
Abstract of thesis entitled

“Iso-Type Systems: Simple Dependent Type Theories for Programming”

Submitted by

Yanpeng Yang

for the degree of Doctor of Philosophy

at The University of Hong Kong

in January, 2019

Dependent types have been drawing a lot of attention in programming language designs. A key

reason is that they allow unifying types and terms that are usually distinct syntactic levels in

traditional language designs. Uni�ed syntax brings some interesting advantages over separate

syntax, including added expressiveness and less duplication of concepts. However, it is challenging

to combine dependent types with common programming features, such as unrestricted general

recursion and object-oriented programming (OOP) features including subtype polymorphism and

abstract type members. To address these challenges, we propose three novel dependently typed

calculi with both simplicity and expressiveness, namely Pure Iso-Type Systems (PITS), the λI6
calculus and the λIΣ calculus.

PITS is a generic language framework that employs uni�ed syntax, supports general recursion

and preserves decidable type checking. It is comparable in simplicity to pure type systems (PTS),

and is useful to serve as a foundation for functional languages that stand in-between traditional

ML-like languages and full-spectrum dependently typed languages. The key to retain decidable

type checking in the presence of general recursion is a generalization of iso-recursive types called

iso-types. Iso-types replace the implicit conversion rule typically used in dependently typed

calculi and make every computation explicit via cast operators. We study three variants of PITS

that di�er on the reduction strategy employed by the cast operators and prove type-safety and

decidability of type checking for all variants.

The λI6 calculus is a variant of PITS with uni�ed subtyping, a novel technique that uni�es

typing and subtyping and enables the combination of dependent types and subtyping. In λI6,

there is only one judgment that is akin to a typed version of subtyping. Both the typing relation, as

well as type well-formedness are just special cases of the uni�ed subtyping relation. λI6 supports

essential features for modeling OOP, such as high-order subtyping, bounded quanti�cation and

top types. It can fully subsume System F6 and enjoys several standard and desirable properties,

such as type-safety and transitivity of subtyping.

The λIΣ calculus is a variant of λI6 with strong dependent sums. Strong sums are useful to

model Scala-like traits with type members. λIΣ adopts a novel treatment of strong sums called

iso-strong sums. The destructors of iso-strong sums are typed using intermediate type-level

applications instead of standard direct substitutions. The necessary type-level computation can

be done by just call-by-value casts. λIΣ supports impredicativity and enjoys the same desirable

properties as λI6, including type-safety and transitivity. (421 words)

Iso-Type Systems: Simple Dependent Type

Theories for Programming

Yanpeng Yang

楊彥芃

Department of Computer Science

The University of Hong Kong

This dissertation is submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

January, 2019

Declaration

I hereby declare that the thesis entitled “Iso-Type Systems: Simple Dependent Type Theories for
Programming” represents my own work and has not been previously submitted to this or any

other institution for a degree, diploma or other quali�cations.

Yanpeng Yang

January, 2019

Acknowledgements

My thanks �rst go to my supervisor, Bruno Oliveira, who has been a great research advisor

and mentor. Bruno is so energetic and positive on research. Every meeting with him is just a

pleasure. He is very good at guiding students with his great patience and strong expertise. I

really appreciate the time he spent on brainstorming new research ideas with me and o�ering

constructive suggestions to me. I am very grateful to all his help and support.

During my time as a PhD student HKU, I am very fortunate to meet so many nice colleagues

and friends. The Programming Languages Group is a great place to do research and share laughter.

I would like to thank everyone in the group: Haoyuan Zhang, Weixin Zhang, Yanlin Wang,

Zhiyuan Shi, Xuan Bi, Ningning Xie, Huang Li, Jinxu Zhao, Xuejing Huang, Tomas Tauber, João

Alpuim and other people, just to name a few. I would also like to thank visiting scholars to

our group, who patiently listened to my research work and gave me helpful feedback: Prof.

Tom Schrijvers, Dr. Marco Servetto, Dr. Vilhelm Sjöberg, Dr. Tomoyuki Aotani (we also met at

OOPSLA’17), Dr. Nicholas Ng and Dr. Shin-Cheng Mu (who is also my thesis examiner).

The Department of Computer Science at HKU is a warm place to stay. I would like to thank

many professors at the department: my second supervisor Dr. Reynold C. K. Cheng, former Heads

of Department Prof. Francis C. M. Lau and Prof. Wenping Wang, Dr. Heming Cui, Dr. Chuan

Wu, Dr. Zhiyi Huang and Dr. Hubert Chan. I would also like to thank sta�s from the general

o�ce and technical support who are kind and always ready to help: Priscilla Chung, Olive Hui,

Veronica Yim, Patrick Au and the current and former clean ladies (sorry I forgot your names) who

helped me clean my o�ce every week.

HKU is a fantastic place with so many brilliant and kind people. I have met many new friends

here who are really kind and helpful. My special thanks go to Luwei Cheng and Dominic Hung

Chit-Ho for your encouragement that helped me get over my most di�cult time at HKU. I would

like to thank Jiancheng Ye from EEE department for showing me around Hong Kong when I

was new here. I would like to thank Kan Wu for your professional skills as Soldier: 76 and Mei

for covering me. I would like to thank colleagues from the Systems Lab: Huanxin Lin, Hao Wu,

Mingzhe Zhang, Weizhi Liu, King Tin Lam and the visiting professor Dr. Dengke Zhang, for the

past time when we worked together. I would like to thank other friends I met at HKU and I really

enjoy the happy time with you: Zhangquan Wu, Fangying Wang, Shirui Lu, Yong Xu, Gongxian

Zeng, Lingjie Liu, Jiatao Gu, Kai Han, Wei Liu, Haofeng Li, Qihang Sun, Yongfei Wang, Yujie Cao,

Zhou Xu, Shuang Tong and many names I forgot to mention.

I would also like to thank my old friends, who did not forget me when I was deserted in

Hong Kong. I would like to thank my undergraduate roommates and friends, who are just like

brothers: Sheng’guo Ren, Fan Gao, Yuxuan Shui and Yuzui Ye. I would like to thank my high

school classmates who welcomed me when I �rst came to Hong Kong, who gathered with me at

Hong Kong and who still remembered me and contacted me when I was in Hong Kong: Jiayan

Jiang, Tianyi Yang, Yushang Tang, Yumeng Guo, Xiaoyu Chen, Feng Zhu, Yue Shen, Chen Hang,

Xiaozhuo Cheng, Yuxin Chen, Peilu Wang and so many others.

I would like to thank my parents and my family. You are always my powerful and secure

backing.

Finally, I especially o�er my grateful thanks to my girlfriend Huoru Zhang for your constant

support throughout my PhD study. I could never have done this work without your love and

encouragement.

