the carrier type. Additionally, while GenT
splits the random seed on every bind operation, RandT defines the seed function for querying random
seeds explicitly, and the state is updated on each query so as to prevent unexpected identical copies.
Moreover, noticeable is the binomial function that chooses between two monadic values given their
weights. This function will be used later in our specialized combinators.

CarpiNaLITY We would like to define a binary combinator that composes an f-coalgebra with a
g-coalgebra. But it is incorrect if we set equal weights to f and g for random selection, because there

can be multiple functors, and hence in the nested composition (say right-associative), the probability
bl

we need to figure out the cardinaliry of f and g, namely the number of individual functors included,
and arrange their weights accordingly. Our approach calculates this automatically from the type in-
formation in Figure 5.17.

In Figure 5.17, Cardinality captures cardinality with a type class, and its instances pattern-match
on the functor. With a co-product form f @ g, the total cardinality is the cardinality of f added to
that of g. By default, an individual functor has cardinality 1. Finally, getCard is able to grasp the
cardinality from a coalgebra of a certain functor f, while proxy identifies and delivers the functor

type.

distribution can be | .. To achieve a uniform random distribution globally over all functors,

STRATEGY: RANDOM SELECTION WITH A UNIFORM DISTRIBUTION. When instantiating the
monad to:

type Uniform = RandT Identity

"http://hackage.haskell.org/package/QuickCheck-GenT

103

http://hackage.haskell.org/package/QuickCheck-GenT

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

The following monadic natural transformation realizes random selection by cardinality:

uniformTrafo :: (Cardinality f, Cardinality g) => Trafo Uniform f g
uniformTrafo (Prod (Comp fs) (Comp gs)) =
Comp $ frequency [(card (getProxy fs), fmap Inl fs),
(card (getProxy gs), fmap Inr gs)]
where getProxy :: m (h a) -> Proxy h
getProxy _ = Proxy

where frequency applies a weighted random distribution. Since the weights are based on cardinality,
this binary composition ensures a uniform distribution over functors. Consequently, the specialized
combinator | *|,, is derived by:

(|*]y) :: (Cardinality f, Cardinality g) =>
CoAlgM Uniform f a -> CoAlgM Uniform g a -> CoAlgM Uniform (f & g) a

cF |*], cG
{- derivation from uniformTrafo -}
\X -> unComp . uniformTrafo $ Prod (Comp $ cF x) (Comp $ cG Xx)
{- expanding uniformTrafo: fs := cF x, gs := cG x -}
\x -> frequency [(card (getProxy (cF x)), fmap Inl (cF x)),
(card (getProxy (cG x)), fmap Inr (cG x))I
{- substituting with the equivalent getCard -}
\x -> frequency [(getCard cF, fmap Inl $ cF a)
(getCard cG, fmap Inr $ cG a)l

Guaranteed by the naturality of uniformTrafo, ||, is generic on the carrier type, and hence is of-
fered reusability.

RuUN A GENERATOR Finally, after coalgebras are composed by | *|,, into a single coalgebra of the
sum-of-products functor, the following function runs the generator by applying the generic unfold,
obtaining the resulting Uniform value and evaluating it in I0:
generatel :: Traversable f => a -> CoAlgM Uniform f a -> I0 (Fix f)
generateU input coalg = newStdGen >>= runUniform
where runUniform g = return . runIdentity . flip evalStateT g .
unRandT $ unfoldM coalg input

5.5.2.2 Weighted Random Distribution with Failure

We continue to generalize the uniform distribution to a weighted random distribution. Moreover,
generators are allowed to have failure.

THE WEIGHT MONAD TRANSFORMER ~ The following WeightT transformer defines the effects needed
for a weighted distribution:

newtype WeightT m a = WeightT {
unWeightT :: StateT (Int, Double) (ReaderT [Double] m) a

}

104

5.5 Implementation of SCCL

class Monad m => MonadWeight m where

pointer ;. m Int

succ rom ()

reset rom ()

getWeight :: Int -> m Double
getAcc :: m Double

setAcc :: Double -> m ()

instance Monad m => MonadWeight (WeightT m) where

pointer = WeightT $ get >>= return . fst

succ = WeightT $ modify $ \(p, acc) -> (p + 1, acc)
reset = WeightT $ put (0, 0)

getWeight p = WeightT $ ask >>= return . (!! p)

getAcc = WeightT $ get >>= return . snd

setAcc w = WeightT $ modify $ \(p, -) -> (p, w)

Figure 5.18: The MonadWeight library for weighted random distribution.

where the weights of different functors are no longer derived by cardinality, but maintained by a list
of doubles in the reader. Additionally, in the state monad, the integer stands for a pointer that locates
the index of the current functor in the weight list. And the Double element stores an accumulative
weight for calculation, embedded here for code simplicity.

Figure 5.18 defines the MonadWeight type class for auxiliary functions. Note that functors will
be composed in a right-associative way, and this forms a one-to-one correspondence with the weight
list. Hence the value of the pointer, say i, denotes the weight of the ith-functor. pointer gets the
current pointer, and there are two valid operations to handle the pointer: succ moves the pointer
one step to the right (i.e. adding the index by 1); reset resets the pointer to 0, and also resets the
accumulative weight to 0 at the same time. getWeight gets a weight from the list specified by index.
Then getAcc and setAcc are the getter and setter for the accumulative weight value, respectively. All
those functions are provided with default implementations for WeightT.

PossiBLE FAILURE ~ Both Section 5.1.2 and Section 5.3.3 have shown the requirement for a repre-
sentation of possible failure in generators. While Section 5.3.3 uses the composition of Maybe with a
functor, it is more general to use the MaybeT transformer. Furthermore, although empty can be used
to denote a failure, it is better to define a class specialized for MaybeT:

class Monad m => MonadMaybe m where
none :: m a

instance Monad m => MonadMaybe (MaybeT m) where
none = MaybeT $ return Nothing

STRATEGY: WEIGHTED DISTRIBUTION ON SUCCESSFUL GENERATORS. Finally, we synthesize
randomness, weighted random distribution and possible failure in the instantiation of the monad:

105

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

(|*]w) :: Cardinality g =>
CoAlgM Weighted f a -> CoAlgM Weighted g a -> CoAlgM Weighted (f & g) a
(|*]w) cF cG a = MaybeT $ do
p <- pointer
rF <- runMaybeT $ fmap Inl (cF a)
rG <- runMaybeT $ succ >> fmap Inr (cG a)
when (getCard cG == 1 && isJust rG) (getWeight (p + 1) >>= setAcc)
wF <- getWeight p
wG <- getAcc
case (rF, rG) of
(Just _, Just _) -> setAcc (wF + wG) >> binomial (wF, return rF)
(wG, return rG)
(Just _, _) -> setAcc wF >> return rF
(— , Just _) -> return rG
_ -> return Nothing
resetW :: Weighted a -> Weighted a
resetW x = reset >> x

Figure 5.19: The combinator for weighted random distribution and the reset function.

type Weighted = MaybeT (WeightT (RandT Identity))

The desired strategy is to perform a weighted random distribution on only successful generators.
This complicated behavior is encapsulated by two combinators, shown in Figure 5.19. Note that
| * | is the coalgebra combinator derived from the natural transformation weightedTrafo, shown
in Appendix B.1. The derivation is straightforward, thus is omitted here.

There are two pre-assumptions: functors are composed by right-associative co-products; and the
length of the weight list equals the number of functors, ensuring a one-to-one correspondence in
order. Hence in |* |, f is always a single functor, but g can be a composite functor. As a result,
the weight of f can be indexed from the weight list, while the weight of g has to be maintained in a
chained coalgebra composition, using the accumulative weight in WeightT.

In Figure 5.19, rF is the result of the f-generator, and rG is obtained by running cG before the
pointer is shifted by succ. Noticeable is that the weight of g is not the sum of all weights in g, but
the total weight of successful generators in g. This invariant is maintained by getAcc and setAcc.
Another point s that we need to check the boundary: when g is a single functor (i.e., with cardinality
1), the accumulative weight is exactly the weight of g when it succeeds.

Then it comes the pattern-matching on rF and rG. By our strategy, a successful generator is prior
to a failing one, and if both succeed, the accumulator integrates both weights, and a random selection
is performed between rF and rG using binomial. By this localized binary composition, the weighted
distribution can be achieved globally for all functors in each round.

Finally, since unfoldMgenerates data by recursion, there are multiple rounds of random selection.
Thus it is necessary to reset the state before each round. In Figure 5.19, this is done by resetw. The
essence of resetW is again a natural transformation, but it is only specialized for the monad, and will

106

5.5 Implementation of SCCL

be applied in the middle of P1 and P2 (in Figure 5.12). Specifically, the construction would be:

unfoldM (unComp . out) . unfold (Comp . resetW . unComp . out)
. unfold (weightedTrafo . out)
. unfold (cF |*|u C€G |*|yp «..)

While after deforestation, it becomes unfoldM (resetW . (cF |*]|y €G |*]|y ...)).

RuUN A GENERATOR SCCL runs a generator with weighted random distribution as follows:

generateW :: (Cardinality f, Traversable f) =>
[Double] -> a -> CoAlgM Weighted f a -> I0 (Fix f)
generateW ws input coalg = assert (getCard coalg == length ws) $

newStdGen >>= runWeighted
where runWeighted g = return . fromJust . runIdentity . evalRandT g .
evalWeightT (0, 0) ws . runMaybeT $
unfoldM (resetW . coalg) input

An assertion checks if the length of the weight list is equal to the cardinality of f (i.e. the number of
functors involved), and coalg is expected to be a composition of coalgebras with | *].,.

5.5.2.3 Dynamic Distribution with Size Bound

SCCL further defines a specialized combinator for random construction with a dynamic distribution
strategy. Additionally, the construction can be restricted with a size bound.

Dynamic DisTriBUTION — The dynamic distribution is designed as follows: the weights of func-
tors are assigned at each round, based on their arities and the input. Functors with larger arities (i.e.
more branches/sub-nodes in the constructors) are more likely to be selected in early rounds, so as to
expand the tree; while functors with smaller arities tend to be selected when the tree goes deeper, so
as to converge the generation quickly. To detect the depth of generation, we rely on the input to give
such information. For example, the input type may contain a height size, which starts with a large
number and is gradually decreased by coalgebras.

For simplicity, our weight function samples a binomial distribution. It is known that in a bino-
mial distribution, the probability of having k successes in 1m independent trials is

prob(k,m, p) = <7Z>pk(1 —p)"*

LetmaxArity be the maximum arity among functors, 7 be the currentinput, and N be the maximum
input (namely the initial input). The weight of functor f at this stage is given by

1+n
2+ N 51

where arity(f) denotes its arity. That is to say, at each round, functors are only differentiated in

W (f) = prob(arity(f),maxArity,

weight by their arities. During the process of generation, n gets smaller and smaller.

The arity class is defined in Figure 5.20, similar to Cardinality. The arity of a composite functor
is defined as the maximum of arities of its members. Although it is possible to automatically derive
the arity of a functor by Template Haskell [Adams and DuBuisson, 2012], currently it requires a
manual assignment.

107

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

class Arity (f :: * -> x) where
arity :: Proxy f -> Int

instance (Arity f, Arity g) => Arity (f & g) where
arity _ = max (arity (Proxy :: Proxy f)) (arity (Proxy :: Proxy g))

getArity :: Arity f => CoAlgM m f a -> Int
getArity = arity . proxy

Figure 5.20: The arity of a functor.

S1ze Bounp The dynamic distribution can be used in situations where coalgebras do not enforce
a convergence, and helps the generation to terminate. In that case, however, it is still possible to get
into an infinite loop, when weights are not assigned in a good way. To enforce a termination, we
add a strong bound on the number of recursions/constructions. It is exactly an upper bound for the
number of constructors in random generation.

STRATEGY: DyNAMIC DISTRIBUTION ON SUCCESSFUL GENERATORS, WITH A SIZEBOoUND. By

defining type synonyms,

type MaxArity = Int
type MaxDepth = Int
type ReadEnv = (MaxArity, MaxDepth)

type Acc = Double
type Bound = Int
type StateEnv = (Acc, Bound)

the monad is directly constructed as
type Dynamic = MaybeT (StateT StateEnv (ReaderT ReadEnv (RandT Identity)))

including possible failure, dynamic distribution and size bound. The maximum arity (MaxArity) and
the maximum/initial input (MaxDepth) are stored in a reader, while Bound is maintained in a state for
checking size boundary. Acc is again an accumulator of weights.

In order to make our specialized combinator reusable, the carrier type is not directly instantiated
to Int. Rather, it requires an Int to be included in the input:

class Derive a b | a -> b where
derive :: a -> b

as expressed by Derive a Int.

The specialized combinators are presented in Figure 5.21. Note that |*| 4 is based on a natural
transformation; whereas it requires a generalization of the product to store input values (as discussed
in Section 5.3.3), thus the derivation steps are omitted here.

In Figure 5.21, the definition of | *| 4 follows a similar style to | *|,,: the generators could possi-
bly fail, and the composition will skip the failing generators, but accumulate the weight of successful

108

5.5 Implementation of SCCL

(|*|q) :: (Cardinality g, Arity f, Arity g, Derive a Int) =>
CoAlgM Dynamic f a -> CoAlgM Dynamic g a -> CoAlgM Dynamic (f & g) a
(|*]gq) cF cG a = MaybeT $ do
env <- ask
rF <- runMaybeT $ fmap Inl (cF a)
rG <- runMaybeT $ fmap Inr (cG a)
when (getCard cG == 1 && isJust rG) $ setAcc $ weight env (arityG, thisDepth)
let wF = weight env (arityF, thisDepth)
wG <- getAcc
case (rF, rG) of

(Just _, Just _) -> setAcc (wF + wG) >> binomial (wF, return rF)

(wG, return rG)

(Just _, _) -> setAcc wF >> return rF
(- , Just _) -> return rG
_ -> return Nothing
where arityF = getArity cF
arityG = getArity cG

thisDepth = derive a
setAcc s = modify $ \(_, c) -> (s, ¢)
getAcc = get >>= return . fst

resetD :: Dynamic a -> Dynamic a
resetD x = do (_, c) <- get

if ¢ <= 0 then none
else put (0, c - 1) >> x

Figure 5.21: The combinator for dynamic distribution and the reset function.

ones. The weight of a functor is derived by the weight function defined in Appendix B.2, following
Formula 5.1. Moreover, the constraint "Derive a Int" allows us to grasp the current depth infor-
mation from the input. For each round, the resetD function not only resets the accumulator, but
also decreases the size bound by 1, and enforces a failure when the limit is reached.

Run A GENERATOR A Dynamic generator can be executed in I0, by the following function:

generateD :: (Arity f, Traversable f, Derive a Int) =>
Int -> a -> CoAlgM Dynamic f a -> I0 (Maybe (Fix f))
generateD bound input coalg = newStdGen >>= runDynamic
where maxArity = getArity coalg

maxDepth = derive input

env = (maxArity, maxDepth)

initS = (0, bound)

runDynamic g = return . runIdentity . evalRandT g .

flip runReaderT env . flip evalStateT initS .
runMaybeT $ unfoldM (resetD . coalg) input

109

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

where generateD takes three parameters: the size bound, the input, and the coalgebra (in the form
of "cF |*|q cG |*]|g ...". Compared with generateW which allows a runtime exception if the
generator fails, generateD catches possible failure by Maybe in the return type.

5.5.3 Application II: Small-Step Evaluation

Another interesting application is the small-step evaluation of domain-specific languages. The inspi-
ration comes from [Hutton, 1998] which illustrates that operational semantics are connected with
the unfolding to transition trees, although their technique does not achieve modularity. While big-
step semantics can easily be modularized by composing visitors or algebras, modularizing small-step
semantics by modularizing coalgebras is non-trivial.

Compared with [Liang et al., 1995], for simplicity, SCCL only supports deterministic semantic
rules with error handling, but it is already able to realize simple interpreters (shown later). Moreover,
one can extend the current framework to further allow environments, non-determinism and so on
by composing monad transformers.

TuE PRIORITY MONAD TRANSFORMER ~ One big challenge of modularizing small-step evaluation
is ordering. To tackle this, the central mechanism of our approach is to adopt priority-based compo-
sition.

newtype PriorT s e m a = PriorT {
unPriorT :: MaybeT (StateT s (ExceptT e m)) a
}

The above code presents the priority monad transformer, where possible failure, priority state,
and exception are embedded. The interface for such a transformer is shown in Figure 5.22, together
with the default implementations for PriorT. MonadPrior firstly requires the priority type to be
an instance of 0rd for supporting comparison. Then it has two constructors: create produces a
monadic value labelled with its priority; failure raises a failure. More importantly, the priorComp
function realizes the priority-based composition strategy. The selection satisfies the following rules:

* The first exception (if any) will be thrown;

* Successes are prior to failures;

* For two successful results, the one with higher priority is preferred;

* If both results have the same priority, an exception will be thrown based on the priority.

Besides, catchFail takes two monadic values x and y; it returns the result of x by default, and
only executes y when x fails. That is to say, this combinator catches and handles possible failure of x
(but not exceptions).

A GENERALIZATION OF ANAMORPHISM For small-step evaluation, an f-coalgebra represents a
set of transition relations related to functor f. The carrier represents the expression to be evaluated.
However, we realize that the original coalgebra typea -> m (f a) is usually insufficient to model
transition rules. Very often we need the more generalized form of coalgebra type shown below:

110

5.5 Implementation of SCCL

class (Monad m, Ord s) => MonadPrior s em | m -> s, m -> e where
create 1S ->a ->ma

failure :rma
priorComp :: (s ->e) ->ma ->ma ->ma
catchFail :: ma ->ma ->m a

instance (Monad m, Ord s) => MonadPrior s e (PriorT s e m) where
create s a = PriorT $ put s >> return a

failure = PriorT . MaybeT $ return Nothing
priorComp f x y = PriorT $ MaybeT $ do

s <- get

rX <- runMaybeT $ unPriorT x

sX <- get

put s

rY <- runMaybeT $ unPriorT y

sY <- get

case (rX, rY, compare sX sY) of
(Just _, Just _, GT) -> put sX >> return rX
(Just _, Just _, LT) -> put sY >> return rY
(Just _, Just _, EQ) -> throwError $ f sX
(Just _, _ , _) -> put sX >> return rX
(— , Just _, _) -> put sY >> return rY
_ -> return Nothing

catchFail x y = PriorT . MaybeT $ do
r <- runMaybeT $ unPriorT x
case r of Just _ -> return r
Nothing -> runMaybeT $ unPriorT y

Figure 5.22: The MonadPrior interface for priority-based composition.

type CoAlgP g m f a = a -> m (Either (Fix g) (f (Either (Fix g) a)))

CoAlgP is closely related to apomorphisms, originally introduced by Vene and Uustalu [1998] as a
generalization of anamorphism. Here the coalgebra has a more complicated form; as a consequence, it
not only allows complete structures to be directly returned by coalgebras, but also allows fixpoints to
appear at the sub-nodes of f to replace seeds. In the above definition, f is the functor of the coalgebra,
while g denotes the final sums-of-product functor by composition. Hence the carrier type is usually
equal to Fix g, but for genericity a remains abstract.

