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Domain-specific languages (DSLs) are now ubiquitous. New DSLs are needed and existing
DSLs are evolving all the time. However, creating and maintaining DSLs is hard! There
is a lot of engineering effort involved in the creation and the maintenance of a DSL.

One way to address these difficulties is to have language components with high
reusability and extensibility. Reusable components reduce the initial effort. Instead of
developing everything from scratch, a new DSL is developed through reusing existing
components. High extensibility reduces the effort of maintenance, making it easy to
customize these components. DSLs, or programming languages in general, share a lot
of features. Unfortunately, it is hard to materialize the conceptual reuse into software

engineering reuse due to the lack of good modularization techniques. Syntactic modu-
larization techniques based on meta-programming and code generation have been used
for code reuse. However, more semantic aspects of modularity, such as the ability to do
separate compilation and modular type-checking, are typically missing.

Programming languages have been investigated for seeking proper semantic modu-
larization mechanisms. Object-oriented languages seem to be a good choice as they are
designed for extensibility and reuse in the first place. The fundamental features of object-
oriented programming (OOP), such as inheritance and subtyping, are vital for developing
reusable and extensible components. Combining these features with some classic design
patterns, namely the Visitor and Interpreter pattern, a certain degree of extensibility can
be achieved. However, they are still insufficient to solve the so-called Expression Problem:
one dimension of extensibility is traded by the other. New solutions to the Expression
Problem have been proposed, making it possible to develop fully extensible components.

In this thesis we argue that object-oriented languages, equipped with powerful se-
mantic modularization techniques, are suitable for developing extensible DSLs. In the
first part of the thesis we develop EVF, an extensible and expressive Java Visitor frame-
work, for facilitating external DSL development. To illustrate the applicability of EVF we
conduct a case study, which refactors a large number of non-modular interpreters from
the “Types and Programming Languages” book. The resulting interpreters are modular
and reusable, sharing large portions of code and features. In the second part of the the-
sis, we show the close relationship between shallow embeddings and OOP and how OOP
improves the modularity of internal DSLs. (378 words)
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Chapter 1

Introduction

1.1 Motivation

Domain-specific languages (DSLs) are now ubiquitous. DSLs, as the name suggests,
are programming languages tailored for specific domains, which build the gap between do-
main experts and programmers. Examples of widely used DSLs include SQL for database
queries, VHDL for hardware description, and MATLAB for numerical computing. New
DSLs are needed and existing DSLs are evolving all the time. However, creating and
maintaining DSLs is hard! There is a lot of engineering effort involved in the creation
and the maintenance of a DSL. To develop a DSL, various components need to be imple-
mented, such as syntactic and semantic analyzers, a compiler or interpreter, and tools
that are used to support the development of programs in that language. To maintain a
DSL, bugs have to be fixed, and new features have to be implemented.

1.1.1 Language Components

One way to address the difficulties in developing and maintaining DSLs is to have
language components with high reusability and extensibility. High reusability reduces
the initial effort. Instead of developing everything from scratch, a new DSL is developed
through reusing existing components. High extensibility reduces the effort of mainte-
nance, making it easy to customize these components. DSLs, or programming languages
in general, share a lot of features. For example, although VHDL and MATLAB are de-
signed for different domains, they have many features in common. Both of them provide
mechanisms to declare variables, support basic arithmetic operations as primitives, have
loop constructs, etc. Moreover, nearly all new languages will “copy” many features from
existing languages, rather than having a completely new set of features. Therefore, there
is an inherent conceptual reuse in programming languages. Unfortunately it is hard to
materialize the conceptual reuse into software engineering reuse due to the lack of good
modularization techniques.

1.1.2 Language Workbenches

Language workbenches are aimed at lowering the amount of effort required to de-
velop new DSLs. They provide rapid prototyping of languages and related programming
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Chapter 1. Introduction

tools, including IDEs, debugging tools, as well as other editor services. Examples of
modern, mature language workbenches include: Xtext [15], MPS [20] and Spoofax [33].
At the moment some language workbenches provide support for language components
through syntactic modularization techniques based on meta-programming and code gen-
eration. Such techniques allow components to be specified in separate files. However,
more semantic aspects of modularity, such as the ability to do separate compilation and
modular type-checking are typically missing in meta-programming approaches. The lack
of separate compilation means that compilation time can be quite high, which limits the
scalability of such approaches. Furthermore, it also prevents a business model where
companies would sell the binaries of the language components to customers. For compa-
nies this is an attractive business model because it allows customers to build customized
products, without giving these customers access to the source code (and to the com-
pany’s intellectual property). The lack of modular type-checking makes the development
process more complex and brittle. Without modular type-checking, many errors can only
be detected at very late stages in the development, or even go undetected.

1.1.3 Internal DSLs

Although language workbenches simplify the development of DSLs, they still require
a considerable amount of engineering effort and expert knowledge in language design.
A more lightweight way to implement a DSL is to embed it into an existing mature pro-
gramming language. DSLs implemented in this way are called internal or embedded

DSLs [21, 29]. Different from an external DSL which has its own infrastructure, an inter-

nal DSL reuses the whole well-developed ecosystem of the host language, minimizing the
engineering effort needed for developing a DSL. Examples of well-known internal DSLs
include LINQ [40] embedded in .NET languages for data queries and Rake [69], a build
tool embedded in Ruby. However, without a stand-alone parser, the syntax of an internal
DSL is restricted by the host language and hence may not be as natural as that of an
external DSL.

1.1.4 Boilerplate Traversals

Developing the semantics of a DSL also requires a lot of engineering effort. Abstract
Syntax Tree (AST) is the core data structure in modeling a language, serving as the inter-
mediate representation of a program. Operations that analyze or transform a program,
such as type-checking and optimizations, are defined against to an AST. However, these
operations often contain a large amount of boilerplate code [36] in traversing the AST.
Typically, for a particular operation, only a small set of the language constructs is inter-
esting, where programmers should write code that does the computation. However, for
those boring cases, programmers still have to write code for tree traversals. Such boil-
erplate is tedious to write and problematic to maintain. The more constructs a language
has, the more severe the situation is. Approaches like Adaptive Object-Oriented Program-
ming [37] and Strategic Programming [64] try to eliminate boilerplate traversals. However,
these approaches use meta-programming techniques, losing modular type-checking and
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1.2 Contributions

separate compilation.

1.1.5 Object-Oriented Programming

Programming languages have been investigated for seeking proper semantic modu-
larization mechanisms so that modular type checking and separate compilation can be
preserved. Object-oriented (OO) languages seem to be a good choice as they are de-
signed for extensibility and reuse in the first place. The fundamental features provided
by OO languages, such as inheritance and subtyping, are vital for developing reusable
and extensible components. Inheritance and overriding allow extensibility on compo-
nents. Multiple-inheritance supported by some of OO languages, for example C++ multi-
ple inheritance, Scala mixin-inheritance and Java default methods, goes further, allowing
multiple components to be unified. Subtyping and late binding enable flexible reuse of
components. Combining these features with some classic design patterns [22], namely
the Visitor and Interpreter pattern, a certain degree of extensibility can be achieved.
However, they are still insufficient to solve the so-called Expression Problem (EP) [67]: one
dimension of extensibility is traded by the other.

New solutions to the EP have been proposed, making it possible to build fully ex-
tensible components. Oliveira and Cook proposed Object Algebras [46], a design pattern
closely related to the Visitor pattern, using generics. To address the problem of boilerplate
traversals, the Object Algebras based Shy framework [74] generates traversal templates
while preserving modular type-checking and separate compilation. Unfortunately, due
to the bottom-up nature of Object Algebras, it is awkward or inefficient to implement
operations that need flexible traversal strategies in Shy. Wang and Oliveira [68] gave a
simpler solution based on the Interpreter pattern without using generics. But the sim-
plicity comes at the cost of expressiveness: binary operations or transformations can not
be modeled modularly.

1.2 Contributions

In this thesis we argue that OO languages, equipped with powerful semantic modu-
larization techniques, are suitable for developing extensible internal and external DSLs.
We show how to modularize language components while retaining modular type-checking
and separate compilation in OOP. In the first part of the thesis, we develop EVF, an exten-
sible and expressive Java Visitor framework, for facilitating external DSL development.
EVF brings extra expressiveness to Object Algebras while retaining extensibility. To illus-
trate the applicability of EVF we conduct a case study, which refactors a large number of
non-modular interpreters from the “Types and Programming Languages” (TAPL) book [51].
The resulting interpreters are modular and reusable, sharing large portions of code and
features. In the second part of the thesis, we show the close relationship between shallow
embeddings and OOP and how OOP improves the modularity of internal DSLs. We make
our argument by refactoring the DSL presented in Gibbons and Wu’s paper [23] using
Wang and Oliveira’s solution. Nevertheless, this design pattern can be applied to develop
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Chapter 1. Introduction

shallow embedded DSLs using their approach.
In summary, the contributions of the thesis are:

• A new approach to extensible generic visitors: We present a novel technique
to support extensible external visitors that works in Java-like languages. The new
technique allows modular dependencies to be expressed using standard OO tech-
niques.

• Generalized generic queries and transformations: EVF overcomes the bottom-up
limitations of generic queries and transformations of Shy, and supports top-down
traversals as well.

• Extensible pattern matching with defaults: EVF has a fluent interface style em-
bedded DSL that emulates extensible algebraic datatypes with defaults.

• Code generation for visitor boilerplate code: Using an annotation processor, EVF

generates large amounts of boilerplate code related to ASTs and AST traversals.
Users only need to specify an annotated Object Algebra interface to trigger code
generation.

• Implementation and TAPL case study: We illustrate the practical applicability of
EVF with a large case study that refactors a nontrivial and non-modular OCaml
code base into modular and reusable Java code.1

• Exposing the close connection between shallow embedding and OOP: We show
that procedural abstraction used in shallow embedding is also the essence of OOP.

1.3 Outline

The rest of the thesis is organized as follows: Chapter 2 gives some preliminaries of
this thesis. Chapter 3, 4 and 5 form the first part of the thesis, which introduce EVF

as a framework for developing external DSLs. Specifically, In Chapter 3, we introduce
the basic infrastructure of EVF, including the generalized Object Algebras and traversal
templates; In Chapter 4, we add pattern matching support to EVF; Chapter 5 is a case
study illustrating the applicability of EVF. Chapter 6 itself forms the second part of the
thesis, which discusses extensible internal DSLs in OOP. Chapter 7 compares our work
with the state-of-the-art and concludes the thesis.

1Code for EVF and the case studies is available via https://github.com/wxzh/evf
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Chapter 2

Preliminaries

This chapter provides some preliminaries of this thesis. We first introduce the Ex-
pression Problem (EP) - the fundamental problem to solve for developing modular and
extensible software components. Then we review two design patterns in OOP, namely
the Interpreter and Visitor pattern, and explain why they fail to solve the EP. Next, we
present two newly proposed solutions to the EP that are closely these two design patterns
and discuss their respective limitations.

2.1 The Expression Problem

Reynold [55] firstly pointed out that procedural abstraction and user-defined types
are complementary in terms of extensibility. Cook [13] further clarified the extensibility
problem and argued that procedural abstraction is the essence of OOP. Krishnamurthi et
al. [35] gave the first solution to the extensibility problem based on the Visitor pattern.
Wadler [67] coined the term “Expression Problem” to the challenge of extensibility.

To illustrate, consider evolving a simple arithmetic expression language. The initial
system contains two types of expressions, integer literals and subtractions, and one
operation, evaluation. The problem is to add a new type of expression, e.g. negations,
and a new operation e.g. pretty printing. This example precisely captures the challenge
occurred in software evolution - the need of both adding new variant and new operation.
A proper solution to EP should meet the following requirements:

• Extensibility in both dimensions: A solution allows both new data variants and
new operations to be added. Also, existing operations can be extended to support
new variants.

• Strong static type safety: Applying an operation to a data variant that it cannot
handle is

• No modification and duplication: Existing code must neither be modified nor
duplicated.

• Separate compilation and type-checking: The original datatype and existing op-
erations should not be type-checked and compiled again when extensions are added.

And a fifth requirement added by Odersky and Zenger [44]:
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Chapter 2. Preliminaries

• Independent extensibility: It should be possible to combine independently devel-
oped extensions, so that they can be used jointly.

2.2 The Interpreter Pattern

interface Exp {

int eval();

}

class Lit implements Exp {

int n;

Lit(int m) { n = m; }

public int eval() {

return n;

}

}

class Sub implements Exp {

Exp x, y;

Sub(Exp l, Exp r) { x = l; y = r; }

public int eval() {

return x.eval() - y.eval();

}

}

Figure 2.1: The Interpreter pattern

The Interpreter pattern [22] is specifically designed for implementing languages. The
Interpreter pattern uses the Composite pattern [22] to represent recursive structure us-
ing hierarchical classes in OOP. Figure 2.1 models the expression language using the
Interpreter pattern. The interface Exp describes all the supported operations for an ex-
pression. Class Lit and Sub implement the Exp interface and are concrete expressions,
representing integer literals and subtractions respectively. We can easily add a new vari-
ant by re-implementing the Exp interface:

class Neg implements Exp {

Exp x;

Neg(Exp e) { x = e; }

public int eval() {

return -x.eval();

}

}

However, adding a new operation becomes difficult. We have to modify the Exp hierarchy
to insert the definition of that operation, breaking the no modification requirement of the
EP. Hence the Interpreter pattern is commonly used for modeling structures on which
operations are known in advance.

2.3 The Visitor Pattern

The Visitor design pattern [22] separates an operation from an object structure. It
emulates functional decomposition in OO languages. Figure 2.2 models the expression
language using the Visitor pattern. The expression structure is organized using a way
similar to the Interpreter pattern. The difference is that Exp in the Visitor pattern declares
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2.3 The Visitor Pattern

interface Visitor<O> {

O Lit(int n);

O Sub(Exp x, Exp y);

}

interface Exp {

<O> O accept(Visitor<O> v);

}

class Lit implements Exp {

int n;

Lit(int m) { n = m; }

public <O> O accept(Visitor<O> v) {

return v.Lit(n);

}

}

class Sub implements Exp {

Exp x, y;

Sub(Exp l, Exp r) { x = l; y = r; }

public <O> O accept(Visitor<O> v) {

return v.Sub(x, y);

}

}

class Eval implements Visitor<Integer> {

public Integer Lit(int n) {

return n;

}

public Integer Sub(Exp x, Exp y) {

return x.accept(this) - y.accept(this);

}

}

Figure 2.2: The Visitor design pattern

only one accept() method, which takes a Visitor to traverse itself. The Visitor interface
abstracts over the operations that can be applied to Exp. For each type of expressions there
is a corresponding method declared inside Visitor. Eval is a concrete implementation of
the Visitor interface, which defines an evaluation operation on expressions.

The Visitor pattern makes it easy to add new operations through re-implementing
the Visitor interface. We can, for example, implement a pretty-printing operation for the
expression language:

class Print implements Visitor<String> {

public String Lit(int n) {

return String.valueOf(n);

}

public String Sub(Exp x, Exp y) {

return "(" + x.accept(this) + "-" + y.accept(this) + ")";

}

}

However, adding variants becomes a problem. To add a variant, the Visitor interface as
well as all existing implementations have to be modified for dealing with that new variant,
which again breaks the no modification requirement of the EP.

Internal and External Visitors Implementations of the Visitor pattern can be further
classified. Depending on who controls the traversal, Buchlovsky and Thielecke [9] clas-
sified visitors as internal or external. In internal visitors the traversal strategy is hard-
encoded into the structure and hence expose no direct control over traversal to operations.

7
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On the other hand, in external visitors, traversal is delegated to the operation. As a result,
internal visitors are simpler to use whereas external visitors are more flexible in traversal.
Figure 2.2 is an example of external visitors, where the traversal on sub-expressions is
controlled by explicitly calling the accept() inside Eval.

2.4 Expression Problem Trivially

Recently, Wang and Oliveira [68] propose a simple solution to the EP based on the
Interpreter pattern. To model the expression language using this approach, most of the
code shown in Figure 2.1 remains the same except for composite structures such as Sub:

abstract class Sub implements Exp {

abstract Exp x();

abstract Exp y();

public int eval() {

return x().eval() - y().eval();

}

}

Sub-expressions of Sub are now captured by abstract getters x() and y() rather than fields
and hence the class is abstract. This change allows covariant type refinements on the
sub-expressions, which is vital for extensibility.

As Sub is an abstract class, an additional instantiation phase is needed:
class SubImpl extends Sub {

Exp x, y;

Exp x() { return x; }

Exp y() { return y; }

SubImpl(Exp l, Exp r) { x = l; y = r; }

}

The concrete class SubImpl contains fields and implements the abstract getter using these
fields.