Contents

1 Introduction 1
1.1 Type Features of Static Type Systems . 1

1.2 The Design Space of Dependently Typed Languages 4

1.3 Motivations and Challenges . 6

1.3.1 Uni�ed Syntax, General Recursion and Decidable Type Checking 6

1.3.2 Combining Dependent Types and Subtyping 8

1.3.3 Combining Dependent Types and Strong Sums 9

1.4 Our Proposals . 11

1.4.1 Pure Iso-Type Systems and Iso-Types . 11

1.4.2 The λI6 Calculus and Uni�ed Subtyping 12

1.4.3 The λIΣ Calculus and Iso-Strong Sums 12

1.5 Contributions and Outline . 13

2 Background 15
2.1 Pure Type Systems . 15

2.1.1 Basics of PTS . 15

2.1.2 Examples of PTS . 17

2.1.3 Metatheory of PTS . 19

2.2 Dependent Sums . 20

2.2.1 Weak Sums . 20

2.2.2 Strong Sums . 20

2.2.3 Comparison of Weak and Strong Sums . 21

2.3 Iso-Recursive Types . 21

2.3.1 Iso-Recursive versus Equi-Recursive Types 22

2.3.2 Iso-Recursive Types in Haskell . 23

2.4 Subtyping . 24

2.4.1 Important Subtyping Rules . 24

2.4.2 Bounded Quanti�cation . 25

2.5 Path-Dependent Types . 27

I Pure Iso-Type Systems 29

3 Overview of Iso-Types 31
3.1 Motivation and Overview . 32

3.1.1 Implicit Type Conversion in Pure Type Systems 32

3.1.2 Newtypes: Explicit Type Conversion in Haskell 32

3.1.3 Iso-Types: Explicit Type Conversion in PITS 33

3.1.4 General Recursion . 35

3.2 Iso-Types by Example . 35

3.2.1 Fun Implementation . 36

3.2.2 Combining Algebraic Datatypes with Advanced Features 37

3.2.3 Object Encodings . 39

3.2.4 Fun with Full Reduction . 40

4 Pure Iso-Type Systems 43
4.1 Call-by-name Pure Iso-Type Systems . 44

4.1.1 Syntax . 44

4.1.2 Operational Semantics . 45

4.1.3 Typing . 45

4.1.4 The Two Faces of Recursion . 47

4.1.5 Metatheory of Call-by-name PITS . 48

4.2 Call-by-value Pure Iso-Type Systems . 50

4.2.1 Value Restriction . 50

4.2.2 Reduction with Open Terms . 52

4.2.3 Metatheory . 52

4.3 Iso-Types with Full Casts . 54

4.3.1 Full Casts with Parallel Reduction . 54

4.3.2 Metatheory . 57

4.3.3 Completeness to Pure Type Systems . 60

4.4 Discussion . 61

4.4.1 Direct Dynamic Semantics . 61

4.4.2 Direct Proofs . 62

4.4.3 No Mutually Dependent Judgments . 63

4.4.4 Implicit Proofs by Reduction . 63

4.4.5 Full Type-Level Computation . 64

4.4.6 Consistency of Reduction . 65

4.4.7 Decidability in the Presence of Recursion 65

II Iso-Types with Subtyping 67

5 Unifying Typing and Subtyping 69
5.1 Overview . 69

5.1.1 Uni�ed Syntax versus Strati�ed Syntax 70

5.1.2 Challenges in Combining Subtyping with Dependent Types 70

5.1.3 Our Solution: Uni�ed Subtyping . 71

5.1.4 Iso-Types: Dependent Types without Strong Normalization 72

5.1.5 Example: Object Encodings using λI6 73

5.2 The λI6 Calculus . 76

5.2.1 Syntax . 76

5.2.2 Operational Semantics . 77

5.2.3 Static Semantics . 77

5.3 The Metatheory of Uni�ed Subtyping . 80

5.3.1 Basic Lemmas . 80

5.3.2 Transitivity . 82

5.3.3 Basic Lemmas, Revisited . 84

5.3.4 Type Safety . 84

5.4 Algorithmic Version . 86

5.4.1 Bidirectional Type Checking . 87

5.4.2 Soundness and Completeness . 88

5.5 Subsumption of System F6 . 89

5.5.1 Translating System F6 to λI6 . 89

5.5.2 Subsumption of Typing and Subtyping 89

5.6 Discussion . 90

6 Iso-Types with Strong Dependent Sums 93
6.1 Overview . 94

6.1.1 The Trouble with Impredicativity and Strong Sums 94

6.1.2 Iso-Strong Sums: Typing Strong Sums with Iso-Types 95

6.1.3 Example: Type Members and Traits . 97

6.1.4 ML Module Systems and Strong Sums 99

6.2 The λIΣ Calculus . 100

6.2.1 Syntax . 101

6.2.2 Dynamic Semantics . 102

6.2.3 Static Semantics . 103

6.3 Metatheory of λIΣ . 107

6.3.1 Basic Lemmas . 107

6.3.2 Transitivity . 108

6.3.3 Type Safety . 109

6.4 The Sig Language . 112

6.4.1 Syntax . 112

6.4.2 Static Semantics . 113

6.4.3 Elaboration Semantics . 116

6.4.4 Soundness of Translation . 119

7 Related Work 121
7.1 Dependently Typed Calculi without Subtyping . 121

7.1.1 Core Calculus for Functional Languages 121

7.1.2 Uni�ed Syntax with Decidable Type-checking 121

7.1.3 Uni�ed Syntax with General Recursion and Undecidable Type Checking 122

7.1.4 Casts for Managed Type-level Computation 122

7.1.5 Restricted Recursion with Termination Checking 123

7.2 Calculi with Subtyping and Dependent Types 123

7.2.1 Subtyping with Uni�ed Syntax . 123

7.2.2 Strati�ed Syntax with High-Order Subtyping 124

7.2.3 Strati�ed Subtyping Systems with Dependent Types 124

7.2.4 Subtyping with Restricted Dependent Types 125

7.3 Strong Sum Types and ML Modules . 125

7.3.1 Dependently Typed Calculi with Strong Sigma-types 125

7.3.2 Strong Sigma-types with Subtyping . 126

7.3.3 Core Languages for Scala . 126

7.3.4 Encoding ML Modules by Dependent Types 127

7.3.5 Encoding ML Modules by F-ing Modules 127

7.3.6 First-class ML Modules . 128

7.3.7 Module Systems for Dependently Typed Calculi 128

8 Conclusion and Future Work 129
8.1 Conclusion . 129

8.2 Future Work . 130

A Manual Proofs 135
A.1 Encoding Weak Sums in λI6 . 135

A.2 Subsumption of System F6 in λI6 . 136

A.3 Soundness of Translation for Sig . 140

References 151

List of Figures

2.1 Typing rules of PTS . 17

2.2 The lambda cube . 18

2.3 Speci�cation of System F6 . 26

4.1 Syntax of call-by-name PITS . 45

4.2 Operational semantics of call-by-name PITS . 46

4.3 Typing rules of call-by-name PITS . 46

4.4 Call-by-value PITS . 53

4.5 One-step decidable parallel reduction of erased terms 55

4.6 Erasure of casts . 55

4.7 PTSµ . 56

4.8 Full PITS . 57

4.9 Full beta reduction . 58

4.10 Typing rules of PTSstep . 60

5.1 Evaluation of (c⇐ bump)⇐ get . 75

5.2 Syntax . 77

5.3 Operational semantics . 78

5.4 Static semantics . 79

5.5 Dependency of lemmas for the metatheory of uni�ed subtyping 81

5.6 Erasure of annotations . 87

5.7 Algorithmic subtyping . 87

5.8 Bidirectional typing . 88

5.9 Translation of System F6 . 89

6.1 Syntax of λIΣ . 102

6.2 Operational semantics of λIΣ . 102

6.3 Static semantics of λIΣ . 104

6.4 Syntax of Sig . 113

6.5 Typing rules of Sig . 114

6.6 Other rules of Sig . 115

6.7 Translation of terms . 117

6.8 Translation of terms (cont.) . 118

6.9 Translation of contexts and bindings . 119

List of Tables

4.1 Comparison between PTSf and PITS . 62

6.1 Properties of dependently typed calculi with beta equality 94

7.1 Comparison between λI6 and related calculi . 123

1

CHAPTER1

Introduction

1.1 Type Features of Static Type Systems

Type systems describe how types are assigned for terms in programming languages. Static type

checking employs rules of type systems to verify types at compile-time. Static type systems help

detect errors early before the program actually runs. For example, if the operator “/” performs

integer division and one accidentally writes a division by two on the string, i.e. "3"/2, the

compiler will detect a type mismatch that the operand "3" is not an integer. Such ill-typed term

will be rejected by the compiler and prevented from crashing at run-time. From the perspective

of engineering, static type systems can be bene�cial for code refactoring and optimization by

utilizing the extra typing information about programs. There is even a trend of adding static type

systems to dynamically typed languages. For example, Python allows type annotations starting

from Python 3.5 [van Rossum et al. 2014] and TypeScript [Microsoft Corporation 2016] brings an

optional type system to JavaScript through gradual typing [Siek and Taha 2006].

Subtyping. Statically typed languages support various type features through their type systems.

For example, object-oriented programming (OOP) languages, such as Java [Gosling et al. 1996]

and Scala [Odersky et al. 2004], usually support subtype polymorphism of objects, which is a key

feature of OOP. Such mechanism relies on the subtyping relation of type systems. In Scala, we

can de�ne classes that implement the same method but behave di�erently:

trait Shape {
def area(): Double

}

class Square extends Shape {
var width = 1.0
def area() = width * width

}

class Circle extends Shape {
var radius = 1.0
def area() = Math.PI * radius * radius

}

Both Square and Circle classes are subtypes of Shape, meaning that we can pass Square or

2 Chapter 1. Introduction

Circle objects to the places expecting Shape objects. For example, we can de�ne a generic

function PrintArea that prints the area of a Shape object. We can pass a Square or Circle object

to PrintArea and get di�erent results:

def PrintArea(s: Shape) = println(s.area())
PrintArea(new Square()) // 1.0
PrintArea(new Circle()) // 3.141592653589793

Higher-kinded Polymorphism. In contrast to the subtype polymorphism in OOP languages,

type systems of functional programming languages, such as Haskell [Marlow et al. 2010] and

ML [Milner et al. 1990], usually adopt other forms of polymorphism. For example, Haskell supports

higher-kinded polymorphism, which is achieved by higher-kinded types that can take other types

and construct a new type. One example are monads, a useful design pattern that can represent

sequential computations [Wadler 1995]. Monads in Haskell are de�ned by a typeclass [Hall et al.

1994] (like an interface in Java) with two functions, bind (>>=) and return :

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

Monad is an example of a higher-kinded type, which has the following kind:

Monad :: (?→ ?)→ Constraint

It takes a type constructor m of kind ? → ? and returns a typeclass constraint. This enables

abstraction over not only types but also type constructors, thus obtaining higher-kinded polymor-

phism. For example, many type constructors in Haskell can be categorized into monads and

operated using the bind or return functions, such as list types and Maybe types (also known as

option types). With higher-kinded polymorphism, it is possible to write a generic fmap function

that performs operations for each element inside a monad:

fmap :: Monad m ⇒ (a → b)→ m a → m b

fmap f x = x >>= λy → return (f y)

The type constructor m can be a list or option type, which are both monads. For example, we can

apply fmap (+1) to a list or option to increase contained elements by one:

fmap (+1) [1, 2, 3] -- returns [2, 3, 4]
fmap (+1) (Just 2) -- returns (Just 3)

Dependent Types. Besides traditional OOP and functional languages, several new program-

ming languages, notably Agda [Norell 2007a] and Idris [Brady 2013], are emerging and employ a

di�erent programming paradigm called dependently typed programming. Type systems in these

languages support dependent types: types that can depend on terms. For example in Idris, we can

de�ne a vector, a special list whose type carries its length:

data Vec : Nat → Type where

Nil : Vec 0

(::) : Int → Vec n → Vec (1 + n)

1.1. Type Features of Static Type Systems 3

The vector type Vec is a dependent type that depends on a natural number Nat , i.e., the length

of the list. Dependent types involve type-level computation, i.e., evaluating terms in types. For

example, consider an append function that concatenates two vectors:

append : Vec n → Vec m → Vec (n + m)

append Nil ys = ys

append (x :: xs) ys = x :: append xs ys

The return type contains an addition expression n + m which needs evaluation to get its value.

For example, if we append 〈1, 2〉 of type Vec 2 with 〈3〉 of type Vec 1, the resulting list 〈1, 2, 3〉
will have type Vec (2 + 1). We need to further perform the computation 2 + 1 = 3 to eliminate

the addition form and obtain the �nal type Vec 3. In contrast, traditional languages rarely involve

computations at the type level and usually have a strong distinction between terms and types.

Bene�ts of Dependent Types. Dependent types have been drawing a lot of attention in

programming language design and research in recent years [Augustsson 1998; Altenkirch et al.

2010; Sjöberg et al. 2012; Stump et al. 2008; Weirich et al. 2013; Gundry 2013; Casinghino et al. 2014;

Sjöberg and Weirich 2015; Sjöberg 2015; Eisenberg 2016; Casinghino 2014; Weirich et al. 2017].

A key reason why dependent types are interesting is that they naturally lead to a uni�cation

between types and terms, which enables both additional expressiveness and economy of concepts.
Dependent type systems are more expressive because types can carry more information about

terms. For example, by using vector types Vec, we can statically know the length of lists. In

contrast, if using conventional list types, such as List<T> in Java, we can only know their lengths

at run-time through the size() method. Thus, the dependent list type provides more re�ned type

information (the exact list length) and is helpful to prevent more errors earlier at compile-time,
such as out-of-bounds errors.

The other potential bene�t of dependent types comes from the fact that as terms are allowed

to occur in types, the strong separation between terms and types is no longer necessary. Once

various di�erent levels of syntax (such as terms and types) are uni�ed, the redundancy of language

constructs at the various levels can be avoided. For example, Java uses a special syntax for

instantiating generics, e.g., List<Object>, which is di�erent from an ordinary method call such

as Arrays.sort(a). The type operator List is essentially a type-level function and its instantiation

can be seen as a function application. Supposing that we unify term and type levels in Java, we

can instantiate generics just like calling methods, e.g., List(Object). This leads to an economy of
concepts: with uni�ed syntax, there can be just one form of functions for both type-level functions

(generics) and term-level functions (methods). Moreover, traditional functional languages like

Haskell [Marlow et al. 2010] and ML [Milner et al. 1990] that support higher-kinded types have

even more levels in the strati�ed syntax, i.e., terms, types and kinds. Unifying syntactic levels

in such languages can result in a signi�cantly more compact metatheory, and can also lead to a

reduction of necessary implementation e�ort.

Bene�ts of Combining Type Features. Modern programming languages tend to support

multiple type features simultaneously. Combining type features enables the possibility of writing

programs in di�erent programming paradigms. For example, Scala supports both subtyping and

higher-kinded types. Not only can we write Scala programs in the object-oriented style, but also

in the functional style, e.g., de�ning a Monad trait in Scala as follows:

4 Chapter 1. Introduction

trait Monad[M[_]] {
def ret[A](a: A): M[A]
def bind[A, B](m: M[A], f: A => M[B]): M[B]

}

The Monad trait follows the Monad typeclass de�nition in Haskell and can also quantify over

type constructors, such as the Option[T] type in Scala.

Moreover, with di�erent type features combined, the language becomes more expressive and

enables more programming features. For example, combing subtyping and higher kinds enables

higher-order subtyping in Scala, which allows subtyping relations between type constructors. We

can de�ne a non-empty list type Cons[T], which is a subtype of the general linked list type L[T]:

trait L[T] {
def isEmpty: Boolean
def head: T
def tail: L[T]

}

class Cons[T](val head: T, val tail: L[T]) extends L[T] {
def isEmpty = false

}

1.2 The Design Space of Dependently Typed Languages

Conventionally, dependent types are used as a logic to implement programming languages aiming

at theorem proving, e.g., Twelf [Pfenning and Schürmann 1999] and Coq [The Coq development

team 2016]. This is made possible by the Curry-Howard correspondence [Howard 1980] which

connects the world of logics and the world of programming languages. The correspondence states

that propositions in logic can be viewed as types and proofs can be viewed as program values. The

expressiveness of dependent types makes languages like Twelf and Coq suitable as proof assistants.
With dependent types, types can mention terms and correspondingly we can illustrate useful

propositions containing terms. For example in Coq, we can write equality propositions to describe

properties of additions such as a+ b = b+ a for commutativity and (a+ b) + c = a+ (b+ c)

for associativity.