Correspondingly, the generic apomorphism replaces unfoldM with unfoldp:

unfoldP :: (Traversable f, Monad m) => CoAlgP fm f a ->a ->m (Fix f)
unfoldP f = join . fmap (h . fmap (fmap In . sequence . fmap (h . fmap (
unfoldP f)))) . f
where h :: Monad m => Either (Fix f) (m (Fix f)) -> m (Fix f)
h (Left x) = return x

111

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

(]<>|) :: CoAlgP h Eval f a -> CoAlgP h Eval g a -> CoAlgP h Eval (f & g) a
cF |<>| ¢G = \x -> priorComp report (fmap (fmap Inl) (cF x))
(fmap (fmap Inr) (cG x))
where report :: Bool -> Conflict
report True = ConflictRdc
report False = ConflictCgr

check :: CoAlgP f Eval f (Fix f) -> CoAlgP f Eval f (Fix f)
check coalg x = do
isDone <- get
if isDone then returnX
else (put True >> coalg x) ‘catchFail’ (put False >> returnX)
where returnX = return (Left x)

Figure 5.23: The combinator for small-step semantics and the check function.

h (Right x) = x

STRATEGY: SINGLE-STEP DETERMINISTIC REDUCTION. To achieve modularization on small-
step semantics, a minimal instantiation of the monad can be:

type Eval = StateT Done (PriorT IsRdc Conflict Identity)

given that

type Done = Bool
type IsRdc = Bool
data Conflict = ConflictRdc | ConflictCgr

Here Done represents a flag that indicates whether a single-step reduction is done. The priority is
instantiated to IsRdc, where True is the label for reduction rules, and in contrast False for congruence
rules. Moreover, Conflict captures two kinds of exceptions: conflicting reduction, and conflicting
congruence. In fact, in a deterministic small-step semantic system, any expression cannot satisfy two
reduction patterns or two congruence patterns at the same time, otherwise it is considered ill-formed.
The only case with two patterns is one congruence and one reduction, where the latter is prioritized.

The composition strategy is implemented in Figure 5.23. Again, we define the coalgebra combi-
nator, but omit the derivation from natural transformations, because it requires more generalization
in the theory. The combinator |<>| immediately delegates the composition task to priorComp. Be-
sides, check is the key function that guarantees the reduction to be single-step. If it observes the Done
flag is True, the evaluation will be terminated immediately by returning the current seed. Otherwise
the coalgebra will be applied to the seed; and if a failure is caughtin the end, it implies that no progress
can be made, for which the input is again returned. Since we might be executing a sub-branch of the
whole recursion, a failure should not stop us from reducing other branches, therefore, the Done flag
should be maintained carefully by the putters.

Run an EvaruaTor The following function runs an evaluator in the I0 enviroment:

112

5.5 Implementation of SCCL

reduce :: Traversable f => Fix f -> CoAlgP f Eval f (Fix f) -> I0 (Fix f)
reduce e coalg = case res of

Left x -> error (show x)
Right (Just e’) -> return e’
Right _ -> return e

where res = runIdentity . runExceptT . flip evalStateT False . runMaybeT .
unPriorT . flip evalStateT False $ unfoldP (check coalg) e

where coalg has the form "cF |<>| cG |<>| ..." integrating all semantic rules.
ExamprLE Chapter 3 of [Pierce, 2002] shows a simple untyped language representing arithmetic
and boolean expressions. This can be captured in Haskell with the following two functors:

data ArithF a = TmZero | TmSucc a | TmPred a | TmIsZero a
data BoolF a = TmTrue | TmFalse | TmIf a a a

The semantic rules are represented by coalgebras of ArithF and BoolF, as shown in Figure 5.24.
Note that partern synonyms and view patterns, as extensions of GHC, are used in pattern matching
to reduce boilerplate; proj denotes the projection operation to inspect the real functor from a co-
product, dual to injections (inj); they are both defined under :<:, which denotes the membership
of a functor to a co-product, as in DTC [Swierstra, 2008]. The IsNumericVal class with its isNum
function, and rdcRule and cgrRule for labelling reduction/congruence rules are presented in Ap-
pendix B.3.

Smart constructors defined in Appendix B.4 as DTC can build the expression "if false then
0 else (iszero (pred (succ 0)))" asfollows:

e :: Fix (ArithF & BoolF)
e = ifC false zero . iszero . pred $ succ zero

A single-step reduction on e is tested in GHCi:

> reduce e (evalArith |<>| evalBool)
iszero (pred (succ (zero)))

Where pretty-printing is omitted. By repeating reduce multiple times, we obtain the complete eval-
uation steps:

(if false then 0 else (iszero (pred (succ 0))))
=> (iszero (pred (succ 0)))
=> (iszero 0)
=> true

5.5.4 Application III: Monadic Parsing

SCCL also involves simple functionality for modular monadic parsing, by defining parsers as coal-
gebras and composing them with the choice combinator. The inspiration comes from [Hutton and
Meijer, 1998] which deals with parsing by effects. Although the current library only captures the fun-
damental features of parsing as a minimal core of Parsec [Leijen and Meijer, 2001], our goal is to reveal
the strategy of selection behind the choice combinator, and also to understand modular parsing as an
application of modular unfolds.

113

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

pattern Zero <- (proj . out -> Just TmZero)

pattern Succ e <- (proj . out -> Just (TmSucc e))
pattern Pred e <- (proj . out -> Just (TmPred e))
pattern IsZero e <- (proj . out -> Just (TmIsZero e))
pattern If el e2 e3 <- (proj . out -> Just (TmIf el e2 e3))
pattern T <- (proj . out -> Just TmTrue)

pattern F <- (proj . out -> Just TmFalse)

evalArith :: (ArithF :<: f, MonadPrior IsRdc Conflict m, IsNumericVal f) =>
CoAlgP f m ArithF (Fix f)

evalArith (Pred Zero) = rdcRule . Right $ TmZero

evalArith (Pred (Succ e)) | isNum e = rdcRule . Left $ e

evalArith (Pred e) = cgrRule . Right $ TmPred (Right e)
evalArith (Succ e) = cgrRule . Right $ TmSucc (Right e)
evalArith (IsZero e) = cgrRule . Right $ TmIsZero (Right e)
evalArith _ = failure

evalBool :: (ArithF :<: f, BoolF :<: f, MonadPrior IsRdc Conflict m,
IsNumericVal f) => CoAlgP f m BoolF (Fix f)

evalBool (IsZero Zero) = rdcRule . Right $ TmTrue

evalBool (IsZero (Succ e)) | isNum e = rdcRule . Right $ TmFalse

evalBool (If T x y) = rdcRule . Left $ x

evalBool (If F x vy) = rdcRule . Left $ vy

evalBool (If x y z) = cgrRule . Right $ TmIf (Right x) (Left y)
(Left z)

evalBool _ = failure

Figure 5.24: Coalgebras of ArithF and BoolF representing small-step semantic rules.

THE PARSER MONAD TRANSFORMER ~ SCCL defines ParserT as a lightweight transformer as fol-
lows:

newtype ParserT m a = ParserT { unParserT :: MaybeT (StateT String m) a }

where the state denotes an input string, and MaybeT for possible failure.

Next comes the lightweight MonadParser library that collects some parser combinators for use,
as shown in Figure 5.25. Among them, the choice combinator is the key to the composition. While
the <|> in Parsec only tries the second alternative if the first one fails without any consumption on
the input (and hence requires try for manual backtracking), here choice automatically recovers the
input on that failure.

STRATEGY: FIRST SUCCESSFUL PARSER. The coalgebra combinator straightforwardly invokes choice
for alternative composition with automatic backtracking. The result comes from the first successful
parser.

type P = ParserT Identity

114

5.5 Implementation of SCCL

class Monad m => MonadParser m where

choice :: ma ->ma ->ma

failP :: m a

fetch :: m Char

sat :: (Char -> Bool) -> m Char

sat p = fetch >>= \x -> if p x then return x else failP
char :: Char -> m Char

char ¢ = sat (== c)

string :: String -> m String

string "" = return ""

string (c:cs) = char c >> string cs >> return (c:cs)
many :: ma ->m [a]

many p = manyl p <||> return []

manyl :: ma ->m [a]

manyl p = p >>= \x -> many p >>= \xs -> return (x:xs)
int :: m Int

int = fmap read . manyl $ sat isDigit

instance Monad m => MonadParser (ParserT m) where

fetch = ParserT $ get >>= \s -> if empty s then none
else put (tail s) >> return (head s)
failP = ParserT none
choice x y = ParserT $ MaybeT $ do
s <- get
resX <- runMaybeT (unParserT x)
case resX of
Just _ -> return resX
Nothing -> put s >> runMaybeT (unParserT y)

Figure 5.25: The lightweight MonadParser library.

(]<<|) :: CoAlgM P f a -> CoAlgM P g a -> CoAlgM P (f & g) a
(|<<|) cF cG a = fmap Inl (cF a) ‘choice’ fmap Inr (cG a)

ExamprLE We illustrate by implementing a simple parser for the following grammar:
expr ::= <int> | <int> '+’ expr
which is represented by two functors and two coalgebras:

data FLit a = FLit Int
data FAdd a FAdd Int a

pLit :: CoAlgM P FLit ()
pLit _ = 1iftM FLit int

115

5. MODULAR UNFOLDS: SEEING THE TREES IN THE PRODUCT FOREST

pAdd :: CoAlgM P FAdd ()

pAdd _ = do n <- int
char '+
return $ FAdd n ()

’

Try the composite parser in GHCi:

> let parse s = runIdentity . flip evalStateT s . runMaybeT . unParserT $
unfoldM (pAdd |<<| pLit) ()

> parse "1+2+3"

Just (1 + (2 + 3))

PossiBLE REFINEMENTs Currently ParserT is still restricted in terms of practicality, partly due to
the algorithmic challenges of modularizing parsing we have discussed in Section 4.1.1. On the other
hand, some more generalized recursion schemes need to be involved for improvements. Consider the
following concrete syntax for let-expressions:

in

e ::= ... | "let" <string> "=" e e

for which we might define its abstract syntax as follows:
data LetF x = Let String x x deriving (Functor, Foldable, Traversable)

However, the derived Traversable instance is not desirable, because "in" has to be parsed in the
middle of effects. This problem is related to a customized evaluation order of effects. While [Pardo,
1998] avoids this issue by dealing with every concrete syntax in the datatype definition, an alternative
approach is to generalize coalgebras into Mendler-style [Mendler, 1991; Uustalu and Vene, 2000]
coalgebras. With effects, such a coalgebra has type

type MCoAlgM m f a = forall x. (a ->m x) ->a ->m (f x)

Note that the construction on f is still top-down, but effect handling can be more flexible, in a similar
way to open recursion.

Other possibilities to improve the library includes introducing new specialized combinators, for
example with longest-match, or with memoization to make efficient backtracking and potentially to
achieve left recursion, but we leave those for our future work.

5.6 Summary

This chapter explores the composability of producer operations by composing coalgebras in func-
tional programming, and presents SCCL for practical modularity in random generators, small-step
semantics, and monadic parsing. Consequently, production strategies are untangled with composi-
tion strategies, making each part interchangeable and the composition easier. By using monad trans-
formers, coalgebras can be reused in different contexts.

The library has foundations in some theoretical exploration, where producers are naturally com-
posed to produce product forests, and later they are transformed into sums-of-products with natural
transformations. A deforestation shows that it is equivalent to use specialized coalgebra combinators
that encapsulate certain selection strategies.

116

Chapter 6

Case Study: Random Generators and
Enumerators

To illustrate the utility of SCCL, and evaluate the selection strategies behind the specialized coalgebra
combinators, this chapter presents a case study on modularizing random generators and enumerators.
In the case study, random generators and enumerators are represented by monadic f-coalgebras, and
they allow a diversity of combinations between carrier types and composition strategies flexibly.

6.1 Overview

The purpose of our case study is to illustrate that with SCCL, we can modularize data generators
on modular ASTs. Meanwhile, by untangling generation behaviors with composition strategies, we
obtain great flexibility and code reuse. Consequently client code can be simplified using specialized
coalgebra combinators. To do so our experiments have involved 9 language constructs with different
kinds of generators, and evaluated on the distribution of those constructs in generated structures, to
validate the effectiveness of SCCL combinators. On the other hand, our experiments have also eval-
uated the code size and execution time compared with non-modular approaches using QuickCheck,
to show how much code reuse and performance impact such modularization brings.

The case study shows that with reasonable performance penalty, generators can be designed as
modular and reusable components, and the use of combinators frees users from implementing ad-
hoc composition algorithms, enhancing code conciseness and utility. Moreover, the case study shows
an additional benefit of using SCCL: custom random generators can be ported to QuickCheck for
checking properties.

LANGUAGE CoNsTRUCTS The famousbook “Types and Programming Languages” (TAPL) [Pierce,
2002] has been used in Chapter 4 as well as in other work [Zhang and Oliveira, 2017, 2018] for case
studies, because it collects a lot of language features, and by gradually introducing them it shows an
evolution of interpreters. Hence TAPL is a good material for evaluating modularization techniques.
This case study only focuses on a small subset of TAPL languages. Logically the 9 constructs originate
from three different features: arithmetic expressions (numeric literals, addition and multiplication);

117

6. CASE STUDY: RANDOM GENERATORS AND ENUMER ATORS

booleans (boolean literals, conditional and equality); and lambdas (variables, abstraction and appli-
cation). They are defined as functors:

-- arith
data LitF e = Lit Int
data AddF e = Add e e

data MulF e =Mul e e

-- bool

data BoolF e = BoolV Bool
data IfF e=Ifeece
data EqualF e = Equal e e
-- lam

data VarF e = Var Int
data LamF e = Lam Type e

data AppF e = App e e

type LNG = LitF & AddF & MulF & BoolF ¢ IfF & EqualF ¢ VarF & LamF & AppF

Those functors are composed by the right-associative sum () into a whole functor (LNG). Thus
Fix LNG denotes the type of expressions using those data variants. Notice that VarF represents vari-
ables with de Bruijn indices [De Bruijn, 1972]. LamF models typed lambda constructs, where Type
consists of integer, boolean and function types. To avoid mutual recursion, Type is defined in a non-
extensible way:

data Type = TLit | TBool | TFunc Type Type

To assist in our experiments and evaluation, a few valid operations are implemented as algebras,
for example: pretty-printing, calculating tree height, checking variable binding (whether there are
free variables), and collecting occurrences of different constructs in depth. Furthermore, a simple
type checker and an interpreter are implemented for Fix LNG, using recursive functions; potentially
it is possible to write them in an extensible style, but it is out of our focus. Finally, Arity instances
are manually written for the functors, but it is expected that the arities can be derived by templates in
the future.

STRATEGIEs Traditionally, the implementation of a generator entangles the strategy of generation
with the composition strategy. To differentiate them:

* Seed type: Seeds specify the requirements and guide the generation process. In non-modular
generators, seeds are merely the arguments passed among recursive functions. In the context of
unfolds, a seed refers to the carrier of a coalgebra. In particular, most generators are specified
with a size in the seed type.

omposition: Combinators reflect certain strategies of generator composition. For random
+ Ce t Combinat flect cert trat f t ti F d
generators, a combinator usually models a probability distribution among the candidates.

In the case study, there are various kinds of properties for seed types, including constructor size
(CS), depth size (DS), bound variables (BV), bound variable rypes (BVT), expected type (ET), and

118

6.2 Random Generators as Coalgebras

integer set (IS). On the other hand, we select three strategies of coalgebra composition from the SCCL
library, namely weighted distribution (WD) and dynamic distribution (DD) for random distribution,
and merging results (MG) for enumeration. Those seed types and composition strategies are reused
in different experiments, achieving significant modularity.

REsEARCH QUESTIONS Our experiments have been conducted for answering the following re-
search questions:

RQI: Can we indeed modularize the implementation of generators for different constructs? Can we
untangle the generation strategies from composition strategies, making both as reusable components? Is
there any preference in different composition strategies?

RQ2: Can we have a modular random generator that distributes constructors in a relatively fair way?

RQ3: Can we have a modular random generator that distributes constructors in a dynamic way during
construction?

RQ4: How do random generators associate with QuickCheck for testing properties?

RQ5: How much does such modularization contribute to code size reduction? How much is the impact
on performance?

6.2 Random Generators as Coalgebras

Random generators are represented by (monadic) coalgebras. In order to generate well-formed Fix
LNG expressions on a particular size, the carrier type can be:

type Size Int
type MaxId Int
type Seed = (Size, MaxId)

where Seed stands for the carrier type. MaxId records the maximum number of bound variables by
lambdas, to ensure that no free variables are generated. However, Size can have different interpreta-
tions. Normally, the size may express the total number of constructors (nodes) in a tree, or the tree

height/depth.

CoNSTRUCTOR S1ZE More precisely, we treat constructor sizes as 0-based, hence it actually repre-
sents the number of internal nodes of a tree. For instance, generators of LitF and AddF are imple-
mented as follows:

gLit :: (MonadMaybe m, MonadRand m) => CoAlgM m LitF Seed
gLit = 1iftS $ \n -> if n > 0 then none else do

X <- choose (0, 100)

return $ Lit x

gAdd :: (MonadMaybe m, MonadRand m) => CoAlgM m AddF Seed
gAdd = 1iftS $ \n -> if n <= 0 then none else do

119

6. CASE STUDY: RANDOM GENERATORS AND ENUMER ATORS

n’ <- choose (0, n - 1)
return $ Add n” (n - 1 - n")

1iftS :: (Functor f, Functor m) => CoAlgM m f Size -> CoAlgM m f Seed
1iftS c (size, max) = fmap (fmap (\x -> (x, max))) (c size)

For literals and additions, since MaxId is not used, an auxiliary function 1iftS helps to pass the
MaxId argument with no change, therefore “lifting” a Size coalgebra into a Seed coalgebra. In gLit
, when the input size is non-positive, an integer is randomly picked between [0, 100]; otherwise
gLit raises a failure. In contrast, gAdd merely accepts positive sizes; a size is randomly divided into
two smaller ones for the sub-expressions. Also notice that both generators are generic on monad m,
which ensures the reusability of these coalgebras for different composition strategies.

For lambda expressions, a parameter type is generated by a random pick from TLit, TBool and a
unary TFunc for simplicity.

AUTOMATED CoMPOSITION OF COALGEBRAS Similarly to DTC [Swierstra, 2008], we encapsu-
late generator coalgebras with type classes, in order to obtain automatic composition. Two compo-
sition strategies of SCCL are adopted here: the Weighted monad for a weighted distribution, and
Dynamic for a dynamic distribution on the input size and the arities of data constructs. For instance,
Weighted coalgebras are captured by the following class:

class Traversable f => RandomW f a where
genW :: CoAlgM Weight f a

instance (RandomW f a, RandomW g a, Cardinality g) => RandomW (f & g) a
where genW = genW |x]|,, genW

| %] is the weighted distribution combinator in SCCL. After implementing all RandomW in-
stances for the 9 functors, the coalgebras are automatically composed. Finally, SCCL offers generatew
to build a runnable random generator under the I0 environment. By initializing the weights equally,
a uniform distribution is achieved on successful generators.

testW :: Size -> IO (Fix LNG)
testW n = generateW (replicate 9 1) (n,-1) (genW :: CoAlgM Weighted LNG Seed)

Similarly, to perform the dynamic distribution strategy with | *| 4, we define RandomD:

class Traversable f => RandomD f a where
genD :: CoAlgM Dynamic f a

instance (RandomD f a, RandomD g a, Cardinality g, Arity f, Arity g,
Derive a Int) => RandomD (f ¢ g) a where
genD = genD |*|4 genD

and again make the coalgebras as instances of RandomD. Although this introduces some boilerplate,
the coalgebras are doubtlessly reused. Likewise, to test the generator in I0:

testD :: Size -> I0 (Maybe (Fix LNG))
testD n = generateD 10000 (n, -1) (genD :: CoAlgM Dynamic LNG Seed)

where 10000 is the size bound.