Adding New Variants This approach retains the simplicity of adding variants in the
Interpreter pattern. We can define Neg in a way similar to Sub:

abstract class Neg implements Exp {

abstract Exp x();

public int eval() {

return -x().eval();

}

}

Adding New Operations The following code shows how to add a pretty-printing opera-
tion:

interface ExpExt extends Exp {

String print();

}

class LitExt extends Lit implements ExpExt {

LitExt(int n) { super(n); }

public String print() {

return String.valueOf(n);

}

}

abstract class SubExt extends Sub implements ExpExt {

abstract ExpExt x(); // return type refined!

8
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abstract ExpExt y(); // return type refined!

public String print() {

return "(" + x().print() + "-" + y().print() + ")";

}

}

To support new operations, a new class hierarchy is needed. The interface ExpExt extends
Exp and introduces a new method print(). Class LitExt and SubExt extend their respective
base class and implement the new interface. Note that the return type of the getters are
refined to ExpExt, so that we can call print() method on sub-expressions.

Limitations If the structure itself is used as an argument or a return value in an op-
eration, then the operation cannot be modeled modularly with this approach. Such
operations include transformations and binary methods. These operations can be made
modular with advanced type system features, for example Scala’s virtual types [73]. How-
ever, these features are not available in mainstream OO languages like Java. Also the
encoding will become complicated afterwards.

2.5 Object Algebras

Object Algebras [46] are a solution to the EP closely related to the Visitor pattern. We
give a brief introduction of Object Algebras and summarize their limitations here.

interface ExpAlg<Exp> {

Exp Lit(int n);

Exp Sub(Exp x, Exp y);

}

Figure 2.3: An object algebra interface for the expression language

Object Algebra Interfaces An object algebra interface represents an algebraic signa-
ture [26]. Figure 2.3 models the abstract syntax of the expression language using an
object algebra interface. The language contains only two constructors (i.e. methods de-
clared in ExpAlg) representing integer literals and subtraction expressions.

Object Algebras An object algebra is an operation defined on an object algebra interface.
To do so, one should implement that interface by instantiating the type parameter list with
concrete types accordingly. For example, the following code implements the evaluation
operation for the expression language:

class Eval implements ExpAlg<Integer> {

public Integer Lit(int n) {

return n;

}

public Integer Sub(Integer x, Integer y) {

return x - y;

}

}

9
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Adding New Operations Defining new operations over the algebra interface is trivial.
Similar to Eval we can define a pretty printer for expressions:

class Print implements ExpAlg<String> {

public String Lit(int n) {

return String.valueOf(n);

}

public String Sub(String x, String y) {

return "(" + x + "-" + y + ")";

}

}

Adding New Variants We can also add new variants by extending the base algebra
interface and putting new variants in the extended algebra interface. For instance, the
interface ExtAlg illustrates how to introduce addition expressions (Add) to the expression:

interface ExtAlg<Exp> extends ExpAlg<Exp> {

Exp Neg(Exp x);

}

All algebras defined for the base algebra interface (ExpAlg) are retroactive, in the sense that
we only need to inherit the base algebra and complement the new cases:

class EvalExt extends Eval implements ExtAlg<Integer> {

public Integer Neg(Integer x) {

return -x;

}

}

<Exp> Exp mkExp(ExpAlg<Exp> alg) {

return alg.Sub(alg.Lit(2), alg.Lit(1));

}

mkExp(new Print()); // "(2-1)"

mkExp(new Eval()); // 1

Figure 2.4: Client code for Object Algebras

Client Code Figure 2.4 shows how to construct an expression and apply different op-
erations to it. The generic method mkExp uses constructors defined on an object algebra
instance to create an object. Print and Eval are both concrete object algebras defined for
ExpAlg, thus their instances can be passed to mkExp.

2.5.1 Limitations

Object Algebras are indeed a simple variant of internal visitors, which bypass the
data structure and directly construct objects using operations. Although Object Algebras
provide type-safe extensibility, they come with some limitations which we summarize as
follows:

Fixed Traversal Pattern Object Algebras are essentially Church encodings [46], which
fix the traversal strategy to be bottom-up and will always traverse the structure entirely.
It is inefficient or awkward to define certain operations. For example, checking whether
an expression is a literal should ideally be an O(1) operation by inspecting the root node
only, but the bottom-up nature of the traversal makes it an O(n) operation, where n is
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interface IExp {

String print();

boolean isLit();

}

class MPrint implements ExpAlg<IExp> {

public IExp Lit(int n) {

return new IExp() {

public String print() {

return String.valueOf(n);

}

public boolean isLit() {

return true;

}};

}

public IExp Sub(IExp x, IExp y) {

return new IExp() {

public String print() {

return x.print() + "-" + (y.isLit() ? y.print() : "(" + y.print() + ")");

}

public boolean isLit() {

return false;

}};

}

}

Figure 2.5: Non-modular dependent operations in Object Algebras

the total number of nodes. The reason is that sub-expressions will always be checked
beforehand, unnecessarily.

No Concrete Representation In Object Algebras there is no data structure that per-
sists the AST. Rather, the AST is virtually formed as constructor applications. To apply
different operations to the same AST, a mkExp-like method has to be called multiple times
with different concrete algebras as Figure 2.4 shows. As Gouseti et al. [24] noticed, this
requires reparsing the whole input program for every operation applied to the AST. Al-
though Gouseti et al. attempted to solve this problem through delayed instantiation and
caching [24], a better solution would be simply to have a concrete representation.

Difficult to Express Dependencies Object Algebras must be self-contained. That is,
they cannot reuse other peer algebras defined for the same algebra interface. This makes
it hard to modularize dependent operations. For example, Figure 2.5 illustrates how to
define a dependent operation in Object Algebras. To print an expression with minimal
parentheses, the print() operation depends on not only itself but also the isLit() operation,
for checking whether an expression is a literal. Parentheses are put around a subtrahend
only when it is not a literal. The solution given in Figure 2.5 is not modular because the
dependent operation (print()) has to be defined together with what it depends on (isLit())
by implementing a pair-like interface (IExp). In principle, a more modular implementation
will define isLit() separately, as an object algebra say IsLit. And then define MPrint in
terms of IsLit. This way, IsLit can be reused elsewhere and the implementation of MPrint
will be shortened dramatically. However, the lack of proper reusing mechanisms hinders
such a modular implementation and results in bloated algebras that are hard to use and
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maintain.
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Chapter 3

EVF: An Extensible and Expressive Visitor Frame-

work

In this chapter, we introduce EVF, an extensible and expressive Visitor framework.
The extensibility and expressiveness of EVF owe to a generalization of Object Algebras
and the Visitor pattern. The key advance in EVF is a novel technique to support ex-
tensible external visitors that works in Java-like languages, which are able to control
traversals on the data structure being traversed. This removes many of the limitations
of internal visitors and Object Algebras. To make EVF practical, the framework employs
annotations to automatically generate large amounts of boilerplate code related to visitors
and traversals.

3.1 Introduction

The Visitor pattern [22] is widely used in object-oriented programming. The Visitor

pattern separates a traversal algorithm from a data structure. This has the benefit that
it becomes possible to add new operations to existing object structures modularly (that
is, without modifying existing structures). Many traditional applications of the Visitor

pattern are in language processing tools, such as compilers, interpreters or program
analysis tools. In those applications, traversals over the abstract syntax of the language
are typically modeled with visitors. Since in language processing tools it is quite often
that new traversals over the abstract syntax are needed, the use of the Visitor pattern
allows the new code to be added without modifying existing classes.

In reality, however, as software evolves extensions on both operations and variants
are needed. Robbes et al. [56] conduct an empirical study on a large number of Smalltalk
projects about extensions during evolution. Their result shows that extensions on opera-
tions and variants happen equally frequently. Surprisingly enough, this conclusion holds
for projects that apply the Visitor pattern, which are expected to have much more opera-
tion extensions than variant extensions. But a well-known limitation of traditional forms
of the Visitor pattern is the lack of type-safe extensibility [35, 67, 72]. If the data struc-
ture itself needs to be extended there are usually two options. One option is to modify
and update existing code (including code for existing traversals using visitors). The other
option is not to modify existing code and to use inheritance and casts instead to achieve
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extensibility. Either way there is a trade-off: the first option is not modular/extensible;
the second option is not type-safe.

Much work has been done to equip the Visitor pattern with type-safe extensibility [62,
73, 45]. But these solutions require sophisticated type system features not available in
Java and are impractical for real-world applications. Recently, Object Algebras [46] have
been shown to provide a solution to type-safe extensibility, and as a possible alternative
to the Visitor pattern. However, extensibility in Object Algebras is achieved at the cost
of some expressiveness when compared to traditional forms of the Visitor pattern. In
particular, in their basic form [46], Object Algebras have the following limitations:

• It is hard to express computations that are not bottom-up;

• It is difficult to modularly define complex dependencies between operations;

• There is no persistent representation of the data structure.

These limitations preclude the use of Object Algebras in many of the traditional appli-
cations of the Visitor pattern. Although there has been some recent research addressing
the first two issues in Scala [47, 54, 30], this is done using advanced language features
that are not available in most OO languages. Moreover, the problem of dependencies is
only solved with an encoding of delegation, instead of reusing existing OO mechanisms.
Finally, the last issue has not been addressed before.

This chapter presents EVF: an extensible and expressive Java Visitor framework.
EVF visitors support type-safe extensibility while retaining the expressiveness needed for
many of the applications of the Visitor pattern. The support for extensibility improves
on techniques used by Object Algebras, and previous work on modular visitors [45]. It is
known that Object Algebras are closely related to internal visitors [48] (a simple, but less
expressive, variant of visitors). The key advance in EVF is a novel technique to support
extensible external visitors that works in Java-like languages. In contrast to internal
visitors, external visitors are able to control traversals with direct access to the data
structure being traversed. This allows them to remove many of the limitations of internal
visitors and Object Algebras. EVF does not have any of the limitations listed above.

To make EVF practical, EVF employs annotations to automatically generate large
amounts of boilerplate code related to visitors and traversals. In essence, a user needs
only to specify an algebra interface, which describes the desired structure. EVF processes
that interface and generates various useful interfaces and classes. Noteworthies are
EVF’s generic queries and transformations, which generalize Shy-style traversals [74]
and remove the limitation of bottom-up only traversals.

3.2 Overview

In this section, we introduce the EVF framework by modeling some operations on
the untyped lambda calculus. The untyped lambda calculus example illustrates the
advantages of EVF in terms of flexibility, modularity and reuse over traditional (non-
modular) visitors and Object Algebras.
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3.2.1 Untyped Lambda Calculus: A Running Example

The language we are going to model is based on untyped lambda calculus. We formal-
ize its syntax and operational semantics, following Pierce’s definition [51].

Syntax The syntax of the language is given below:

e ::= x variable

λx.e abstraction

e1 e2 application

i literal

e1 − e2 subtraction

The language has five syntactic forms: variables, lambda abstractions, lambda applica-
tions, integer literals and subtractions. The meta variable e ranges over expressions; x
over variable names; i over integers. With the syntax of the language given, its operational
semantics can be defined.

Free Variables The first operation collects the set of free variables of an expression e,
written as FV (e). A variable in an expression is said to be free if it is not bound by any
enclosing abstractions. The formal definition is given below:

FV (x) = {x}

FV (λx.e) = FV (e) \ {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)
FV (i) = ∅

FV (e1 − e2) = FV (e1) ∪ FV (e2)

The definition relies on some set notations. Their meanings are: ∅ denotes an empty set;
{x} represents a set with one element x; \ calculates the difference of two sets; ∪ is the
set union operator.

Substitution Substitution, written as [x 7→ s]e, is an operation that replaces all free
occurrences of variable x in the expression e with the expression s, given by:

[x 7→ s]x = s

[x 7→ s]y = y if y , x
[x 7→ s](λx.e) = λx.e

[x 7→ s](λy.e) = λy.[x 7→ s]e if y , x ∧ y < FV (s)
[x 7→ s](e1 e2) = [x 7→ s]e1 [x 7→ s]e2

[x 7→ s]i = i

[x 7→ s](e1 − e2) = [x 7→ s]e1 − [x 7→ s]e2
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The definition is indeed quite subtle, especially for the abstraction case. The body of an
abstraction will be substituted only when two conditions are satisfied. The first condition,
y , x, makes sure that the variable to be substituted is not bound by the abstraction.
The second condition, y < FV (s), prevents free variables in an expression s being bound
after substitution. The two conditions together preserve the meaning of an expression.
For example, [x 7→ y](λx.x) is not λx.y because the variable x is bound and [x 7→ y](λy.x)
is not λy.y because y is free in the expression to substitute.

3.2.2 A Summary of the Implementations and Results

We implemented the untyped lambda calculus using the Visitor pattern, Object Al-
gebras and EVF respectively. The following table summarizes the implementations from
three perspectives: the source lines of code (SLOC), modularity and the number of cases
to implement for free variables and substitution.

Approach SLOC Modular # of cases for free variables # of cases for substitution

The Visitor Pattern 88 No 5 5
Object Algebras 89 Yes 2 5
EVF 32 Yes 2 2

From the table we can see that the implementation using EVF is best in all these three
aspects. It is modular, uses less than half of the SLOC than the other two solutions, and
has the least number of cases to implement for both operations. The remainder of this
section explains the three implementations and the results in detail.

3.2.3 An Implementation with the Visitor Pattern

We first discuss an implementation with the (external) Visitor pattern presented in
Figure 3.1 (full version can be found in Appendix A.1).

Syntax The visitor interface LamAlg describes the constructs supported by the language.
The Exp interface represents the AST type. Classes that implement Exp, for instance Var and
Abs, are concrete constructs of the language. The LamAlg interface declares (visit) methods
to deal with these constructs, one for each. Concrete constructs use their corresponding
visit method in implementing the accept method exposed by the Exp interface.

Free Variables Operations for the language are defined as concrete implementations of
the LamAlg interface. A concrete visitor FreeVars collects free variables from an expression.
FreeVars implements LamAlg by instantiating the type parameter as Set<String>. Since the
traversal is controlled by the programmer via the accept method, we call e.accept(this) to
collect free variables from the body of the abstraction.

Substitution Similarly, the class SubstVar models substitution. Substitution is a trans-
formation over the expression structure. We hence instantiate the abstract type of LamAlg
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interface LamAlg<O> {

O Var(String x);

O Abs(String x, Exp e);

O App(Exp e1, Exp e2);

O Lit(int n);

O Sub(Exp e1, Exp e2);

}

interface Exp {

<O> O accept(LamAlg<O> v);

}

class Var implements Exp {

String x;

Var(String x) { this.x = x; }

public <O> O accept(LamAlg<O> v) {

return v.Var(x);

}

}

class Abs implements Exp {

String x;

Exp e;

Abs(String x, Exp e) {

this.x = x; this.e = e;

}

public <O> O accept(LamAlg<O> v) {

return v.Abs(x, e);

}

}

...

class FreeVars implements LamAlg<Set<String>> {

public Set<String> Var(String x) {

return Collections.singleton(x);

}

public Set<String> Abs(String x, Exp e) {

return e.accept(this).stream()

.filter(y -> !y.equals(x))

.collect(Collectors.toSet());

}

...

}

class SubstVar implements LamAlg<Exp> {

String x;

Exp s;

SubstVar(String x, Exp s) {

this.x = x; this.s = s;

}

public Exp Abs(String y, Exp e) {

if y.equals(x) return new Abs(x, e);

if (s.accept(new FreeVars()).contains(x))

throw new RuntimeException();

return new Abs(x, e.accept(this));

}

public Exp Var(String y) {

return y.equals(x) ? s : new Var(x);

}

...

}

Figure 3.1: Untyped lambda calculus with the Visitor pattern.

to the expression type Exp. Like FreeVars, we call e.accept(this) to perform substitution
on children. Indeed, the argument passed to the accept method does not restrict to be
this and can be an arbitrary instance of LamAlg. This allows existing peer visitors to be
reused. For instance, we call s.accept(new FreeVars()) to reuse previously defined FreeVars

for collecting free variables from the expression s.
The implementation with the Visitor pattern has two problems: it is not modular (i.e.

does not allow new language constructs to be modularly added); and requires substantial
amounts of code, including code for each of the 5 language constructs for both free
variables and substitution.

3.2.4 An Implementation with Object Algebras

Next, we discuss an implementation with Object Algebras shown in Figure 3.2 (full
version can be found in Appendix A.2).

Syntax Object Algebras bypass the concrete AST representation, making it simple to
model the language. The Object Algebra interface LamAlg is similar to the visitor interface
except that the recursive argument has abstract type Exp, which is the same as the return
type.