To serve as proof assistants, languages like Twelf and Coq are also required to be consistent
when viewed as logics. Logical consistency is critical to proof assistants, which guarantees that

proofs will not go wrong, e.g., one can never derive a term of type False or prove an absurd

result True = False . Logical consistency is often ensured by strong normalization, a property

that evaluating well-formed terms or types always terminates.

Apart from the common logical use, dependent types can also be bene�cial to the area of

traditional general-purpose programming. Dependently typed languages like Coq, Agda and Idris

are designed to be both proof assistants and programming languages. However, the combination of

dependent types and traditional programming features may cause problems. Traditional languages

allow users to write recursive programs without restrictions. This is not the case in languages like

Coq, Agda and Idris.

Otherwise, non-terminating recursive programs would break crucial properties of proofs

assistants, such as strong normalization, logical consistency or decidable type checking, i.e. the type

1.2. The Design Space of Dependently Typed Languages 5

checking algorithm always terminates. At the type level, non-terminating recursive functions

can show up in de�nitions of dependent types. Strong normalization no longer holds since

evaluation of such types may not terminate. Type checking may also involve the evaluation of

non-terminating types and becomes undecidable. At the term level, non-terminating programs

can be used to prove arbitrary theorems. For example, we can build a �xpoint combinator fix

using a recursive de�nition:

fix : (A→ A)→ A

fix f = f (fix f)

With fix , we can prove an absurd theorem True = False , i.e., �nd a term with such type:

fix id : (True = False)

where id = λx : (True = False). x

This leads to logical inconsistency since we can prove a wrong result True = False .

Termination and Positivity Checking. Generally determining whether a recursive function

terminates or not is essentially the halting problem, which is undecidable [Turing 1937]. Depen-

dently typed languages usually take a conservative approach by limiting how recursive programs

and types can be written, enforced by various checks including termination checking and positivity
checking.

Termination checking requires recursive functions to have speci�c forms that are known to

terminate. For example, Coq employs a restriction called primitive recursion [Bertot and Castran

2010; Chlipala 2013], which only allows recursive calls on syntactic sub-terms of the original

arguments. Terminating total functions that are not primitive recursive cannot be directly written

in Coq, e.g., the Ackermann function [Ackermann 1928; Bertot and Castran 2010]:

Ack(0, n) = n+ 1

Ack(m+ 1, 0) = Ack(m, 1)

Ack(m+ 1, n+ 1) = Ack(m,Ack(m+ 1, n))

Positivity checking forbids recursive datatypes that occur in negative positions since such

datatypes allow users to write non-terminating functions. The following datatype de�nition is a

simple example that violates the positivity checking of Coq [Bertot and Castran 2010]:

Inductive T : Set := MkT : (T -> T) -> T.

but can be de�ned in Haskell without any issue:

data T = MkT (T → T)

Issues of Termination and Positivity Checking. The termination and positivity checkers

make these dependently typed languages non-starters for traditional programming styles based

on general recursion. Programmers need to struggle with these checkers to let programs compile.

Termination checkers are usually not intelligent enough to detect terminating programs, such as

the Ack function. Another example is the implementation of merge sort in Coq. The following

de�nition intuitively implements the algorithm of merge sort, which is terminating, but cannot

pass the termination checker [Chlipala 2013]:

6 Chapter 1. Introduction

Fixpoint mergeSort (xs : list A) : list A :=
if leb (length xs) 1
then xs
else let xss := split xs in
merge (mergeSort (fst xss)) (mergeSort (snd xss)).

In contrast, Haskell programmers can write a recursive merge sort function more freely without

any restriction:

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs = let (a, b) = split xs

in merge (mergeSort a) (mergeSort b)

Our Focus. The design space between traditional languages and full-spectrum dependently

typed languages is very large. It would be interesting if there are language designs that employ

dependent types and bene�t from the added expressiveness and economy of concepts, but also

enjoy the liberty of writing recursive functions and types without termination or positivity

checking. Previously, researchers have explored such languages designs and proposed dependently

typed calculi with general recursion, such as Cayenne [Augustsson 1998] and Zombie [Casinghino

et al. 2014; Sjöberg and Weirich 2015]. They showed the feasibility of combining dependent types

with general recursion for general-purpose programming.

This thesis mainly focuses on such design space. We explore designs of languages that

employ dependent types, but aim at traditional programming instead of theorem proving. In such

languages, general recursive programs and types can be freely written. Decidable type checking

is a desirable property, while strong normalization or logical consistency are not guaranteed. The

termination/positivity checking can be avoided, which makes these languages less restrictive in

terms of writing recursive programs and thus more friendly to end users. However, dependent

types do not come for free and several challenges may arise when combining dependent types

with other programming features, as discussed later in the next section.

1.3 Motivations and Challenges

Our goal of this thesis is to explore how to combine dependent types with traditional programming

features in simple yet expressive calculi that are friendly to formalization, implementation and

extension. In this section, we discuss the motivations and challenges of combining dependent

types with various features, including general recursion, subtyping and strong dependent sums.

1.3.1 Unified Syntax, General Recursion and Decidable Type Checking

Dependent types enable unifying types and terms. By employing uni�ed syntax with dependent

types, it is possible to design a calculus that is both simple and expressive. One existing example

is the Pure Type Systems (PTS) [Barendregt 1991, 1992] that have only one syntactic level for both

terms and types. PTS has a very concise presentation consisting of only 5 language constructs

and 7 typing rules. It is also powerful to subsume a wide range of typed lambda calculi, including

the calculus of constructions [Coquand and Huet 1988] containing dependent types.

Though PTS does not contain any explicit forms of recursion and is typically used as a

framework to study logic systems, the approach of PTS-style uni�ed syntax can be helpful

1.3. Motivations and Challenges 7

for traditional language designs. Unifying di�erent syntactic levels removes the duplication

of constructs and reduces the e�ort of formalization and implementation. Not surprisingly,

researchers have in the past proposed several dependently typed languages with uni�ed syntax

and general recursion. These languages can both model the traditional programs with recursion

and allow using dependent types to write expressive and type-safe programs that cannot usually

be done in traditional languages. For example, Cayenne [Augustsson 1998] is a Haskell-like

dependently typed language with uni�ed syntax. Cayenne allows users to write a type-safe format

printing function, i.e., printf, which has the following type:

printf :: (fmt :: String) -> PrintfType fmt

The type of printf is a dependent type whose return type is determined by the fmt string. A

type-level function PrintfType recursively computes the type of printf according to the provided

fmt. Thanks to the uni�ed syntax, it is de�ned just like any other recursive functions:

PrintfType :: String -> *
PrintfType "" = String
PrintfType (’%’:’d’:cs) = Int -> PrintfType cs
PrintfType (’%’:’s’:cs) = String -> PrintfType cs
PrintfType (’%’: _ :cs) = PrintfType cs
PrintfType (_ : cs) = PrintfType cs

PrintfType ensures that printf only accepts arguments with correct types speci�ed by the

format string. For example, when fmt is "%d", we have

printf "%d" :: Int -> String

which only accepts an integer and prevents malformed inputs. Note that the type-safe printf
example only requires a few, �nite steps of type-level computation. It can actually be simulated in

Haskell with other existing type-level features such as typeclasses or Template Haskell [Sheard

and Jones 2002]. Nonetheless, the simulation is not as convenient or intuitive as programming in

Cayenne directly using dependent types.

Challenges. However, in dependently typed calculi with uni�ed syntax, it is non-trivial to

simultaneously integrate general (unrestricted) recursion and retain decidable type checking. For

example, type checking of Cayenne is undecidable. The reason is that as dependent types involve

type-level computation, the type checker may get stuck if trying to evaluate non-terminating

terms that show up in types. For example, recall the �xpoint combinator in Section 1.2. If there

exists a vector type with fix as follows:

Vec (fix (λx : Nat . x + 1))

The type checker will get stuck when evaluating the parameter of Vec, which is a non-terminating

operation that in�nitely adds one to the result. Moreover, uni�ed syntax removes the syntactic

boundary between terms and types, allowing us to use the same fix combinator to directly

construct a recursive type:

fix id : ?

where id = λx : ?. x

The type fix id can be unfolded inde�nitely, which may also block the type checker. For languages

with strati�ed syntax, we can still make syntactic restrictions to prevent recursive terms (e.g. fix)

8 Chapter 1. Introduction

being directly used as types. But this is usually di�cult for languages with uni�ed syntax whose

terms can be freely lifted to the type level as types.

Besides Cayenne, there are several other dependently typed calculi supporting uni�ed syntax

and general recursion, such as the calculus by Cardelli [1986b] and the ΠΣ calculus by Altenkirch

et al. [2010]. But both calculi fail to retain decidable type checking similarly to Cayenne. For

pragmatic reasons, some theorem provers with uni�ed syntax, e.g., Idris and Agda, provide an

option to turn o� the termination checker and allow general recursion, but the type checking

becomes undecidable. More recently, several studies have proposed dependently typed calculi

with uni�ed syntax and also managed to preserve decidable type checking in the presence of

general recursion. Notable examples are the Zombie language from the Trellys Project [Sjöberg

et al. 2012; Casinghino et al. 2014; Sjöberg and Weirich 2015; Casinghino 2014; Sjöberg 2015] and

System DC from Dependent Haskell [Weirich et al. 2017]. However, these studies have more

ambitious goals and require more sophisticated mechanisms, such as logical subsystems and type

equality. The resulting calculi are signi�cantly more complex when compared to systems based

on PTS.

1.3.2 Combining Dependent Types and Subtyping

Besides functional programming in Haskell and ML, object-oriented programming (OOP) is a

popular programming paradigm with “objects” at the core to encapsulate both data and programs.

Beyond the concept of objects, type systems for modern OOP languages are becoming more and

more complex. For example, Java was initially designed to be a relatively simple OOP language

that tried to address many issues of C++ caused by its complexity. The core features of (original)

Java can be formalized in a simple calculus called Featherweight Java (FJ) [Igarashi et al. 1999].

The syntax of classes in FJ is simple:

L ::= class C extends C {C f ; K M}

With the growth of the language, many new features were introduced into modern Java. One

notable feature is parametric polymorphism, also known as generics, which is introduced in Java

5. To model generics, the original FJ is extended to Featherweight GJ (FGJ) [Bracha et al. 1998].

The syntax of classes in FGJ becomes more complex (/ is the abbreviation of extends):

L ::= class C〈X / N〉 / N {T f ; K M}

Moreover, Java continues evolving with more features, such as lambda expressions in Java 8 and

local type inference in Java 10 [Goetz 2016], thus requires further extensions of core calculi to

formalize these features. Another example is Scala, which supports even more advanced features

such as higher-order polymorphism [Girard 1972; Moors et al. 2008], type members [Odersky et al.

2003] and path-dependent types [Odersky et al. 2004; Rompf and Amin 2016]. The extra complexity

of the type systems is re�ected by the signi�cant e�ort to develop the corresponding formal

theory. A notorious example of this is the development of the foundational metatheory for Scala,

which has been an ongoing e�ort that lasted for more than 10 years and recently culminated with

the Dependent Object Types (DOT) calculus [Amin et al. 2012a].