120

6.2 Random Generators as Coalgebras

Table 6.1: The distribution of different constructors in 10000-round tests, showing the average number
of occurrences. For constructor size, the input is 100. For depth size the input is 10.

Seed Composition Avg. #Occurrences of Constructors
Lit | BoolV | Var | Add | Mul | If | Equal | Lam | App
CS+BV WD 389 | 389 | 231 166 | 167 | 16.6 | 167 | 167 | 167
DS + BV WD 261 | 262 | 121 | 105 | 10.6 | 105 | 10.6 | 10.6 | 10.6

DerTHS1ZE When the input represents the depth of construction, the number of constructors will
increase exponentially along with the input. The carrier type remains the same, but the coalgebras
shall be implemented differently. Taking AddF for example:

gAdd’ :: (MonadMaybe m, MonadRand m) => CoAlgM m AddF Seed
gAdd’ = 1iftS $ \n -> if n <= 0 then none else do

n' <- choose (0, n - 1)

(nA, nB) <- elements [(n - 1, n"), (n’', n - 1)]

return $ Add nA nB

The depth size is again 0-based. Different from gAdd, gAdd”’ takes input size n, but passesn - 1
to either its left or right child, and gives the other child a random but smaller size. This ensures that
the depth is decreased only by 1 at a time. Coalgebras defined on the depth size can be composed in
the same way as those on the constructor size.

ANswER TO RQ2 We have implemented both constructor-size and depth-size generators for all
the functors. To evaluate the effectiveness of uniform distribution, both generators are combined by
| * | (with cardinality-based weights), and 10000-based testing is performed on them respectively,
which collects the average number of occurrences of each functor. Table 6.1 shows the results of
the constructor-size generator (with input 100) and the depth-size generator (with input 10). The
uniform distribution differentiates internal nodes from leaf nodes, and generally the constructors are
distributed in a relatively fair way. The 6 constructs on the right appear to have the same frequency.
And Vvar differs from Lit and BoolV, due to the restriction on variable binding.

ANswER TO RQ3 To also evaluate the dynamic distribution strategy in SCCL, the generators are
instead composed by || 4 (binomial distribution), and we measure the average depth of the occur-
rences of each constructor. Here depth means the distance from the constructor node to the root of
the tree. In Table 6.2, it is observed that constructs with different arities are clearly distinguished in
depth: while If is generated mostly near to the root, Lit, BoolV and Var generally have a larger depth
during construction.

ANswER TO RQI The experiments have indicated great modularity and reusability in client code.
Firstly, functors and co-products modularize the AST and the random generation. Secondly, coalge-
bras can be reused for different composition strategies, because of the monad transformers; on the
other hand, the combinators are also reusable for different coalgebras, due to the genericity in the
carrier type.

Table 6.3 shows the distribution of constructors with | * | 4. One can notice that Lam greatly dom-
inates other constructs in terms of frequency. The reason is that, both constructor-size and depth-size

121

6. CASE STUDY: RANDOM GENERATORS AND ENUMER ATORS

Table 6.2: The distribution of different constructors in 10000-round tests, showing the average depth of
occurrences. For constructor size, the input is 100. For depth size the input is 10. Size bound 10000.

Seed Composition Avg. Depth of Constructor Nodes
Lit | BoolV | Var | Add | Mul | If | Equal | Lam | App
CS+BV DD 10.3 10.3 10.7 | 6.5 65 |09 6.5 8.4 6.5
DS + BV DD 7.0 7.0 7.7 5.0 5.0 | 2.9 5.0 5.9 5.0

Table 6.3: The distribution of different constructors in 10000-round tests, showing the average number
of occurrences. For constructor size, the input is 100. For depth size the input is 10. Size bound 10000.

Seed Composition Avg. #Occurrences of Constructors
Lit | BoolV | Var | Add | Mul | If | Equal | Lam | App
CS +BV DD 9.1 2.0 86| 58 | 57 | 14 5.8 75.6 | 5.7
DS + BV DD 172 | 173 93 | 94 | 94 | 27| 94 |249 | 93

generators generate trees of exactly the given size. Thus during a construction, whenever the size is
great than 0, only internal constructs can be selected, of which Lam has the least arity: 1. This indicates
that for random generation that sticks to a specific size, the weighted distribution performs better in
terms of randomness and diversity.

6.3 Generating Well-Typed Expressions

The above generators can efficiently produce a large number of well-formed expressions in seconds.
Nevertheless, there is only a small portion of them that can be type-checked for use. Worse still, the
percentage plunges when the size is increased, as shown in Table 6.4. To counter this problem and
enhance the utility, it is necessary to implement generators that only build well-typed expressions.
There has already been some existing work on generating well-typed expressions [Claessen et al., 2014;
Fetscher etal., 2015] efficiently. Our case study realizes a simple generator by maintaining the expected
type of term in the carrier type:

type Size = Int

type Env [Typel

type ExpectType Maybe Type

type TypedSeed = (Size, ExpectType, Env)

ExpectType is an optional Type, where Nothing implies that any type is acceptable. Besides, for
lambda expressions, the types of bound variables are maintained in a list (Env). Size here stands for
the depth size. Below is the AddF generator:

gTypedAdd :: (MonadMaybe m, MonadRand m) => CoAlgM m AddF TypedSeed
gTypedAdd = 1iftS $ \(n, t) ->
if t ‘notElem’ [Just TLit, Nothing] then none else do
let nO = max 0 (n - 1)
n' <- choose (0, noO)
(nA, nB) <- elements [(n®, n’), (n’', nO)]

122

6.3 Generating Well-Typed Expressions

Table 6.4: The percentage of well-typed expressions generated with (CS + BV, WD) in 100000-based

testing.
Size | # Well-Typed | % Well-Typed
0 100000 100.00%
1 37479 37.48%
2 10873 10.87%
3 2898 2.90%
4 741 0.74%
S 163 0.16%
6 60 0.06%
7 14 ~ 0%

return $ Add (nA, Just TLit) (nB, Just TLit)

Since an addition can only be typed as TLit, the expected input type should either be Just TLit
or Nothing as uninitialized. In fact, it is tricky to generate a well-typed expression on a particular
size, because it can easily fall into a dilemma, where either nothing is generated, or the tree becomes
too large or even infinite. To tackle this issue, the size in the carrier is merely a weak bound. As
shown above, gAdd accepts the case when n = 0. Two smaller seeds are assigned to the children,
where both are further required with TLit. Besides the weak bound, Dynamic maintains a strong “size
bound” on the number of constructors to prevent infinite loops. More importantly, the convergence
of random generation comes from the dynamic distribution: when the depth size gets smaller (i.e. the
tree goes deeper), the constructors with smaller arities (such as Lit, BoolV and Var) are more likely to
be selected and converge the generation quickly.

ANswER TO RQ1 The well-typed expression generators have been tested with both ||, and | |4

respectively. However, our experiments show that ||, with a uniform distribution can easily get
into infinite loops, since non-leaf constructs have a majority and tree nodes are expanded endlessly. If
we intentionally increase the weights of Lit, BoolV and Var, the trees will be mostly generated with
only one node.

Table 6.5 presents the result of a 10000-based generation with seed type (DS + BVT + ET), and
strategy DD (| x| 4), taking 10 as the depth input and 10000 as the size bound. Also note that among
the 10000 generated trees, the average height is 10.6. The distribution of different constructs looks
reasonable. Note that such a generator can possibly generate a one-node tree, or even a tree with
hundreds of nodes. But when the input size is increased, the probability distribution becomes more
smooth, and the height of the generated tree tends to get closer to the ideal value. In contrast, an
input of less than 5 makes the generator easy to reach the size bound, where nothing is generated.
Overall, we consider the dynamic distribution strategy to be better for generating well-typed expres-
sions, because it offers better control over congruence.

123

6. CASE STUDY: RANDOM GENERATORS AND ENUMER ATORS

Table 6.5: The distribution of different constructors in a 10000-round well-typed expression generation,
with input 10.

Lit | BoolV | Var | Add | Mul | If | Equal | Lam | App
Avg. #Constrs | 18.7 | 10.9 45 | 43 | 43 | 4.1 3.5 18.8 | 12.8
Avg. Depth 6.3 5.9 76 | 47 | 46 | 29| 4.0 6.1 4.6

6.4 Enumerating Expressions

A third strategy of generation, which also appears in many testing frameworks [Duregard, 2012], are
enumeration-based generators. Our case study enumerates expressions of a specified depth size into
alist. The carrier type of coalgebras becomes:

type Size = Int

type MaxId = Int

type IntSet [Int]

type EnumSeed (Size, MaxId, IntSet)

EnumSeed is composed of three parts: the depth size (DS), the number of bound variables (BV),
and additionally a finite integer set (IS) for Lit to choose from. The AddF enumerator is shown below
for illustration:

eAdd :: CoAlgM [] AddF Seed
eAdd = 1iftSE eAdd’
where eAdd’ n = if n <= 0 then [] else [Add x y | (X, y) <- pairs n]
pairs n = (n-1, n-1) : concat [[(x, n-1), (n-1, x)] | x <- [1..n-2]]

1iftSE :: (Functor f, Functor m) => CoAlgM m f Size -> CoAlgM m f Seed
1iftSE ¢ (size, max, set) = fmap (fmap (\x -> (x, max, set))) (c size)

The monad is instantiated to []. The auxiliary function 1iftSE allows eAdd to focus only on the
input size. When the size n is positive, it enumerates all possible pairs with maximum depthn - 1,
and correspondingly generates Add expressions.

Note that, for even relatively small sizes, the number of elements in the enumeration list is very
large. However, since efficiency is beyond our scope, we have not applied optimizations. One pos-
sibility of improvement is to make a variant of unfoldM and apply memoization/sharing to avoid
duplicate calculations.

6.5 Checking Properties with QuickCheck

The integration into QuickCheck enhances the utility of our generators. As a consequence, we have
packed our code into QuickCheck generators, and further defined a few properties and validated
them using QuickCheck. More specifically, we have encoded:

* the correctness of deforestation (Corollary 6) from a product forest to a fixpoint of sums-of-
products, showing the equivalence among the three approaches:

124

6.5 Checking Properties with QuickCheck

— the unfold-transformation pattern based on a natural transformation;

- asingle unfold based on the natural transformation and the general coalgebra combina-
tor;

— asingle unfold based on a specialized coalgebra combinator.

The code is based on the well-typed generators of LitF and AddF with a weighted (uniform)
random distribution.

* the type-preservation of evaluation on the combined language (Fix LNG), stating that for any
well-typed expression, the evaluation does not change its type;

* the property that evaluating well-typed Fix LNG terms does not introduce free variables.

DEFORESTATION The three approaches correspond to the following functions respectively:

genA :: TypedSeed -> Weighted (Fix (LitF & AddF))
genA = unfoldM (unComp . out) . unfold (Comp . resetW . unComp . out)
unfold (weightedTrafo . out) . unfold (gl <x*x> g2)
where (gl, g2) = (Comp . gTypedLit, Comp . gTypedAdd)

genB :: TypedSeed -> Weighted (Fix (LitF & AddF))
genB = unfoldM (resetW . unComp . weightedTrafo . (cF <xx> cG))
where (gl, g2) = (Comp . gTypedLit, Comp . gTypedAdd)

genC :: TypedSeed -> Weighted (Fix (LitF & AddF))
genC = unfoldM (resetW . (gTypedLit |*|, gTypedAdd))

Recall that <+x> is the general coalgebra combinator. weightedTrafo and resetW were intro-
duced in Section 5.5.2.2; the former realizes weighted random selection as a natural transformation,
and the latter updates the monad context in each round. The property for checking correctness of
deforestation is presented below:

deforest :: Int -> Int -> Bool
deforest n g = rA == rB & rB == rC
where n’ = n ‘mod‘ 10
g’ = mkStdGen g
rA = runGen genA
rB = runGen genB
rC = runGen genC
runGen :: (TypedSeed -> Weighted a) -> Maybe a
runGen gen = runldentity . evalRandT g’ . evalWeightT (0,0) [1,1]
runMaybeT $ gen (n’, Nothing, [])

Here n gives the input size, and is rescaled into the range [0, 10). g creates a StdGen random seed for
the generators, and to ensure its randomness, the range of Int generator should be large enough.

125

6. CASE STUDY: RANDOM GENERATORS AND ENUMER ATORS

CustomizEDp QUICKCHECK GENERATOR Now suppose that we have a well-typed expression
generator of functor f. To transform this generator into a QuickCheck generator, we first define
the following datatype:

data MaybeExpr f = MaybeExpr { unMaybe :: Maybe (Fix f) }

The reason for such a definition is to avoid the conflict with QuickCheck’s pre-defined instances.
Next we are able to integrate a generic generator into QuickCheck as follows:

instance (Traversable f, Arity f, RandomD f T.TypedSeed) =>
Arbitrary (MaybeExpr f) where
arbitrary = do
n <- getSize
seed <- chooseAny
let coalg = genD :: CoAlgM Dynamic f TypedSeed

let res = unfoldM (resetD . coalg) (n, Nothing, [])
let env = (getArity coalg, n)

let initS = (0, 1000)

let g = mkStdGen seed

return . MaybeExpr . runIdentity . evalRandT g . flip runReaderT env
. flip evalStateT initS . runMaybeT $ res

with the aforementioned resetD and getArity in Section 5.5.2.3. It defines a custom generator
based on the dynamic distribution strategy, and is able to produce Fix f if the size bound 1600 is not
exceeded.

ANsWER TO RQ4 Now we are able to define the aforementioned second and third properties in
QuickCheck, and test them with our own random generators:

preserveType :: MaybeExpr LNG -> Property
preserveType (MaybeExpr expr) = isJust expr ==> isJust t & t == t’

where e = fromJust expr
t = typeCheck e
t’' = typeCheck (evaluate e)

bounded :: MaybeExpr LNG -> Property
bounded (MaybeExpr expr) = isJust expr ==> isBounded (evaluate e)
where e = fromJust expr

Details about type-checking (typeCheck), evaluation (evaluate) and checking the variable binding
(isBounded)are presented in Appendix C. Finally, all three properties have been tested by QuickCheck:

> quickCheckWith (stdArgs {maxSize = 1000000}) deforest
+++ 0K, passed 100 tests.
> quickCheckWith (stdArgs {maxSize
+++ OK, passed 100 tests.
> quickCheckWith (stdArgs {maxSize = 30}) bounded

+++ OK, passed 100 tests.

30}) preserveType

126

6.6 Evaluation: Code Size and Execution Time

Table 6.6: SLOC of non-modular (QuickCheck) code vs modular (SCCL) code, on implementing
constructor/depth-size generators with weighted/dynamic distribution.

SLOC AST +aux | CS-coalgs | DS-coalgs | CS+WD | CS+DD | DS+WD | DS+ DD | Total
Non-Modular 49 - - 51 51 67 67 285
Modular 21 42 42 3 3 3 3 117

Table 6.7: SLOC of non-modular (QuickCheck) code vs modular (SCCL) code, on implementing arith,
bool and lam generators.

AST Generators
SLOC arith | bool | lam Coalgs arith | arith + bool | arith + bool + lam Total
Non-Modular 3 6 9 - 17 31 52 118
Modular 10 42 3 3 3 61

6.6 Evaluation: Code Size and Execution Time

ANswERTORQS Tohavearough estimation on how much our modularization techniques reduce
the generator code, we have implemented two simple benchmarks on the absolute number of source
lines of code (SLOC, lines of code without counting empty lines, comments and imports). Table 6.6
compares the non-modular (QuickCheck) code with the modular (SCCL) code, when implementing
constructor-size and depth-size generators for the 9 constructs with both weighted distribution and
dynamic distribution. The non-modular code requires more auxiliary functions to be defined for
realizing those distributions. It is observed that the reusability of both coalgebras and combinators
reduces the glue code significantly with SCCL. On the other hand, to illustrate the modularity of
data variants, we define the language AST in an extensible style: arith (3 constructs), arith + bool (6
constructs) and finally arith + bool + lam (9 constructs). Table 6.7 shows the comparison of SLOC
on implementing constructor-size weight-distributed generators. Again, since both the AST and the
generators are reusable, there is a considerable reduction in the modular approach.

To also have a rough estimation on how much performance penalty the modularization brings,
we conduct an experiment on the contrast between the well-typed generator (DS, DD) and a non-
modular QuickCheck generator by measuring the execution time. The QuickCheck generator is im-
plemented in a conventional style, using mutually recursive functions, and builds random well-typed
terms of a non-extensible datatype with the 9 constructors.

Our benchmark programs were executed on a Thinkpad with 2.70 GHz Intel Core i5-5257U and
8GB RAM. The execution time was measured by the Criterion' library in Haskell. Table 6.8 shows
the mean execution time of SCCL and QC (QuickCheck) per round on 5 different sizes: 10, 15, 20,
25 and 30. In those cases, SCCL is approximately 1.5x - 2x slower than QC. There are three possi-
ble aspects for the distinction. Firstly, the modularity of abstract syntax tree and random generators
with SCCL makes the program naturally less efficient, because there are more function calls (like in-
jections) and intermediate results during composition. Although the QuickCheck version takes less
execution time, neither the AST nor the generators are extensible. Secondly, the recursion patterns
are different in both implementations. SCCL uses coalgebras and hence follows a top-down strat-
egy, while QC makes use of general recursion functions that behave as a mixture of top-down and

'https://github.com/bos/criterion. criterion-1.5.3.0. Bryan O’Sullivan.

127

https://github.com/bos/criterion

6. CASE STUDY: RANDOM GENERATORS AND ENUMER ATORS

Table 6.8: Mean execution time of SCCL approach and QuickCheck per round on 5 different input sizes.

Size | Exec. Time of SCCL (DS, DD) (ms) | Exec. Time of QC (ms) | Ratio
10 2.469 0.967 2.55
15 6.130 2.095 2.93
20 9.448 3.860 2.45
25 18.310 6.076 3.01
30 25.440 10.060 2.53

bottom-up manners. Last but not least, the dynamic distribution is performed on sxccessful results,
and in SCCL coalgebras and random selection run in parallel; while it is tricky to implement this in
QC, and instead the probabilistic distribution generates a random permutation in advance, before
coalgebras are composed by the permutation in each round. Similarly, this permutation mechanism
is tricky to implement in SCCL, for it requires a “global view” of the functors, while our framework
has the foundation in binary composition. It could be interesting to explore the MR M-style [Oliveira
etal., 2015] using list-of-functors as an alternative in the future.