Free Variables Operations over the language are defined as Object Algebras, which
are implementations of the LamAlg interface. The Object Algebra FreeVars instantiates the
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interface LamAlg<Exp> {

Exp Var(String x);

Exp Abs(String x, Exp e);

Exp App(Exp e1, Exp e2);

Exp Lit(int n);

Exp Sub(Exp e1, Exp e2);

}

interface IFV {

Set<String> FV();

}

class FreeVars<Exp>

implements LamAlg<IFV> {

public IFV Var(String x) {

return () ->

Collections.singleton(x);

}

public IFV Abs(String x, IFV e) {

return () -> e.FV().stream()

.filter(y -> !y.equals(x))

.collect(Collectors.toSet());

}

...

}

interface ISubst<Exp> {

Exp before();

Exp after();

}

class SubstVar<Exp extends IFV>

implements LamAlg<ISubst<Exp>> {

String x;

Exp s;

LamAlg<Exp> alg;

SubstVar(String x, Exp s, LamAlg<Exp> alg) {

this.x = x; this.s = s; this.alg = alg;

}

public ISubst<Exp> Var(String y) {

return new ISubstVar<Exp>() {

public Exp before() { return alg.Var(y); }

public Exp after() {

return y.equals(x) ? s : alg.Var(y);

}};}

public ISubst<Exp> Abs(String y, ISubst<Exp> e) {

return new ISubstVar<Exp>() {

public Exp before() {

return alg.Abs(y, e.before());

}

public Exp after() {

if (y.equals(x))

return alg.Abs(y, e.before());

if (s.FV().contains(y))

throw new RuntimeException();

return alg.Abs(y, e.after());

}};}

...

}

Figure 3.2: Untyped lambda calculus with Object Algebras.

Object Algebra interface as LamAlg<IFV>, where IFV is the interface that each construct
should implement. Since IFV is a functional interface, we hereby use Java 8 lambdas for
creating its instances easily. The implementation is very much like the visitor version.
The difference to the visitor version is that programmers have indirect control over the
traversal due to the bottom-up nature of Object Algebras. This makes the operation
definition simpler by removing accept invocations but sacrifices some expressiveness. It
is worth mentioning that we can instantiate the abstract type as Set<String> to make the
definition of FreeVars simpler. Using IFV, however, makes FreeVars easier to be composed
and reused, which we will see later in the definition of substitution. Also, the number of
cases to implement can be reduced to 2 by using the traversal template provided by the
Shy framework [74].

Substitution Modeling substitution using Object Algebras is tricky. There are two major
difficulties: 1) It is hard to express the dependency on FreeVars modularly in the definition
of substitution; 2) Substitution traverses the expression structure in a flexible way, and
not in a purely bottom up manner. In particular, in the abstraction case, the body may not
be traversed when the variable to be substituted is captured by the binder. Substitution
can still be modeled with a technique similar to that employed in the definition of the
predecessor function on Church numerals.

The SubstVar class contains one more field alg, which is the successor algebra instance
for reconstructing the AST. Instead of just returning the expression after substitution, we
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1 @Visitor interface LamAlg<Exp> {

2 Exp Abs(String x, Exp e);

3 Exp App(Exp e1, Exp e2);

4 Exp Var(String x);

5 Exp Lit(int n);

6 Exp Sub(Exp e1, Exp e2);

7 }

8 interface FreeVars<Exp> extends LamAlgQuery<Exp, Set<String>> {

9 default Monoid<Set<String>> m() {

10 return new SetMonoid<>();

11 }

12 default Set<String> Var(String x) {

13 return Collections.singleton(x);

14 }

15 default Set<String> Abs(String x, Exp e) {

16 return visitExp(e).stream().filter(y -> !y.equals(x))

17 .collect(Collectors.toSet());

18 }

19 }

20 interface SubstVar<Exp> extends LamAlgTransform<Exp> {

21 String x();

22 Exp s();

23 FreeVars<Exp> FV();

24 default Exp Var(String y) {

25 return y.equals(x()) ? s() : alg().Var(y);

26 }

27 default Exp Abs(String y, Exp e) {

28 if y.equals(x()) return alg().Abs(y, e);

29 if (FV().visitExp(s()).contains(y)) throw new RuntimeException();

30 return alg().Abs(y, visitExp(e));

31 }

32 }

Figure 3.3: The complete code for the untyped lambda calculus with EVF .

also keep track of the original expression. The pair-like interface ISubst is defined for such
purpose. This interface is critical for the definition of Abs because the body can either be
substituted or not depending on whether the condition holds. As the body e is now of
type ISubst<Exp>, we can call before or after for obtaining the expression before and after
substitution. Also, to be able to collect free variables from expressions, we set the upper
bound of type parameter Exp as IFV. This way, we can call the FV method on the expression
s for collecting free variables.

The drawback of the Object Algebra implementation of substitution is that it makes
implementation inefficient and complicated. Moreover, unlike the implementation of free
variables, which can benefit from the Shy framework to reduce the number of cases,
the definition substitution does not fit any of the traversal templates offered by the Shy

framework. Thus 5 cases are needed for substitution.

3.2.5 An Implementation with EVF

The corresponding implementation of the untyped lambda calculus with EVF is given
by Figure 3.4. EVF uses a Java annotation processor for generating the boilerplate code
related to AST creation and various traversal templates. The Java annotation processor
uses the standard javax.annotation.processing API, which is part of the Java platform. To
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1 @Visitor interface LamAlg<Exp> {

2 Exp Abs(String x, Exp e);

3 Exp App(Exp e1, Exp e2);

4 Exp Var(String x);

5 Exp Lit(int n);

6 Exp Sub(Exp e1, Exp e2);

7 }

8 interface FreeVars<Exp> extends LamAlgQuery<Exp, Set<String>> {

9 default Monoid<Set<String>> m() {

10 return new SetMonoid<>();

11 }

12 default Set<String> Var(String x) {

13 return Collections.singleton(x);

14 }

15 default Set<String> Abs(String x, Exp e) {

16 return visitExp(e).stream().filter(y -> !y.equals(x))

17 .collect(Collectors.toSet());

18 }

19 }

20 interface SubstVar<Exp> extends LamAlgTransform<Exp> {

21 String x();

22 Exp s();

23 FreeVars<Exp> FV();

24 default Exp Var(String y) {

25 return y.equals(x()) ? s() : alg().Var(y);

26 }

27 default Exp Abs(String y, Exp e) {

28 if y.equals(x()) return alg().Abs(y, e);

29 if (FV().visitExp(s()).contains(y)) throw new RuntimeException();

30 return alg().Abs(y, visitExp(e));

31 }

32 }

Figure 3.4: Untyped lambda calculus with EVF

1 class FreeVarsImpl implements FreeVars<Exp>, LamAlgVisitor<Set<String>> {}

2 class SubstImpl implements Subst<Exp>, LamAlgVisitor<Exp> {

3 String x;

4 Exp s;

5 public SubstImpl(String x, Exp s) { this.x = x; this.s = s; }

6 public String x() { return x; }

7 public Exp s() { return s; }

8 public FreeVars<Exp> FV() { return new FreeVarsImpl(); }

9 public GLamAlg<Exp,Exp> alg() { return new LamAlgFactory(); }

10 }

11 public class Overview {

12 public static void main(String[] args) {

13 LamAlgFactory alg = new LamAlgFactory();

14 Exp exp = alg.App(alg.Abs("y", alg.Var("x")), alg.Var("x")); // (\y.x) x

15 new FreeVarsImpl().visitExp(exp); // {"x"}

16 new SubstImpl("x", alg.Var("y")).visitExp(exp); // (\y.x) y

17 }

18 }

Figure 3.5: Instantiation and client code for untyped lambda calculus
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interact with EVF, users simply annotate the standard Object Algebra interfaces with
@Visitor. The companion infrastructure code will then be automatically generated at
compile-time. In a modern IDE like Eclipse or IntelliJ, usually each time the code is
saved, the compilation is triggered and code is generated.

Generalized Object Algebras EVF supports a generalized version of Object Algebras,
which can also be used as external visitors. Among the generated code, the generalized

object algebra interface is the basis around which all other generated code is centered.
However, users of EVF do not need to write such generalized algebra interfaces directly.
Instead EVF allows clients to encode the algebra interfaces in the old way, as done for
example in lines 1-7 of Figure 3.4. The corresponding generalized object algebra interface
generated for LamAlg is as follows:

interface GLamAlg<Exp, OExp> {

OExp Var(String x);

OExp Abs(String x, Exp e);

OExp App(Exp e1, Exp e2);

OExp Lit(int n);

OExp Sub(Exp e1, Exp e2);

OExp visitExp(Exp e); // visitX() method

}

Note that GLamAlg is parameterized by two types Exp and OExp, where Exp is for recursive
arguments and OExp is for return values. It replaces the return type of constructors with
OExp and inserts a method visitExp() that converts Exp to OExp. The change of algebra
interfaces also alters the way of encoding algebras. FreeVars, for instance, instantiates
OExp to Set<String> while keeps Exp abstract and we call visitExp() on inner expressions of
Abs in line 16. The visitExp() method allows programmers to explicitly control recursive
calls, which is something that regular Object Algebras do not directly support. This
makes it simple to model operations using top-down traversals like SubstVar. We leave the
discussion on the technical details of the generalization to Section 3.3.

Structural Traversals Neither FreeVars nor SubstVar extends GLamAlg directly. Instead,
they extend the generated interfaces LamAlgQuery and LamAlgTransform. Similarly to the Ob-
ject Algebras based Shy framework [74], EVF supports various traversal patterns that
can be used to remove boilerplate code. Note, however, that Shy only supports bottom-up

traversals, due to the inherited limitation from standard Object Algebras. In contrast,
EVF does not limit the traversal strategy and traversal patterns can be used in top-down
operations such as SubstVar. In Section 3.5 we will give formal specifications of the traver-
sal templates and introduce more forms of traversal patterns.

Reusable Algebras via Dependencies The support for external visitors allow algebras to
reuse their peer algebras, just like SubstVar reuses FreeVars. We express such dependency
by declaring a getter that returns an instance of FreeVars as shown in line 23 of Figure 3.4,
and use FreeVars by calling visitExp() with an instance of type Exp (the input type) in line
29. This simple reuse mechanism improves the modularity of algebras significantly, and
can be used together with OO inheritance for modularity and extensibility. More about
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dependencies will be discussed in Section 3.4.

Instantiation and Client Code We use interfaces and default methods to define gen-
eralized object algebras for exploiting Java 8 multiple interface inheritance. As a result,
we have to instantiate them as classes in order to create objects. Notice that visitExp()

remains abstract in both of the algebra definitions in Figure 3.4. EVF generates an in-
terface LamAlgVisitor, which extends GLamAlg with visitExp() implemented. Line 1 and lines
2-10 of Figure 3.5 illustrate how to instantiate FreeVars and SubstVar as external visitors. In
SubstVar dependencies must be fulfilled. For example, to meet the dependency on FreeVars,
we need a FreeVarsImpl instance in line 8.

Concrete AST Representation Different from conventional Object Algebras, the con-
struction and interpretation of an AST are separated in EVF. Exp, sharing the same name
as the type parameter used in Figure 3.5, reifies the AST and is automatically generated
by EVF. Once created, the AST will reside in memory and is able to accept different al-
gebras to traverse itself. For example, we construct an AST of form (λy.x) x in line 14
and then apply two different algebras, FreeVars and SubstVar, to the AST by invoking their
visitExp() method.

3.3 Extensible Visitors

This section presents an extensible visitor encoding based on a generalization of Ob-
ject Algebras. To reduce the burden of users, EVF automatically generates the Visitor

infrastructure. We illustrate the ideas by manually re-implementing the expression lan-
guage example used throughout Chapter 2. EVF visitors retain the extensibility of Object
Algebras, which is illustrated by extending the expression language.

3.3.1 Generalized Object Algebras

Previous work [47, 48] already noted that it is possible to generalize Object Algebras,
by distinguishing between input and output types in the interfaces. Such generalization
provides a way to deal with dependencies in Object Algebras using delegation. EVF uses
this generalization, but it adds a new twist: introducing visitX() methods (where X stands
for the input types of the algebra interface). These extra methods account for a large
part of the expressive power of EVF and also allow EVF to express dependencies via OO
inheritance and composition instead of delegation. Recall the object algebra interface of
the expression language ExpAlg shown in Figure 2.3. Its generalized form is as follows:

interface GExpAlg<Exp,OExp> {

OExp Lit(int n);

OExp Sub(Exp x, Exp y);

OExp visitExp(Exp t); // new method

}

Differently from ExpAlg, GExpAlg is parameterized by two types Exp and OExp, for distinguish-
ing the type of recursive argument from the result type. One additional method, visitExp(),
is added to the interface for converting Exp to OExp.
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interface Exp {

<O> O accept(Visitor<O> vis);

}

interface Visitor<O>

extends GExpAlg<O,O> {

default O visitExp(O t) {

return t;

}

}

class Factory implements Visitor<Exp> {

public Exp Lit(int n) {

return new Exp() {

public <O> O accept(Visitor<O> v) {

return v.Lit(n);

}};

}

public Exp Sub(Exp x, Exp y) {

return new Exp() {

public <O> O accept(Visitor<O> v) {

return v.Sub(x.accept(v),

y.accept(v));

}};

}

}

Figure 3.6: An internal visitor implementation for GExpAlg

With GExpAlg defined, its generalized object algebras can be given:
interface Eval<Exp> extends GExpAlg<Exp,Integer> {

default Integer Lit(int n) { return n; }

default Integer Sub(Exp x, Exp y) {

return visitExp(x) - visitExp(y);

}

}

Eval implements the evaluator for the expression language, where Exp is still an abstract

type parameter while OExp is instantiated to Integer for representing the evaluation result.
Note that visitExp() needs to be called explicitly to process recursive arguments. Another
obvious change to the algebra definition is that Eval is modeled as an interface rather
than a class with its constructors implemented using Java 8 default methods. This
is mainly for two reasons: making algebra definitions composable via Java 8 multiple
interface inheritance and more importantly, retaining extensibility for algebras, which
will be discussed in Section 3.3.3.

3.3.2 Instantiating Generalized Object Algebras as Visitors

As we have discussed in Section 2.5.1, conventional object algebras are closely related
to internal visitors and do not have direct control over traversals. The generalized object
algebras in EVF go further, allowing themselves to be instantiated as either internal or

external visitors while retaining extensibility. How to instantiate the type parameter Exp

and implement the visitExp() method determine whether a generalized object algebra is
an internal or an external visitor.
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interface Exp {

<O> O accept(Visitor<O> v);

}

interface Visitor<O>

extends GExpAlg<Exp,O> {

default O visitExp(Exp t) {

return t.accept(this);

}

}

class Factory implements GExpAlg<Exp,Exp> {

public Exp Lit(int n) {

return new Exp() {

public <O> O accept(Visitor<O> v) {

return v.Lit(n);

}};

}

public Exp Sub(Exp x, Exp y) {

return new Exp() {

public <O> O accept(Visitor<O> v) {

return v.Sub(x, y);

}};

}

public Exp visitExp(Exp t) {

return t;

}

}

Figure 3.7: An external visitor implementation for GExpAlg

Internal Visitors The internal version is given in Figure 3.6. The ExpAlgVisitor interface
recovers the conventional Object Algebra interface ExpAlg from GExpAlg by instantiating the
type parameter OExp the same as Exp and implementing the visitExp as an identity func-
tion. The interface Exp, used to represent the interface of the data structure to be visited
concretely, contains the accept() method. The ExpAlgFactory class is an object algebra for
constructing Exp instances, where the factory methods construct literals and subtractions
respectively. The encoding is internal because the traversal over subexpressions (i.e. the
accept() method call) is predefined inside those factory methods.

Instantiating an generalized object algebra to an internal visitor is simple:
class EvalImpl implements Eval<Integer>, Visitor<Integer> {}

The class EvalImpl implements both Eval and ExpAlgVisitor and instantiates input types the
same as their corresponding output types.

External Visitors Figure 3.7 shows the external visitor encoding for GExpAlg. The in-
frastructure is similar to that of the internal version with the following differences. The
external ExpAlgVisitor interface fixes the input type to Exp, the data structure to be vis-
ited. With this instantiation, the visitExp() method is implemented by calling the accept()

method. In other words, calls to visitExp() in a generalized object algebra are essentially
calls to accept() if that algebra is instantiated as an external visitor. Thus programmers
are in direct control of the traversal. We can instantiate Eval as an external visitor in a
way similar to an internal visitor:

class EvalImpl implements Eval<Exp>, Visitor<Integer> {}

The only difference is that its input type is bound to Exp.
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Client Code The code below demonstrates how to construct an expression and then
evaluate it, which applies to both internal and external visitor version.