Like functional languages, OOP languages can also bene�t from dependent types for both

added expressiveness and economy of concepts. Given that the complexity of type systems for

1.3. Motivations and Challenges 9

OOP languages is so high, techniques for bringing down such complexity, while retaining or even

increasing expressiveness are certainly welcome. The economy of concepts a�orded by uni�ed

syntax typical of dependently typed languages can help here, since it can signi�cantly reduce

the number of language constructs and relations needed in a calculus. Unfortunately, there has

been less work on dependently typed calculi for OOP. There are mainly two challenges when

developing such calculi. One challenge we already mentioned is the interaction between general

recursion and dependent types. This applies to programming languages in general, and is not

limited to OOP languages.

The other challenge arises from the combination of subtyping and dependent types. OOP

supports polymorphism based on the subtyping relation. However, subtyping is also a substantial

di�erence to traditional calculi based on PTS which typically do not support such feature. The

issue with subtyping is well summarized by Aspinall and Compagnoni [1996]:

One thing that makes the study of these systems di�cult is thatwith dependent types,
the typing and subtyping relations become intimately tangled, which means
that tested techniques of examining subtyping in isolation no longer apply.

In essence the big di�culty is that the introduction of dependent types makes typing and subtyping

depend on each other. This causes several di�culties in developing the metatheory for calculi

that combine dependent types and subtyping. The metatheory becomes quite complex in some

calculi [Aspinall and Compagnoni 1996; Castagna and Chen 2001], e.g., the transitivity of subtyping

is entangled with strong normalization. Most previous attempts [Aspinall and Compagnoni 1996;

Zwanenburg 1999; Castagna and Chen 2001; Chen 1997, 2003] try to address the problem by

untangling typing and subtyping, so that the metatheory of subtyping can be developed before the

metatheory of typing. One interesting exception is the Pure Subtype Systems (PSS) by Hutchins

[2010] which completely eliminate types and only contain the subtyping relation. An unfortunate

result of these attempts is that several desirable language features can no longer be supported. For

example, several systems [Aspinall and Compagnoni 1996; Zwanenburg 1999] drop the support of

top types, which are essential in OOP programs to model the universal base class, e.g. the Object
type in Java. PSS does not support contravariance when subtyping functions, and its metatheory

is complex and not fully developed yet. No previous calculi have managed to subsume System

F6 [Cardelli et al. 1994] which is a canonical calculus capturing the essential OOP features.

1.3.3 Combining Dependent Types and Strong Sums

OOP languages like Scala and Rust [The Rust Project Developers 2011] support traits [Schärli et al.

2003] which are types that contain a set of methods. Scala and Rust also allow type members (also

called associated types) in traits, which are abstract types and useful to de�ne generic datatypes

in a more modular way. For example, we can de�ne an abstract trait of integer sets using type

members in Scala:

trait Set {
type T
def empty(): T
def member(x: Int, s: T): Boolean
def insert(x: Int, s: T): T

}

10 Chapter 1. Introduction

The type member T represents the abstract type of a set implementation and can be mentioned by

methods. Alternatively, traits with type members can be formulated as traits with type parameters

(i.e. generics):

trait Set[T] {
def empty(): T
def member(x: Int, s: T): Boolean
def insert(x: Int, s: T): T

}

However, abstract types (i.e. T) need to be exposed out of traits with generics. When referring

to Set[T], one needs to provide an actual T in advance to obtain a complete type. In contrast, if

formulated as type members, abstract types can be hidden inside traits. Thus, traits carrying with

type members can have higher cohesion thus better modularity.

To access abstract type members, one needs certain forms of dependent types. In Scala, this is

done by a weaker form of dependency, called path dependency [Amin et al. 2012a], which only

allows types to depend on “paths”, i.e., a chain of member access. For example, consider a generic

function for testing if an element is in an abstract set:

def isMember (s: Set)(x: Int, t: s.T) = s.member(x, t)

The last parameter has the type s.T, which depends on a term, the �rst parameter s. The type s.T
is called a path-dependent type [Amin et al. 2014]. DOT utilizes path dependent types to model the

access of abstract type members. However, DOT contains many features, such as a rich notion of

type bounds, aiming at modeling more features of Scala than only type members. It has a complex

metatheory that requires several new proof techniques [Rompf and Amin 2016; Rapoport et al.

2017].

If we only focus on encoding type members, we can alternatively use strong dependent sums
(or simply strong sums) in traditional dependently typed calculi. Dependent sums are generalized

pairs whose second component can depend on the �rst. For example, we can encode the Set trait

using a dependent sum type (i.e. Σ-type) with a record type:

Set = ΣT : ?. {
empty : T ,

member : Int → T → Bool ,

insert : Int → T → T

}

Strong sums allow us to use projections to access the components. Given a term s : Set , the

second projection s.2 extracts the record and (s.2).member further extracts the function from

the record. Moreover, strong sums can be used to model some other modular structures, such as

module systems of ML languages [MacQueen 1986; Milner et al. 1990].

However, combining strong sums in dependently typed calculi is also non-trivial. In traditional

dependently typed calculi that are impredicative, such as the calculus of constructions [Coquand

and Huet 1988], the introduction of strong sums leads to logical inconsistency [Coquand 1986;

Hook and Howe 1986] and hence the loss of strong normalization. This makes it hard to preserve

desirable properties, especially in dependently typed calculi with subtyping (e.g. λP6 by Aspinall

and Compagnoni [1996]), whose properties such as transitivity and subject reduction rely on strong

normalization. Previous studies try to address this issue by dropping [Harper and Mitchell 1993]

1.4. Our Proposals 11

or partially dropping [Stump 2017; Bowman et al. 2017] the impredicativity, but the expressiveness

of these calculi is also reduced.

1.4 Our Proposals

To address the challenges posed by combining dependent types with traditional programming

features, we propose three novel calculi, namely Pure Iso-Type Systems, the λI6 calculus and the
λIΣ calculus. In these calculi, we manage to combine dependent types with features such as

general recursion, subtyping and strong sums by proposing several novel techniques, including

iso-types, uni�ed subtyping and iso-strong sums. We mainly focus on traditional programming

scenarios that require few type-level computations, which �t well with our treatment of dependent

types. The proposed calculi enjoy both expressiveness and simplicity. By employing the uni�ed

syntax of dependent types, the calculi are more concise and expressive than traditional non-

dependent calculi. Several advanced features of traditional languages, such as higher-kinded

polymorphism and higher-order subtyping, can be supported with minimal e�ort. The calculi are

also simple enough to enable the full development of formal metatheory and the possibility of

extensions. In the rest of this section, we brie�y introduce our proposed calculi and techniques.

1.4.1 Pure Iso-Type Systems and Iso-Types

Pure Iso-Type Systems (PITS) are a family of calculi that employ uni�ed syntax, support general

recursion and preserve decidable type checking. PITS has a comparable level of simplicity to PTS,

consisting of only 8 language constructs and no more than 9 typing rules. The key to retaining

decidable type checking in the presence of general recursion is iso-types, a generalization of

iso-recursive types [Crary et al. 1999; Pierce 2002]. Iso-types view not only folding and unfolding

of recursive types but also any types that are (beta) convertible as isomorphic. Unlike PTS, there is

no implicit type-level computation in PITS. Each type-level computation step is explicitly triggered

by a term-level type-safe cast operator. Single-step computation is trivially terminating — it stops

after one step, thus type checking is decidable even with non-terminating programs at the type

level. Meanwhile, term-level programs using general recursion can be non-terminating as in

traditional languages. There is no termination checking or positivity checking in PITS.

We emphasize that PITS does sacri�ce some convenience when performing type-level compu-

tations in order to gain the ability of doing arbitrary general recursion at the term level. The goal

of proposing PITS is to show the use of PTS-style uni�ed syntax for bene�ting language designs

intended for traditional programming that only involves lightweight type-level computations, but

not intended for full-spectrum dependently typed programming that requires intensive type-level

computations. The design of PITS is suitable to serve as a foundation for languages in-between

traditional ones (e.g. ML and Haskell) and full-spectrum dependently typed ones (e.g. Idris and

Agda). To illustrate the feasibility of using PITS as such a foundation, we build a simple surface

language called Fun. We show several advanced language features such as higher-kinded types

can be encoded in PITS by examples written in Fun.

PITS also enjoys the �exibility of choosing di�erent reduction relations for the explicit cast

operators. We study three variants of PITS, namely the call-by-name PITS, the call-by-value PITS

and the full PITS, which di�er on the reduction strategy used by casts. The call-by-name/value

PITS uses conventional call-by-name/value reduction rules for casts. This leads to a relatively

12 Chapter 1. Introduction

simple metatheory that has direct proofs of properties. In contrast, the full PITS uses the more

expressive parallel reduction for casts, which can perform full beta-reduction. But the cost is the

complex metatheory of full PITS that requires indirect proofs from an auxiliary system erasing

all casts. For all variants, we prove important results of metatheory, including type-safety and

decidability of type checking.

1.4.2 The λI6 Calculus and Unified Subtyping

The λI6 calculus is a dependently typed calculus with subtyping. To address the issues arising

from the combination of dependent types and subtyping, λI6 employs a novel technique called

uni�ed subtyping, which uni�es both typing and subtyping relations. The uni�ed subtyping

relation can be viewed as a typed version of the conventional subtyping relation.

In λI6, there is only one single form of judgment, i.e., the uni�ed subtyping judgment. There

is no separated typing or type well-formedness judgment, both of which are syntactic sugar of

the uni�ed subtyping judgment. The issue of mutual dependency between typing and subtyping,

which is a major problem in other formalizations [Aspinall and Compagnoni 1996; Castagna and

Chen 2001; Zwanenburg 1999] of calculi with dependent types and subtyping, does not exists in

λI6, because the typing relation is essentially the (uni�ed) subtyping relation itself. In contrast

to previous work that struggles with untangling typing and subtyping, we propose a di�erent

approach that embraces such entanglement. Our approach is also fundamentally di�erent from

Hutchins’ PSS since λI6 still retains types.

Meanwhile, λI6 is a dependently typed calculus and can be viewed as a variant of PITS. It

features the PTS-style uni�ed syntax and employs the iso-type approach to address the issues of

combining recursion and dependent types. Moreover, λI6 supports extra OOP features over PITS,

including higher-order subtyping [Pierce and Ste�en 1997], bounded quanti�cation [Cardelli et al.

1994] and top types. It can fully subsume System F6 and enjoys several standard and desirable

properties, such as type-safety and transitivity of subtyping.

1.4.3 The λIΣ Calculus and Iso-Strong Sums

The λIΣ calculus is a dependently typed calculus with strong sums. It is a variant of λI6 and

also based on the ideas of uni�ed subtyping and iso-types. To address the challenges posed by

combining dependent types and strong sums, we propose iso-strong sums whose strong destructors

(e.g. the second projection) are typed using iso-types. In λIΣ, cast operators employ the call-by-
value reduction, similarly to the one of call-by-value PITS. The typing results of the strong sum

destructors are intermediate type-level applications instead of standard direct substitutions. With

such change, all type-level computation for strong sums can be performed by just call-by-value

casts. There is no need of using full casts from the full PITS, which bring extra complexity in the

metatheory.

At the same time, iso-types and iso-strong sums in λI6 decouple properties from strong

normalization. This makes it possible to support impredicative polymorphism in the presence

of iso-strong sums and retain desirable properties. λIΣ enjoys the same desirable properties as

λI6, including type-safety and transitivity, both of which can be proved without requiring strong

normalization. For demonstration purposes, we also build a lightweight surface language Sig on

top of λIΣ. We show how Scala-like type members and traits can be encoded by strong sums of

λIΣ via a type-sound elaboration semantics of Sig.

1.5. Contributions and Outline 13

1.5 Contributions and Outline

Contributions. In summary, the main contributions of this thesis are:

• Pure Iso-Type Systems: A variant of PTS with general recursion, uni�ed syntax and

decidable type-checking. We prove type-safety and decidability of type checking for all

three variants of PITS.