LimiTaTiONs Thereare moreinsightsabout the limitations and possible optimizations. Atpresent,
SCCL generators are difficult to realize backtracking, and it may require a more generalized recursion
scheme. On the other hand, we can do optimizations by fusing the process of generation with subse-
quent procedures (such as type-checking and evaluation) in practice, by existing fold/unfold fusion
laws for deforestation. Finally, it is observed that there is still boilerplate code that can be reduced or
avoided, such as the definition of RandomW and RandomD specialized for monads.

128

Chapter 7

Related Work

This chapter captures the most relevant work in various areas we have touched, and includes some
discussion as well as comparison with those techniques.

7.1 Design Patterns for Extensibility and Modularity

ALGEBRA OF PROGRAMMING (AoP) Bird and de Moor [1997] present a mathematical framework
based on a categorical calculus of relations for calculating programs. As a result, algorithmic strategies
can be formulated abstractly without reference to specific datatypes, furthermore, derivations and
proofs can be conducted in a principled way. More specifically, AoP captures the abstract shape of
datatypes by functors, and operations (traversals) by algebras and generic recursion schemes like folds
(catamorphisms). Consequently, certain relations and some theorems can be observed from category
theory [Herrlich and Strecker, 1973]. Although the theory has been well studied in a functional con-
text, it had limited impact in practical programming until [Swierstra, 2008] which reveals an elegant
solution to the Expression Problem.

OO DesiGN PATTERNS The famous “Gang of Four” (GoF) presents design patterns [Gamma,
1995] as repeatable solutions to commonly occurring problems in software design. They provide
templates to structure object-oriented code for modularity and reuse. Although design patterns have
been pervasively used in software development, the main criticism might be that design patterns are
not well abstracted and lack formal foundations, as a result they can be hard to be made as reusable
components or libraries. Nevertheless, some programmers believe that they can actually be captured
abstractly, but existing languages have limited features to support such abstractions. There has been
some research [Gibbons, 2003a,b, 2006; Gibbons and Oliveira, 2009; Oliveira, 2007; Oliveira et al.,
2008] on abstracting a few design patterns by higher-order recursive functions including map, fold
and unfold in functional programming, and simultaneously they draw a connection to the Algebra
of Programming [Bird and de Moor, 1997].

THE ExPRESSION PROBLEM Since Wadler [1998] firstly posted the example of an arithmetic lan-
guage, the Expression Problem was identified to express the need for certain extensibility in program
design. Specifically, it requires an existing framework to be extensible on both data variants and

129

7. RELATED WORK

operations, and meanwhile ensures type-safety, leading to separate compilation and modular type-
checking. So far there have been quite a few different solutions proposed in various paradigms. Torg-
ersen [2004] presented four different solutions applicable to Java and/or C#, using advanced language
features including type parameters with constraints, F-bounded polymorphism [Canning etal., 1989],
wildcards [Torgersen etal., 2004], and runtime reification of type parameters. Sadly those approaches
either sacrifice static type safety, or require large amounts of boilerplate code on types to ensure such
safety. Later Odersky and Zenger [2005a] proposed two families of solutions in Scala using abstract
type members and nested classes. One family is based on object-oriented decomposition, while the
other on functional decomposition using visitors. As a result, both solutions can not only support
consumers that merely collect information on trees, but also binary methods and tree transforma-
tions. Main criticism on that work can be that it highly relies on the language features and requires
significant boilerplate composition code. Wang and Oliveira [2016] proposed a simple OO solution
that gets rid of type parametrization, and only uses covariant type refinements. In that case, however,
the extensibility becomes restricted on binary methods. More closely related to the thesis are the so-
lutions including EMGM [Oliveira et al., 2006], Finally Tagless [Carette et al., 2007], Data Types a
la Carte [Swierstra, 2008] and Object Algebras [Oliveira and Cook, 2012a] discussed below.

Data Types A La CarTE (DTC) Swierstra [2008] proposed his DTC approach in Haskell to
demonstrate that AoP [Bird and de Moor, 1997] concepts can address the Expression Problem. It
uses functors and generic folds, with type-level co-products (sums) for extensibility. With fixpoints,
data structures are reified into real objects, hence are easily accessible via pattern matching. How-
ever, DTC suffers from expressiveness and practicality: while DTC can model recursive tree-like struc-
tures with functors, more sophisticated mutually recursive structures, and even generalized algebraic
datatypes (GADTs) [Schrijvers etal., 2009], are difficult to model in that way. Later Bahr and Hvitved
[2011] introduced more recursion schemes and enhanced the expressiveness of computations by real-
izing monadic catamorphisms and contextual term bhomomorphisms upon DTGC; they further adopted
higher-order functors [Johann and Ghani, 2008] to represent mutually recursively datatypes and GADTs.
Oliveira et al. [2015] promoted the work in a different direction, by replacing binary co-products
with type-level list-of-functors, and presents the MR M framework for extensible and reusable pattern
matching. Our thesis, specifically Chapter 5, makes use of the original DTC framework to represent
data structures; therefore the same limitations as DTC apply. While computations on data structures
in existing work are more related to consumers and transformations, the key novelty of Chapter 5 is
the exploration on builders and the modularity behind (monadic) anamorphisms.

CHURCH ENCODINGS, FINALLY TAGLESS AND OBJECT ALGEBRAS ~ Theidea originatesin [Hinze,
2006] which shows that Haskell type classes can represent encodings of datatypes. Later Oliveira etal.
[2006] applied some variations to the encodings and showed that their approach gives a solution to
the Expression Problem. Later Finally Tagless (or Tagless Final) [Carette et al., 2007] popularized the
technique and showed how the interpretation of simple embedded DSLs can be realized in functional
programming; the approach is discussed more in detail in [Kiselyov, 2012] on extensibility, and com-
positional operations with context. Finally Object Algebras [Oliveira and Cook, 2012a] generalized
the idea to object-oriented programming [Oliveira and Cook, 2012a] and revealed its great practical-
ity. They all have the foundation in Church encodings [Béhm and Berarducci, 1985; Church, 1936].
In object-oriented programming, Object Algebras are closely related to internal visitors [Buchlovsky

130

7.2 Modularity of Operations in Functional Programming

and Thielecke, 2006; Oliveira et al., 2008]. The relationship between internal visitors and Church en-
codings was first demonstrated theoretically by Buchlovsky and Thielecke [2006]. In contrast with
DTC [Swierstra, 2008], Object Algebras naturally allow mutually recursive datatypes using multi-
ple type parameters; however reification of data structures is sacrificed, instead generic functions are
used to represent objects. Later Oliveira et al. [2013] proposed a generic and type-safe composition
mechanism for Object Algebras, and meanwhile generalized Object Algebras to model external visi-
tors [Buchlovsky and Thielecke, 2006; Oliveira et al., 2008] based on Parigot encoding [Parigot, 1992].
More recently Rendel et al. [2014] extended Object Algebras and built the connection to attribute
grammars [Knuth, 1968]. Cazzola and Vacchi [2016] proposed a trait-based approach to modularize
the abstract syntax and semantics of DSLs; the technique is very similar to Object Algebras, but uses
Scala traits with abstract types instead of parametric polymorphism.

Unfortunately, those techniques had not been discussed in related work for traversal boilerplate,
modular parsing, and the composability of co-algebras. Although this thesis does not explore new
solutions to the EP, it builds on top of the existing techniques for addressing the first two problems.
More precisely, chapters 3 and 4 adopt the original Object Algebras pattern as the underlying frame-
work, therefore inheriting its merits in terms of type-safe extensibility, modularity and conciseness.
For example in Chapter 4, with the goal of semantic modular parsing, we chose Object Algebras for
representing data, because the pattern is relatively lightweight and makes good use of existing OO fea-
tures, such as inheritance, generics and subtyping. It coexists well with Packrat parsing [Ford, 2002]
in Scala, and models mutually recursive (multi-sorted) languages expressively, leading to the concise
code throughout the chapter. Furthermore, our work in those chapters can be generalized by intro-
ducing new encodings or patterns. Recently after the original publication of Chapter 3, Zhang and
Oliveira [2017] used the generalized Parigot-encoded Object Algebras to implement an extensible
Java Visitor framework with flexible traversal control.

7.2 Modularity of Operations in Functional Programming

Our thesis specifically focuses on two types of operations: consumers, which basically traverse and
consume tree structures and collect information; and producers, which dually build data structures.
Regarding categorical recursion schemes, consumers and producers usually refer to catamorphisms
(folds) and anamorphisms (unfolds) [Meijer et al., 1991] in functional programming, respectively.

MopuLariTY OF FoLDs Folds and their modularity have motivated plenty of research in the area
of functional programming. Swierstra [2008] in his DTC approach shows several techniques for
developing datatypes and their corresponding operations modularly. The operations are modularly
defined using f-algebras (and some f-algebra variants). The composition of f-algebras is automated
using type classes, but in its essence the automated composition uses the generic algebra combinator:

(<+>) :: (fa->a) ->(ga->a) ->(fdg)a->a
(<+>) aF _ (Inl x) = aF x
(<+>) _ aG (Inr x) = aG x

aforementioned in Chapter 5. Later Bahr and Hvitved [2011] generalized DTC with higher-order
functors, but the algebra combinator only requires slight changes on (<+>). Oliveiraetal. [2015] used

131

7. RELATED WORK

list-of-functors for a replacement of binary-sum functors in their MRM framework, where algebras
are composed by (:::) into alist, and then extractAt extracts the exact algebra during a fold.
Object Algebras are closely related to folds and f-algebras. Although the representation is difter-
ent from the more conventional sums-of-products with f-algebras, Buchlovsky and Thielecke [2006]
have clearly demonstrated the isomorphism, where a sum type corresponds to the composition (prod-
uct) of visitors in the Visitor pattern, and further in Church encodings. The product of visitors/al-

gebras is simply achieved in Object Algebras using OO inheritance, resulting in similar modularity
benefits as DTC.

MopuLARITY OF UNFOLDS As discussed in Chapter 5, although it is widely acknowledged that
a generic coalgebra combinator leads to the product of functors based on type isomorphisms from
the theory, there has been unfortunately little work putting this into practice, partly due to the lack
of examples or applications on modularizing coalgebras. There are indeed interesting applications of
producers/builders with modularity in sight, including parsing, interpretation and so on, yet most
existing work tackles them with modularizing folds, general recursions or even syntactic techniques
without type-safety. In DTC, Swierstra [2008] mentioned that “While we have encountered the fold
over a data type, I bhave not mentioned the unfold”, later Bahr and Hvitved [2011] built on his work
and mentioned the composition of a term homomorphism and a cv-coalgebra [Vene, 2000] resulting in
another cv-coalgebra, which is used for a more general recursion scheme called futumorphism [Vene,
2000]. However the composition of two coalgebras is again not mentioned. Oliveira et al. [2015]
proposed MRM as a variant of DTC using list-of-functors, but discussed only f-algebras and fold-
like operations.

In Chapter 4, we achieve type-safe modular parsing in an object-oriented context, by relying on
the natural composability of algebras, and more importantly on the parser combinators. In Chap-
ter 5, our approach manages to compose modular parsers and semantic components by specialized
coalgebra combinators in SCCL. More detailed literature review on modular parsing and modular
semantics lies in Section 7.4 and Section 7.5, respectively.

MoDULARITY IN THEORY ~ Before AoP [Bird and de Moor, 1997] involved categorical concepts in
programming, the properties of functors and recursion schemes have been well studied in category
theory [Herrlich and Strecker, 1973]. Since Gill et al. [1993] proposed the idea of shortcut fusion in
Haskell code, general fusion laws on recursion schemes including catamorphisms, anamorphisms and
hylomorphisms were further presented in [Hinze et al., 2011; Onoue et al., 1997; Pardo, 1998; Takano
and Meijer, 1995]. They ofter theoretical foundations for program reasoning and optimization in
terms of deforestation [Wadler, 1988].

Animportant remark is that the sense in which most of those papers use “modularity” for unfolds
is different from ours in Chapter 5. Mostly modularity refers to the fusion laws on anamorphisms,
including the ana-fusion law [Pardo, 1998]:

g. f=f"fmap f . g’ = unfold g . f = unfold g’

which combines a cohomomorphism with an anamorphism to achieve another anamorphism. Fur-
thermore, in the general monadic case, the ana-fusion law becomes:

g . f=fmap (fmap f) . g’ = unfoldM g . f = unfoldM g’

132

7.3 Structure-Shy Traversals

In our work, modularity means the ability to develop f-coalgebras for two different functors in-
dependently and later being able to combine them into a single coalgebra. But there is some relation-
ship: the above laws have been used in proving Theorems 3 and 5 respectively. Besides, Theorems 1
and 3 have been presented in [Hinze et al., 2011] and [Hinze, 2010] respectively.

7.3 Structure-Shy Traversals

This section discusses some related work on boilerplate code in various traversal patterns and the
concept of structure shyness, specifically for Chapter 3.

ADAPTIVE OBJECT-ORIENTED PROGRAMMING (AOOP) AOOP isan extension of object-oriented
programming aimed at increasing the flexibility and maintainability of programs [Lieberherr, 1996].
AOOP promotes the idea of structure-shyness to achieve those goals. In AOOP it is possible to se-
lect parts of a structure that should be visited. This is useful to do traversals on complex structures
and focus only on the interesting parts of the structure relevant for computing the final output. The
original approach to AOOP was based on a domain-specific language [Lieberherr, 1996]. DJ is an
implementation of AOOP in Java using reflection [Orleans and Lieberherr, 2001]. More recently
DemeterF [Chadwick and Lieberherr, 2010] improved previous approaches to AOOP by provid-
ing support for type-safe traversals, generics and data-generic function generation. Shy shares with
AOOP the use of structure-shyness as a means to increase flexibility and adaptability of programs.
Most AOOP approaches, however, are not type-safe. The exception is DemeterF where a custom
type system was designed to ensure type-safety of generic functions. Unlike DemeterF, which is a
separate language, Shy is a Java library. Moreover, the compilation of DemeterF programs is imple-
mented through static weaving, and thus appears to preclude separate compilation.

STRATEGIC PROGRAMMING Strategic programming is an approach to data structure traversal,
which originated in term rewriting. Visser etal. [1998] extended the rewriting strategies of [Borovansky
etal.,, 1996] with generic one-level traversal operators enabling a style of term rewriting where com-
putations are represented by simple, conditional rewrite rules, but the application of such rules is
controlled separately using the concept of a strategy. Strategies can be primitive (e.g., “fail”) or com-
). These and other combinators were formalized in a
core language for strategic rewriting in [Visser and Benaissa, 1998a].

1%»

posed using combinators (e.g., “try s else s

The strategy concept has since then been ported to other paradigms. JJTRAVELER is an OO
framework for strategic programming [Visser, 2001b]. Limmel and Visser [2002] introduced typed
strategy combinators in Haskell. The relation between strategic programming and AOOP has been
explored in [Limmel et al., 2003].

The key tenet of strategic programming is separation of concerns: actual computation and traver-
sal are specified separately. In Shy, the traversal of a data structure is also specified separately (in a
super-interface), however, it is fixed for specific styles of queries and transformations. For instance,
both queries and transformations employ an innermost, bottom-up strategy.

The distinction between queries and transformations also originates from existing work in strate-
gic programming. Limmel and Visser [2002] discuss type unifying and type preserving traversals.
Type unifying traversals correspond to queries, where all data type constructors are unified into a sin-

133

7. RELATED WORK

interface AccuTrafoExp<M, E> extends ExpAlg<Pair<M, E>> {
Monoid<M> m();
ExpAlg<E> expAlg();
default Pair<M, E> Var(String s) {
return new Pair<>(m().empty(), expAlg().Var(s));
}
default Pair<M, E> Lit(int i) {
return new Pair<>(m().empty(), expAlg().Lit(i));
}
default Pair<M, E> Add(Pair<M, E> el, Pair<M, E> e2) {
return new Pair<>(m().join(el.fst(), e2.fst()),
expAlg().Add(el.snd(), e2.snd()));

Figure 7.1: Combining query and transformation.

gle monoid. Analogously, Shy transformations are type preserving in the sense that a transformation
is an algebra which maps constructor calls to another algebra of the same type.

The AsF+SDF program transformation system distinguishes transforming and accumulating traver-
sals, which correspond to our transformations and queries, respectively [van den Brand etal., 2003a].
Furthermore, an accumulating transforming traversal combines both styles, by tupling the accumu-
lated result and the transformed tree. This combination could easily be generated by Shy by having
the boilerplate code construct the monoid and the transformed term in parallel (see Fig. 7.1).

STRUCTURE-SHY TRAVERSALS WITH VISITORS A standard way to remove boilerplate in OOP is
to use default visitors [Nordberg III, 1996]. Default visitors can be used in similar ways to our generic
traversals. Many programmers using the visitor pattern create such default visitor implementations to
avoid boilerplate code. There are two important differences to our work in Chapter 3. Firstly conven-
tional visitors are not extensible in a type-safe way. Secondly, with Shy the code for generic traversals
is automatically generated, whereas with default visitors such code usually has to be implemented by
hand.

Visser [2001b] adapted the strategy combinators of Stratego [Visser and Benaissa, 1998a; Visser
et al., 1998] to combinators that operate on object-oriented visitors [Gamma, 1995]. The resulting
framework JJTRAVELER solves the problem of entangling traversal control within the accept meth-
ods, or in the visitors themselves (which only allow static specialization). A challenge not addressed by
JJTRAVELER is type safety of traversal code: either the combinators needs to be redefined for each data
type, or client code needs to cast the generic objects of type AnyVisitable to the specific type. Even if
specific combinators would be generated, however, the traversed data types would not be extensible.

Another approach to improve upon the standard Visitor pattern is presented in [Palsberg and
Jay, 1998]. This work particularly addressed the fact that traditional visitors operate on a fixed set of
classes. As a result, the data type can not be extended without changing all existing visitors as well.
The proposed solution is a generic Walkabout class which accesses sub-components of arbitrary data

134

7.3 Structure-Shy Traversals

structures using reflection. Unfortunately, the heavy use of reflection makes Walkabouts significantly
slower than traditional visitors. The authors state that the Walkabout class could be generated to
improve performance, but note that the addition of a class could trigger regeneration. As a result
the pattern does not support separate compilation. Our solution obtains the same kind of default
behavior for traversal, without losing extensibility, type safety, or separate compilation.

Whereas the Walkabout provides generic navigation over an object structure, this navigation can
be programmed explicitly using guides [Bravenboer and Visser, 2001]. Guides insert one level of
indirection between recursing on the children of a node in visit methods: the guide decides how to
proceed the traversal. Since guides need to define how to proceed for each type that will be visited,
they suffer from the same extensibility problem as ordinary visitors. Generic guides, on the other
hand, are dynamically typed and use reflection to call appropriate visit methods. The Walkabout
can be formulated as such a generic guide.

STRUCTURE-SHY TRAVERSALS IN FUNCTIONAL PROGRAMMING In functional programming,
there has been alot of research on type-safe structure-shy traversals. Limmel and Peyton Jones’ “Scrap
your Boilerplate” (SyB) [Lammel and Jones, 2003; Limmel and Jones, 2004, 2005] series introduced
a practical design pattern for doing generic traversals in Haskell. The simple queries and transforma-
tions in Shy were partly inspired by SyB. However SyB and Shy use very different implementation
techniques. SyB is implemented in Haskell and relies on a run-time type-safe cast mechanism. This
approach allows SyB traversals to be encoded once-and-forall using a single higher-order function
called gfoldl. In contrast, in Shy Java annotations are used to generate generic traversals for each
structure.