Factory alg = new Factory();

Exp e = alg.Sub(alg.Lit(2), alg.Lit(1));

new EvalImpl().visitExp(e); // 1

Although the style of client code shown in Figure 2.4 is still applicable to internal visitors,
the new style is preferable. In this new style we construct an AST through an ExpAlgFactory

instance and then apply various operations to the AST by invoking the accept() method
with algebra instances. It is more convenient to construct ASTs using a ExpAlgFactory than
creating a mkExp-like method every time a different AST is needed. In addition, we can
switch between the internal and external visitors easily.

3.3.3 Extensibility

Extensibility is preserved in EVF, and the novelty is that in EVF external visitors are
supported as well. We can extend GExpAlg modularly in a way shown below:

interface GExtAlg<Exp,OExp> extends GExpAlg<Exp,OExp> {

OExp Neg(Exp x);

}

interface EvalExt<Exp> extends GExtAlg<Exp,Integer>, Eval<Exp> {

default Integer Neg(Exp x) {

return -visitExp(x);

}

}

However, we need a visitor infrastructure similar to Figure 3.7 for GExtAlg so that EvalExt

can be instantiated. This code is quite painful to write manually. Fortunately, EVF

automatically generates all this infrastructure for extensions as well. So, if we use EVF

(rather than having a manual implementation), we can simply write:
@Visitor interface ExtAlg<Exp> extends ExpAlg<Exp> {

Exp Neg(Exp x);

}

Client code The following code illustrates how to use the generated code to construct
an extended expression and evaluate it using the extended algebra:

class EvalExtImpl implements EvalExt<Exp>, ExtAlgVisitor<Integer> {}

ExtAlgFactory alg = new ExtAlgFactory();

Exp e = alg.Neg(alg.Sub(alg.Lit(2), alg.Lit(1)));

new EvalExtImpl().visitExp(e); // -1

The client code is almost the same as that of GExpAlg except that the prefix of the visitor
infrastructure is changed from ExpAlg to ExtAlg.

3.3.4 Object Algebra Interface Generalization

It is cumbersome for users to directly write down the generalized object algebra in-
terfaces, especially when multiple sorts are needed. This motivates us to let EVF au-
tomatically translate a conventional object algebra interface into its generalized version.
Figure 3.8 formalizes the translation.
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• Syntax of object algebra interfaces
L ::= interface I0 extends I {C} object algebra interfaces
C ::= X c(T x); constructors
I ::= A<X> interface types
T ::= X | int | boolean | . . . argument types

• Translation scheme
~@Visitor interface I0 extends I {C}� = interface ~I0� extends ~I� {~C� genVisitXin(I0)}
~A<X>� = GA<X,[OX | X ∈ allXin(AT(I))]>
~X c(T x);� = OX c(T x);

• Auxiliary definitions
returntype(X c(T x);) = X
allXin(interface I0 extends I {C}) = {returntype(C) | C ∈ C} ∪

⋃
I∈I allXin(AT(I))

newXin(interface I0 extends I {C}) = allXin(AT(I0)) \
⋃
I∈I allXin(AT(I))

genVisitXin(I) = [OX visitX(X x); | X ∈ newXin(AT(I))]

Figure 3.8: Generating generalized object algebra interface

Syntax of Object Algebra Interface We first give the grammar of conventional object
algebra interfaces. The metavariable A ranges over object algebra interface names; X

ranges over type parameters; c and x range over names. We write I as shorthand for
I1, . . . , In, X for X1, . . . , Xn; C for C1 . . . Cn (no commas in between). We abbreviate oper-
ations on pairs of sequences similarly, writing “T x” for “T1 x1, . . . , Tn xn”, where n is the
length of T and x. Following standard practice, we assume an algebra interface table (AT)
that maps algebra interface I to their declaration L.

Translation Scheme Translation rules are defined with the semantic brackets (~·�). The
bracket notation [f(A) | A ∈ A] denotes that the function f is applied to each element in
the list A sequentially to generate a new list. The curly brace notation {f(A) | A ∈ A} is
similar to the bracket notation except that it collects a set of elements while preserving
their order.

The fundamental step of the generalization is to separate input carrier types from the
type parameter list. We say that a type parameter is an input carrier type if it is a return
type of any constructor from the algebra interface hierarchy. These type parameters are
special because they have corresponding output type and visitX() method.

The translation scheme consists of three main steps. First, we find out all input carrier
types and augment the type parameter list with their corresponding output carrier types.
Second, the return types of the constructors are replaced by output carrier types. Last,
the visitX() methods are generated for new input carrier types.

Auxiliary Definitions The translation scheme relies on some auxiliary definitions: re-

turntype gets the return type of a constructor (considered as an input carrier type); allXin col-
lects all input carrier types from the algebra interface hierarchy; newXin collects input car-
rier types that are not introduced by super algebra interfaces; finally, genVisitXin generates
visitX() methods one for each new input carrier type.
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interface IsLit<Exp> extends GExpAlg<Exp,Boolean> {

default Boolean Lit(int n) {

return true;

}

default Boolean Sub(Exp x, Exp y) {

return false;

}

}

interface MPrint<Exp> extends GExpAlg<Exp,String> {

IsLit<Exp> isLit(); // dependency declaration

default String Lit(int n) {

return String.valueOf(n);

}

default String Sub(Exp x, Exp y) {

return visitExp(x) + "-" +

(isLit().visitExp(y) ? visitExp(y) : "(" + visitExp(y) + ")");

}

}

Figure 3.9: Modular dependent operation in EVF

3.4 Modular Dependencies

An important drawback of conventional Object Algebras is that it is hard to modularly

express dependencies. Fortunately, external visitors make the reuse of peer algebras
easy through standard OO composition mechanisms. In this section, we explain EVF’s
approach to defining modular dependent algebras.

Consider the pretty printer shown in Figure 2.5 again. Its modular version in EVF is
given in Figure 3.9. We separate the original implementation into two algebras MPrint and
IsLit, and makes MPrint depend on IsLit. The dependency on IsLit is expressed through
declaring a getter method isLit() that returns an instance of IsLit. To use IsLit we call
the getter first and then invoke the visitExp() method with an instance of Exp.

Compared to Figure 2.5 the code in Figure 3.9 is simpler and more modular. As IsLit

is decoupled, it can be reused elsewhere. Moreover, MPrint in Figure 3.9 is easier to use
than that of Figure 2.5. Its result is a direct String, hence an extra selection on the tuple
(print()) is no longer needed.

Client Code Dependencies should be fulfilled when instantiating algebras. This could
simply be done through returning corresponding instantiated algebra instances:

class IsLitImpl implements IsLit<Exp>, ExpAlgVisitor<Boolean> {}

class MPrintImpl implements MPrint<Exp>, ExpAlgVisitor<String> {

public IsLit<Exp> isLit() {

return new IsLitImpl();

}

}

Alternatively, if memory is a concern, one can declare a static field, initialize it using an
instance of IsLitImpl and use that field to fulfill the dependency.

To test our printer implementation, we print out the expression 2 − 1 that subtracts
itself:

Exp e = alg.Sub(alg.Lit(2), alg.Lit(1));
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new MPrintImpl().visitExp(alg.Sub(e, e)); // "2-1-(2-1)"

Extensibility More importantly, algebras with dependencies are still extensible. We can
easily support pretty printing for the extended expression:

interface IsLitExt<Exp> extends GExtAlg<Exp,Boolean>, IsLit<Exp> {

default Boolean Neg(Exp x) {

return false;

}

}

interface MPrintExt<Exp> extends GExtAlg<Exp,String>, MPrint<Exp> {

@Override IsLitExt<Exp> isLit(); // dependency refinement

default String Neg(Exp x) {

return "-" + visitExp(x);

}

}

Both IsLit and Print are extended. Through covariant return type refinement on getter
isLit(), we update the dependency from IsLit to its subtype IsLitExt. Errors would occur
on algebra instantiation if one forgets to do type-refinements on dependencies in exten-
sions. The @Override annotation makes sure that we are not adding a new dependency but
refining an inherited one. As shown by Wang and Oliveira, type-refinements are often
needed to achieve type-safe extensibility [68].

3.5 Boilerplate Traversals

AST traversals often contain a lot of boilerplate code. EVF deals with boilerplate
traversals in Shy [74]. Notably, and unlike Shy, boilerplate traversals in EVF are not re-
stricted to be bottom-up. We have seen how traversal templates eliminate boilerplate code
in Section 3.2.5. In this section, we give formal definitions of these traversal templates
and additionally introduce a novel type of traversal pattern.

3.5.1 Queries with Default Values

Inspired by wildcard patterns in functional languages, EVF supports a new type of
queries with default values. This template gives each case an implementation using the
client-supplied default value, which would be handy for defining algebras with a lot of
cases sharing the same behavior. For example, it would be tedious if we define the IsLit

algebra for the untyped lambda calculus in a way similar to Figure 3.9. Rather, we can
use this template because only the Lit() case is interesting and other cases share the
same behavior:

interface IsLit<Exp> extends LamAlgDefault<Exp, Boolean> {

default Zero<Boolean> m() { return () -> false; }

default Boolean Lit(int n) { return true; }

}

Instead of giving each of those boring cases an implementation manually, we use the
LamAlgDefault template to deal with them. With this template, we only need to supply a
default value (false) once via implementing the m() method.

Now we give the template of queries with default values formally. Given an Object
Algebra interface A, let X denote the input types of A where X = allXin(AT(A)). The template
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can be defined as below:
interface Zero<O> {

O empty();

}

interface A0Default<X0,O> extends GA0<X0,

|X0 |︷ ︸︸ ︷
O,...,O>, ADefault<X,O> {

Zero<O> m();

default O c(T x) { return m().empty(); }

}

The functional interface Zero is the default value provider on which Default depends. Default

implements all cases of an algebra interface simply through returning that default value.
The default value is obtained by invoking m().empty(). The implementation of m() is delayed
to concrete algebras that use the Default template, for allowing different default values to
be specified.

3.5.2 Queries by Aggregation

Another form of query traverses the whole AST and aggregates a value. Recall the
definition of FreeVars shown in Figure 3.4. It uses the template LamAlgQuery. The template
for queries by aggregation is given below:

interface Monoid<O> extends Zero<O> {

O join(O x, O y);

}

interface A0Query<X0,O> extends GA0<X0,

|X0 |︷ ︸︸ ︷
O,...,O>, AQuery<X,O> {

Monoid<O> m();

default O c(T x) {

return{
m().empty(); if @T ∈ T ∧ T ∈ X0,

Stream.of([visitT(x)|T ∈ T ∧ T ∈ X0]).reduce(m().empty(),m()::join); otherwise.
}

}

Query gives different implementation to a constructor according to whether it is a leaf or
an internal node. If it is a leaf (i.e. no argument of any input carrier types), the result is
m().empty(); otherwise corresponding visitX() methods get called on recursive arguments
and their results are combined using m().join().

In the definition of FreeVars, the generic SetMonoid class is used for fulfilling the m()

dependency:
class SetMonoid<T> implements Monoid<Set<T>> {

public Set<T> empty() { return Collections.emptySet(); }

public Set<T> join(Set<T> x, Set<T> y) {

return Stream.concat(x.stream(), y.stream()).collect(toSet());

}

}

where empty() returns an empty set and join() is the union of two sets.

3.5.3 Transformations

Transformations are operations that transform an AST to another AST. Transforma-
tions use a factory to construct another AST that can be further transformed or consumed.
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Recall the definition of SubstVar shown in Figure 3.4. It uses the transformation tem-
plate LamAlgTransform for eliminating boilerplate code. The general template for transfor-
mations is given below:

interface A0Transform<X0> extends GA0<X0,X0>, ATransform<X,X> {

GA0<X0,X0> alg();

default X c(T x) { return alg().c(visitT (T, x)); }

}

In Transform the output carrier types are the same as input carrier types, reflecting the
essence of a transformation. We need an additional auxiliary definition visitT , which
transforms an argument only when it is of any input carrier types:

visitT (T, x) =

visitT(x) if T ∈ X,

x otherwise.
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Chapter 4

Extensible Pattern Matching in EVF

In the previous chapter, we presented the backbone of EVF, including the generalized
Object Algebras and traversal templates. In this chapter, we introduce the pattern match-
ing support in EVF. Pattern matching provides a concise way to implement operations
that inspect and manipulate ASTs extensively. EVF generates a set of classes that provide
support for a form of pattern matching. The approach emulates Zenger and Odersky’s
extensible algebraic datatypes with defaults using a fluent interface style embedded DSL
(EDSL).

4.1 Introduction

Very often operations used in compilers, interpreters or program analysis, require
deep case analysis on an AST structure. In functional programming languages ASTs are
modeled as algebraic datatypes. With built-in support for pattern matching, one can
analyze an AST and perform transformations on it in a concise way. However, algebraic
datatypes as well as operations defined over them are typically not extensible, which
becomes a problem when new constructs are introduced. On the other side of the coin,
ASTs are represented as class hierarchies in OO languages, which are harder to explore.
Nevertheless, pattern matching can be simulated through encodings in OOP. The Visitor

pattern is one of the well-known approaches. Other common approaches include OO
decomposition and type-tests/type-casts [16]. In contrast to OO decomposition approach
which scatters the definition of an operation around the class hierarchy, the Visitor

pattern centralizes the definition in one class. Neither runtime introspection nor casts
are needed when using the Visitor pattern, as objects are recognized through dynamic
dispatching. With these appealing properties, the Visitor pattern is often used in compiler
phases. However, similar to the functional approach, the Visitor pattern suffers from the
EP. Moreover, there is a high notation overhead in using the Visitor pattern.

Fortunately, the encoding of generalized Object Algebras makes it possible to intro-
duce new variants modularly. But the verbosity of the encoding is not reduced but
increased, especially when modeling operations that need nested case analysis. As one
visitor performs only the top-level case analysis on an AST, nested case analysis is sim-
ulated through a series of ad-hoc visitors. Such ad-hoc visitors are normally defined
anonymously so that the information extracted by existing visitors is right in scope. Un-
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fortunately, EVF in its basic form does not support modular anonymous algebras. Al-
though anonymous algebras can be simulated by named algebras with necessary scope
information passed explicitly, the resulting implementation is long and complicated.

To tackle this problem, we design a pattern matching EDSL for creating modular
anonymous algebras to perform nested case analysis. We integrate this EDSL in EVF

and let EVF automatically generate the infrastructure during annotation processing. The
EDSL is inspired from two existing works: extensible algebraic datatypes with default
(EADD) [72] and the derive4j project [1]. Our contribution is to combine these ideas
to design an EDSL on top of extensible external visitors that emulates extensible pattern
matching with defaults. Algebras defined with such infrastructure are concise and require
no instantiation and fewer dependencies, significantly reducing the burden of client users.

4.2 Example: Structural Equality

In this section, we give an overview of the pattern matching support in EVF. Mean-
while, for comparison, we review pattern matching in Scala using case classes and in Java
using the Visitor pattern. We use structural equality as a running example. Structural
equality is interesting because it checks whether two data structures are constructed
consistently, where case analysis is needed on both structures being compared.

From Section 4.2.1 to Section 4.2.4, we implement structural equality for the expres-
sion language and its extended version respectively in Scala, the Visitor pattern, EVF,
and EVF with pattern matching respectively.

4.2.1 A Scala Implementation

Scala is a language that unifies both object-oriented and functional paradigms. There
are two mechanisms to support pattern matching in Scala: case classes and extractors.
Here is how we model the expression language using case classes:

trait Exp

case class Lit(n: Int) extends Exp

case class Sub(x: Exp, y: Exp) extends Exp

The base trait Exp is an abstract representation of expressions. Concrete expressions,
literals and subtractions, are defined as case classes. The case modifier automatically
generates the apply() and unapply() methods for the class it decorates, allowing conve-
nient constructions and deconstructions on objects. Typically, base classes or traits are
decorated with a sealed modifier for allowing Scala compiler to perform exhaustiveness
checking on pattern matching. We intend not to do so on Exp for the purpose of extensi-

bility, which will be discussed later.
With these definitions, we can now define structural equality, as shown in Figure 4.1.

The implementation is quite straightforward. We pattern match on the two expressions
being compared simultaneously using a pair. If they are of the same pattern, we recur-
sively compare their components. The result is a true only when their components are
also constructed in the same way. In the last clause we use the wildcard pattern (an
underscore) to capture all cases when x and y are of different forms at once.
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trait Eq {

def eq(x: Exp, y: Exp): Boolean = (x, y) match {

case (Lit(m), Lit(n)) => m == n

case (Sub(x1, x2), Sub(y1, y2)) => eq(x1, y1) && eq(x2, y2)

case _ => false

}

}

Figure 4.1: Structural equality using case classes

Note that we put the definition of eq inside the trait Eq. Together with non-sealed Exp, we
are able to support structural equality on an extended expression language, modularly.