• Iso-Types: A generalization of iso-recursive types, which makes all type-level computation

steps explicit via cast operators. The combination of casts and recursion subsumes iso-

recursive types.

• Reduction Strategies of PITS: We study PITS with three reduction strategies: call-by-

name PITS, call-by-value PITS and PITS with parallel reduction at the type-level. We show

the trade-o�s between the simplicity and expressiveness for di�erent reduction strategies.

• Uni�ed subtyping: A novel technique that uni�es typing and subtyping into a single

relation. This technique enables the development of expressive dependently typed calculi

with subtyping.

• The λI6 calculus: A dependently typed calculus with subtyping that employs uni�ed

syntax, iso-types and uni�ed subtyping. The calculus supports top types, higher-order

polymorphism and bounded quanti�cation and can fully subsume System F6. We prove

transitivity of subtyping and type-safety for this calculus.

• Iso-Strong Sums: A novel treatment of dependent sums whose strong destructors are

typed as intermediate type-level applications. This makes it possible to use call-by-value

casts for required type-level computations.

• The λIΣ calculus: A dependently typed calculus with uni�ed subtyping and iso-strong

sums. This calculus supports impredicative polymorphism and retains desirable properties.

We prove transitivity of subtyping and type-safety for this calculus.

Outline of Thesis. The thesis is divided into two parts. The �rst part presents an informal

overview of iso-types by motivating examples (Chapter 3), and the formal theory of Pure Iso-Type

Systems (Chapter 4). It is the foundation of the thesis and provides a substantial theory for

iso-types. The second part further studies calculi with both iso-types and subtyping. It presents

two new calculi, i.e., the λI6 calculus with uni�ed subtyping (Chapter 5) and the λIΣ calculus

with iso-strong sums (Chapter 6). In summary, the remaining chapters of this thesis are organized

as follows:

Chapter 2 provides several background knowledge for this thesis.

Chapter 3 gives an overview of iso-types. We discuss the motivation for the development of iso-

types and informally introduce the basic mechanism of iso-types in PITS. We give examples

written in the surface language Fun to illustrate the usefulness and expressiveness of PITS.

Chapter 4 gives a formal presentation of Pure Iso-Type Systems (PITS), including three variants

of PITS that di�er on the reduction strategy used in explicit casts. We present the formal

14 Chapter 1. Introduction

syntax, operational semantics and typing judgments. We develop metatheory for all variants

and prove both type-safety and decidability of type checking. We provide an extensive

comparison of PITS to a closely related calculus called PTSf [van Doorn et al. 2013].

Chapter 5 presents the λI6 calculus. We discuss the motivation of uni�ed subtyping and present

an example of object encodings using λI6. We formally present the speci�cation of λI6.

Two major results of the metatheory, namely transitivity of subtyping and type-safety are

proved. We present a bidirectional version of λI6 and show the subsumption of System F6
in λI6. We discuss several alternative designs of λI6.

Chapter 6 presents the λIΣ calculus. We discuss the motivation of iso-strong sums and present

an example of encoding Scala-like traits using λIΣ. We present the formal speci�cation of

λIΣ. We discuss its metatheory and prove major results including transitivity and type-

safety. We also show Sig, a lightweight surface language over λIΣ with Scala-like traits for

presenting the application of strong dependent sums. We show a type-directed translation

from Fun to λIΣ and prove its soundness.

Chapter 7 discusses the related work to PITS, λI6 and λIΣ.

Chapter 8 concludes the thesis and discusses potential directions for future work.

Mechanized Proofs and Prototype Implementation. All proofs in the thesis are machine-

checked in Coq theorem prover [The Coq development team 2016], except for the completeness

of λIΣ over System F6 and the translation soundness of Sig which can be found in Appendix A.

These proofs are manual due to the di�culties in mechanizing proofs between di�erent type

systems [Kaiser et al. 2017]. For lemmas that are proved manually, we add a pencil symbol

“.” in the title (e.g. Lemma 5.5.1). We also implement a prototype interpreter and compiler of

Fun, a simple language which features algebraic datatypes and pattern matching by elaborating

to PITS. The mechanized proofs and the Fun implementation are available online at h�ps:
//bitbucket.org/ypyang/archive.

Prior Publications. The content of this thesis is partially based on previously published papers

as follows:

• Yanpeng Yang, Xuan Bi, and Bruno C. d. S. Oliveira. 2016. Uni�ed Syntax with Iso-types.

In Programming Languages and Systems, Atsushi Igarashi (Ed.). Springer International

Publishing, Cham, 251-270.

This paper is the basis of Chapter 3 and Chapter 4. The material of the paper is signi�cantly

revised and expanded in the thesis. The calculus from the paper is further generalized to a family

of calculi with the PTS tradition called PITS. The study of call-by-value PITS and the completeness

of full PITS to PTS are new in Chapter 4.

• Yanpeng Yang and Bruno C. d. S. Oliveira. 2017. Unifying Typing and Subtyping. Proc.
ACM Program. Lang. 1, OOPSLA, Article 47 (Oct. 2017), 26 pages. h�ps://doi.org/10.1145/
3133871

This paper is the basis of Chapter 5. The study of the combination of uni�ed subtyping and

strong sums is new in Chapter 6.

https://bitbucket.org/ypyang/archive
https://bitbucket.org/ypyang/archive
https://doi.org/10.1145/3133871
https://doi.org/10.1145/3133871

15

CHAPTER2

Background

In this chapter, we introduce several preliminaries on type theory which are basic concepts

for better understanding the thesis, including pure type systems (Section 2.1), dependent sums

(Section 2.2), iso-recursive types (Section 2.3), subtyping (Section 2.4) and path-dependent types

(Section 2.5). Note that all topics introduced in this chapter are well-established and well-studied

concepts of type theory. Readers who are familiar with these topics can quickly go through this

chapter. For readers who may not be familiar with notations of type theories, we recommend the

book Types and Programming Languages by Benjamin C. Pierce [2002] for a quick introduction.

2.1 Pure Type Systems

Pure Type Systems (PTS) [Barendregt 1991, 1992] are a generic framework to study a family of

type systems, including the simply typed lambda calculus (λ→), System F [Reynolds 1974; Girard

1972] (λ2) and the calculus of constructions (λC) [Coquand and Huet 1988]. PTS uni�es terms and

types (also kinds) into a single syntactic category. Thanks to the uni�ed syntax, PTS has a very

concise presentation, which consists of only seven typing rules. Two of them are parameterized

by the speci�cation of PTS, i.e., the axioms for typing sorts, and the rules for typing Pi-types.

By instantiating the speci�cation, we can obtain a wide range of type systems, even logically

inconsistent ones. The content of this section is heavily inspired by previous presentations of

PTS by Barendregt [1992] and Severi and de Vries [2012].

2.1.1 Basics of PTS

Speci�cation. The speci�cation of PTS is de�ned as follows [Severi and de Vries 2012]:

De�nition 2.1.1 (Speci�cation of PTS). PTS is speci�ed by a triple S = (S,A,R) where

1. S is a set of constants called sorts;

2. A ⊆ S × S is a set of axioms;

3. R ⊆ S × S × S is a set of rules.

We use the metavariable s ∈ S to range over sorts. There is a special kind of PTS speci�cation,

called the functional or singly-sorted speci�cation:

De�nition 2.1.2 (Functional Speci�cation). A PTS speci�cation is functional if

16 Chapter 2. Background

1. If (s1, s2) and (s1, s
′
2) are in A, then s2 = s′2.

2. If (s1, s2, s3) and (s1, s2, s
′
3) are inR, then s3 = s′3.

The functional speci�cation is useful to prove properties such as typing uniqueness and decidability

of type checking for PITS, as discussed in Section 4.1.5.

Syntax. In PTS, terms and types are de�ned in the same syntactic category:

De�nition 2.1.3 (Syntax of PTS). The syntax of PTS is de�ned by

a, b, A,B ::= s | x | a b | λx : A. a | Πx : A. B

Γ ::= ∅ | Γ, x : A

where a, b, A,B denote the pseudo-terms and Γ denotes the pseudo-contexts.

The variables are denoted by x, y, z, etc. Although there is no distinction between terms and

types, by convention we still use lower-case meta-variables a, b, c, etc. to denote terms and

upper-case meta-variablesA,B,C , etc. to denote types. We use FV(a) for the set of free variables

in a. We use syntactic sugar A → B to denote Πx : A. B when x 6∈ FV(B), i.e., x does not

occur free in B. Given Γ = {x1 : A1, . . . , xn : An}, the domain of the context is de�ned by

dom(Γ) = {x1, . . . , xn}.

Dynamic Semantics. The beta-reduction of PTS is de�ned as follows [Severi and de Vries

2012]:

De�nition 2.1.4 (One-step Beta-reduction). Given the beta rule:

(λx : A. b) a β b[x 7→ a]

The one-step beta-reduction −→β is de�ned as the smallest relations on pseudo-terms that are closed
under the beta rule (β) and under contexts.

where the notation b[x 7→ a] denotes a capture-avoiding substitution that replaces all free

occurrences of x in b with a. The relation −→β is inductively de�ned by applying the base

case, i.e., the beta rule (β), for every sub-term of a pseudo-term. Thus, we also call −→β full
beta-reduction, since the beta rule can be applied at any position of a (pseudo) term. Based on

−→β , we de�ne the multi-step beta-reduction and beta-equivalence:

De�nition 2.1.5 (Multi-step Beta-reduction). The multi-step beta-reduction�β is the re�exive-
transitive closure of −→β .

De�nition 2.1.6 (Beta-equivalence). The beta-equivalence =β is the re�exive-symmetric-transitive
closure of −→β , i.e., the smallest equivalence relation containing −→β .

Typing Rules. A PTS determined by the speci�cation S = (S,A,R) has the notation λS and

is de�ned by the judgment Γ `S a : A, or simply Γ ` a : A. The notion of the judgment is

de�ned by typing rules shown in Figure 2.1.

The axiom rule checks the type of sorts, which states that the type of sort s1 is sort s2 if the

relation (s1, s2) is in the axiom setA. The start rule types the variable x according to the binding

2.1. Pure Type Systems 17

(axiom) ∅ ` s1 : s2 if (s1, s2) ∈ A

(start)

Γ ` A : s

Γ, x : A ` x : A
if x fresh in Γ

(weakening)

Γ ` A : s Γ ` b : B

Γ, x : A ` b : B
if x fresh in Γ

(product)

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx : A. B) : s3
if (s1, s2, s3) ∈ R

(abstraction)

Γ, x : A ` b : B Γ ` (Πx : A. B) : s

Γ ` (λx : A. b) : (Πx : A. B)

(application)

Γ ` b : (Πx : A. B) Γ ` a : A

Γ ` b a : B[x 7→ a]

(conversion)

Γ ` a : A Γ ` B : s A =β B

Γ ` a : B

Figure 2.1. Typing rules of PTS

x : A from the context. The weakening rule states that a typing judgment Γ ` b : B still holds

if the context is expanded with a well-formed binding x : A. Both start and weakening rules

require that the new variable x adding to the context Γ should be fresh, i.e., x /∈ dom(Γ). The

product rule checks Pi-types and allows the binder type A, the body type B and the Pi-type itself

to have di�erent sorts. The relation among these sorts, i.e., (s1, s2, s3), is de�ned by the rule setR.

The abstraction and application rules type check lambda abstractions and function applications,

respectively. Finally, the conversion rule allows converting types that are beta-equivalent.

2.1.2 Examples of PTS

We show several concrete examples of PTS by instantiating di�erent speci�cations.