A drawback of SyB traversals is that they are notoriously slow, partly due to the use of the run-time
cast [Adams and DuBuisson, 2012]. Another notable difference between SyB and Shy is with respect
to extensibility. While Shy supports extensibility of both traversals and structures, the original SyB
approach did not support any extensibility. Only in later work, Limmel and Peyton Jones proposed
an alternative design for SyB, based on type classes [Wadler and Blott, 1989]. This design supports
extensibility of traversals, but not of the traversed structures.

Closest to Shy is an approach proposed by Limmel et al. [2000] for dealing with the so-called
“large bananas”. A large banana corresponds to the fold algebra of a complex structure. Object Al-
gebras, which we use in our work, are an OO encoding of fold algebras [Oliveira and Cook, 2012a;
Oliveira et al., 2008]. However Limmel et al. work has not dealt with extensibility. Interestingly
in their future work, Limmel et al. did mention that they would like “to cope with incomplete or
extensible systems of datatypes”.

LANGUAGE EXTENSIONS FOR QUERIES Inspired by XPath/XQuery, there has been some work on
adding support for similar types of queries on object-oriented structures. For example, the work on
Cw [Bierman et al., 2005] extends C# with generalized member access, which allows simple XPath-
like path expressions. Thus in Cw it is possible to express queries quite concisely. However, in con-
trast to Shy, Cw is a language extension and it does not deal with transformations.

ELIMINATING BOILERPLATE IN DESIGN PATTERNS Design patterns [Gamma, 1995] improve the
design and modularity of object-oriented programs. However, the implementation of design patterns
sometimes requires significant amounts of boilerplate code. There has been some work on imple-

135

7. RELATED WORK

menting design patterns in Aspect] to achieve reusability and modularity [Hannemann and Kiczales,
2002], and thus eliminate some of the boilerplate code. A challenge with traditional design patterns,
however, is that the boilerplate code is not always mechanical, due to many possible implementation
choices. Chapter 3 proposes a number of design patterns for traversals. Because implementing these
design patterns by hand would be quite tedious, we automatically generate the code for such design
patterns using Shy. Fortunately, in contrast to many of the traditional design patterns, the code for
generic traversals is highly regular and easy to generate, and can be completely eliminated.

7.4 Modular Parsing

This section reviews some existing work on modular parsing, mostly for Chapter 4. Additionally there
is some related work on modular parsing by anamorphisms, and we draw its connection to Chapter 5.

SAFELY COMPOSABLE TYPE-SPECIFIC LANGUAGES Thereis almost no work on semantically mod-
ular parsing. A notable exception is the work on safely composable rype-specific languages [Omar etal.,
2014]. In this work, the extensible language Wyvern supports the addition of new syntax and seman-
tics, while preserving type-safety and separate compilation. However this approach and our work in
Chapter 4 have different goals: their approach is aimed at supporting extensibility of Wyvern with
new syntax; whereas our approach is a general technique aimed at modular parsing of any languages.
In contrast to their modular parsing approach, which is directly built-in to the Wyvern language, our
approach is library-based and can be used by many mainstream OO languages.

SYNTACTICALLY EXTENSIBLE PARSING Extensible parser generators [Gouseti etal., 2014; Grimm,
2006; Parr and Quong, 1995; Schwerdfeger and Van Wyk, 2009a; Viera etal., 2012; Warth etal., 2016a]
are a mainstream area of modular syntax and parsing. They allow users to write modular grammars,
where new non-terminals and production rules can be introduced, some can even override existing
rules in the old grammar modules. For instance, Rats! [Grimm, 2006] constructs its own module
system for the collection of grammars, while NOA [Gouseti et al., 2014] uses Java annotation to col-
lect all information before producing an ANTLR [Parr and Quong, 1995] grammar and the parsing
code. Those parser generators focus on the syntactic extensibility of grammars: they rely on whole
compilation to generate a global parser, even if there is only a slight modification in the grammar.
Some of those parser generators may statically check the correctness and unambiguity of grammars.
In contrast, because our approach is based on parser combinators, there is no support for ambiguity
checking. However, as far as we are aware, no extensible parser generators support separate compila-
tion or modular type-checking. It is worth mentioning that in [Viera et al., 2012], users can define
grammar fragments as typed Haskell values, and combine them on the fly. Later they are processed
by a typed parser generator. Nevertheless this requires a lot of advanced language features, making
client complex. Our approach in Chapter 4 is simple and a straightforward use of OO programming,
and makes parsing code directly reusable.

Macro systems like the C preprocessor, C++ templates and Racket [Tobin-Hochstadtetal., 2011],
and other meta-programming techniques are a similar area aiming at syntactic extensibility. Sug-
ar] [Erdweg et al., 2011] conveniently introduces syntactic sugar for Java using library imports. Com-
position of syntactic sugar is easy for users, but it requires many rounds of parsing and adaption, hence

136

7.4 Modular Parsing

significantly affects the efficiency of compilation. Since the implementation was based on SDF [Heer-
ing etal., 1989] and Stratego [Visser, 2001a], it does not support separate compilation. Racket adopts
a macro system for library-based language extensibility [Tobin-Hochstadt et al., 2011]. It uses at-
tributed ASTs for contextual information, and extensions can be integrated in a modular way. How-
ever such modularity is not flexible enough for language unification, as the syntax is only built from
extensions. Extensible compilers like JastAdd [Ekman and Hedin, 2007] and Polyglot [Nystrom etal.,
2003] also support extensible parsing, but it is mostly done using parser generators. They focus on
the extensions to a host language. Those techniques are short of type safety in a modular setting as
well.

EXTENSIBLE PARSING ALGORITHMS Parse table composition [Bravenboer and Visser, 2008; Schw-
erdfeger and Van Wyk, 2009b] is an approach where grammars are compiled to modular parse tables.
Those parse tables are expressed as DFAs or NFAs, and later they can be composed by an algorithm,
to provide separate compilation for parsing. The generation of parse tables can be quite expensive in
terms of performance. The approach is quite different from ours, since it uses parse tables, whereas
we use parser combinators. Our approach supports both separate compilation as well as modular
type-checking, and is commonly applicable OO languages. Moreover, the extensibility of parsing is
further available in language composition.

PARSER COMBINATORS Parser combinators have become more and more popular since [Burge,
1975; Wadler, 1985]. Many parsing libraries produce recursive descent parsers by introducing func-
tional monadic parser combinators [Hutton and Meijer, 1996]. Parsec [Leijen and Meijer, 2001] is
perhaps the most popular parser combinator library in this line. It is widely used in Haskell (with
various “clones” in other languages) for context-sensitive grammars with infinite lookahead. Nev-
ertheless, Parsec users suffer from manual left-recursion elimination, high cost for backtracking and
longest match composition issues, as we discussed in Section 4.1.1. Those limitations make Parsec (and
similar parsing techniques) inadequate for modular parsing.

Some recent work on parser combinators [Ford, 2002; Frost et al., 2008; Might et al., 2011] pro-
posed a series of novel parsing techniques that address the issue of left-recursion. We chose Packrat
parsing due to its simplicity in Scala, but in general there are alternatives to it.

Despite the algorithmic challenges, Pardo [1998] proposed the concept of monadic anamorphisms
and presented monadic parsing as an application. The modular parsing in SCCL is closely related to
his work, namely parsers are defined as monadic coalgebras, and composed with specialized coalgebra
combinators. While Chapter 5 points out that it can be troublesome to parse abstract syntax due to
ad-hoc traversals, Pardo [1998] avoids the issue by parsing concrete syntax, and turther fuses parsing
with subsequent semantic actions into bylomorphisms, to deforest abstract syntax trees. Unfortu-
nately, encoding concrete syntax requires much more sorts in mutually recursive types, and compli-
cates the code significantly. An alternative approach is generalizing coalgebras and anamorphisms
with Mendler-style [Mendler, 1991; Uustalu and Vene, 2000] for explicit traversal control.

Case CrLasses Scala case classes can encode algebraic datatypes that allow the addition of new con-
structors. However such “open” case classes do not enforce exhaustiveness of pattern matching for
extensible operations, and thus do not provide a full solution to the Expression Problem. Neverthe-
less case classes are widely used in practice, and a solution for parsing open case classes (and compos-

137

7. RELATED WORK

ing such parsers) is quite relevant in practice. The techniques in Section 4.2 can be readily adapted
to work with case classes. The work by Sloane and Roberts [2015] on a modular Oberon compiler
applied similar techniques with packrat parsers and case classes. In Chapter 4 we use Object Algebras
for full extensibility and type safety, and we have well studied the algorithmic challenges of parsing in
a modular setting.

7.5 Modular Semantics and Generators

This section lists a few related topics and some existing work on modular semantics and data genera-

tors, specifically for Chapter 5 and Chapter 6.

MoDULAR SEMANTICS ~ Similar to modular parsing, related research on modular semantics has
been conducted in various branches. There are syntactic modularization techniques prevalent in
most language workbenches and extensible compilers, for example Rascal [Klint et al., 2009], Sug-
ar] [Erdweg et al., 2011], JastAdd [Ekman and Hedin, 2007], and Polyglot [Nystrom et al., 2003].
They basically allow modular grammars/specifications in certain forms, and later apply code gener-
ation for language semantics. However, different from modular parsing, modular semantics have
received considerable attention in related literature, specifically for denotational semantics [Scott and
Strachey, 1971] and sometimes big-step operational semantics, because denotational semantics are nor-
mally designed with composability, and they can be implemented as consumers that are easily modu-
lar. Asaresult, many (partial) solutions to the Expression Problem have presented modular semantics
as their applications. Modular visitors, and their generalizations/variants have been used in [Leduc
et al., 2017; Oliveira, 2009]. In recent years, the rise of Object Algebras [Oliveira and Cook, 2012a]
and similar patterns motivates modular semantics in [Biboudis et al., 2016; Inostroza and Storm,
2015; Warth et al., 2016b]. Oliveira et al. [2013] generalized Object Algebras with object self-references
and call-by-name parameters for better traversal control in implementing semantics. More recently,
Zhang and Oliveira [2017] have also adopted that generalized pattern, and especially implemented
small-step semantics for TAPL interpreters, yet had to sacrifice modularity on ASTs. In functional
programming, Swierstra [2008] presented modular denotational semantics with composable func-
tors and algebras in DTC. Delaware et al. [2013] used Church encodings for extensible semantics, and
invoked Mendler-style algebras [Uustalu and Vene, 2000] for explicit traversal control. Since Object
Algebras are closely related to folds in functional programming, those techniques can be traced back
to categorical representations.

Structured operational semantics [Plotkin, 1981], or small-step semantics, on the other hand, have
been poorly explored using coalgebras. They are quite useful in inspecting step-by-step execution,
and offer more convenience to program reasoning. In fact, there has already been well-established
theory about operational semantics and their categorical representations [Lenisa et al., 2004; Turi and
Plotkin, 1997]. Recently, Honsell et al. [2004] and Steingartner et al. [2016] explored some theory
to represent small-step transition relations among states as coalgebras, and Hutton [1998] had pre-
sented some practical Haskell code for illustration earlier. However, those coalgebras are normally
based on some fixed observable behavior functors, rather than the signature functors that reveals the
abstract syntax of languages as in denotational semantics in order for modularity. [Jaskelioff et al.,
2011] integrates both algebraic and coalgebraic features using both kinds of functors, nevertheless,

138

7.5 Modular Semantics and Generators

they still implement transition coalgebras on a behavior functor, and achieve modularity on signa-
ture functors by the generic algebra combinator in essence. Worse still, the code for semantics written
by users is rather complicated.

Our attempt in Chapter 5 straightforwardly represents transitions as coalgebras with respect to
the syntax functor, and designs specialized combinators in SCCL. The resulting client code is concise
and immediately reflects the correspondence to small-step semantic specifications (rules). It is worth
mentioning that modular semantics sometimes require a second dimension of modularity, namely
on functionality, and we use monad transformers inspired by [Liang et al., 1995].

GENERATING RANDOM ExPrEss1oNs Random testing is widely used in domain-specific language
implementations for validating properties and finding bugs. QuickCheck [Claessen and Hughes,
2000] is a well-known Haskell library for random data generation and random testing. Our case
study implements modular random generators by using coalgebras and unfold, and also associates
with QuickCheck for validating properties.

There has been a lot of work on generating random expressions. A challenging problem is to deal
with languages including lambdas and applications, when the goal is to generate well-formed expres-
sions [Grygiel and Lescanne, 2013; Wang, 2005]. Moreover, there is usually a demand for generating
well-typed expressions [Claessen et al., 2014; Fetscher et al., 2015; Grygiel and Lescanne, 2013; Patka
etal., 2011]. Besides, [Christiansen and Fischer, 2008; Duregird et al., 2012; Runciman et al., 2008]
proposed various techniques for enumeration-based generation. Those methods are often generic to
languages and rules, whereas our case study focuses more on the modularity of the generators and
the use of specialized combinators. As far as we know there is no previous work on building modular
generators for modular datatypes before.

139

7. RELATED WORK

140

Chapter 8

Conclusion

This chapter concludes the dissertation and points out the possible directions for future work.

8.1 Summary

This dissertation has argued that modularizing consumer and producer operations is an important

and challenging area of today’s modular programming. Following the Expression Problem [Wadler,
1998], we have identified several new research directions in both object-oriented programming and
functional programming, and proposed our methodologies for tackling the corresponding issues.

There are other practical aspects associated with modularization, including type-safety, conciseness,

expressiveness and efficiency. Taking all those aspects into consideration, we have encoded our tech-

niques into some libraries, and further presented applications as well as case studies to demonstrate

their utility. More precisely:

* Chapter 3 identified the boilerplate issue in modularizing consumers of abstract syntax trees,
and showed how various types of default traversals can be automatically provided by Shy. Shy
traversals are written directly in Java and are type-safe, extensible and separately compilable.
There has always been a tension between the correctness guarantees of static typing, and the
flexibility of untyped/dynamically-typed approaches. Shy shows that even in type systems like
Java’s, itis possible to get considerable flexibility and adaptability for the problem of boilerplate
code in traversals of complex structures, without giving up modular static typing. The case
study on a domain-specific questionnaire language showed a significant reduction in code size.

* Chapter 4 focused on parsing, a representative of producer operations, and showed how type-
safe modular parsing can be achieved in OO languages. The algorithmic challenges of modular
parsing have been identified, and finally an integration of Packrat parsing, Object Algebras and
OO inheritance forms our solution in Scala. As a result, not only parsers can evolve together
with the abstract syntax, but also separate compilation and modular type-checking are guaran-
teed. Thelanguage feature abstraction further enhances code reuse and modularity. The TAPL
case study demonstrates a great reduction in code size with reasonable performance penalty.

141

8. CONCLUSION

8.2

Chapter 5 explored the modularity of producer methods in a more general view, and illustrated
the essence of modular unfolds by a general composition operator for f-coalgebras that pro-
duce product structures. We have shown that taking the fixpoint of such product structures
creates product forests, and a following transformation can be used to produce the more fa-
miliar sums-of-products. To avoid the intermediate product forests, deforestation theorems
are presented for both pure and monadic coalgebras, when transformations are natural and
unfold-based. Finally in practice, it is more convenient to use the derived specialized combina-
tors on coalgebras to directly generate sums-of-products. The resulting SCCL library has inte-
grated a couple of different selection strategies, and has contributed to the modularization in
applications like random generators, small-step semantics and monadic parsing. In Chapter 6,
the case study on random generators and enumerators reveals code reusability and flexibility
in various dimensions.

Future Work

This section shows possible directions of future work, by discussing some limitations and deeper
insights into the proposed methodologies.

BOI1LERPLATE AND CODE GENERATION There are some places to improve regarding boilerplate
code generation. Currently Shy generates separate files for the generic traversal patterns; although
they are put into different packages, those classes/interfaces are still polluting the namespace, and the
connection to the annotated Object Algebra interfaces is unclear. It is possible to modify the abstract
syntax tree, and inject the boilerplate code inside the Object Algebra interfaces for encapsulation; this

can be done by using Lombok for example.

In Section 4.4.3, the manual composition of language components is verbose in VarLamExpr:

object VarLamExpr {

}

trait Alg[E, T] extends VarExpr.Alg[E] with TypedLam.Alg[E, T]
trait Parse[E, T] extends VarExpr.Parse[E] with TypedLam.Parse[E, T] {...}
trait Print extends VarExpr.Print with TypedLam.Print

Such a pattern refers to family polymorphism [Ernst, 2001] for reducing boilerplate. We desire to write

the following imaginary code for language composition:

object VarLamExpr[E, T] extends VarExpr[E] with TypedLam[E, T] {

}

trait Parse {...}

where the language components and the type parameters are only specified at the outermost layer.

Alg, Parse and Print are implicitly defined and the subtyping relations are automatically derived.
Only additional code shows up in trait Parse. Such simplification can either be done by the compiler
of the host language, or by using meta-programming techniques.

There are also some minor issues. In Section 5.5.2.3, currently the arity of a functor has to be as-
signed by users; potentially this information can be automatically derived by Template Haskell [Adams
and DuBuisson, 2012] from datatype definitions.

142

8.2 Future Work

ExTENSION TO LIBRARIES The libraries proposed in this dissertation can be extended for more
expressiveness. Currently Shy captures four kinds of traversal patterns, however, they are all in a
bottom-up manner. It could be possible to extend Shy traversals with more flexible traversal strate-
gies, similar to strategic programming [Borovansky et al., 1996; van den Brand et al., 2003b; Visser
and Benaissa, 1998b]. On the other hand, since Chapter 4 explores modular parsing and uses Ob-
ject Algebras [Oliveira and Cook, 2012a], the Shy framework could also be extended to support the
definition of parsers and more generalized producer operations.

For SCCL, a couple of selection strategies have been captured for specialized coalgebra composi-
tion, and common monads like reader, writer, state, maybe, and list have been involved. It would be
interesting to explore new monads (such as I0) and their strategies in new applications.

MODULAR SEMANTICS AND MODULAR MONADIC PARSING ~ Small-step semantics and monadic
parsing are two applications of modularizing producers in Chapter 5. They can be improved and
extended in various ways. In modular semantics, we have only presented rules for simple constructs.
If the language is extended, for example, with abstraction and application, the monad will have to be
extended with a state transformer to maintain an environment for variables. Writing larger examples
can give better illustration for its utility.

For modular monadic parsing, we have only presented a simple implementation of the choice
combinator. In fact, memoization can be developed in the design of monads, and will offer great
help in encoding left-recursive grammars and enhance the efficiency. On the other hand, custom
evaluation of effects in parsing has also been discussed in Section 5.5.4, where Mendler-style coalge-
bras [Mendler, 1991; Uustalu and Vene, 2000] were proposed for a potential generalization.