For example, to support structural equality on the expression language with negations,
we define a new case class Neg and implement structural equality in a new trait EqExt:

case class Neg(x: Exp) extends Exp

trait EqExt extends Eq {

override def eq(x: Exp, y: Exp): Boolean = (x, y) match {

case (Neg(x), Neg(y)) => eq(x, y)

case _ => super.eq(x, y)

}

}

By inheriting Eq, the overridden definition of eq in EqExt only needs to complement the
comparison of two negations. The comparison of two existing forms of expressions as well
as the comparison of a negation with another form of expression delegates to the super
method. Indeed, the implementation follows EADDs. EADDs force a default case in each
operation so that new variants are subsumed by that case. Existing operations can hence
be reused for extended datatypes.

Though combining Scala case classes with EADDs seem to solve the EP, the solution
has some limitations:

• Lost exhaustiveness checking: The exhaustiveness checking on pattern matching
is traded for extensibility by removing the sealed modifier. As a result, a MatchError

exception may be thrown at runtime, indicating that there is no pattern that matches
the given object.

• No good defaults: EADDs are a nice solution when there is a good default for
an operation (e.g. structural equality). But when there is not (e.g. evaluation), a
default has to be invented. EADDs make these operations automatically work for
extended datatypes. A problem is that in later extensions programmers may forget
to override the default, and the compiler gives no warning. As a result, unexpected
behavior may happen. For example, if we use Eq to compare two identical negations,
the result is an unexpected false.

• No distinct datatypes: New data variants are added to the original datatype (Exp
in our example). Consequently, operations like desugaring can not be precisely
represented at the type level. For example, an operation that rewrites Neg n to Sub

0 n has type Exp -> Exp, which does not reflect the fact that all negations have been
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eliminated after the operation is applied. It would be much clearer if it is of type
Exp -> Exp’, where Exp’ contains every construct from Exp except for negations.

• Not supported in mainstream OO languages: Mainstream OO languages such as
Java, C++ and C# do not support first-class pattern matching.

4.2.2 A Java Implementation Using the Visitor Pattern

For ordinary OO languages, algebraic datatypes and pattern matching can be encoded
using the Visitor pattern. However, one visitor does only one layer of “pattern matching”.
To encode operations that need nested case analysis like structural equality, we need
extra visitors.

Figure 4.2 gives the Visitor implementation of structural equality. The return type of
the concrete visitor Eq is the functional interface IEq, for capturing the second expression.
For creating instances of IEq conveniently, Java 8 lambdas are used. The internal rep-
resentation of an expression is revealed when a particular visit method is invoked. For
example, when implementing the Sub() method of Eq, we know that the first expression
is a subtraction whose subexpressions are x1 and x2. To further deconstruct the second
expression, the lambda argument e, we create an anonymous inner visitor. Then we can
compare the two expressions inside the inner visitor, as their internal representations
are both known now. When the second expression is also a subtraction, we recursively
compare its subexpressions y1 and y2 against to x1 and x2; otherwise a false is returned.
Indeed, the outer visitor and the inner visitor are mutually recursive: the outer visitor
uses the inner visitor to deconstruct the second expression and the inner visitor uses the
outer visitor to compare subexpressions.

Compared to the Scala approach, the Visitor pattern introduces some notation over-
head. The need for nested case analysis exacerbates the verbosity. Worse still, the
implementation in Figure 4.2 is not extensible. To support structural equality for the ex-
tended expression language, we have to either modify the Visitor interface and the Eq class
or define another class through copying and pasting code from Eq. Neither approaches
are modular.

4.2.3 A Java Implementation Using EVF

Fortunately, the Visitor implementation can be made extensible with EVF. But we
cannot directly translate the code in Figure 4.2 to EVF, as extensible anonymous visitors
are not supported. Nevertheless, anonymous visitors can be simulated by top-level alge-
bras as long as information needed in scope is provided explicitly. Figure 4.3 modularizes
structural equality using basic features of EVF. Two extra top-level algebras EqLit and
EqSub are defined for simulating the functionality of anonymous visitors in Figure 4.2. Eq

implements the constructors by delegating to EqLit and EqSub. Now that EqLit and EqSub are
defined outside the scope of constructor definitions in Eq, components of the first expres-
sion need to be passed to the auxiliary algebras. Functional interfaces IEqLit and IEqSub

are defined for such purpose. Of course, dependencies, including mutual dependencies
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interface IEq {

boolean eq(Exp e);

}

class Eq implements Visitor<IEq> {

public IEq Lit(int m) {

return e -> e.accept(new Visitor<Boolean>() { // encoding case analysis

public Boolean Lit(int n) {

return m == n;

}

public Boolean Sub(Exp x1, Exp x2) {

return false;

}

});

}

public IEq Sub(Exp x1, Exp x2) {

return e -> e.accept(new Visitor<Boolean>() {

public Boolean Lit(int n) {

return false;

}

public Boolean Sub(Exp y1, Exp y2) {

return x1.accept(Eq.this).eq(y1) &&

x2.accept(Eq.this).eq(y2);

}

});

}

}

Figure 4.2: Structural equality using the Visitor pattern

between Eq and EqSub, have to be declared explicitly.
To actually use Eq, we need an additional instantiation step:
class EqImpl implements Eq<Exp>, ExpAlgVisitor<IEq<Exp>> {

class EqLitImpl implements EqLit<Exp>, ExpAlgVisitor<IEqLit> {}

class EqSubImpl implements EqSub<Exp>, ExpAlgVisitor<IEqSub<Exp>> {

public EqImpl eq() {

return new EqImpl();

}

}

public EqLit<Exp> eqLit() {

return new EqLitImpl();

}

public EqSub<Exp> eqSub() {

return new EqSubImpl();

}

}

Eq as well as its two auxiliary algebras EqLit and EqSub are instantiated as classes by mixing
in ExpAlgVisitor and fulling the dependencies.

The implementation in EVF is extensible in that structural equality for the extended
expression language can be incrementally defined without modifying the original imple-
mentation. Figure 4.4 presents the extended version built on top of what we have in
Figure 4.3. Through extending Eq, we only need to implement the Neg() method. To
compare negations with other kinds of expressions, we define a new auxiliary algebra
EqNeg. EqExt delegates the implementation of Neg() to EqNeg via the new dependency eqNeg

(). All existing auxiliary algebras, EqLit and EqSub, are also extended for the comparison
with negations. Moreover, existing dependencies should be refined to the corresponding
extended version.
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interface IEq<Exp> {

boolean eq(Exp e);

}

interface Eq<Exp> extends GExpAlg<Exp, IEq<Exp>> {

EqLit<Exp> eqLit(); // simple dependency

EqSub<Exp> eqSub(); // mutual dependency

default IEq<Exp> Lit(int n) {

return e -> eqLit().visitExp(e).eq(n);

}

default IEq<Exp> Sub(Exp x, Exp y) {

return e -> eqSub().visitExp(e).eq(x, y);

}

}

interface IEqLit {

boolean eq(int n);

}

interface EqLit<Exp> extends GExpAlg<Exp, IEqLit> {

default IEqLit Lit(int m) {

return n -> m == n;

}

default IEqLit Sub(Exp x, Exp y) {

return n -> false;

}

}

interface IEqSub<Exp> {

boolean eq(Exp x, Exp y);

}

interface EqSub<Exp> extends GExpAlg<Exp, IEqSub<Exp>>{

Eq<Exp> eq(); // mutual dependency

default IEqSub<Exp> Lit(int n) {

return (y1, y2) -> false;

}

default IEqSub<Exp> Sub(Exp x1, Exp x2) {

return (y1, y2) -> eq().visitExp(x1).eq(y1) && eq().visitExp(x2).eq(y2);

}

}

Figure 4.3: Structural equality using EVF
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interface EqExt<Exp> extends GExtAlg<Exp, IEq<Exp>>, Eq<Exp> {

EqNeg<Exp> eqNeg(); // new dependency

@Override EqLitExt<Exp> eqLit(); // refined dependency

@Override EqSubExt<Exp> eqSub(); // refined dependency

default IEq<Exp> Neg(Exp x) {

return e -> eqNeg().visitExp(e).eq(x);

}

}

interface IEqNeg<Exp> {

boolean eq(Exp e);

}

interface EqNeg<Exp> extends GExtAlg<Exp, IEqNeg<Exp>> {

EqExt<Exp> eq();

default IEqNeg<Exp> Lit(int n) {

return e -> false;

}

default IEqNeg<Exp> Sub(Exp x, Exp y) {

return e -> false;

}

default IEqNeg<Exp> Neg(Exp x) {

return e -> eq().visitExp(x).eq(e);

}

}

interface EqLitExt<Exp> extends GExtAlg<Exp, IEqLit>, EqLit<Exp> {

default IEqLit Neg(Exp x) {

return n -> false;

}

}

interface EqSubExt<Exp> extends GExtAlg<Exp, IEqSub<Exp>>, EqSub<Exp> {

@Override EqExt<Exp> eq();

default IEqSub<Exp> Neg(Exp x) {

return (y1, y2) -> false;

}

}

Figure 4.4: Extended structural equality using EVF

37



Chapter 4. Extensible Pattern Matching in EVF

interface Eq<Exp> extends GExpAlg<Exp, IEq<Exp>> {

ExpAlgMatcher<Exp, Boolean> matcher();

default IEq<Exp> Lit(int m) {

return e -> matcher()

.Lit(n -> m == n)

.otherwise(() -> false)

.visitExp(e);

}

default IEq<Exp> Sub(Exp x1, Exp x2) {

return e -> matcher()

.Sub(y1 -> y2 -> visitExp(x1).eq(y1) && visitExp(x2).eq(y2))

.otherwise(() -> false)

.visitExp(e);

}

}

Figure 4.5: Structural equality using EVF with pattern matching

Although the implementation in EVF is extensible, it is even more verbose and less
readable than the Visitor version due to the lack of support for anonymous algebras.
The more constructs there are, the worse the situation is. This motivates us to develop
a pattern matching EDSL, which allows us to create extensible anonymous algebras
conveniently.

4.2.4 A Final Solution Using EVF with Pattern Matching

Figure 4.5 refactors structural equality in EVF using the pattern matching EDSL.
Compared to Figure 4.3 the implementation is very compact. Like the Visitor implemen-
tation shown in Figure 4.2, auxiliary algebras are anonymously constructed right inside
the constructor definition. Only one simple dependency on the generated ExpAlgMatcher

interface is needed because all the auxiliary algebras in Eq return a Boolean value. To
construct an anonymous algebra, we first call matcher(), then implement different cases
using lambda expressions, and finally pass the expression to be matched to visitExp().
Now that the auxiliary algebra is created in the scope of the constructor, we can directly
compare the components of the two expressions. For example, when the two expressions
are both subtractions, we recursively compare their subexpressions using visitExp() with-
out the need of mutual dependencies. Boring cases, dealt with otherwise(), return false
by default. The new implementation is a big improvement regarding readability over the
approach presented in Figure 4.3.

Eq implemented using the pattern matching EDSL is easier to instantiated because
there is only one top-level algebra with only one dependency:

class EqImpl implements Eq<Exp>, ExpAlgVisitor<IEq<Exp>> {

public ExpAlgMatcher<Exp,Boolean> matcher() {

return new ExpAlgMatcherImpl<>();

}

}

The dependency on ExpAlgMatcher is simply fulfilled by returning an instance of the gener-
ated class ExpAlgMatcherImpl.

More benefits of this style emerge when extensions are needed. We can support
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Exhaustiveness Extensibility Distinct Types Deep Matches SLOC
Sealed case classes  #   10
Open case classes #  #  10
Visitor  #  G# 26
EVF    G# 36
EVF with patterns    G# 15

Table 4.1: Pattern matching support in sealed case classes, open case classes, Visitor,
EVF , and EVF with patterns: fully supported  , partially supported G#, not supported #

structural equality for the extended expression language easily:
interface EqExt<Exp> extends GExtAlg<Exp, IEq<Exp>>, Eq<Exp> {

@Override ExtAlgMatcher<Exp, Boolean> matcher();

default IEq<Exp> Neg(Exp x) {

return e -> matcher()

.Neg(y -> visitExp(x).eq(y))

.otherwise(() -> false)

.visitExp(e);

}

}

By reusing Eq in Figure 4.5, we simply complement the Neg() case. The return type of
matcher() in the extension is refined to ExtAlgMatcher<Exp,Boolean>, which is a generated
subtype of ExpAlgMatcher<Exp,Boolean> used in Figure 4.5. Note that the type-refinement
is essential for being able to define the Neg() case when using matcher(). All existing
anonymous algebras inherited from Eq still work, as the new case is subsumed by the
otherwise clause correctly.

4.2.5 Discussion

Table 4.1 summarizes pattern matching support of sealed case classes, open case
class, the Visitor pattern, EVF and EVF with patterns. We do the comparison from five
perspectives: exhaustiveness, extensibility, distinct types and deep matches and SLOC

(source lines of code). Exhaustiveness prevents pattern matching failure from happening
at runtime; Extensibility allows new data variants to be added and existing operations to
be adapted for handling new variants. Distinct types require new variants to be intro-
duced in a separate datatype; Deep matches allow pattern matching on multiple objects
simultaneously or nested pattern matching on a single object conveniently; SLOC mea-
sures the simplicity of a solution. We discuss the pattern matching support for each
approach according to this table.

Case Classes For case classes, exhaustiveness and extensibility can not be obtained
both at the same time. Scala compiler performs exhaustiveness checking only on sealed

case classes by statically knowing all cases of a datatype. However, once decorating a
class or a trait with the sealed modifier, its subclasses can no longer be defined in a
separate file, breaking the separate compilation requirement of the EP. By removing sealed

we trade exhaustiveness for extensibility. Combining with EADDs, operations using
pattern matching are retroactive. But new variants are defined over a single datatype.
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Scala has concise syntax for pattern matching and supports deep matches, leading to the
minimal SLOC among the approaches.

The Visitor Pattern As we have discussed extensively, the classic Visitor pattern is
not extensible. Pattern matching over multiple arguments and nested pattern matching
are simulated through a series of visitors, which is not as convenient as Scala approach.
Nevertheless, exhaustiveness is guaranteed - a concrete visitor cannot be a class unless
it implements every method exposed by the visitor interface. Without considering ex-
tensibility, distinct types are not very interesting as we can define a new datatype and
operations over it through duplicating existing code.

EVF The two approaches of EVF, namely top-level algebras and anonymous algebras
constructed via the EDSL, are both based on external visitors, inheriting the exhaustive-
ness property. But different from the Visitor pattern, they are extensible. Compared to
the open case class approach, EVF has three main advantages. Firstly, EADDs are used
as an idiom in open case classes whereas a part of the syntax of the pattern matching
EDSL in EVF. The difference is that a trailing call on otherwise() for setting the default
value is mandatory in EVF. Otherwise the value to be matched can not be supplied. Sec-
ondly, unlike open case classes, users of EVF have a choice when there is no good default:
one can switch back to named algebras at the cost of verbosity. Thirdly, EVF supports
distinct types, which differentiates the initial and extended system clearly. New variants
are introduced in a separate algebra interface (e.g. ExtAlg) and a new set of operations
is defined for this algebra interface. Therefore, the mismatch between the AST and the
operation will be captured by the compiler. This separation also allows desugaring to be
defined appropriately:

interface Desugar<S,T> extends GExtAlg<S,T> {

GExpAlg<T,T> alg();

default T Lit(int n) {

return alg().Lit(n);

}

default T Sub(S x, S y) {

return alg().Sub(visitExp(x), visitExp(y));

}

default T Neg(S x) {

return alg().Sub(alg().Lit(0), visitExp(x));

}

}

The resulting expression is constructed via GExpAlg, which contains no negations. The
SLOC has been reduced significantly by using the pattern matching EDSL but is still
larger than case classes approach since deep matches are not well supported.

4.3 The Design of Pattern Matching EDSL

This section presents the design and the implementation of the pattern matching
EDSL. When a user annotates an object algebra interface, say A, with @Visitor, a pattern
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Figure 4.6: An overview of pattern matching EDSL

matching infrastructure will be generated automatically after annotation processing. Fig-
ure 4.6 gives a high-level overview of the infrastructure generated for A. We will discuss
the functionality and implementation details of the components shown in the figure one
by one, based on the generated code for ExpAlg.

Mapper A mapper interface collects signatures of constructors defined in an algebra
interface and represents them as curried functions. For example, ExpAlgMapper collects
constructors from ExpAlg:

interface ExpAlgMapper<Exp,O> {

Function<Integer,O> Lit();

Function<Exp,Function<Exp,O>> Sub();

}

Constructors of arity greater than one such as Sub() are represented as nested Functions.