The Lambda Cube. The lambda cube [Barendregt 1992] contains eight type systems of typed

lambda calculi, as shown in Figure 2.2. The systems can be obtained by PTS speci�cations where

S = {?,2} A = {(?,2)}

By convention, we use the abbreviation (s1, s2) for (s1, s2, s2) ∈ R. Ranging s1 and s2 over

{?,2}, there are four possible values of (s1, s2), denoted by

R′ = {(?, ?), (2, ?), (?,2), (2,2)}

Recalling the PTS typing rules for abstractions and products, each value represents a dependency

pattern of functions:

18 Chapter 2. Background

λω λC

λ2 λP2

λω λPω

λ→ λP

Figure 2.2. The lambda cube

Rule Dependency Example

(?, ?) terms depending on terms ordinary functions

(2, ?) terms depending on types polymorphic functions

(?,2) types depending on terms dependent types

(2,2) types depending on types type constructors

Note that there are eight subsets of R′ containing the basic rule (?, ?), i.e., (?, ?) ∈ R ⊆ R′,
which give us the exactly eight calculi of the lambda cube. Among all eight calculi, we introduce

four commonly used typed calculi:

• The simply typed lambda calculus (λ→) is obtained by the PTS speci�cation with the

common S and A mentioned above, as well asR = {(?, ?)} which is the smallest subset

of rules.

• The second-order lambda calculus (λ2), also known as System F [Reynolds 1974; Girard

1972], has the rule setR = {(?, ?), (2, ?)}, and additionally allows polymorphic functions

over λ→.

• The higher-order polymorphic lambda calculus (λω), also known as System Fω [Girard 1972],

has the rule setR = {(?, ?), (2, ?), (2,2)}, and further supports type constructors over

System F .

• The calculus of constructions (λC) [Coquand and Huet 1988] has the following rule set:

R = {(?, ?), (2, ?), (2,2), (?,2)}

which is the largest subset ofR′, i.e.,R′ itself. λC further supports dependent types over

System Fω , which allow types to depend on terms.

Strongly Normalizing PTS. We have introduced the lambda cube that includes eight systems

that are specialized PTSs. One common property is that all eight calculi are strongly normaliz-
ing [Barendregt 1992]. The de�nition is as follows:

De�nition 2.1.7 (Normalization).

1. A term a is weakly normalizing if there exists a term b in normal form such that a�β b.

2.1. Pure Type Systems 19

2. A term a is strongly normalizing if all beta-reduction sequences starting from a are �nite.

De�nition 2.1.8 (Normalizing PTS). A PTS λS is strongly (weakly) normalizing if for all Γ ` a : A

we have that a and A are strongly (weakly) normalizing.

In general, if a type system is strongly normalizing, then it is consistent when viewed as a logic, i.e.,

it is logically consistent, meaning that there does not exist an absurd term of type False = Πx : ?. x .

On the other side, we say that a system is inconsistent if all types are inhabited [Barendregt 1992;

Girard 1972]. One can derive a term of False type in an inconsistent system.

Inconsistent PTS. There are PTS speci�cations that can generate inconsistent systems. One

well-known example is the λ? calculus [Barendregt 1992], which has the following PTS speci�ca-

tion:

S = {?} A = {(?, ?)} R = {(?, ?)}

There is only one axiom called the “type-in-type” axiom [Cardelli 1986b] that causes circularity

in typing sort, i.e. ? : ?. The inconsistency of λ? was �rst proved by Girard [1972]:

Theorem 2.1.1 (Girard’s Paradox). The type False = Πx : ?. x is inhabited in λ?, i.e. ∅ ` a :

False for some a.

The calculus is not normalizing, due to the following lemma [Barendregt 1992]:

Lemma2.1.1 (Absurd Has No Normal Form). LetλS be a PTS extendingλ2. Suppose∅ ` a : False .
Then a has no normal form.

By Girard’s theorem, we can �nd a term a such that Γ ` a : False in λ?. Such a has no

normal form and is not even weakly normalizing. Hence, the calculus is not weakly or strongly

normalizing.

2.1.3 Metatheory of PTS

We state several important results of PTS. The properties hold for arbitrary PTS, unless otherwise

stated. The following lemmas and theorems are from the work by Barendregt [1992] and proofs can

be found in Barendregt’s work or other related literature [van Benthem Jutting 1993; Barendregt

1991].

Lemma 2.1.2 (Substitution Lemma for PTS). If Γ, x : A,Γ′ ` b : B and Γ ` a : A, then
Γ,Γ′[x 7→ a] ` b[x 7→ a] : B[x 7→ a].

Lemma 2.1.3 (Weakening Lemma for PTS). Let Γ and Γ′ be legal contexts such that Γ ⊆ Γ′. If
Γ ` a : A, then Γ′ ` a : A.

Theorem 2.1.2 (Subject Reduction for PTS). If Γ ` a : A and a�β a
′, then Γ ` a′ : A.

Theorem 2.1.3 (Decidability of Type Checking for Normalizing PTS). If S = (S,A,R) where S
is �nite, let λS be a PTS that is (weakly or strongly) normalizing. Then given Γ and a, it is decidable
to check whether there exists an A such that Γ ` a : A or not.

Lemma 2.1.4 (Uniqueness of Types for Functional PTS). Let λS be a PTS that is functional. If
Γ ` a : A and Γ ` a : B, then A =β B.

Notice that the decidability of type checking (Theorem 2.1.3) requires a PTS to be weakly or

strongly normalizing. And the uniqueness of types (Lemma 2.1.4) requires a PTS to be functional

(i.e. has a functional speci�cation, see De�nition 2.1.2).

20 Chapter 2. Background

2.2 Dependent Sums

A pair type, denoted by A × B, is one of the simplest compound types. A pair of type A × B
consists of two components where the �rst component has type A and the second has type B. In

a dependent type theory, pair types can also be extended with type dependency, similarly to how

dependent function types (i.e. Pi-types Πx : A. B) generalize non-dependent function types (i.e.

arrow types A → B). Such generalized pairs are called dependent sums where the type of the

second component can depend on the �rst. Dependent sum types, denoted by Σx : A. B , are also

called Sigma-types. The typing rule of dependent sums is as follows:

Γ ` e1 : A Γ ` e2 : B [x 7→ e1]

Γ ` pack [e1, e2]as (Σx : A. B) : (Σx : A. B)

where pack is the constructor of dependent sums. There are two forms of dependent sums,

namely weak and strong sums. The two forms are distinguished by their destructors [Schmidt

1994].

2.2.1 Weak Sums

Weak sums are eliminated by weak pattern matching, i.e. the unpack operator, which is conducted

within a particular scope and the pattern variables x and y cannot escape this scope. The typing

rule for unpack is as follows:

Γ ` e1 : Σx : A. B Γ, x : A, y : B ` e2 : C Γ ` C : ?

Γ ` unpack e1 as [x , y] in e2 : C

Notice that both x and y cannot occur free in C , since C is a well-formed type under the context

Γ without x or y. Weak sum types can also be encoded with Pi-types in a similar way to Church-

encoding existential types in System F [Pierce 2002]:

Σx : A. B , Πz : ?. (Πx : A. B → z)→ z z fresh

pack [e1, e2] as Σx : A. B , λz : ?. λf : (Πx : A. B → z). f e1 e2 z fresh

unpack e as [x, y] in e′ , e C (λx : A. λy : B . e ′) x, y /∈ FV(C)

where z is fresh such that z /∈ FV(Πx : A. B). Note that C is the type of e′. A and B can be

derived from the type of e, i.e., Σx : A. B.

2.2.2 Strong Sums

Strong sums are eliminated by projections similarly to non-dependent pairs, which directly extract

the �rst or second component without any scoping restriction. In particular, the type of the second

projection can refer to the �rst. The standard typing rules for the �rst and second projection are

as follows:

Γ ` e : Σx : A. B

Γ ` e.1 : A

Γ ` e : Σx : A. B

Γ ` e.2 : B [x 7→ e.1]

Note that x does not show (as a free variable) in the typing result of the second projection e.2,

since all occurrences of x are replaced by the �rst projection e.1.

2.3. Iso-Recursive Types 21

2.2.3 Comparison of Weak and Strong Sums

The projection operators of strong sums can be more expressive than the unpack operators of

weak sums. For example, recall the encoding of abstract integer sets using dependent sums shown

in Section 1.3.3. In Scala, we can write a generic function f on Set:

def f(s: Set) = s.member(3, s.insert(3, s.empty()))

This function is encodable by the unpack operator:

f = λs : Set . unpack s as [T , s ′] in s ′.member 3 (s ′.insert 3 s ′.empty)

It can also be encoded using projections:

f = λs : Set . (s.2).member 3 ((s.2).insert 3 (s.2).empty)

where the pattern variable s ′ is replaced by a direct second projection s.2. However, consider

another generic function g that simply returns an empty set:

def g(s: Set) = s.empty()

We cannot encode g using unpack as follows:

g = λs : Set . unpack s as [T , s ′] in s ′.empty -- ill-typed

because s ′.empty has type T which violates the typing rule of unpack. The type of the sub-term

in an unpack should not refer to pattern variables. In contrast, we can encode g with the second

projection:

g = λs : Set . (s.2).empty

The type of g is Π(s : Set). (s.1) which is well-formed by using the �rst projection to represent

the abstract type member.

Nonetheless, weak and strong sums both have their applications. Weak sums are useful

for data abstraction [Mitchell and Plotkin 1988; Pierce 2002], while strong sums are suitable

for representing modular structures [MacQueen 1986]. It usually takes less e�ort to support

weak sums, since they are essentially polymorphic existential types which are encodable by

Pi-types in traditional dependently typed systems, e.g., the calculus of constructions [Coquand

and Huet 1988]. On the contrary, strong sums are beyond the expressiveness of the plain calculus

of constructions and cannot be Church-encoded with Pi-types [Cardelli 1986b].

2.3 Iso-Recursive Types

Recursive types are types that can refer to themselves. For example in Haskell, an integer list

type IntList is recursively de�ned:

data IntList = Nil | Cons Int IntList

The de�nition indicates that an IntList can be either an empty list (Nil) or a concatenation of a

single integer (Int) and another integer list (IntList). Similarly, IntList can be de�ned as a class

in Java, which can be viewed as a recursive type:

22 Chapter 2. Background

class IntList {
Integer value;
IntList next;

}

In type theory, a recursive type is denoted by µx : A. B . The µ-operator is an explicit

recursion operator. The binder x refers to the whole type itself, i.e., x = µx : A. B , and can show

up in the body typeB. The previous IntList example can also be written with µ as follows [Pierce

2002]:

IntList = µx : ?. {Nil : Unit ,Cons : Int × x }

The binder x refers to IntList itself, which is a type, i.e., has kind ?. The body is a record type (i.e.

a named pair) consisting of two components Nil and Cons . The empty list case Nil is a singleton

of Unit type. The concatenation case Cons is a pair consisting of a number and another list

whose type is x , equivalently IntList .

2.3.1 Iso-Recursive versus Equi-Recursive Types

Recursive types can represent in�nite structures by constantly expanding the body. Given

µx : A.B , one can expand the body typeB by unfolding, an operation that replaces all occurrences

of x in B by the whole µ-term itself:

µx : A. B −→ B [x 7→ µx : A. B]

Such expansion/unfolding operation of recursive types can be performed either implicitly or

explicitly. Accordingly, there are two ways of formalizing recursive types in the literature, namely

the equi-recursive and iso-recursive approach [Crary et al. 1999]. Recursive types using such two

approaches are called equi-recursive and iso-recursive types.