(FuncTioNAL) LANGUAGE WORKBENCHES —Language workbenches aim to define and compose
language components easily. Erdweg et al. [2015] has presented a feature model that captures the
major features of language workbenches, including notation, semantics, editor support, validation,
testing and composability. This dissertation has discussed the modularity of consumer and producer
operations, without breaking the modularity of ASTs. Specifically, we can identify some language
features as follows:

* Consumers: validation (like type-check), interpretation, transformation (like desugaring), ...
« Producers: parsing, interpretation, random test generation, ...

This motivates us to modularize language implementations at various aspects, and finally produce
language workbenches for convenient language extension and composition. By realizing such mod-
ularization in functional programming with algebras, coalgebras, and the generic recursion schemes
(folds, unfolds, ...), we can further apply some fusion theorems and deforestation techniques to en-
hance the performance.

DATA REPRESENTATIONS AND EXPRESSIVENESS The combinators in SCCL are implemented
based on natural transformations over two functors. Such binary composition makes it tricky to en-
code the behaviors that require a global view of all functors (as discussed in Section 6.6). That inspires
us to follow the MRM [Oliveira etal., 2015] framework, using the list-of-functor representation. The
original MRM library has only encoded (generalized) algebras, as follows:

143

8. CONCLUSION

data Matches (fs :: [* -> x]) (a :: *x) (b :: x) where
Void :: Matches '[] a b
(:::) :: Functor f => (f a -> b) -> Matches fs a b -> Matches (f ': fs) a b

Thereby we can possibly extend the library with (monadic) coalgebras, and realize the generic anamor-
phism together with specialized coalgebra combinators.

On the other hand, the expressiveness of functors in Haskell is still restricted due to the lack of
mutual recursion. In contrast, Object Algebras [Oliveiraand Cook, 2012a] make it straightforward to
represent mutually recursive data structures. To achieve this in Haskell, bigher-order functors [Johann
and Ghani, 2008] could be a solution (also related to GADTs), but have received much less attention.

There are other avenues to enhance expressiveness. Theidea of abstract syntax graphs (ASGs) [Oliveira
and Cook, 2012b; Oliveira and Léh, 2013] encodes sharing and loops in data structures. Potentially
we could generate ASGs with generic unfolds in applications like parsing and enumeration, to opti-
mize data representations and execution efficiency.

MoRE ExPLORATION IN THEORY ~ We believe that more exploration can be done from a theoretical
or mathematical perspective, to answer the following questions:

* What s the relationship between the difference of internal visitors versus external visitors, and
unfold-based versus fold-based transformations (Section 5.4.4)? Where to use the fold-based
transformations?

* Besides consumers and producers, can we identify transformations as an independent recur-
sion pattern?

* Chapter 5 showed that while algebra composition leads to the sum of functors, coalgebra com-
position refers to the product type, and a subsequent transformation changes it to the sum
type. Can we express the nice duality between algebras and coalgebras as in category the-
ory [Herrlich and Strecker, 1973]? What is the connection to the duality between Church
encoding and co-Church encoding?

LoNG-TErRM GoaLs There are two long-term goals for the area of modularization. Firstly, we
would like to introduce generic producers and their composition in object-oriented programming,
similar to Object Algebras which realize generic consumers (traversals) and extensibility in OOP. Sec-
ondly, existing languages are not powerful enough to represent consumers, producers and their exten-
sibility. Due to the lack of advanced language features, our techniques have to encode those patterns
sometimes with cumbersome boilerplate to ensure type safety. As argued in Section 1.2, modulariza-
tion techniques should spur the evolution of programming languages; we expect a language/calculus
to modularize data structures and various operations in the first place, and involve deforestation tech-
niques to optimize the performance. At this point, this dissertation is hopefully a stepping stone for
further exploration.

144

Bibliography

Michael D. Adams and Thomas M. DuBuisson. 2012. Template Your Boilerplate: Using Template
Haskell for Efficient Generic Programming. In Proceedings of the 2012 ACM SIGPLAN Haskell
symposium (Haskell ’12).13-24. [cited on pages: 107, 135, and 142]

Sven Apel and Christian Kistner. 2009. An Overview of Feature-Oriented Software Development.
Journal of Object Technology 8,5 (2009), 49-84. [cited on page: 4]

John W. Backus. 1954. Specifications for the IBM mathematical FORmula TR ANslation system.
New York: IBM Applied Science Division 10 (1954). [cited on page: 1]

Patrick Bahr and Tom Hvitved. 2011. Compositional data types. In Proceedings of the seventh ACM
SIGPLAN workshop on Generic programming (WGP ’11). ACM, New York, NY, USA, 83-94.
[cited on pages: 130, 131, and 132]

Kent Beck and Erich Gamma. 1998. Test infected: Programmers love writing tests. Java Report 3,7
(1998), 37-50. [cited on page: 26]

Eric Béguet and Manohar Jonnalagedda. 2014. Accelerating Parser Combinators with Macros. In
Proceedings of SCALA 2014.7-17. [cited on page: 75]

Aggelos Biboudis, Pablo Inostroza, and Tijs van der Storm. 2016. Recaf: Java Dialects As Libraries. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE 2016). 2-13. [cited on page: 138]

Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. 2005. The Essence of Data Access in Comega.
In ECOOP 2005. [cited on page: 135]

Richard Bird and Oege de Moor. 1997. Algebra of Programming. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA. [cited on pages: 5, 8,13, 24, 77,129, 130, and 132]

Corrado Bshm and Alessandro Berarducci. 1985. Automatic synthesis of typed lambda-programs on
term algebras. Theoretical Computer Science 39 (1985), 135 — 154. Third Conference on Founda-
tions of Software Technology and Theoretical Computer Science. [cited on page: 130]

Corrado Bshm and Giuseppe Jacopini. 1966. Flow diagrams, turing machines and languages with
only two formation rules. Commun. ACM 9, 5 (1966), 366-371. [cited on page: 2]

145

BIBLIOGRAPHY

Peter Borovansky, Claude Kirchner, Hélene Kirchner, Pierre-Etienne Moreau, and Marian Vittek.
1996. ELAN: A logical framework based on computational systems. Electronic Notes in Theoretical
Computer Science 4 (1996), 35-50. [cited on pages: 6,133, and 143]

Gilad Bracha and William Cook. 1990. Mixin-based Inheritance. In Proceedings of the European
Conference on Object-oriented Programming on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA/ECOOP 90).303-311. [cited on page: 62]

Martin Bravenboer and Eelco Visser. 2001. Guiding visitors: Separating navigation from computation.
Technical Report UU-CS-2001-42. Institute of Information and Computing Sciences, Utrecht
University. [cited on page: 135]

Martin Bravenboer and Eelco Visser. 2008. Parse Table Composition. In Proceedings of SLE 2008.
74-94. [cited on page: 137]

Peter Buchlovsky and Hayo Thielecke. 2006. A Type-theoretic Reconstruction of the Visitor Pattern.
Electron. Notes Theor. Comput. Sci. 155 (May 2006), 309-329. [cited on pages: 18, 21, 130, 131,
and 132]

William H. Burge. 1975. Recursive programming techniques. Addison-Wesley Longman, Incorpo-
rated. [cited on pages: 27, 61, and 137]

Peter Canning, William Cook, Walter Hill, Walter Olthoft, and John C. Mitchell. 1989. F-bounded

Polymorphism for Object-oriented Programming. In Proceedings of the Fourth International Con-

ference on Functional Programming Languages and Computer Architecture (FPCA °89). 273-280.
[cited on pages: 5, 21, and 130]

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2007. Finally Tagless, Partially Evaluated:
Tagless Staged Interpreters for Simpler Typed Languages. In Proceedings of the 5th Asian Confer-
ence on Programming Languages and Systems (APLAS 07). 222-238. [cited on pages: 3, 23,
and 130]

Walter Cazzola and Edoardo Vacchi. 2016. Language Components for Modular DSLs Using Traits.
Comput. Lang. Syst. Struct. 45, C (April 2016),16-34. [cited on page: 131]

Bryan Chadwick and Karl Lieberherr. 2010. Weaving Generic Programming and Traversal Perfor-
mance. In Proceedings of the 9th International Conference on Aspect-Oriented Software Develop-
ment (AOSD ’10). 61-72. [cited on page: 133]

Craig Chambers and Gary T. Leavens. 1995. Typechecking and Modules for Multimethods. .4CA4
Trans. Program. Lang. Syst. 17,6 (Nov. 1995), 805-843. [cited on page: 21]

Jan Christiansen and Sebastian Fischer. 2008. EasyCheck — Test Data for Free. In Functional and
Logic Programming, Jacques Garrigue and Manuel V. Hermenegildo (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 322-336. [cited on page: 139]

Alonzo Church. 1932. A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33,
2(1932), 346-366. [cited on page: 2]

146

BIBLIOGRAPHY

Alonzo Church. 1936. An Unsolvable Problem of Elementary Number Theory. Journal of Symbolic
Logic1,2(1936),73-74. [cited on pages: 18 and 130]

Koen Claessen, Jonas Duregird, and Michat H. Patka. 2014. Generating Constrained Random Data
with Uniform Distribution. In Functional and Logic Programming. Springer International Pub-
lishing, Cham, 18-34. [cited on pages: 78,79,122, and 139]

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP "00). 268-279. [cited on pages: 30, 78,103, and 139]

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. 2000. MultiJava: Modular
Open Classes and Symmetric Multiple Dispatch for Java. In Proceedings of the 15th ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOP-
SLA °00).130-145. [cited on page: 21]

William R. Cook. 1989. A Denotational Semantics of Inberitance. Ph.D. Dissertation. Brown Uni-
versity. [cited on page: 72]

Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Indagationes Math-
ematicae (Proceedings)75, 5 (1972), 381 — 392. [cited on pages: 48 and 118]

Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2013. Meta-theory a La Carte. In
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’13).207-218. [cited on page: 138]

Edsger W. Dijkstra. 1968. Letters to the Editor: Go to Statement Considered Harmful. Commun.
ACM 11, 3 (March 1968), 147-148. [cited on pages: 1 and 2]

Robert Dondero. 2014. https://www.cs.princeton.edu/courses/archive/falll4/
€0s217/. Accessed: 2019-01-17. [cited on page: 2]

Jonas Duregard. 2012. Enumerative Testing and Embedded Languages. Ph.D. Dissertation. Chalmers
University of Technology. [cited on page: 124]

Jonas Duregird, Patrik Jansson, and Meng Wang. 2012. Feat: Functional Enumeration of Algebraic
Types. In Proceedings of the 2012 Haskell Symposium (Haskell °12). ACM, New York, NY, USA,
61-72. [cited on pages: 78,79, and 139]

Torbjorn Ekman and Gorel Hedin. 2007. The jastadd extensible java compiler. In Proceedings of
OOPSLA 2007.1-18. [cited on pages: 80, 137, and 138]

Sebastian Erdweg, Tillmann Rendel, Christian Kistner, and Klaus Ostermann. 2011. Sugar]: library-
based syntactic language extensibility. In Proceedings of OOPSL.A 2011 391-406. [cited on
pages: 136 and 138]

147

https://www.cs.princeton.edu/courses/archive/fall14/cos217/
https://www.cs.princeton.edu/courses/archive/fall14/cos217/

BIBLIOGRAPHY

Sebastian Erdweg, Tijs van der Storm, Markus Vélter, Meinte Boersma, Remi Bosman, William R
Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, et al. 2013. The state of the
art in language workbenches. In Software Language Engineering. Springer. [cited on pages: 34
and 54]

Sebastian Erdweg, Tijs Van Der Storm, Markus Volter, Laurence Tratt, Remi Bosman, William R
Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, et al. 2015. Evaluating and
comparing language workbenches: Existing results and benchmarks for the future. Computer Lan-
guages, Systems & Structures 44 (2015), 24—47. [cited on pages: 4 and 143]

Erik Ernst. 2001. Family Polymorphism. In Proceedings of ECOOP 2001.303-326. [cited on pages: 4,
72, and 142]

Erik Ernst, Klaus Ostermann, and William R. Cook. 2006. A virtual class calculus. In Proceedings of
POPL 2006.270-282. [cited on page: 4]

Martin Odersky et al. 2004. An Overview of the Scala Programming Language. Technical Report
IC/2004/64. EPFL Lausanne, Switzerland. [cited on pages: 61 and 66]

Burke Fetscher, Koen Claessen, Michat Patka, John Hughes, and Robert Bruce Findler. 2015. Making
Random Judgments: Automatically Generating Well-Typed Terms from the Definition of a Type-
System. In ESOP 2015. 383-405. [cited on pages: 78,79, 122, and 139]

Maarten Fokkinga. 1994. Monadic Maps and Folds for Arbitrary Datatypes. Technical Report.
Memoranda Informatica, University of Twente. [cited on pages: 5 and 16]

Bryan Ford. 2002. Packrat parsing: : simple, powerful, lazy, linear time, functional pearl. In Proceed-
ings of ICFP 2002.36-47. [cited on pages: 9, 27, 61, 62, 64, 131, and 137]

Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. 2008. Parser Combinators for Ambiguous
Left-Recursive Grammars. In Proceedings of PADL 2008.167-181. [cited on page: 137]

Erich Gamma. 1995. Design patterns: elements of reusable object-oriented software. Pearson Education
India. [cited on pages: 2, 16, 18, 20, 129, 134, and 135]

Jeremy Gibbons. 2003a. Origami Programming. In The Fun of Programming. Palgrave, 41-60. [cited
on page: 129]

Jeremy Gibbons. 2003b. Patterns in Datatype-Generic Programming. In Multiparadigm Program-
ming, Vol. 27. John von Neumann Institute for Computing (NIC), 277-289. First Interna-
tional Workshop on Declarative Programming in the Context of Object-Oriented Languages (DP-
COOL). [cited on page: 129]

Jeremy Gibbons. 2006. Design Patterns As Higher-order Datatype-generic Programs. In Proceedings
of the 2006 ACM SIGPLAN Workshop on Generic Programming (WGP "06).1-12. [cited on
page: 129]

Jeremy Gibbons and Bruno C. d. S. Oliveira. 2009. The essence of the Iterator pattern. Journal of
Functional Programming 19, 3-4 (2009), 377-402. [cited on pages: 16 and 129]

148

BIBLIOGRAPHY

Jeremy Gibbons and Nicolas Wu. 2014. Folding Domain-specific Languages: Deep and Shallow Em-
beddings (Functional Pearl). In Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming (ICFP ’14).339-347. [cited on page: 24]

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A Short Cut to Deforestation. In
Proceedings of the Conference on Functional Programming Languages and Computer Architecture
(FPCA 93).223-232. [cited on pages: 5 and 132]

Maria Gouseti, Chiel Peters, and Tijs van der Storm. 2014. Extensible Language Implementation
with Object Algebras (Short Paper). In GPCE’I4. [cited on pages: 4, 8, 34, 54, 61, and 136]

Robert Grimm. 2006. Better extensibility through modular syntax. In Proceedings of PLDI 2006.
38-51. [cited on pages: 4, 8, 61, and 136]

Katarzyna Grygiel and Pierre Lescanne. 2013. Counting and generating lambda terms. Jjournal of
Functional Programming 23,5 (2013), 594-628. [cited on pages: 78,79, and 139]

Jan Hannemann and Gregor Kiczales. 2002. Design Pattern Implementation in Java and Aspect]. In
OOPSLA "02. [cited on page: 136]

Jan Heering, Paul Robert Hendrik Hendriks, Paul Klint, and Jan Rekers. 1989. The syntax definition
formalism SDF-reference manual-. ACAM Sigplan Notices 24, 11 (1989), 43-75. [cited on
page: 137]

Horst Herrlich and George Strecker. 1973. Category theory. (1973). [cited on pages: 5, 8, 13, 129,
132, and 144]

Ralf Hinze. 2006. Generics for the Masses. /. Funct. Program. 16, 4-5 (July 2006), 451-483. [cited
on pages: 23 and 130]

Ralf Hinze. 2010. A category theory primer. http://www.cs.ox.ac.uk/ralf.hinze/
SSGIP10/Notes.pdf SSGIP 10 Notes. [cited on pages: 91 and 133]

Ralf Hinze, Thomas Harper, and Daniel W. H. James. 2011. Theory and Practice of Fusion. In Pro-
ceedings of the 22Nd International Conference on Implementation and Application of Functional
Languages (IFL ’10).19-37. [cited on pages: 90, 132, and 133]

Furio Honsell, Marina Lenisa, and Rekha Redamalla. 2004. Coalgebraic Semantics and Observa-
tional Equivalences of an Imperative Class-based OO-Language. Electron. Notes Theor. Comput.
Sci. 104 (Nov. 2004), 163-180. [cited on page: 138]

John Hughes. 1989. Why Functional Programming Matters. Comput. J. 32, 2 (April 1989), 98-107.
[cited on page: 2]

Graham Hutton. 1998. Fold and Unfold for Program Semantics. In Proceedings of the Third ACM
SIGPLAN International Conference on Functional Programming (ICEP *98). 280-288. [cited on
pages: 110 and 138]

149

http://www.cs.ox.ac.uk/ralf.hinze/SSGIP10/Notes.pdf
http://www.cs.ox.ac.uk/ralf.hinze/SSGIP10/Notes.pdf

BIBLIOGRAPHY

Graham Hutton and Erik Meijer. 1996. Monadic parser combinators. Technical Report NOTTCS-
TR-96-4. University of Nottingham. http://eprints.nottingham.ac.uk/237/ [cited on
page: 137]

Graham Hutton and Erik Meijer. 1998. Monadic Parsing in Haskell. /. Funct. Program. 8, 4 (July
1998), 437-444. [cited on page: 113]

Pablo Inostroza and Tijs van der Storm. 2015. Modular Interpreters for the Masses: Implicit Context
Propagation Using Object Algebras. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences (GPCE ’I5).171-180. [cited
on pages: 80 and 138]

Mauro Jaskelioff, Neil Ghani, and Graham Hutton. 2011. Modularity and Implementation of Math-
ematical Operational Semantics. Electronic Notes in Theoretical Computer Science 229, 5 (2011),75
- 95. Proceedings of the Second Workshop on Mathematically Structured Functional Program-
ming (MSFP 2008). [cited on page: 138]

Patricia Johann and Neil Ghani. 2008. Foundations for Structured Programming with GADTs. In
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL "08). 297-308. [cited on pages: 130 and 144]

Christian Kistner, Sven Apel, and Klaus Ostermann. 2011. The road to feature modularity?. In Pro-
ceedings of SPLC 2011. 5:1-5:8. [cited on page: 4]

Oleg Kiselyov. 2012. Typed Tagless Final Interpreters. In Proceedings of the 2010 International
Spring School Conference on Generic and Indexed Programming (SSGIP ’10). 130-174. [cited
on page: 130]

Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2009. RASCAL: A Domain Specific Language for
Source Code Analysis and Manipulation. In Proceedings of the 2009 Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM 09). IEEE Computer
Society, Washington, DC, USA, 168-177. [cited on page: 138]

Donald E. Knuth. 1968. Semantics of context-free languages. Mathematical systems theory 2, 2 (01
Jun 1968),127-145. [cited on page: 131]

Ralf Lammel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A Practical Design Pattern for
Generic Programming. In TLDI °03. [cited on pages: 5, 6, 8, 40, and 135]