Matcher A matcher interface exposes fluent APIs for constructing anonymous algebras.
If one wants to use the pattern matching in an algebra definition, it is the interface that
she should declare a dependency on. The matcher for ExpAlg is shown below:

interface ExpAlgMatcher<Exp,O> {

ExpAlgMatcher<Exp,O> Lit(Function<Integer,O> f);

ExpAlgMatcher<Exp,O> Sub(Function<Exp,Function<Exp,O>> f);

GExpAlg<Exp,O> otherwise(Supplier<O> f);

}

ExpAlgMatcher contains two fluent setters Lit() and Sub() and an additional method otherwise

(). The implementation of ExpAlgMatcher should have states for recording the forthcom-
ing constructor definitions. A fluent setter takes a lambda function and returns the
ExpAlgMatcher itself for allowing consecutive setter calls. A trailing otherwise() call gives a
default implementation to undefined constructors. This way, an anonymous algebra can
be constructed from the states recorded.

Applier An applier converts lambda representation of constructors into an object alge-
bra, which implements the algebra interface by delegating to the corresponding lambda
function provided by the mapper dependency:

interface ExpAlgApplier<Exp,O> extends GExpAlg<Exp,O> {

ExpAlgMapper<Exp,O> mapper();
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default O Lit(int n) {

return mapper().Lit().apply(n);

}

default O Sub(Exp x, Exp y) {

return mapper().Sub().apply(x).apply(y);

}

}

Later on, an applier will be instantiated as an external visitor whose instance is returned
by otherwise().

MatcherImpl To easily fulfill the dependencies on matchers, a generic matcher imple-

mentation is generated. Indeed, it implements both a matcher and a mapper:
class ExpAlgMatcherImpl<O> implements ExpAlgMatcher<Exp,O>, ExpAlgMapper<Exp,O> {

private Function<Integer,O> Lit = null;

private Function<Exp,Function<Exp,O>> Sub = null;

public Function<Integer,O> Lit() {

return Lit;

}

public Function<Exp,Function<Exp,O>> Sub() {

return Sub;

}

public ExpAlgMatcher<Exp,O> Lit(Function<Integer,O> f) {

Lit = f; return this;

}

public ExpAlgMatcher<Exp,O> Sub(Function<Exp,Function<Exp,O>> f) {

Sub = f; return this;

}

public GExpAlg<Exp,O> otherwise(Supplier<O> f) {

if (Lit == null) Lit = n -> f.get();

if (Sub == null) Sub = x -> y -> f.get();

class ExpAlgApplierImpl implements ExpAlgApplier<Exp,O>,ExpAlgVisitor<O> {

public ExpAlgMapper<Exp,O> mapper() {

return ExpAlgMatcherImpl.this;

}

}

return new ExpAlgApplierImpl();

}

}

ExpAlgMatcherImpl contains fields for storing constructor definitions which are initialized as
null. Then getters and setters from ExpAlgMapper and ExpAlgMatcher are implemented using
these fields. The otherwise() method uses the Supplier passed in to construct closures
for all unset (null) fields. Then a local class ExpAlgApplierImpl is defined for creating an
external visitor from the fields recorded. ExpAlgApplierImpl instantiates ExpAlgApplier and
realizes the dependency on ExpAlgMapper using ExpAlgMatcherImpl. Finally, an instance of
ExpAlgApplierImpl is returned from the otherwise() method on which we call the visitExp()

method for pattern matching an instance of Exp.
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Case Study and Performance Measurements

To illustrate the applicability of EVF we conduct a large case study. The case study
refactors a large number of interpreters from the “Types and Programming Languages”
(TAPL) book [51]. It is worth pointing out that the original code, written in OCaml, is non-
modular: interpreters for each chapter are defined from scratch, with lots of duplicated
code from previous chapters. Moreover, the code makes use of standard OCaml features
such as pattern matching, and due to the small-step semantics style [53] used in the
book, most code requires top-down traversals. Also many functions have non-trivial
dependencies on other functions, making them quite hard to modularize. Translating
code with such features into Object Algebras would pose immediate challenges. Using
EVF the translation is straightforward, and the code in EVF is modular and reusable.
Last but not least, the diversity of languages makes it a comprehensive case study that
covers nearly every aspect of EVF, revealing its expressive power. This chapter also gives
the preliminary performance measurements on EVF with respect to the standard Visitor

pattern and Runabout [25].

5.1 Overview

Terms and types are the main data structures for modeling programming languages
on which two families of operations are defined. Such operations include: interpreters
and type-checkers for terms; type equality and subtype relations for types.

Starting from a simple untyped arithmetic language, TAPL gradually introduces new
features and combines them with some of the existing features to form various languages.
However, due to the use of algebraic datatypes in OCaml, “combining” features is actually
done through copying and pasting code, causing modularity issues. EVF, on the other
hand, is equipped with modular composition mechanisms and can compose features
without code duplication.

Figure 5.1 gives a bird’s-eye view of the EVF implementation of TAPL. The interactions
among languages (features) are explicitly revealed by the arrows. To enhance modularity,
we decompose conceptually independent features into separate packages (represented as
boxes) for further reuse. For example, bool is one of the smaller languages extracted from
arith, representing booleans. Afterwards, both arith and simplebool can reuse bool and
add their own functionality instead of duplicating bool in their respective implementa-
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Figure 5.1: Package dependency graph

tions.

5.1.1 Concrete Syntax

EVF can be integrated with other tools, such as Naked Object Algebras (NOA) [24], for
developing external DSLs. NOA is a framework for developing extensible syntax based on
Object Algebras. NOA provides syntax annotations to decorate constructors in an object
algebra interface. With modest changes to the implementation of NOA, extensible concrete
syntax can be supported in EVF as well. For example, the object algebra interface of the
bool language is defined as follows:

@Visitor public interface TermAlg<Term> {

@Syntax("term = ’true’")

Term TmTrue();

@Syntax("term = ’false’")

Term TmFalse();

@Syntax("term = ’if’ term ’then’ term ’else’ term")

Term TmIf(Term t1, Term t2, Term t3);

}

Each constructor of TermAlg is associated a syntax production using the @Syntax annotation.
Arguments of generic type Term correspond to the nonterminal term whereas non-generic
arguments map to tokens. Tokens are surrounded by single quotes, for example ’true’.
A complete grammar will be generated by collecting these annotations along the interface
hierarchy. Then a parser can be generated by feeding that grammar to a parser generator
like ANTLR [50]. Refer to Gouseti et al.’s paper [24] for more details.

44



5.1 Overview

public interface Eval1<Term>

extends TermAlgDefault<Term, Term>, bool.Eval1<Term>, nat.Eval1<Term> {

@Override TermAlgMatcher<Term, Term> matcher();

@Override GTermAlg<Term, Term> alg();

@Override IsNumericVal<Term> isNumericVal();

default Term TmIsZero(Term t) {

return matcher()

.TmZero(() -> alg().TmTrue())

.TmSucc(nv1 -> isNumericVal().visitTerm(nv1) ?

alg().TmFalse() : alg().TmIsZero(visitTerm(t)))

.otherwise(() -> alg().TmIsZero(visitTerm(t)))

.visitTerm(t);

}

default Zero<Term> m() {

return bool.Eval1.super.m();

}

}

Figure 5.2: Small-step evaluator for arith

5.1.2 Composable Language Implementations

EVF has a good support for language composition [17]. Specifically, three forms of
language composition - language extension, language unification, and extension compo-
sition - are supported. The support for language composition in EVF owes to Java 8
multiple interface inheritance.

For example, the language arith is a unification of two smaller languages, nat and
bool, with an extension (TmIsZero) that supports testing whether a term is zero or not. The
term definition of arith is shown below:

@Visitor public interface TermAlg<Term> extends bool.TermAlg<Term>, nat.TermAlg<Term> {

Term TmIsZero(Term t);

}

Instead of duplicating constructs from nat and bool, we reuse them by extending the
TermAlg from nat and bool. The kind of composability retains on operations as well. Fig-
ure 5.2 shows the small-step evaluator for arith, which assembles the small-step evaluator
from nat and bool and complements the TmIsZero case. From Figure 5.1 we can see that
arith is further composed by the extension package.

5.1.3 Nontrivial Operations

Operations that use pattern matching extensively, have complex dependencies and/or
require multiple dispatching are hard to model in Object Algebras. Small-step evaluator,
type equality, and subtype relation are representatives of such non-trivial operations.
Small-step evaluator, for example, relies on extensive pattern matching and complex de-
pendencies. The small-step semantics is formulated by a set of evaluation rules, each of
which states how a term can be rewritten in a single step. With EVF we are able to trans-
late them, demonstrated by the TmIsZero case shown in Figure 5.2. It uses the TermAlgMatcher

to do case analysis on the inner term and depends on IsNumericVal for checking whether it
is a numeric value in the TmSucc subcase.
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5.1.4 Multiple Sorts

The case study also illustrates how multi-sorted object algebras can be modeled using
the EVF framework. The demand for multiple sorts arises when a term needs a type in
its definition. For instance, typed models the typed lambda calculus, where TermAlg is a
multi-sorted algebra interface:

@Visitor public interface TermAlg<Term, Ty> extends varapp.TermAlg<Term> {

Term TmAbs(String x, Ty ty, Term t);

}

The abstraction (TmAbs) of typed lambda calculus requires its argument of a specific type.
Here we use another type parameter Ty to loosely capture the dependency on types. And
we model types using a separately defined algebra interface:

@Visitor public interface TyAlg<Ty> {

Ty TyArr(Ty ty1, Ty ty2);

}

The reason to separate the definition of terms and types is that they belong to different
syntactic categories in typed lambda calculus on which two completely different sets of
operations are defined. It would not make sense to have a small-step evaluator on types
or define subtyping relations on terms. This separation makes algebras fine-grained,
allowing independent extensibility on types or terms. But it would be complicated if the
two algebra interfaces are mutually dependent since that requires mutual dependencies.
For such cases, a single algebra interface with multiple input carrier types might be better
to capture mutually dependent sorts.

5.2 Evaluation

To evaluate EVF’s implementation of the case study, we compare to the original im-
plementation1. Table 5.1 compares the number of source lines of code (SLOC, excluding
blank lines and comments) of EVF’s implementation with the original OCaml implemen-
tation, package by package. Although an OOP language like Java is considerably more
verbose than a functional language like OCaml, EVF’s implementation reduces approx-
imately 32% of SLOC counting all packages, thanks to modularity and code generation
techniques. The reduction of SLOC for each original package is on average 67%. For
other feature-rich languages, the reduction is even more dramatic and can be up to 84%.

The reason is that all these original packages reuse other packages more or less.
If all these languages were orthogonal in features, OCaml would beat EVF in terms of
SLOC without question. However, from Figure 5.1 we can see that features like lambda
calculus are frequently reused by other packages directly or indirectly, which makes a
great difference to the total SLOC.

The comparison of SLOC between packages may not be that straightforward: EVF

implementations may have dependencies on other packages whereas OCaml implemen-
tations are stand-alone. Table 5.2 compares the two implementation from the component

1https://www.cis.upenn.edu/~bcpierce/tapl/
2We do not count instantiation code and demo components presented in this section.
3We count only the files core.ml and syntax.ml, excluding the parser, the REPL and etc.
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5.3 Performance Measurements

Extracted Package EVF 2 Original Package EVF OCaml 3 % Reduced
bool 115 arith 48 102 51%
extension 148 bot 90 184 52%
moreextension 114 fullerror 152 366 59%
nat 123 fullref 274 880 69%
record 231 fullsimple 110 651 84%
top 113 fullsub 176 628 72%
typed 207 fulluntyped 71 300 77%
utils 116 rcdsubbot 65 255 75%
varapp 89 simplebool 71 211 67%
variant 178 tyarith 37 135 73%

untyped 61 128 53%
Total 2605 3840 32%

Table 5.1: SLOC statistics EVF vs OCaml: A package perspective.

Component EVF OCaml % Reduced
Datatype definition 91 231 61%
Small-step evaluator 256 481 47%

Table 5.2: SLOC comparison EVF versus OCaml: A component perspective

perspective. The table sums the SLOC of two core components, datatype definitions and
the small-step evaluator, for all packages. The results show that their SLOC are both
reduced significantly, which explains why the total SLOC of EVF is reduced.

To access the correctness of our implementation, we have ported all the test programs
from the original implementation. Although the pretty printing operation is implemented
slightly different, all the evaluation results are effectively the same.

5.3 Performance Measurements

This section gives the preliminary performance measurements on EVF and discusses
its limitations. The novel visitX() methods introduced by EVF add one more level of dis-
patching to the standard Visitor pattern, which causes some execution overhead. To have
a rough idea on the impact of visitX methods on performance, we run a microbenchmark
adapted from [49]. We compare ourselves with respect to the two variants of Visitor pat-
tern [9]: imperative visitor and functional visitor. An imperative Visitor uses side effects
to do the computation; A functional Visitor is immutable, computing the result via re-
turn values. We also compare ourselves to Runabout [25], a performant reflection-based
approach for achieving extensibility.

The benchmark requires each approach to model linked lists and sum a linked list of
length 2000 for 10000 times. Implementations with these four approaches are shown in
Figure 5.3.

The benchmarks were compiled using Oracle JDK 1.8 and executed on the JVM in
64bit server mode on a 2.6 GHz MacBook Pro Intel Core i5 with 8GB memory. Table 5.3
summarizes the run time of each approach. The results show that the imperative visitors
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interface Visitor {

void Nil(Nil nil);

void Cons(Cons cons);

void Link(Link link);

}

class Sum implements Visitor {

int sum = 0;

public void Nil(Nil nil) {}

public void Cons(Cons cons) {

sum += x.head;

x.tail.accept(this);

}

public void Link(Link link) {

link.list.accept(list);

}

}

(a)Imperative visitor

interface Visitor<O> {

O Nil();

O Cons(int head, List tail);

O Link(boolean color, List list);

}

class Sum implements Visitor<Integer> {

public Integer Nil() {

return 0;

}

public Integer Cons(int head, List tail) {

return head + t.accept(this);

}

public Integer Link(boolean color, List list) {

return list.accept(this);

}

}

(b)Functional visitor

class Sum extends Runabout {

int sum = 0;

public void visit(Nil nil) {}

public void visit(Cons cons) {

sum += cons.head;

visitAppropriate(cons.tail);

}

public void visit(Link link) {

visitAppropriate(link.list);

}

}

(c)Runabout

@Visitor interface ListAlg<List> {

List Nil();

List Cons(int head, List tail);

List Link(boolean color, List list);

}

interface Sum<List>

extends ListAlgQuery<List,Integer> {

default Monoid<Integer> m() {

return new AddMonoid();

}

default Integer Cons(int head, List tail) {

return head + visitList(tail);

}

}

(d)EVF

Figure 5.3: Linked list and sum operation implementations

Approach Time (ms)
Imperative Visitor 122
Functional Visitor 235
Runabout 274
EVF 259

Table 5.3: Performance measurements
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are fastest among the four approaches, which uses half the time compared to the other
three approaches. There is a minor difference between the other three approaches on
execution time. In summary, EVF is slightly slower (about 10%) than the functional
Visitor pattern due to the additional dispatching and is comparable to Runabout. Of
course, more rigorous and extensive benchmarks need to be performed to validate the
conclusion.
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Chapter 6

Shallow Embedding and Object-Oriented Program-

ming

Shallow Embedded DSL (EDSLs) use procedural abstraction to directly encode a DSL
into an existing host language. Procedural abstraction has been argued to be the essence
of OOP. This chapter argues that OOP abstractions (including inheritance, subtyping and
type-refinement) increase the modularity and reuse of shallow EDSLs when compared
to classical procedural abstraction. We make this argument by taking a recent paper
by Gibbons and Wu, where procedural abstraction is used in Haskell to model a simple
shallow EDSL, and we recode that EDSL in Scala. From the semantic and modularity

point of view the Scala version has clear advantages over the Haskell version.

6.1 Introduction

Since Hudak’s seminal paper on Embedded DSL (EDSLs) [29], existing languages
(e.g. Haskell) have been used to directly encode DSLs. Two common approaches to
EDSLs are the so-called shallow and deep embeddings. The origin of that terminology
can be attributed to Boulton et al.’s work [8]. The difference between these two styles of
embeddings is commonly described as follows:

With a deep embedding, terms in the DSL are implemented simply to construct

an abstract syntax tree (AST), which is subsequently transformed for optimiza-

tion and traversed for evaluation. With a shallow embedding, terms in the DSL

are implemented directly by their semantics, bypassing the intermediate AST

and its traversal.[23]

Although the above definition is quite reasonable and widely accepted, it leaves some
space to (mis)interpretation. For example it is unclear how to classify an EDSL imple-
mented using the Composite or Interpreter patterns in Object-Oriented Programming
(OOP). Would this OO approach be classified as a shallow or deep embedding? We feel
there is a rather fuzzy line here, and the literature allows for both interpretations. Some
authors working on OOP EDSLs [57, 60] consider a Composite to be a deep embedding.
Some other authors [23, 5] consider implementations using tuples and/or the Composite

pattern to be a shallow embedding.
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To avoid ambiguity we propose defining shallow embeddings as EDSLs implemented
using procedural abstraction [55]. Such interpretation arises naturally from the domain
of shallow EDSLs being functions, and procedural abstraction being a way to encode data
abstractions using functions. As Cook [14] argued, procedural abstraction is also the
essence of OOP. Thus, according to our definition, the implementation of a shallow EDSL
in OOP languages should simply correspond to a standard object-oriented program.