Equi-Recursive Types. In the equi-recursive approach, the recursive type and its unfolded

type are de�nitionally equal, i.e., both types can be used interchangeably in any context. Thus, we

have the following equivalence relation:

µx : A. B = B [x 7→ µx : A. B]

The bene�t is that the equi-recursive treatment naturally allows type expressions to be in�nite

as the unfolding operation happens automatically. However, it is di�cult to type-check equi-

recursive types, since the type-checking algorithm usually does not work directly with in�nite

types [Pierce 2002].

Iso-Recursive Types. Another approach, the iso-recursive approach, treats a recursive type

and its unfolding as di�erent types, but isomorphic ones. One cannot replace a recursive type

with its unfolded form or vice versa. Instead, the unfolding or folding (the opposite of unfolding)

operation is triggered explicitly by two operators, unfold and fold, respectively. For example,

assuming that there exist expressions e1 and e2 such that e1 : µx : A. B and e2 : B [x 7→ µx :

2.3. Iso-Recursive Types 23

A. B], we have the following typing results:

unfold e1 : B [x 7→ µx : A. B]

fold [µx : A. B] e2 : µx : A. B

where fold and unfold map back and forth between the original and unfolded form. Formally, we

have the following standard typing rules of iso-recursive types [Pierce 2002]:

Γ ` e1 : (µx : A. B)

Γ ` unfold e1 : B [x 7→ µx : A. B]

Γ ` (µx : A. B) : ?

Γ ` e2 : B [x 7→ µx : A. B]

Γ ` fold [µx : A. B]e2 : (µx : A. B)

The isomorphism between types of e1 and e2 is witnessed by fold and unfold:

µx : A. B
unfold−−−−−−−−⇀↽−−−−−−−−

fold [µx :A. B]
B [x 7→ µx : A. B]

The iso-recursive treatment makes it somewhat less convenient and intuitive to use recursive

types, since one needs to explicitly add unfold and fold instructions whenever conversions of

recursive types are involved. On the other hand, type-checking iso-recursive types is much easier

than equi-recursive ones since the typing rules of unfold and fold are syntax-directed.

2.3.2 Iso-Recursive Types in Haskell

For practicality reasons, many programming languages implement recursive types using the

iso-recursive approach instead of the equi-recursive approach. For example, algebraic datatypes

in Haskell [Marlow et al. 2010] and ML [Milner et al. 1990] implicitly use iso-recursive types for

recursively de�ned structures, such as the previous IntList example. Similarly, Java implicitly

introduces a recursive type for the class de�nition and the method call of objects involves an

implicit unfold operation [Pierce 2002].

In Haskell, one cannot directly de�ne a recursive type using the type synonym:

type Bad = Int → Bad

The type synonym treats the types at two sides of = as equal, similarly to the equi-recursive

approach, which is however not supported in Haskell. Instead, one needs to use newtype (or

data) to wrap the unfolded form (i.e. the right-hand side type) inside a constructor:

newtype Good = MkGood (Int → Good)

It is also possible to use newtype to de�ne a generic �xpoint combinator for types:

newtype Fix f = Fold {unfold :: f (Fix f)}

The type Fix is a type-level �xpoint using the iso-recursive approach. Its constructor Fold forms

a recursive type from function f and destructor unfold forces the computation to obtain the

unfolded form f (Fix f). Such combinator can be used to model the recursion in datatypes and

de�ne them in a modular fashion, as illustrated in the Data Types à la Carte paper by Swierstra

[2008].

24 Chapter 2. Background

2.4 Subtyping

Subtyping plays an important role in object-oriented programming (OOP) languages such Java

to model polymorphism. Subtyping is a relation between two types, denoted by A 6 B, where

A is called a subtype of B, and B is called a supertype of A. The relation means that whenever

the context requires a term of type B, it can accept a term of type A. For example, in many

languages such as C/C++, the integer type can be considered as a subtype of a �oating-point

number type, i.e. int 6 float. Whenever one needs a float, an int can be used, but not vice

versa. Such interpretation of subtyping is often called the principle of safe substitution [Pierce

2002]. To connect typing with the subtyping relation, we need a new typing rule called the

subsumption rule:

Γ ` e : A A 6 B

Γ ` e : B

This rule indicates that any term of type A is also a term of type B, which complies with the

interpretation of subtyping.

2.4.1 Important Subtyping Rules

We introduce several important subtyping rules that can be found in many languages.

Re�exivity and Transitivity. First, the subtyping relation should satisfy two basic properties:

re�exivity and transitivity, i.e., subtyping should be a re�exive relation by the following rule:

A 6 A

and a transitive relation by the following rule:

A 6 B B 6 C

A 6 C

Notice that the transitivity rule is not algorithmic in the sense that one needs to guess the type

B when applying the transitivity rule for A 6 C . When implementing a subtyping algorithm,

one usually needs to eliminate the transitivity rule and prove that it is admissible from other

subtyping rules [Pierce 2002; Pierce and Ste�en 1997].

Function Types. In higher-order languages, functions are �rst-class values and can be passed

as arguments. Thus, we need a subtyping rule between function types:

B1 6 A1 A2 6 B2

A1 → A2 6 B1 → B2

Note that the subtype relation of the argument types is reversed. We call it contravariant. And

the subtype relation has the same order for the result types as the function types. We call such

relation covariant. The reason is that if a function has type A1 → A2, it can take any arguments

of B1 which is a subtype of A1 and returns terms of type A2 which can be treated as having its

supertype B2. Thus, we can treat any function of type A1 → A2 as having type B1 → B2.

2.4. Subtyping 25

Record Types. Many languages support records, which are collections of named �elds. The

record type is denoted by {l1 : T1, · · · , ln : Tn} where li ranges over names. There are three

typing rules for record types [Pierce 2002]:

• The width subtyping rule:

{l1 : T1, · · · , ln : Tn, · · · , ln+k : Tn+k} 6 {l1 : T1, · · · , ln : Tn}

which indicates that record types are subtypes if they have more �elds at the end. Since

every �eld showing in the supertype also shows in the subtype, any operation accepted by

the supertype can be supported by the subtype.

• The depth subtyping rule:

Si 6 Ti ∀i, 1 6 i 6 n
{l1 : S1, · · · , ln : Sn} 6 {l1 : T1, · · · , ln : Tn}

which indicates types of each corresponding �elds are in the subtyping relation.

• The permutation subtyping rule:

{l′i : T ′i} is a permutation of {li : Ti}
{l′1 : T ′1, · · · , l′n : T ′n} 6 {l1 : T1, · · · , ln : Tn}

which indicates that the order of �elds does not matter.

Top Types. Finally, in some languages, there exists a type which is a supertype of any type.

We call it the top type, denoted by >. We need the following subtyping rule for the top type:

A 6 >

Many OOP languages have the top type which is usually the universal base class, e.g., Object in

Java and Any in Scala.

2.4.2 Bounded �antification

So far we have introduced the subtyping relation as a judgment A 6 B . Subtyping can also be

used with a quanti�er to require the binder to be a subtype of a speci�c upper bound. We call this

bounded quanti�cation. For example, System F6 [Cardelli et al. 1994] is an extension to System F

with subtyping and bounded quanti�cation. The speci�cation of F6 is shown in Figure 2.3. In

F6, we have one extra type abstraction with an upper bound:

ΛX 6 T . t

where the binder X needs to be a subtype of type T . Correspondingly, the abstraction has a

bounded universal type:

(ΛX 6 T . t) : (∀X 6 T . T ′)

26 Chapter 2. Background

(Syntax)

Types T,U ::= X | > | T1 → T2 | ∀X 6 U . T
Terms t ::= x | λx : T . t | t1 t2 | ΛX 6 T . t | t [T]
Contexts ∆ ::= ∅ | ∆, x : T | ∆,X 6 T

∆ ` T (Type Well-formedness)

FWT-Top

` ∆

∆ ` >

FWT-Var

` ∆ X 6 U ∈ ∆

∆ ` X

FWT-Arrow

∆ ` T1 ∆ ` T2

∆ ` T1 → T2

FWT-Forall

∆ ` T1 ∆,X 6 T1 ` T2

∆ ` ∀X 6 T1. T2

` ∆ (Context Well-formedness)

FW-Empty

` ∅

FW-Type

` ∆ ∆ ` T

` ∆,X 6 T

FW-Term

` ∆ ∆ ` T

` ∆,X : T

∆ ` T 6 U (Subtyping)

FS-Top

∆ ` T

∆ ` T 6 >

FS-VarRefl

∆ ` X

∆ ` X 6 X

FS-VarTrans

X 6 T1 ∈ ∆ ∆ ` T1 6 T2

∆ ` X 6 T2

FS-Arrow

∆ ` T1 6 U1 ∆ ` U2 6 T2

∆ ` (U1 → U2) 6 (T1 → T2)

FS-Forall

∆,X 6 U ` T1 6 T2

∆ ` (∀X 6 U . T1) 6 (∀X 6 U . T2)

∆ ` t : T (Typing)

FT-Var

` ∆ x : T ∈ ∆

∆ ` x : T

FT-Abs

∆, x : T1 ` t : T2

∆ ` (λx : T1. t) : T1 → T2

FT-App

∆ ` t1 : T1 → T2 ∆ ` t2 : T1

∆ ` t1 t2 : T2

FT-TAbs

∆,X 6 T1 ` t : T2

∆ ` (ΛX 6 T1. t) : (∀X 6 T1. T2)

FT-TApp

∆ ` t : (∀X 6 U1. U2) ∆ ` T 6 U1

∆ ` t [T] : U2[X 7→ T]

FT-Sub

∆ ` t : T ∆ ` T 6 U

∆ ` t : U

Figure 2.3. Speci�cation of System F6

The original unbounded quanti�cation of System F can be viewed as a special case of top-bounded

quanti�cation:

∀X. T , ∀X 6 >. T

Variants of System F6. There are two variants of System F6, the Kernel Fun variant [Cardelli

and Wegner 1985] and the Full variant [Cardelli et al. 1994]. Figure 2.3 shows the Kernel Fun

variant. The only di�erence between two variants is the subtyping rule of bounded universal

2.5. Path-Dependent Types 27

types. In the Kernel Fun variant, two bounded universal types can be compared only when their

bounds are identical, i.e., invariant:

∆,X 6 U ` T1 6 T2

∆ ` (∀X 6 U . T1) 6 (∀X 6 U . T2)

In the Full variant, the bounds are contravariant, hence not required to be equal:

∆ ` U2 6 U1 ∆,X 6 U2 ` T1 6 T2

∆ ` (∀X 6 U1. T1) 6 (∀X 6 U2. T2)

The subtyping rule of the Full variant seems more natural, which follows the treatment of

subtyping function types. However, this rule makes Full F6 undecidable [Pierce 1992], meaning

that the algorithm implementing subtyping rules of Full F6 does not terminate for certain inputs.

On the contrary, Kernel Fun F6 is decidable by using the restricted invariant subtyping rule.

Thus, from the perspective of implementation, the Kernel Fun variant is more interesting since it

can have a decidable subtyping algorithm.

2.5 Path-Dependent Types

Scala [Odersky et al. 2004] supports path-dependent types [Odersky et al. 2003; Amin et al. 2014],

a weaker form of dependent types that only allow types to depend on paths. The syntax of

path-dependent types (i.e. paths) can be formally de�ned as follows [Odersky et al. 2003]:

p ::= x | p.L

A path p is a variable x followed by a sequence of selections, e.g., x.L1. · · · .Ln. In Dependent

Object Type (DOT) [Rompf and Amin 2016; Amin et al. 2016], a calculus that captures core features

of Scala, paths are further simpli�ed to only allow single selections:

p ::= x.L

Meanwhile, paths are valid types:

T ::= · · · | p

Thus, paths can appear with other types such as universal types:

∀(x : T). (x.L)

A concrete example is the dependent method type of the generic method g from Section 2.2.3:

def g(s: Set) = s.empty()
g: (s: Set)s.T

where the result type s.T can refer to the parameter s of the method.