Ralf Limmel and Simon Peyton Jones. 2004. Scrap More Boilerplate: Reflection, Zips, and Gener-
alised Casts. In JCFP 04. [cited on page: 135]

Ralf Limmel and Simon Peyton Jones. 2005. Scrap Your Boilerplate with Class: Extensible Generic
Functions. In JCFP "05. [cited on page: 135]

Ralf Limmel, Eelco Visser, and Joost Visser. 2003. Strategic programming meets adaptive program-
ming. In AOSD "03. [cited on page: 133]

150

http://eprints.nottingham.ac.uk/237/

BIBLIOGRAPHY

Ralf Limmel and Joost Visser. 2002. Typed combinators for generic traversal. In Practical Aspects of
Declarative Languages. Springer, 137-154. [cited on page: 133]

Ralf Limmel, Joost Visser, and Jan Kort. 2000. Dealing with Large Bananas. In Workshop on Generic
Programming, Johan Jeuring (Ed.). Technical Report UU-CS-2000-19, Universiteit Utrecht, Ponte
de Lima. [cited on page: 135]

M. Leduc, T. Degueule, B. Combemale, T. van der Storm, and O. Barais. 2017. Revisiting Visitors
for Modular Extension of Executable DSMLs. In 2017 ACM/IEEE 20th International Conference
on Model Driven Engineering Languages and Systems (MODELS), Vol. 00. 112-122. [cited on

page: 138]

Daan Leijen and Erik Meijer. 2001. Parsec: Direct Style Monadic Parser Combinators For The Real
World. Technical Report UU-CS-2001-3. Department of Information and Computing Sciences,
Utrecht University. [cited on pages: 27, 61, 63, 113, and 137]

Marina Lenisa, John Power, and Hiroshi Watanabe. 2004. Category Theory for Operational Seman-
tics. Theor. Comput. Sci. 327,1-2 (Oct. 2004), 135-154. [cited on page: 138]

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and Modular Interpreters.
In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL *95).333-343. [cited on pages: 28, 80, 83, 100, 110, and 139]

K.]. Lieberherr. 1996. Adaptive Object Oriented Software: The Demeter Method with Propagation
Patterns. PWS Publishing. [cited on pages: 6 and 133]

Barbara Liskov and Stephen Zilles. 1974. Programming with Abstract Data Types. In Proceedings of
the ACM SIGPLAN Symposium on Very High Level Languages. 50-59. [cited on page: 2]

Conor Mcbride and Ross Paterson. 2008. Applicative programming with eftects. Journal of Func-
tional Programming 18,1(2008),1-13. [cited on page: 16]

Lambert Meertens. 1992. Paramorphisms. Formal Aspects of Computing 4,5 (1992), 413-424. [cited
on pages: 5 and 15]

Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991. Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. In Proceedings of the 5th ACM Conference on Functional
Programming Languages and Computer Architecture. 124-144. [cited on page: 131]

Nax Paul Mendler. 1991. Inductive types and type constraints in the second-order lambda calculus.
Annals of Pure and Applied Logic 51,1(1991),159 —172. [cited on pages: 116, 137, and 143]

Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing with derivatives: a functional pearl.
In Proceeding of ICEP 2011.189-195. [cited on page: 137]

Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Parser combinators in Scala. Techni-
cal Report. Department of Computer Science, K.U. Leuven. http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW491.abs.html [cited on page: 64]

151

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html

BIBLIOGRAPHY

Martin E Nordberg III. 1996. Variations on the visitor pattern. In PLoP ’96 Writer’s Workshop,
Vol. 154. [cited on pages: 6 and 134]

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. 2003. Polyglot: An Extensible
Compiler Framework for Java. In Proceedings of CC 2003. 138-152. [cited on pages: 80, 137,
and 138]

Martin Odersky and Matthias Zenger. 2005a. Independently extensible solutions to the expression
problem. In FOOL 05, Vol. 12. [cited on pages: 3, 5, 21, 66, 72, and 130]

Martin Odersky and Matthias Zenger. 2005b. Scalable Component Abstractions. In Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA °05). 41-57. [cited on page: 21]

Bruno C.d.S. Oliveira. 2007. Genericity, extensibility and type-safety in the VISITOR pattern. Ph.D.
Dissertation. University of Oxford, UK. [cited on pages: 18 and 129]

Bruno C. d. S. Oliveira. 2009. Modular Visitor Components. In Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented Programming (Genoa). 269-293. [cited on
page: 138]

Bruno C. d. S. Oliveira and William R. Cook. 2012a. Extensibility for the Masses, Practical Extensi-
bility with Object Algebras. In ECOOP ’I2. [cited on pages: 3, 5, 8, 9, 18, 20, 21, 33, 34, 67, 130,
135, 138, 143, and 144]

Bruno C. d. S. Oliveira and William R. Cook. 2012b. Functional Programming with Structured
Graphs. In Proceedings of the 17th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’12). ACM, New York, NY, USA, 77-88. [cited on page: 144]

Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Loh. 2006. Extensible and modular generics for the
masses. Trends in Functional Programming 7 (2006),199-216. [cited on pages: 23 and 130]

Bruno C. d. S. Oliveira and Andres Loh. 2013. Abstract Syntax Graphs for Domain Specific Lan-
guages. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program
Manipulation (PEPAM ’13). 87-96. [cited on page: 144]

Bruno C. d. S. Oliveira, Shin-Cheng Mu, and Shu-Hung You. 2015. Modular Reifiable Matching:
A List-of-functors Approach to Two-level Types. In Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell (Haskell ’15). 82-93. [cited on pages: 91,128,130, 131, 132, and 143]

Bruno C. d.S. Oliveira, Tijs van der Storm, Alex Loh, and William R. Cook. 2013. Feature-Oriented
Programming with Object Algebras. In Proceedings of the 27th European Conference on Object-
Oriented Programming (ECOOP ’I3). 27-51. [cited on pages: 5, 18,131, and 138]

Bruno C. d.S. Oliveira, Meng Wang, and Jeremy Gibbons. 2008. The Visitor Pattern As a Reusable,
Generic, Type-safe Component. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-
oriented Programming Systems Languages and Applications (OOPSLA "08). 439-456. [cited on
pages: 18,129,131, and 135]

152

BIBLIOGRAPHY

Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and Jonathan Aldrich.
2014. Safely Composable Type-Specific Languages. In Proceedings of ECOOP 2014. 105-130.
[cited on page: 136]

Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. 1997. A Calculational Fusion
System HYLO. In Proceedings of the IFIP TC 2 WG 2.1 International Workshop on Algorithmic
Languages and Calculi. 76-106. [cited on page: 132]

Doug Orleans and Karl Lieberherr. 2001. DJ: Dynamic Adaptive Programming in Java. In Reflection
2001. Springer-Verlag. [cited on page: 133]

Michat H. Patka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an Optimising
Compiler by Generating Random Lambda Terms. In Proceedings of the 6th International Work-
shop on Automation of Software Test (AST ’I1). 91-97. [cited on pages: 78,79, and 139]

Jens Palsberg and C. Barry Jay. 1998. The Essence of the Visitor Pattern. In COMPSAC ’98. [cited
on page: 134]

Alberto Pardo. 1998. Monadic Corecursion -Definition, Fusion Laws, and Applications-. Electronic
Notes in Theoretical Computer Science 11 (1998), 105 — 139. CMCS *98, First Workshop on Coal-
gebraic Methods in Computer Science. [cited on pages: 5, 16, 91, 94, 96, 116, 132, and 137]

Michel Parigot. 1992. Recursive Programming with Proofs. Theor. Comput. Sci. 94, 2 (March 1992),
335-356. [cited on page: 131]

David Lorge Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into Modules. Com-
mun. ACM 15,12 (Dec. 1972),1053-1058. [cited on page: 2]

Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL(K) Parser Generator. Softw.
Pract. Exper. 25,7 (July 1995), 789-810. [cited on pages: 4, 8, 61, and 136]

Benjamin C. Pierce. 2002. Types and programming languages. MIT press. [cited on pages: 8, 62,72,
113, and 117]

Gordon D. Plotkin. 1981. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19. University of Aarhus. http://citeseer.ist.psu.edu/plotkin8lstructural.
html [cited on page: 138]

Tillmann Rendel, Jonathan Immanuel Brachthiuser, and Klaus Ostermann. 2014. From Object
Algebras to Attribute Grammars. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages &5 Applications (OOPSLA ’14). ACM, New
York, NY, USA, 377-395. [cited on page: 131]

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and Lazy Smallcheck:
Automatic Exhaustive Testing for Small Values. In Proceedings of the First ACM SIGPLAN Sym-
posium on Haskell (Haskell "08). 37-48. [cited on page: 139]

153

http://citeseer.ist.psu.edu/plotkin81structural.html
http://citeseer.ist.psu.edu/plotkin81structural.html

BIBLIOGRAPHY

Nathanael Schirli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black. 2003. Traits: Compos-
able Units of Behaviour. In ECOOP 03 Springer Berlin Heidelberg, Berlin, Heidelberg, 248-274.
[cited on page: 62]

Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios Vytiniotis. 2009. Complete
and Decidable Type Inference for GADTs. In Proceedings of the 14th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP "09). ACM, New York, NY, USA, 341-352.
[cited on page: 130]

August Schwerdfeger and Eric Van Wyk. 2009a. Verifiable Composition of Deterministic Grammars.
In Proceedings of PLDI 2009.199-210. [cited on pages: 4, 8, 61, and 136]

August Schwerdfeger and Eric Van Wyk. 2009b. Verifiable Parse Table Composition for Deterministic
Parsing. In Proceedings of SLE 2009.184-203. [cited on page: 137]

Dana S. Scott and Christopher Strachey. 1971. Toward a mathematical semantics for computer lan-
guages. Vol. 1. Oxford University Computing Laboratory, Programming Research Group. [cited
on page: 138]

Anthony M. Sloane and Matthew Roberts. 2015. Oberon-0 in Kiama. Science of Computer Program-
ming 114 (2015), 20 — 32. [cited on page: 138]

William Steingartner, Valerie Novitzkd, Mohamed Ali M. Eldojali, and Davorka Radakovié. 2016.
Some aspects about coalgebras as foundation for expressing the semantics of imperative languages.
Mathematics and Computer Science-MaCS 2016. In Proceedings of the 1ith Joint Conference on
Mathematics and Computer Science. Eger, Hungary. |cited on page: 138]

Wouter Swierstra. 2008. Data types a la carte. Journal of functional programming 18, 4 (2008), 423—
436. [cited on pages: 3, 8,13, 24,72, 77, 81, 86, 113,120, 129, 130, 131, 132, and 138]

Akihiko Takano and Erik Meijer. 1995. Shortcut Deforestation in Calculational Form. In Proceedings
of the Seventh International Conference on Functional Programming Languages and Computer
Architecture (FPCA *95). 306-313. [cited on page: 132]

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias Felleisen.
2011. Languages as libraries. In Proceedings of PLDI 2011.132-141. [cited on pages: 136 and 137]

Mads Torgersen. 2004. The Expression Problem Revisited. In ECOOP 04 123-146. [cited on
pages: 3, 5, 21, and 130]

Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé¢, Gilad Bracha, and Neal
Gafter. 2004. Adding Wildcards to the Java Programming Language. In Proceedings of the 2004
ACM Symposium on Applied Computing (SAC '04).1289-1296. [cited on page: 130]

Daniele Turi and Gordon D. Plotkin. 1997. Towards a Mathematical Operational Semantics. In
LICS. [cited on page: 138]

Tarmo Uustalu and Varmo Vene. 2000. Coding recursion a la Mendler. In WGP "00. 69-85. [cited
on pages: 116, 137, 138, and 143]

154

BIBLIOGRAPHY

Mark G. J. van den Brand, Paul Klint, and Jurgen J. Vinju. 2003a. Term Rewriting with Traversal
Functions. ACAM Trans. Softw. Eng. Methodol. 12, 2 (April 2003), 152-190. [cited on page: 134]

Mark G. J. van den Brand, Paul Klint, and Jurgen J. Vinju. 2003b. Term Rewriting with Traversal
Functions. ACAM Trans. Softw. Eng. Methodol. 12, 2 (April 2003),152-190. [cited on page: 143]

Varmo Vene. 2000. Categorical programming with inductive and coinductive types. Ph.D. Disserta-
tion. University of Tartu. [cited on page: 132]

Varmo Vene and Tarmo Uustalu. 1998. Functional programming with apomorphisms (corecursion).
In Proceedings of the Estonian Academy of Sciences: Physics, Mathematics, Vol. 47.147-161. [cited
on pages: 5,15, and 111]

Marcos Viera, Doaitse Swierstra, and Atze Dijkstra. 2012. Grammar Fragments Fly First-class. In
Proceedings of LDTA 2012.5:1-5:7. [cited on pages: 4, 8, 61, and 136]

Eelco Visser. 2001a. Stratego: A Language for Program Transformation Based on Rewriting Strate-
gies. In Proceedings of RTA 2001. 357-362. [cited on page: 137]

Eelco Visser and Zine-el-Abidine Benaissa. 1998a. A core language for rewriting. Electronic Notes in
Theoretical Computer Science 15 (1998), 422—441. [cited on pages: 6,133, and 134]

Eelco Visser and Zine-el-Abidine Benaissa. 1998b. A core language for rewriting. Electronic Notes in
Theoretical Computer Science 15 (1998), 422—441. [cited on page: 143]

Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. 1998. Building Program Optimizers
with Rewriting Strategies. In JCFP’98. [cited on pages: 133 and 134]

Joost Visser. 2001b. Visitor combination and traversal control. In OOPSL.A 0I. [cited on pages: 133
and 134]

Philip Wadler. 1985. How to Replace Failure by a List of Successes: A method for exception handling,
backtracking, and pattern matching in lazy functional languages. In Proceedings of Functional Pro-
gramming Languages and Computer Architecture, 1985.113-128. [cited on pages: 61 and 137]

Philip Wadler. 1988. Deforestation: Transforming Programs to Eliminate Trees. In Proceedings of the
2Nd European Symposium on Programming (ESOP °88). 344-358. [cited on pages: 5, 91, and 132]

Philip Wadler. 1990. Comprehending Monads. In Proceedings of the 1990 ACM Conference on LISP
and Functional Programming (LFP °90). 61-78. [cited on page: 98]

Philip Wadler. 1998. The Expression Problem. Email. Discussion on the Java Genericity mailing list.
[cited on pages: 2, 16, 61, 67,129, and 141]

Philip Wadler and Stephen Blott. 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL °89). 60-76. [cited on page: 135]

155

BIBLIOGRAPHY

Jue Wang. 2005. Generating Random Lambda Calculus Terms. Technical report. Boston University.
[cited on page: 139]

Yanlin Wang and Bruno C. d. S. Oliveira. 2016. The Expression Problem, Trivially!. In Proceedings
of the I5th International Conference on Modularity (MODULARITY 2016). 37-41. [cited on
pages: 3,18, 21, 67, and 130]

Alessandro Warth, James R. Douglass, and Todd D. Millstein. 2008. Packrat parsers can support left
recursion. In Proceedings of PEPA 2008.103-110. [cited on page: 64]

Alessandro Warth, Patrick Dubroy, and Tony Garnock-Jones. 2016a. Modular semantic actions. In
Proceedings of DLS 2016.108-119. [cited on pages: 4, 8, and 136]

Alessandro Warth, Patrick Dubroy, and Tony Garnock-Jones. 2016b. Modular Semantic Actions.
In Proceedings of the 12th Symposium on Dynamic Languages (DLS 2016). ACM, New York, NY,
USA, 108-119. [cited on pages: 61 and 138]

Weixin Zhang and Bruno C. d. S. Oliveira. 2017. EVF: An Extensible and Expressive Visitor Frame-
work for Programming Language Reuse. In 3Lt European Conference on Object-Oriented Pro-
gramming (ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPlcs)), Vol. 74.
29:1-29:32. [cited on pages: 5, 117,131, and 138]

Weixin Zhang and Bruno C. d. S. Oliveira. 2018. Pattern Matching in an Open World. In Proceedings
of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences (GPCE 2018). 134-146. [cited on page: 117]

156

Appendix A

Complete Code for Chapter 3

Al OO Approach for usedVars and rename

Below is the complete code for Figure 3.2. It implements usedVars and rename in the QL example,
as an OO approach.

class Form {

String name;

List<Stmt> body;

Form(String id, List<Stmt> body) {
this.name = id;
this.body = new ArrayList<Stmt>(body);

}

Set<String> usedVars() {
Set<String> vars = new HashSet<>();
body.forEach(s -> vars.addAll(s.usedVars()));
return vars;

}

Form rename(String nl, String n2) {
List<Stmt> ss = new ArraylList<>();
for (Stmt s: body) ss.add(s.rename(nl, n2));
return new Form(name, ss);

abstract class Stmt {
abstract Set<String> usedVars();
abstract Stmt rename(String nl, String n2);

}

class If extends Stmt {
Exp cond;
Stmt then;

157

A. COMPLETE CODE FOR CHAPTER 3

If(Exp cond, Stmt then) {
this.cond cond;
this.then then;

}
Set<String> usedVars() {
Set<String> vars = new HashSet<>(cond.usedVars());
vars.addAll(then.usedVars());
return vars;
1
If rename(String nl, String n2) {
return new If(cond.rename(nl, n2), then.rename(nl, n2));

class Question extends Stmt {

String name, label, type;

Question(String n, String 1, String t) {
this.name = n;
this.label = 1;
this.type = t;

}

Set<String> usedVars() {
return emptySet();

b

Question rename(String nl, String n2) {
String newN = name.equals(nl) ? n2 : name;
return new Question(newN, label, type);

abstract class Exp {
abstract Set<String> usedVars();
abstract Exp rename(String nl, String n2);

class Lit extends Exp {
int n;
Lit(int n) {
this.n = n;
}
Set<String> usedVars() {
return emptySet();
}
Lit rename(String nl, String n2) {

158

A.100 Approach for usedVars and rename

return new Lit(n);

}
}
class Var extends Exp {
String x;
Var(String name) {
this.x = name;
}

Set<String> usedVars() {
return Collections.singleton(x);

}

Var rename(String nl, String n2) {
String newN = x.equals(nl) ? n2 :
return new Var(newN);

class GEq extends Exp {

Exp lhs, rhs;

GEq(Exp lhs, Exp rhs) {
this.lhs = 1lhs;
this.rhs = rhs;

}

Set<String> usedVars() {
Set<String> vars =
vars.addAll(rhs.usedVars());
return vars;

}
GEq rename(String nl, String n2) {

return new GEq(lhs.rename(nl, n2),

159

X5

new HashSet<>(lhs.usedVars());

rhs.rename(nl, n2));

A. COMPLETE CODE FOR CHAPTER 3

A.2 Rename implementing the qLA1g interface

The following code gives the implementation of Rename that implements QLA1g in Section 3.1.2.

class Rename<E, S, F> implements QLAlg<E, S, F> {
private QLAlg<E, S, F> alg;
private String from, to;
public Rename(QLAlg<E, S, F> alg, String from, String to) {
this.alg = alg;
this.from = from;
this.to = to;
}
public F Form(String id, List<S> stmts) {
return alg.Form(id, stmts);
1
public S If(E c, S t) {
return alg.If(c, t);
}
public S Question(String n, String 1, String t) {
n = n.equals(from) ? to : n;
return alg.Question(n, 1, t);
}
public E Lit(int n) {
return alg.Lit(n);
}
public E Var(String x) {
x = x.equals(from) ? to : x;
return alg.Var(x);
}
public E GEq(E 1, E r) {
return alg.GEq(l, r);