The main goal of this chapter is to show the close relationship between shallow embed-
dings and OOP, and argue that OOP languages have advantages for the implementation of
shallow embeddings. It is perhaps partly due to those advantages that some authors have
considered Composite-based implementations to be deep embeddings. However, we argue
that the OOP mechanisms do not change the essence of the implementation, which is still
shallow (i.e. using procedural abstraction). To understand how OOP is helpful for shal-
low embeddings, we should first look at the limitations of shallow embeddings commonly
found in the literature - shallow EDSLs is that they only support single interpretation.

We show that OOP abstractions, including inheritance, subtyping and type-refinement,
are helpful to address those problems. For the first problem, we can employ a recently
proposed design pattern [68], which provides a simple solution to the Expression Prob-

lem [67] in OOP languages. Thus using just standard OOP mechanisms enables multiple

modular interpretations to co-exist and be combined in shallow embeddings.

We make our arguments by taking a recent paper by Gibbons and Wu [23], where
procedural abstraction is used in Haskell to model a simple shallow EDSL, and we recode
that EDSL in Scala1. From the modularity point of view the Scala version has clear
advantages over the Haskell version.

6.2 Shallow Object-Oriented Programming

This section shows that an OO approach and shallow embeddings using procedu-
ral abstraction are closely related. We use a subset of the DSL presented in Gibbons
and Wu’s paper [23] as the running example. We first give the original shallow embed-
ded implementation in Haskell and rewrite it towards an “OO style”. Then translating
the program into an OO language becomes straightforward. We switch to Scala as the
demonstrating OO language in this chapter because of its concise syntax. Indeed, none
of Scala’s functional features is used. Essentially, the code can be trivially adapted to any
OO language that supports subtyping, inheritance and type-refinements such as Java.

6.2.1 Scans: A DSL for Parallel Prefix Circuits

Scans [27] is a DSL for describing parallel prefix circuits. Given a associative binary
operator •, the prefix sum of a non-empty sequence x1, x2, . . . , xn is x1, x1 •x2, . . . , x1 •x2 •

...•xn. Such computation can be performed in parallel for a parallel prefix circuit. Parallel
prefix circuits have a of applications, including binary addition and sorting algorithms.

1Available online: https://github.com/wxzh/shallow-dsl
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Figure 6.1: The Brent-Kung parallel prefix circuit of width 4

Consider a DSL named Scans that models parallel circuits. Its BNF grammar is given
below:

〈circuit〉 ::= ‘identity’ 〈positive-number〉

| ‘fan’ 〈positive-number〉

| ‘beside’ 〈circuit〉 〈circuit〉

| ‘above’ 〈circuit〉 〈circuit〉

| ‘stretch’ 〈positive-numbers〉 〈circuit〉

Scans has five constructs: two primitives (identity and fan) and three combinators (beside,
above and stretch). Their meanings are: identity n contains n parallel wires; fan n has n

vertical wires with its first wire connected to all the remaining wires from top to bottom;
beside c1 c2 joins two circuits c1 and c2 horizontally; above c1 c2 combines two circuits of
the same width vertically; stretch ns c inserts more wires into the circuit c by summing up
ns. For example, Figure 6.1 visualizes a circuit constructed using all these five constructs.
The construction of the circuit is explained as follows. The whole circuit can be divided
into three sub-circuits, vertically: the top sub-circuit is a two fan 2 put side by side; the
middle sub-circuit is a fan 2 stretched by inserting a wire on the left hand side of the first
and second wire; the bottom sub-circuit is a fan 2 between two identity 1.

6.2.2 Shallow Embeddings and OOP

Shallow embeddings define a language directly through encoding its semantics using
procedural abstraction. In the case of Scans, a shallowly embedded implementation
should conform to the following types:

type Circuit = ...

identity :: Int -> Circuit

fan :: Int -> Circuit

beside :: Circuit -> Circuit -> Circuit

above :: Circuit -> Circuit -> Circuit

stretch :: [Int] -> Circuit -> Circuit

The type Circuit, representing the semantic domain, is to be filled in with a concrete type
according to the semantics. Suppose that the semantics of Scans is to calculate the width
of a circuit. The definitions would be:

type Circuit = Int

identity n = n

fan n = n

beside c1 c2 = c1 + c2
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above c1 c2 = c1

stretch ns c = sum ns

Note that, for this interpretation, the Haskell domain is simply Int. This means that we
will get the width right after the construction of a circuit. For example, running code that
represents the circuit shown in Figure 6.1

Prelude> :{

Prelude| (fan 2 ‘beside‘ fan 2) ‘above‘

Prelude| stretch [2,2] (fan 2) ‘above‘

Prelude| (identity 1 ‘beside‘ fan 2 ‘beside‘ identity 1)

Prelude| :}

4

This domain is a degenerate case of procedural abstraction, where Int can be viewed as a
no argument function. In Haskell, due to laziness, Int is a good representation. In a call-
by-value language a no-argument function () -> Int would be more appropriate to deal
correctly with potential control-flow language constructs. We will see an interpretation of
a more complex domain in Section 6.3.3.

Towards OOP A simple, semantics preserving, rewriting of the above program is given
below, where a record with a sole field captures the domain and is declared as a newtype:

newtype Circuit = Circuit {width :: Int}

id n = Circuit {width = n}

fan n = Circuit {width = n}

beside c1 c2 = Circuit {width = width c1 + width c2}

above c1 c2 = Circuit {width = width c1}

stretch ns c = Circuit {width = sum ns}

The implementation is still shallow because newtype does not add any operational behavior
to the program, and hence the two programs are effectively the same. However, having
fields makes the program look more like an OOP program.

Porting to Scala Indeed, we can easily translate the Haskell program into an OO lan-
guage like Scala:

package width

trait Circuit { def width: Int }

trait Identity extends Circuit {

val n: Int

def width = n

}

trait Fan extends Circuit {

val n: Int

def width = n

}

trait Beside extends Circuit {

val c1, c2: Circuit

def width = c1.width + c2.width

}

trait Above extends Circuit {

val c1, c2: Circuit

def width = c1.width

}

trait Stretch extends Circuit {

val ns: List[Int]

val c: Circuit

def width = ns.sum

}
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The record type maps to the trait Circuit and field declaration becomes a method dec-
laration. Each case in the semantic function corresponds to a trait and its parameters
become fields of that trait. And these traits extend Circuit and implement width.

Essentially, this implementation is how we would model Scans with an OO language
in the first place, following the Interpreter pattern (which uses Composite pattern to
organize classes). A minor difference is the use of traits, instead of classes. Using traits
instead of classes enables some additional modularity via multiple (trait-)inheritance.

To use this Scala implementation in a manner similar to the Haskell implementation,
we define some smart constructors:

def identity(x: Int) = new Identity {val n=x}

def fan(x: Int) = new Fan {val n=x}

def above(x: Circuit, y: Circuit) = new Above {val c1=x; val c2=y}

def beside(x: Circuit, y: Circuit) = new Beside {val c1=x; val c2=y}

def stretch(xs: List[Int], x: Circuit) = new Stretch {val ns=xs; val c=x}

Then we are able to construct and calculate the width of the circuit shown in Figure 6.1
again:

scala> {

| above(beside(fan(2), fan(2)),

| above(stretch(List(2,2), fan(2)),

| beside(identity(1), beside(fan(2), identity(1))))).width

| }

res0: Int = 4

6.3 Interpretations in Shallow Embeddings

An often stated limitation of shallow embeddings is that they allow only a single
interpretation. Gibbons and Wu [23] work around this problem by using tuples. However,
their encoding needs to modify the original code, and thus is non-modular. This section
illustrates how various types of interpretations can be modularly defined in OOP.

6.3.1 Multiple Interpretations

Multiple Interpretations in Haskell Suppose that we want to have an additional func-
tion that checks whether a circuit is constructed correctly. Gibbons and Wu’s solution
is:

type Circuit = (Int,Int)

identity n = (n,0)

fan n = (n,1)

above c1 c2 = (width c1,depth c1 + depth c2)

beside c1 c2 = (width c1 + width c2, depth c1 ‘max‘ depth c2)

stretch ns c = (sum ns,depth c)

width = fst

depth = snd

A tuple is used to accommodate multiple interpretations and each interpretation is defined
as a projection on the tuple. This solution is not modular because it relies on defining
the two interpretations (width and depth) simultaneously, using a tuple. It is not possible
to reuse the independently defined width function in Section 6.2.2. Whenever a new
interpretation is needed (e.g. depth), the original code has to be revised: the arity of the
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package depth

trait Circuit extends width.Circuit {

def depth: Int

}

trait Identity extends width.Identity with Circuit {

def depth = 0

}

trait Fan extends width.Fan with Circuit {

def depth = 1

}

trait Above extends width.Above with Circuit {

val c1, c2: Circuit

def depth = c1.depth + c2.depth

}

trait Beside extends width.Beside with Circuit {

val c1, c2: Circuit

def depth = Math.max(c1.depth, c2.depth)

}

trait Stretch extends width.Stretch with Circuit {

val c: Circuit

def depth = c.depth

}

Figure 6.2: Adding new interpretations

tuple must be incremented and the new interpretation has to be appended to each case.

Multiple Interpretations in Scala In contrast, Scala allows new interpretations to be
introduced in a modular way, as shown in Figure 6.2. The encoding relies on three OOP
abstraction mechanisms: inheritance, subtyping and type-refinement. Specifically, the
new Circuit is a subtype of width.Circuit and declares a new method width. The hierarchy
implements the new Circuit by inheriting the corresponding trait from the width package
and implementing the width method. Also, fields of Beside are refined with the new Circuit

type to avoid type mismatches in methods [68].

6.3.2 Dependent Interpretations

Dependent Interpretations in Haskell Dependent interpretations are a generalization
of multiple interpretations. A dependent interpretation does not only depend on itself but
also on other interpretations. An instance of such interpretation is wellSized, which checks
whether a circuit is constructed correctly. wellSized is dependent because combinators
such as above have width constraints on its circuit components.

In Haskell, dependent interpretations are again defined with tuples in a non-modular
way:

type Circuit = (Int,Bool)

identity n = (n,True)

fan n = (n,True)

above c1 c2 = (width c1,wellSized c1 && wellSized c2 && width c1==width c2)

beside c1 c = (width c1 + width c2,wellSized c1 && wellSized c2)

stretch ns = (sum ns,wellSized c && length ns==width c)

width = fst

wellSized = snd
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Dependent Interpretations in Scala Fortunately, an OO approach does not have such
restriction:

package wellsized

trait Circuit extends width.Circuit {

def wellSized: Boolean

}

trait Identity extends width.Identity with Circuit {

def wellSized = n > 0

}

trait Fan extends width.Fan with Circuit {

def wellSized = n > 0

}

trait Beside extends width.Beside with Circuit {

val c1, c2: Circuit

def wellSized = c1.wellSized && c2.wellSized

}

trait Above extends Circuit with width.Above {

val c1, c2: Circuit

def wellSized = c1.wellSized && c2.wellSized &&

c1.width==c2.width

}

trait Stretch extends Circuit with width.Stretch {

val c: Circuit

def wellSized = c.wellSized && ns.length==c.width

}

Note that width and wellSized are defined separately. Essentially, it is sufficient to define
wellSized while knowing only the signature of width in Circuit.

6.3.3 Context-Sensitive Interpretations

Context-sensitive Interpretations in Haskell Interpretations may rely on some mu-
table contexts. Consider an interpretation that simplifies the representation of a circuit.
A circuit can be divided horizontally into layers. Each layer can be represented as a se-
quence of pairs (i, j), denoting the connection from wire i to wire j. For instance, circuit
shown in Figure 6.1 has the following layout:

[[(0,1), (2,3)], [(1,3)], [(1,2)]]

The following Haskell code models the interpretation described above:
type Layout = [[(Int, Int)]]

type Circuit = (Int,(Int -> Int) -> Layout)

identity n = (n,\f -> [])

fan n = (n,\f -> [[(f 0,f j) | j <- [1..n-1]]])

above c1 c2 = (width c1,\f -> tlayout c1 f ++ tlayout c2 f)

beside c1 c2 = (width c1 + width c2

,\f -> lzw (++) (tlayout c1 f) (tlayout c2 ((width c1+) . f)))

stretch ns c = (sum ns,\f -> tlayout c (pred . (vs!!) . f))

where vs = scanl1 (+) ns

width = fst

tlayout = snd

lzw :: (a -> a -> a) -> [a] -> [a] -> [a]

lzw f [ ] ys = ys

lzw f xs [ ] = xs

lzw f (x : xs) (y : ys) = f x y : lzw f xs ys
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tlayout is firstly a dependent interpretation, relying on itself as well as |width|. More
importantly, it is a context-sensitive interpretation. A circuit’s layout would be changed
when it is stretched or put on the right hand side of another circuit. To efficiently produce
a layout, these changes are not immediately applied to the affected circuit. Rather, they
are accumulated in a parameter and are applied all at once in the end. The domain
|tlayout| is thereby not a direct value that represents the layout (|Layout|) but a function
that takes a transformation on wires and then produces a layout (|(Int->Int)->Layout|).
An auxiliary definition lzw (“long zip with”) zips two lists by applying the function to the
two elements of the same index and appending the remaining elements of the longer list
to the resulting list.

Context-sensitive Interpretations in Scala Context-sensitive interpretations in our
OO approach are unproblematic as well.

type Layout = List[List[Tuple2[Int,Int]]]

trait Circuit extends width.Circuit {

def tlayout(f: Int => Int): Layout

}

trait Identity extends Circuit with width.Identity {

def tlayout(f: Int => Int) = List()

}

trait Fan extends Circuit with width.Fan {

def tlayout(f: Int => Int) = List(for (i <- List.range(1,n)) yield (f(0),f(i)))

}

trait Above extends Circuit with width.Above {

val c1, c2: Circuit

def tlayout(f: Int => Int) = c1.tlayout(f) ++ c2.tlayout(f)

}

trait Beside extends Circuit with width.Beside {

val c1, c2: Circuit

def tlayout(f: Int => Int) =

lzw (c1.tlayout(f), c2.tlayout(f.andThen(c1.width + _))) (_ ++ _)

}

trait Stretch extends Circuit with width.Stretch {

val c: Circuit

def tlayout(f: Int => Int) = c.tlayout(f.andThen(partialSum(ns)(_) - 1))

}

def lzw[A](xs: List[A], ys: List[A])(f: (A, A) => A): List[A] = (xs, ys) match {

case (Nil,_) => ys

case (_,Nil) => xs

case (x::xs,y::ys) => f(x,y)::lzw(xs,ys)(f)

}

def partialSum(ns: List[Int]): List[Int] = ns.scanLeft(0)(_ + _).tail

The Scala version is both modular and intuitive, where mutable contexts are captured as
method arguments.

6.3.4 Adding New Constructs

Not only new interpretations, new constructs may need when a DSL evolves. For
the case of Scans, we may want to have a rstretch (right stretch) combinator which is
similar to the stretch combinator but inserts wires from the opposite direction. Shallow
embeddings make the addition of rstretch easy through defining a new function:
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rstretch :: [Int] -> Circuit -> Circuit

rstretch = ...

Such simplicity of adding new constructs retain on our OO approach, just through
defining new traits that implement Circuit:

trait RStretch extends Circuit {

val ns: List[Int]

val c: Circuit

...