A3 oLAlgQuery: generated code

The generated code for QLAlgQuery by Shy in Figure 3.5.
public interface QLAlgQuery<R> extends QLAlg<R, R, R> {
Monoid<R> m();
default R Form(java.lang.String pO, java.util.List<R> pl) {
R res = m().empty();

res = m().join(res, m().fold(pl));
return res;

160

A.3 QLAlgQuery: generated code

default R Geq(R p0, R pl) {
R res = m().empty();
res = m().join(res, p0@);
res = m().join(res, pl);
return res;

default R If(R p0, R pl) {
R res = m().empty();
res = m().join(res, p0@);
res = m().join(res, pl);
return res;

default R Lit(int p0O) {
R res = m().empty();
return res;

default R Question(java.lang.String p0, java.lang.String pl,
java.lang.String p2) {
R res = m().empty();
return res;

default R Var(java.lang.String p0) {
R res = m().empty();
return res;

161

A. COMPLETE CODE FOR CHAPTER 3

A4 qLAlgTransform and QLALgTrans: generated code

The code for QLAlgTransform and its class representation QLAlgTrans for use, generated by Shy. See
Figure 3.6.

public interface QLAlgTransform<A®, Al, A2> extends QLAlg<AO, Al, A2> {
QLAlg<AO, Al, A2> qglLAlg();
default A2 Form(java.lang.String p0, java.util.List<Al> pl) {

return gLAlg().Form(p®, pl);

default AO Geq(AO pO, AG pl) {
return gqLAlg().Geq(p0, pl);

default Al If(A0 po, Al pl) {
return gLAlg().If(p0, pl);

default AO Lit(int p0) {
return gLAlg().Lit(p@);

default Al Question(java.lang.String p@, java.lang.String p1l,
java.lang.String p2) {
return gLAlg().Question(p0, pl, p2);

default A0 Var(java.lang.String p0) {
return gLAlg().Var(po);

public class QLAlgTrans<AQ@, Al, A2> implements QLAlgTransform<A®, Al, A2> {
private QLAlg<A0, Al, A2> alg;

public QLAlgTrans(QLAlg<A@®, Al, A2> alg) {
this.alg = alg;

public QLAlg<A@, Al, A2> glLAlg() {return alg;}

162

A.5 G_ExpAlgQuery: generated code

A5 6_ExpAlgouery: generated code

The generated code for G_ExpAlgQuery by Shy in Figure 3.10.

public interface G_ExpAlgQuery<AO> extends ExpAlg<AO> {
Monoid<AO> mExp();

default AO Add(AO pO, AG pl) {
AO res = mExp().empty();
res = mExp().join(res, po);
res = mexp().join(res, pl);
return res;

default AO Lit(int p0O) {
AOQ res = mExp().empty();
return res;

default A0 Var(java.lang.String p0) {
A0 res = mExp().empty();
return res;

163

A. COMPLETE CODE FOR CHAPTER 3

164

Appendix B

Complete Code for Chapter 5

B.1 weightedTrafo: the natural transformation for weighted distribution

The following code gives the natural transformation for weighted distribution, which was used to
derive | x|, in Section 5.5.2.

weightedTrafo :: Cardinality g => Trafo Weighted f g
weightedTrafo (Prod (Comp fs) (Comp gs)) = Comp . MaybeT $ do
p <- pointer
rF <- runMaybeT $ fmap Inl fs
rG <- runMaybeT $ succ >> fmap Inr gs
when (card (getProxy gs) == 1 && isJust rG) (getWeight (p + 1) >>= setAcc)
wF <- getWeight p
wG <- getAcc
case (rF, rG) of
(Just _, Just _) -> setAcc (wF + wG) >> binomial (wF, return rF)
(wG, return rG)
(Just _, _) -> setAcc wF >> return rF
(— , Just _) -> return rG
_ -> return Nothing
where getProxy :: m (h a) -> Proxy h
getProxy _ = Proxy

B.2 weight: the weight function in dynamic distribution

The following code gives the implementation of the weight function used in Figure 5.21.

weight :: (Int, Int) -> (Int, Int) -> Double
weight (maxArity, maxDepth) (thisArity, thisDepth) =
prob thisArity maxArity (fromIntegral (1 + thisDepth) / fromIntegral (2 +
maxDepth))

165

B. COMPLETE CODE FOR CHAPTER 5

prob :: Int -> Int -> Double -> Double
prob k n p = fromIntegral (choose n k) * pow p k *x pow (1 - p) (n - k)
where choose :: Int -> Int -> Int
choose n 0 =1
choose 0 k = 0
choose n k = choose (n - 1) (k - 1) * n ‘div’ k
pow :: Double -> Int -> Double
pow x 0 =1
pow X n = X * pow X (n - 1)

B.3 IsNumericVal, rdcRule, cgrRule,

The following code defines the IsNumericVal class to check if an expression has the form of a numeric
value, used in Figure 5.24.
class Functor f => IsNumericVal (f :: x -> x) where
isNumAlg :: Alg f Bool

isNum :: IsNumericVal f => Fix f -> Bool
isNum = fold isNumAlg

instance IsNumericVal ArithF where

isNumAlg TmZero = True
isNumAlg (TmSucc True) = True
isNumAlg _ = False

instance IsNumericVal BoolF where
isNumAlg _ = False

instance (IsNumericVal f, IsNumericVal g) => IsNumericVal (f ¢ g) where
isNumAlg (Inl x) = isNumAlg x
isNumAlg (Inr x) = isNumAlg x

rdcRule :: MonadPrior IsRdc Conflict m => a -> m a
rdcRule = create True

cgrRule :: MonadPrior IsRdc Conflict m =>a ->m a

cgrRule = create False

B.4 Smart constructors for ArithF and BoolF

The following code defines the smart constructors for ArithF and BoolF in Section 5.5.3.

zero :: ArithF :<: f => Fix f
zero = In . inj $ TmZero

166

B.4 Smart constructors for ArithF and BoolF

succ :: ArithF :<: f => Fix f -> Fix f
succ = In . inj . TmSucc

pred :: ArithF :<: f => Fix f -> Fix f
pred = In . inj . TmPred

iszero :: ArithF :<: f => Fix f -> Fix f
iszero = In . inj . TmIsZero

true :: BoolF :<: f => Fix f
true = In . inj $ TmTrue

false :: BoolF :<: f => Fix f
false = In . inj $ TmFalse

ifC :: BoolF :<: f => Fix f -> Fix f -> Fix f -> Fix f
ifCxyz=1In.1inj $ TmIf x vy z

167

B. COMPLETE CODE FOR CHAPTER 5

168

Appendix C

Complete Code for Chapter 6

C.1 Projection

Some projection pattterns for LNG are defined below.

pattern LitP x <- (proj
pattern AddP x y <- (proj
pattern MulP x y <- (proj
pattern BoolP x <- (proj
pattern IfP x y z <- (proj
pattern EqualP x y <- (proj
pattern VarP x <- (proj
pattern LamP t x <- (proj
pattern AppP x y <- (proj

C.2 Type-checker

. out
. out
. out
. out
. out
. out
. out
. out
. out

-> Just
-> Just
-> Just
-> Just
-> Just
-> Just
-> Just
-> Just
-> Just

(Lit x))
(Add x y))
(Mul x vy))
(BoolV x))
(If xy z))
(Equal x y))
(Var x))
(Lam t x))
(App x y))

Below is the code for type-checking Fix LNG expressions.

type TCEnv

tcheckAdd ::

tcheckAdd
TLit <-
TLit <-

= [Type]

env X y = do
tcheck env x
tcheck env y

return TLit

tcheckMul ::

tcheckMul
TLit <-
TLit <-

env x y = do
tcheck env x
tcheck env y

return TLit

169

TCEnv -> Fix LNG -> Fix LNG -> Maybe Type

TCEnv -> Fix LNG -> Fix LNG -> Maybe Type

C. COMPLETE CODE FOR CHAPTER 6

tcheckIf :: TCEnv -> Fix LNG -> Fix LNG -> Fix LNG -> Maybe Type
tcheckIf env x y z = do

TBool <- tcheck env x

t1l <- tcheck env y

t2 <- tcheck env z

guard $ tl == t2

return tl

tcheckEqual :: TCEnv -> Fix LNG -> Fix LNG -> Maybe Type
tcheckEqual env x y = do

tl <- tcheck env x

t2 <- tcheck env y

guard $ tl == t2

guard $ t1l == TBool || tl == TLit

return TBool

tcheckVar :: TCEnv -> Int -> Maybe Type
tcheckVar env x
| x >= 0 & x < length env = Just $ env !I! x
| otherwise = Nothing

tcheckLam :: TCEnv -> Type -> Fix LNG -> Maybe Type
tcheckLam env t e = do

t1 <- tcheck (t:env) e

return $ TFunc t t1

tcheckApp :: TCEnv -> Fix LNG -> Fix LNG -> Maybe Type
tcheckApp env x y = do
tl <- tcheck env x
t2 <- tcheck env y
case tl of
TFunc t0 t -> if t0 == t2 then return t else Nothing
_ -> Nothing

tcheck :: [Type] -> Fix LNG -> Maybe Type

tcheck env (LitP _) = Just TLit

tcheck env (AddP x y) = tcheckAdd env x y
tcheck env (MulP x y) = tcheckMul env x y
tcheck env (BoolP _) = Just TBool

tcheck env (IfP x y z) = tcheckIf env xy z
tcheck env (EqualP x y) = tcheckEqual env x y
tcheck env (VarP x) = tcheckVar env x
tcheck env (LamP t x) = tcheckLam env t x
tcheck env (AppP x y) = tcheckApp env x y

170

C.3 Evaluation

typeCheck :: Fix LNG -> Maybe Type

typeCheck = tcheck []

C.3 Evaluation

Below is the semantic evaluation code for Fix LNG.

projLit :: LitF :<: f =>
projLit (In e) = case pr
Just (Lit x) -> Just x

Fix f -> Maybe Int
oj e of

_ -> Nothing

projBool :: BoolF :<: f

projBool (In e) = case p
Just (BoolV x) -> Just
_ -> Noth

projLam :: LamF :<: f => Fix f -> Maybe (Type, Fix f)

projLam (In e) = case pr
Just (Lam t e’') -> Jus
_ -> Not

evalAdd :: Fix LNG -> Fi

evalAdd (LitP x) (LitP y)

evalAdd el e2
(Just el’, _) -> ret
(_, Just e2’) -> ret
_ -> Not

evalMul :: Fix LNG -> Fi

evalMul (LitP x) (LitP y)

evalMul el e2 = case (eval el, eval e2) of
(Just el’, _) -> return $ mul el’ e2
(_, Just e2’') -> return $ mul el e2’
_ -> Nothing

evalIf :: Fix LNG -> Fix LNG

evallf (BoolP True) e
evallf (BoolP False) _

evallf el e2
(Just el’, _, _) ->

(_, Just e2’', _) ->

(-, —, Just e3’') ->

->

=> Fix f -> Maybe Bool
roj e of

X

ing

oj e of
t (t, e)
hing

x LNG -> Maybe (Fix LNG)
return . lit $ x + vy

urn $ add el’ e2
urn $ add el e2’
hing

X LNG -> Maybe (Fix LNG)
return . 1it $ x x y

_ = Just e
e = Just e

e3 = case (eval el, eval e2, eval e3) of

return $ ifC el’ e2 e3
return $ ifC el e2’ e3
return $ ifC el e2 e3’
Nothing

171

case (eval el, eval e2) of

-> Fix LNG -> Maybe (Fix LNG)

C. COMPLETE CODE FOR CHAPTER 6

evalEqual :: Fix LNG

evalEqual (LitP x)
evalEqual (BoolP x)

evalEqual el e

(Just el’, _)

-> Fix LNG -> Maybe (Fix LNG)

2

(LitP vy)
(BoolP y) = return . boolV $ x ==

= return . boolV $ x ==y

= case (eval el, eval e2) of

-> return $ equal el’ e2

(-, Just e2’') -> return $ equal el e2’

evallLam ::

Just e’

-> Nothing

-> Nothin

evalApp :: Fix LNG ->
evalApp (LamP _ e) e2
evalApp el e2

(Just el’, _)
(_, Just e2’)

eval ::

eval
eval
eval
eval
eval
eval
eval
eval
eval

subst ::

subst
subst
subst

shift ::

shift
shift
shift

(LitP _) =
(AddP x y) =
(MulP x y) =
(BoolP _)
(IfP x y 2) =
(EqualP x y) =
(VarP _) =
(LamP t x) =
(AppP x) =

n x (VarP v)
n x (LamP t e)
n x (In e)

Int -> Int -
i c (VarP n)

i c (LamP t e)
ic (Ine)

evaluate :: Fix LNG -

evaluate e = case eval e of

Just e’ -> evaluate e’

9

>

Type -> Fix LNG -> Maybe (Fix LNG)
evallLam t e = case eval e of
-> return $ lam t e’

Fix LNG -> Maybe (Fix LNG)
return . shift (-1) 0 $ subst 0 (shift 1 0 e2) e
case (eval el, eval e2) of

-> return $ app el’ e2
-> return $ app el e2’
-> Nothing

Fix LNG -> Maybe (Fix LNG)

Nothing
evalAdd x y
evalMul x y

= Nothing

evallf x y z
evalEqual x y
Nothing
evallam t x
evalApp x y

Int -> Fix LNG

-> Fix LNG -> Fix LNG
if v == n then x else var v
lam t $ subst (n + 1) (shift 1 0 x) e

In .

fmap (subst n x) $ e

Fix LNG -> Fix LNG
if n < ¢ then var n else var (n + i)
lam t $ shift i (c + 1) e

In .

fmap (shift i c) $ e

Fix LNG

172

C.4 Checking if there are bounded variables

C.4 Checking if there are bounded variables

Below code checks if there are bounded variables in Fix LNG expressions.

class BoundAlg (f :: *x -> x) where boundAlg :: Alg f (Int -> Bool)
instance (BoundAlg f, BoundAlg g) => BoundAlg (f @ g) where

boundAlg (Inl x) = boundAlg x
boundAlg (Inr x) = boundAlg x
instance BoundAlg LitF where boundAlg _ _ = True

instance BoundAlg AddF where boundAlg (Add x y) n Xxn&&yn
instance BoundAlg MulF where boundAlg (Mul x y) n=xn && y n
instance BoundAlg BoolF where boundAlg _ _ = True

instance BoundAlg IfF where boundAlg (If x y z) n=xn & y n & z n

instance BoundAlg EqualF where boundAlg (Equal x y) n=xn & y n
instance BoundAlg VarF where boundAlg (Var x) n = x <= n
instance BoundAlg LamF where boundAlg (Lam _ x) n = x (n + 1)
instance BoundAlg AppF where boundAlg (App x y) n =xn & y n

isBounded :: Fix LNG -> Bool
isBounded e = fold boundAlg e (-1)

173

	List of Figures
	List of Tables
	Introduction
	Modular Programming: A Brief History
	Classification of Modularization Techniques
	Is Modularity Everything?
	Modularity Issues of Today
	Contributions
	Organization

	Background
	Algebra of Programming
	Solutions to EP in Java
	A Non-Solution: The Interpreter Pattern
	The Opposite Side: The Visitor Pattern
	Object Algebras
	Other Approaches

	Solutions to EP in Haskell
	A Partial Solution: Polymorphic Datatypes and Type Classes
	Finally Tagless
	Data Types à la Carte

	Java Annotation Processing and Reflection
	Scala Packrat Parsing
	Monad Transformers
	QuickCheck

	Scrap Your Boilerplate with Object Algebras
	An Overview of Shy
	Traversing Object-Oriented ASTs
	Modeling MiniQL with Object Algebras
	Shy: An Object Algebra Framework for Traversals

	Queries
	Boilerplate Queries
	Generic Queries
	Free Variables with Generic Queries

	Generalized Queries
	Transformations
	Transformations, Object Algebra Style
	Generic Traversal Code

	Contextual Transformations
	Desugaring Transformations
	Extensible Queries and Transformations
	Linear Extensibility
	Independent Extensibility

	Shy Implementation
	Case Study
	QL Queries and Transformations
	Chaining Transformations
	Shy Performance vs Vanilla ASTs
	Shy vs Vanilla Regarding Code Size

	Summary

	Type-Safe Modular Parsing
	Packrat Parsing for Modularity
	Algorithmic Challenges of Modularity
	A Solution: Packrat Parsing

	OO AST Parsing with Multiple Inheritance
	Full Extensibility with Object Algebras
	Problem with Traditional OO ASTs
	Parsing with Object Algebras

	More Features
	Parsing Multi-Sorted Syntax
	Overriding Existing Rules
	Language Components
	Alternative Techniques

	Case Study
	Implementation
	Comparison

	Summary

	Modular Unfolds: Seeing the Trees in the Product Forest
	Overview
	A Motivating Example: QuickCheck Generators
	Solution in SCCL for Random Generation
	An Overview of SCCL

	Composability of Coalgebras, and Product Forests
	The General Combinator for Coalgebras
	Product Forests

	From Product Forests to Sum-Of-Products
	Natural Transformation
	Deforesting Product Forests
	Discussion

	Monadic Variants
	Monadic Folds and Unfolds
	General Combinator for Monadic Coalgebras
	Flow of Construction and Deforestation
	Discussion

	Implementation of SCCL
	Basic Combinators
	Application I: Random Generation
	Uniform Distribution
	Weighted Random Distribution with Failure
	Dynamic Distribution with Size Bound

	Application II: Small-Step Evaluation
	Application III: Monadic Parsing

	Summary

	Case Study: Random Generators and Enumerators
	Overview
	Random Generators as Coalgebras
	Generating Well-Typed Expressions
	Enumerating Expressions
	Checking Properties with QuickCheck
	Evaluation: Code Size and Execution Time

	Related Work
	Design Patterns for Extensibility and Modularity
	Modularity of Operations in Functional Programming
	Structure-Shy Traversals
	Modular Parsing
	Modular Semantics and Generators

	Conclusion
	Summary
	Future Work

	Bibliography
	Complete Code for Chapter 3
	OO Approach for [language=scala]usedVars and [language=scala]rename
	[language=scala]Rename implementing the [language=scala]QLAlg interface
	[language=scala]QLAlgQuery: generated code
	[language=scala]QLAlgTransform and [language=scala]QLAlgTrans: generated code
	[language=scala]GExpAlgQuery: generated code

	Complete Code for Chapter 5
	[style=HaskellStyle]weightedTrafo: the natural transformation for weighted distribution
	[style=HaskellStyle]weight: the weight function in dynamic distribution
	[style=HaskellStyle]IsNumericVal, [style=HaskellStyle]rdcRule, [style=HaskellStyle]cgrRule,
	Smart constructors for [style=HaskellStyle]ArithF and [style=HaskellStyle]BoolF

	Complete Code for Chapter 6
	Projection
	Type-checker
	Evaluation
	Checking if there are bounded variables