}

6.3.5 Discussion

Gibbons and Wu claim that in shallow embeddings new language constructs are easy
to add, but new interpretations are hard. As our OOP approach shows, in OOP both lan-
guage constructs and new interpretations are easy to add in shallow embeddings. In other
words, the circuit DSL presented so far does not suffer from the Expression Problem. The
key point is that procedural abstraction combined with OOP features (subtyping, inheri-
tance and type-refinement) adds expressiveness over traditional procedural abstraction.
Gibbons and Wu do discuss a number of advanced techniques that can solve some of
the modularity problems. For example, using type classes, finally tagless [10] can deal
with the example in Section 6.3.1. However tuples are still needed to deal with dependent
interpretations. In contrast the approach proposed here is just straightforward OOP, and
dependent interpretations are not a problem.
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Related Work and Conclusion

7.1 Related Work

7.1.1 The Visitor Pattern

Extensible Visitors Early work on the Visitor pattern [35, 66, 49] pointed out exten-
sibility limitations in the Visitor pattern and proposed several solutions. Those early
approaches use runtime checks and can suffer from runtime errors without careful use.
Palsberg and Jay [49] proposed a generic class Walkabout as the root of visitors. By using
Java’s runtime reflection, the Walkabout removes the need for accept method in AST types.
This decouples AST type from the visitor interface, allowing new variants to be introduced
as well. Unfortunately, the extensive use of runtime reflection causes severe performance
penalties. Based on the Walkabout, Grothoff proposed the Runabout [25], attempting to
achieve reasonable performance through sophisticated bytecode generation and caching.
Forax’s Sprintabout [18] further improves the performance of Runabout by eliminating the
manual creation of AST infrastructure. However, Walkabout and its successors are not
type-safe. Torgersen [62] developed variations of the Visitor pattern to solve the Expres-
sion Problem [67]. The solutions are type-safe but rely on advanced features of generics
such as wildcards or F-bounds. Also the programming patterns are relatively complex
thus hard for programmers to learn. Inspired by other type-safe variations of Visitor

pattern [48, 45, 28] using advanced Scala type system features, our work applies similar
techniques but requires only simple generics available in Java. The visitX() methods in
generalized object algebra interfaces are a novel contribution of our work, and greatly
account for the simplicity and flexibility of EVF.

Structure-Shy Traversals with Visitors There has also been work on eliminating boil-
erplate code in the Visitor pattern. A typical way is to use default visitors [43]. A default
visitor defines the traversal template for a specific visitor interface. By subclassing the
default visitor, concrete visitors only need to override interesting cases. Walkabout [49]
removes the need of a new traversal template for every visitor interface by providing a
single traversal template that works for all visitors. The default traversal in Walkabout is
achieved through invoking the overloaded visit method on children. EVF employs static

reflection to automatically generate specialized traversal templates for each modular vis-
itor interface. But the fundamental difference is that static type safety is preserved in
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EVF. Visser [65] ported ideas from rewriting system Stratego [63] to the Visitor pattern.
The resulting framework JJTraverler exposes a series of visitor combinators to achieve
flexible traversal control and visitor combination. The proposed combinators can express
various traversal strategies such as bottom-up, top-down, sequential or alternative com-
position of visitors. To make these combinators generic, runtime reflection is also used.
The combinators are developed in the setting of imperative visitors in [65] and hence can
not be directly mapped to EVF. We would like to explore a library of visitor combinators
in EVF as future work.

7.1.2 Object Algebras

Object Algebras [46] are a modular programming pattern. However, as discussed in
detail in Section 2.5.1, Object Algebras have several expressiveness limitations. There
has been a lot of effort pointing out and trying to solve these limitations [47, 24], in par-
ticular, improving support for dependencies [47, 54]. Improved support for dependent
operations is achieved using pairs, encodings of delegation, and languages with advanced
type systems, such as Scala. Rendel et al. [54] establish the relationship between Object
Algebras and attribute grammars and also propose new approaches to deal with modu-
larity issues. However, this is also done in Scala. Using a new generalization of Object
Algebras, EVF removes several limitations of Object Algebras. In particular, dependencies
are dealt with standard OO composition. The Shy framework [74] is another work based
on Object Algebras. Shy provides various types of default traversals for data structures,
but only bottom-up traversals are supported. EVF removes the limitation of bottom-up
traversals only in Shy, giving the user flexibility in the traversal strategy.

7.1.3 Solutions to the EP in Functional Programming

In functional programming, the two main solutions to the EP are tagless final [10] and
data types à la carte [61] (DTC). Finally tagless approach uses a type class to abstract
over all possible interpretations of a language. Concrete interpretations are given through
creating a data type and making it an instance of that type class. DTC represents lan-
guage constructs separately and composes them together using extensible sums. DTC
and finally tagless work well for most interpretations except for those that are dependent.
Dependent interpretations still have to be defined along with what they depend on. This
prevents new interpretations that depend on existing interpretations from being intro-
duced modularly. Moreover, not like OO languages which come with subtyping, one has
to manually implement the subtyping machinery for variants in DTC.

7.1.4 Component-Based Development

Component-Based Language Development The idea of constructing languages by as-
sembling components can date back to 1980s [34]. Most closely related is Mosses’s work
on component-based semantics [42]. The idea is to provide a collection of highly reusable
fundamental constructs (funcons) with predefined semantics [11]. By mapping the con-
structs of a language to these funcons, the operational semantics of the language can be
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obtained for free. The semantics of these funcons are specified using modular structural
operational semantics (MSOS) [41]. Interpreters can be generated based on the MSOS
specifications. Similar funcons can also be developed in EVF with the semantics specified
as EVF interpreters. But the difference is that these interpreters can be modularly type
checked and separately compiled.

Software-Product Lines Software-Product Lines (SPLs) [12, 39, 32] allow similar sys-
tems (with different variations) to be generated from a set of common features. There are
various tools that can be used to develop SPLs, including GenVoca [7], AHEAD [6], Fea-
tureC++ [3] and FeatureHouse [2]. SPLs tools can also be used to modularize features in
programming languages and are an alternative to language workbenches. In contrast to
language workbenches, SPLs tools are targeted at general purpose software development.
Similarly to most language workbenches, most SPLs tools use syntactic modularization
mechanisms, which do not support separate compilation and/or modular type-checking.

7.1.5 Object-Oriented Pattern Matching

Pattern matching is a feature originally from functional programming languages.
Much work has been done on porting pattern matching to OO languages, which can
generally be classified into three categories: encodings, language extensions and new
languages.

Encodings The simplest way of simulating pattern matching in OOP is through encod-
ings. Encodings allow existing OO languages to support pattern matching without extra
installations (e.g. compiler-plugins). Forax and Roussel [19] proposed a solution based
on method overloading and reflections. Pattern matching functionality can be obtained
through extending the PatternMatcher class and overriding the match method for each pat-
tern. Then an appropriate overloaded match will be invoked according to the runtime type
of the object being matched through reflection. Their approach supports pattern matching
over several arguments. However, the encoding is not type safe and the exhaustiveness
of pattern matching is not checked. Moreover, the performance penalty is high, which is
much slower than the Visitor pattern even with sophisticated optimizations.

Pattern matching in EVF can also be viewed as an encoding. The pattern matching
infrastructure of EVF is built on external visitors, inspired by EADDs [72] and derive4j [1].
derive4j is an annotation processor that generates class hierarchy and pattern matching
infrastructure for an algebraic datatype. Unlike EVF, pattern matching in derive4j is
not extensible: only regular (closed) pattern matching is supported. Moreover, derive4j
attempts to statically enforce one case per pattern. This leads to an explosion in the
number of classes needed in the embedded DSL. Differently, EVF generates only one
extensible matcher interface for each algebra interface. A matcher exposes fluent APIs
for emulating pattern matching. Similar to EADDs we force a trailing default case. But
the operations do not automatically work in extensions. Programmers would get warned
when instantiating algebras if they forget to do type-refinements for the dependencies on
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matchers.

Language Extensions Another line of work attempts to extend existing OO languages
like Java for pattern matching. TOM [52] extends Java with built-in support for algebraic
datatypes and pattern matching. TOM’s %match construct supports deep pattern matching.
But unlike EVF, neither the datatype definitions or operations in TOM are extensible.
Later development of TOM [4] has better integration with Java and supports powerful
rewriting strategies. Similar rewriting strategies have been studied in the setting of the
classic Visitor pattern [65] and are partially supported by EVF.

JMatch [38] is another Java extension with the support of pattern matching and
iteration through modal abstraction. JMatch methods support multiple modes. They can
not only be used as normal methods in forward modes but also deduce argument values
for a given result in backward modes, merging the apply() and unapply() methods of Scala
in one definition. However, exhaustiveness of pattern matching is not checked in JMatch.
Later work [31] extends JMatch with exhaustiveness checking and extra expressiveness
with the help of SMT solvers. But the type system of JMatch becomes complicated.

New OO Languages New OO languages try to support pattern matching in the first
place. We have compared our work with EADDs and case classes in Scala throughout
chapter 4. As Emir et al. [16] pointed out, case classes require less notational overhead
than visitors and have been applied in several projects to improve modularity [58]. Hofer
et al. [28] presented an approach to modular DSLs in Scala, aiming to find a better
way to model non-compositional operations. Three techniques: internal visitors, external
visitors, and Scala’s case classes are investigated. It turns out that code using case classes
is simpler than using visitors. In contrast to EADDs and case classes, EVF can achieve
type-safe extensibility without defaults, by using visitors. Furthermore, the generated
visitor infrastructure and traversal templates in EVF simplify the use of visitors. Users
do have a choice between pattern matching with defaults and visitors. The former needs
no instantiation and fewer dependencies while the latter is reusable. Both of the two
approaches retain type-safe extensibility in EVF.

Fortress language [59] is yet another OO language that supports first-class pattern
matching. Similar to Scala, Fortress uses traits to define a datatype and objects to
define its cases. Exhaustiveness and extensibility in Fortress cannot be achieved at
the same time as well. Nevertheless, Fortress provides a comprises clause for explicitly
specifying all cases of a trait. This allows concrete implementation of those cases to be
defined in separate files while preserving exhaustiveness checking. Fortress preserves
type arguments at runtime, which brings extra expressiveness for pattern matching.

7.2 Conclusion

In this thesis we showed how to use OO languages to modularize language compo-
nents. Equipped with powerful semantic modularization techniques, OO languages are
suitable for developing extensible internal and external DSLs.
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In the first part of the thesis, we introduced EVF, an extensible and expressive Java
Visitor framework, for facilitating external DSL development. EVF’s support of exten-
sible external visitors allows complex dependencies between operations to be expressed
modularly and provides users with flexible traversal strategies for defining expressive op-
erations. To make EVF easy to use, we design a fluent interface style embedded DSL to
simulate pattern matching and support concrete syntax via annotations. Users only need
to annotate conventional object algebra interfaces, then boilerplate code will be generated
by the annotation processor. The infrastructure generated by EVF include visitors, traver-
sals, pattern matching and grammar. The TAPL case study illustrates the applicability of
EVF.

The second part of this thesis revealed the close the correspondence between OOP
and shallow embeddings, and how OOP improves the modularity of shallow EDSLs. In
particular, multiple interpretations can be defined modularly with OOP.

7.3 Future Work

This thesis focuses on the modularity and extensibility problem in semantic part
of a DSL. Other aspects of a DSL implementation, such as performance and developer
tool support, are ignored. However, these issues are important in practice. One line
of future work is to integrate EVF with Graal VM [71] and the Truffle framework [70] for
obtaining performant DSLs easily. Another avenue is to continue developing EVF towards
a language workbench.
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A.1 Untyped Lambda Calculus with the Visitor Pattern

1 interface LamAlg<O> {

2 O Var(String x);

3 O Abs(String x, Exp e);

4 O App(Exp e1, Exp e2);

5 O Lit(int n);

6 O Sub(Exp e1, Exp e2);

7 }

8 interface Exp {

9 <O> O accept(LamAlg<O> v);

10 }

11 class Var implements Exp {

12 String x;

13 Var(String x) { this.x = x; }

14 public <O> O accept(LamAlg<O> v) {

15 return v.Var(x);

16 }

17 }

18 class Abs implements Exp {

19 String x;

20 Exp e;

21 Abs(String x, Exp e) { this.x = x; this.e = e; }

22 public <O> O accept(LamAlg<O> v) {

23 return v.Abs(x, e);

24 }

25 }

26 class App implements Exp {

27 Exp e1, e2;

28 App(Exp e1, Exp e2) { this.e1 = e1; this.e2 = e2; }

29 public <O> O accept(LamAlg<O> v) {

30 return v.App(e1, e2);

31 }

32 }

33 class Lit implements Exp {

34 int n;

35 Lit(int n) { this.n = n; }

36 public <O> O accept(LamAlg<O> v) {

37 return v.Lit(n);

38 }

39 }

40 class Sub implements Exp {

41 Exp e1, e2;

42 Sub(Exp e1, Exp e2) { this.e1 = e1; this.e2 = e2; }

43 public <O> O accept(LamAlg<O> v) {

44 return v.Sub(e1, e2);
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45 }

46 }

47 class FreeVars implements LamAlg<Set<String>> {

48 public Set<String> Var(String x) {

49 return Collections.singleton(x);

50 }

51 public Set<String> Abs(String x, Exp e) {

52 return e.accept(this).stream().filter(y -> !y.equals(x))

53 .collect(Collectors.toSet());

54 }

55 public Set<String> App(Exp e1, Exp e2) {

56 return Stream.concat(e1.accept(this).stream(), e2.accept(this).stream())

57 .collect(Collectors.toSet());

58 }

59 public Set<String> Lit(int n) {

60 return Collections.emptySet();

61 }

62 public Set<String> Sub(Exp e1, Exp e2) {

63 return Stream.concat(e1.accept(this).stream(), e2.accept(this).stream())

64 .collect(Collectors.toSet());

65 }

66 }

67 class SubstVar implements LamAlg<Exp> {

68 String x;

69 Exp s;

70 SubstVar(String x, Exp s) { this.x = x; this.s = s; }

71 public Exp Abs(String y, Exp e) {

72 if(y.equals(x)) return new Abs(x, e);

73 if(s.accept(new FreeVars()).contains(x)) throw new RuntimeException();

74 return new Abs(x, e.accept(this));

75 }

76 public Exp App(Exp e1, Exp e2) {

77 return new App(e1.accept(this), e2.accept(this));

78 }

79 public Exp Var(String y) {

80 return y.equals(x) ? s : new Var(x);

81 }

82 public Exp Lit(int n) {

83 return new Lit(n);

84 }

85 public Exp Sub(Exp e1, Exp e2) {

86 return new Sub(e1.accept(this), e2.accept(this));

87 }

88 }

A.2 Untyped Lambda Calculus with Object Algebras

1 interface LamAlg<Exp> {

2 Exp Var(String x);

3 Exp Abs(String x, Exp e);

4 Exp App(Exp e1, Exp e2);

5 Exp Lit(int n);

6 Exp Sub(Exp e1, Exp e2);

7 }

8 interface IFV {

9 Set<String> FV();

10 }

11 class FreeVars<Exp> implements LamAlg<IFV> {

12 public IFV Var(String x) {

13 return () -> Collections.singleton(x);

14 }

15 public IFV Abs(String x, IFV e) {
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16 return () -> e.FV().stream().filter(y -> !y.equals(x))

17 .collect(Collectors.toSet());

18 }

19 public IFV App(IFV e1, IFV e2) {

20 return () -> Stream.concat(e1.FV().stream(), e2.FV().stream())

21 .collect(Collectors.toSet());

22 }

23 public IFV Lit(int n) {

24 return () -> Collections.emptySet();

25 }

26 public IFV Sub(IFV e1, IFV e2) {

27 return () -> Stream.concat(e1.FV().stream(), e2.FV().stream())

28 .collect(Collectors.toSet());

29 }

30 }

31 interface ISubst<Exp> {

32 Exp before();

33 Exp after();

34 }

35 class SubstVar<Exp extends IFV> implements LamAlg<ISubst<Exp>> {

36 String x;

37 Exp s;

38 LamAlg<Exp> alg;

39 SubstVar(String x, Exp s, LamAlg<Exp> alg) {

40 this.x = x; this.s = s; this.alg = alg;

41 }

42 public ISubst<Exp> Var(String y) {

43 return new ISubst<Exp>() {

44 public Exp before() {

45 return alg.Var(y);

46 }

47 public Exp after() {

48 return y.equals(x) ? s : alg.Var(y);

49 }};

50 }

51 public ISubst<Exp> Abs(String y, ISubst<Exp> e) {

52 return new ISubst<Exp>() {

53 public Exp before() {

54 return alg.Abs(y, e.before());

55 }

56 public Exp after() {

57 if(y.equals(x)) return alg.Abs(y, e.before());

58 if(s.FV().contains(y)) throw new RuntimeException();

59 return alg.Abs(y, e.after());

60 }};

61 }

62 public ISubst<Exp> App(ISubst<Exp> e1, ISubst<Exp> e2) {

63 return new ISubst<Exp>() {

64 public Exp before() {

65 return alg.App(e1.before(), e2.before());

66 }

67 public Exp after() {

68 return alg.App(e1.after(), e2.after());

69 }};

70 }

71 public ISubst<Exp> Lit(int n) {

72 return new ISubst<Exp>() {

73 public Exp before() {

74 return alg.Lit(n);

75 }

76 public Exp after() {

77 return alg.Lit(n);
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78 }};

79 }

80 public ISubst<Exp> Sub(ISubst<Exp> e1, ISubst<Exp> e2) {

81 return new ISubst<Exp>() {

82 public Exp before() {

83 return alg.Sub(e1.before(), e2.before());

84 }

85 public Exp after() {

86 return alg.Sub(e1.after(), e2.after());

87 }};

88 }

89 }
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