Comparison with Full Dependent Types. The need of path-dependent types arises from

accessing abstract type members of traits which involves some forms of value dependency (see

also Section 1.3.3). Scala takes a conservative approach by only supporting path dependency

28 Chapter 2. Background

and avoids the need of supporting more general forms of dependent types. There are two major

di�erences between path-dependent types and full dependent types from traditional dependently

typed calculi (e.g. the calculus of constructions [Coquand and Huet 1988]).

First, Pi-types can support dependency on any terms instead of only path dependency, e.g.,

a vector type Vec n where n can be any natural number. Such vector types are not expressible

with path-dependent types. Moreover, with strong sums, Pi-types along with projections can

simulate path-dependent types. For example, in Section 2.2.3, the function g can be encoded with

the second projection and its type is a Pi-type with the �rst-projection: Π(s : Set). (s.1).

Second, traditional dependent types usually support arbitrary computations at the type level,

e.g., Vec (1 + 2) = Vec 3. In contrast, path-dependent types only support simple forms of type

conversions, such as instantiating abstract type members with actual types. Such type conversions

can be done with simple type equality relations. For example, if we apply an implementation of

Set to g such that T=List[Int], we will have:

g(new Set {type T = List[Int]; ... }): List[Int] // excerpted

The original result type, i.e., the abstract type s.T, is instantiated with the actual type List[Int]
according to the type equality T=List[Int].

29

Part I:

Pure Iso-Type Systems

31

CHAPTER3

Overview of Iso-Types

In this chapter, we give an overview of iso-types and informally introduce key features of Pure

Iso-Type Systems (PITS). PITS enables the combination of uni�ed syntax and general recursion,

while retains decidable type checking at the same time. The main source of inspiration for the

design of PITS comes from iso-recursive types [Crary et al. 1999; Pierce 2002], which we brie�y

introduced in Section 1.4.1. Instead of an implicit type conversion (employed by PTS), PITS

provides a generalization of iso-recursive types called iso-types. In PITS, not only folding/unfolding

of recursive types is explicitly controlled by term level constructs, but also any other type-level

computation (including beta reduction/expansion). This is somewhat similar to how datatypes

or newtypes are used in (classic) Haskell to explicitly trigger type-level computation for both

recursive and non-recursive types.

There is an analogy to language designs with equi-recursive types and iso-recursive types. With

equi-recursive types, type-level recursion is implicitly folded/unfolded, which makes establishing

decidability of type-checking much more di�cult. In iso-recursive designs, the idea is to trade

some convenience by a simple way to ensure decidability. Similarly, we view the design of

traditional dependently typed calculi, such as PTS, as analogous to systems with equi-recursive

types. In PTS, it is the conversion rule that allows type-level computation to by implicitly triggered.

However, the proof of decidability of type checking for PTS is non-trivial, as it depends on the

normalization property [van Benthem Jutting 1993]. Moreover decidability is lost when adding

general recursion. In contrast, the cast operators in PITS have to be used to explicitly trigger

each step of type-level computation, but it is easy to ensure decidable type-checking, even in the

presence of general recursion.

It is worth emphasizing the goal of PITS is to show the bene�ts of PTS-style uni�ed syntax

in terms of economy of concepts for more traditional programming language designs, but not

to use uni�ed syntax to express computationally intensive type-level programs. Traditional

functional languages only require basic use of type-level computation to support common features

like parametrized algebraic data types, iso-recursive types or purely functional objects [Pierce

and Turner 1994]. These features require only one or a small number of �nite steps of type

reductions/expansions where the iso-type approach �ts well. In Section 3.2, we give examples to

illustrate how such features of modern functional languages can be encoded with iso-types in

PITS.

32 Chapter 3. Overview of Iso-Types

3.1 Motivation and Overview

3.1.1 Implicit Type Conversion in Pure Type Systems

The typing rules for PTS contain a conversion rule [Barendregt 1991] (see also Section 2.1.1):

Γ ` e : A A =β B

Γ ` e : B

This rule allows one to derive e : B from the derivation of e : A with the beta equality of A and

B . This rule is important to automatically allow terms with beta equivalent types to be considered

type-compatible. For example, consider the following identity function:

f = λy : (λx : ?. x) Int . y

The type of y is a type-level identity function applied to Int . Without the conversion rule, f cannot

be applied to 3 for example, since the type of 3 (Int) di�ers from the type of y ((λx : ?. x) Int).

Note that the beta equivalence (λx : ?. x) Int =β Int holds. Therefore, the conversion rule

allows the application of f to 3 by converting the type of y to Int .

Decidability of Type Checking and Strong Normalization. While the conversion rule in

PTS brings a lot of convenience, an unfortunate consequence is that it couples decidability of
type checking with strong normalization of the calculus [van Benthem Jutting 1993]. Therefore

adding general recursion to PTS becomes di�cult, since strong normalization is lost. Due to the

conversion rule, any non-terminating term would force the type checker to go into an in�nite

loop (by constantly applying the conversion rule without termination), thus rendering the type

system undecidable. For example, assume a term z that has type loop, where loop stands for any

diverging computation. If we type check (λx : Int . x) z under the normal typing rules of PTS,

the type checker would get stuck as it tries to do beta equality on two terms: Int and loop, where

the latter is non-terminating.

3.1.2 Newtypes: Explicit Type Conversion in Haskell

Early designs of functional languages such as Haskell deliberately forbid implicit type conversions.

However, although not widely appreciated, since the very beginning Haskell (and other functional

languages) has supported explicit type-conversions via algebraic datatypes, or their simpler

sibling newtypes. In essence, encapsulated behind algebraic datatypes and newtypes is a language

mechanism that supports explicit type conversions. Such language mechanism is closely related

to iso-recursive types, as introduced in Section 2.3.2, but also allows for computations that are

not recursive.

In early versions of Haskell, such as Haskell 98, there is no real type-level computation as

in dependently-typed languages such as Coq [The Coq development team 2016]. In particular,

there are no computational type-level lambdas. Indeed Haskell forbids type-level lambdas to

avoid higher-order uni�cation that is required in dependently typed languages such as Coq or

Agda [Jones 1993]. While modern Haskell is half the way in evolving into a dependently typed

language, it still does not support type-level lambdas.

3.1. Motivation and Overview 33

Despite the absence of type-level lambdas, it is still possible to express type-level functions

via newtype or data constructs. For example, the type Id de�ned by

newtype Id a = MkId {runId :: a }

can be viewed as a type-level identity function and Id a is isomorphic to type a . To convert the

type back and forth between a and Id a , one needs to explicitly use the constructor MkId or the

destructor runId :

MkId :: a → Id a

runId :: Id a → a

While the explicit type level computations enabled by newtypes or algebraic datatypes are very

simple, they are essential for many of the characterizing programming styles employed in Haskell.

For example without such simple explicit type conversions it would not be possible to have

the monadic programming style that is available in Haskell, or modular interpreters enabled by

approaches such as Datatypes à la Carte [Swierstra 2008].

3.1.3 Iso-Types: Explicit Type Conversion in PITS

PITS iso-types have strong similarities with the explicit conversion mechanism found in languages

like Haskell, and iso-recursive types. Di�erently from Haskell (and similarly to iso-recursive

types) iso-types are purely structural, while Haskell datatypes and newtypes are nominal. Because

iso-types are structural they can be directly represented with type-level lambdas (and other

constructs). Moreover, since in PITS type equality is just alpha-equality, type-level lambdas are

not problematic, since they do not trigger computation during type-checking.

Iso-types o�er an alternative to the conversion rule of PTS, making it explicit as to when

and where to convert one type to another. Type conversions are explicitly controlled by two

language constructs: cast↓ (one-step reduction) and cast↑ (one-step expansion). One bene�t of this

approach is that decidability of type checking is no longer coupled with strong normalization of

the calculus. Another potential bene�t is that the problem of type-inference may be signi�cantly

simpler in a language with iso-types than in a language with a conversion rule. Although we do

not explore the later point in this thesis, Jones’ work on type-inference for higher-kinded types

in Haskell [Jones 1993] seems to back up this idea.

Reduction. The cast↓ operator allows a type conversion provided that the resulting type is a

reduction of the original type of the term. To explain the use of cast↓, assume an identity function

g de�ned by g = λy : Int . y and a term e such that e : (λx : ?. x) Int . In contrast to PTS, we

cannot directly apply g to e in PITS since the type of e ((λx : ?. x) Int) is not syntactically equal
to Int . However, note that the reduction relation (λx : ?. x) Int ↪→ Int holds. Therefore, we can

use cast↓ for the explicit (type-level) reduction:

cast↓ e : Int

Then the application g (cast↓ e) type checks.

34 Chapter 3. Overview of Iso-Types

Expansion. The dual operation of cast↓ is cast↑, which allows a type conversion provided that

the resulting type is an expansion of the original type of the term. To explain the use of cast↑, let

us revisit the example from Section 3.1.1. We cannot apply f to 3 without the conversion rule.

Instead, we can use cast↑ to expand the type of 3:

(cast↑ [(λx : ?. x) Int] 3) : (λx : ?. x) Int

Thus, the application f (cast↑ [(λx : ?. x) Int] 3) becomes well-typed. Intuitively, cast↑ performs

expansion, as the type of 3 is Int , and (λx : ?. x) Int is the expansion of Int witnessed by

(λx : ?. x) Int ↪→ Int . Notice that for cast↑ to work, we need to provide the resulting type as

argument. This is because for the same term, there may be more than one choice for expansion.

For example, 1 + 2 and 2 + 1 are both the expansions of 3.

One-Step. The cast operators allow only one-step reduction or expansion. If two type-level

terms require more than one step of reductions or expansions for normalization, then multiple casts

must be used. Consider a variant of the example such that e : (λx : ?. λy : ?. x) Int Bool . Given

g = λy : Int . y , the expression g (cast↓ e) is ill-typed because cast↓ e has type (λy : ?. Int) Bool ,

which is not syntactically equal to Int . Thus, we need another cast↓:

cast↓ (cast↓ e) : Int

to further reduce the type and allow the program g (cast↓ (cast↓ e)) to type check.

Analogy to Newtypes in Haskell. By using cast operators, we can model the Haskell example

shown in Section 3.1.2:

Id = λx : ?. x

cast↑ [Id a] : a → Id a

cast↓ : Id a → a

cast↑ and cast↓ are analogous to the datatype constructor MkId and destructor runId , respectively.

The di�erence is that PITS directly supports type-level lambdas without the need of using

newtype, though PITS only has alpha equality without implicit beta conversion. In some

sense, type-level lambdas in PITS are non-computational as newtype-style “type functions” in

Haskell. Nevertheless, we can still trigger type-level computation by casts, similarly to newtype

constructors and destructors in Haskell.

Decidability without Strong Normalization. With explicit type conversion rules the decid-

ability of type checking no longer depends on the strong normalization property. Thus the type

system remains decidable even in the presence of non-termination at type level. Consider the

same example using the term z from Section 3.1.1. This time the type checker will not get stuck

when type checking (λx : Int . x) z . This is because, in PITS, the type checker only performs

syntactic comparison between Int and loop, instead of beta equality. Thus it rejects the above

application as ill-typed. Indeed it is impossible to type check such application even with the use of

cast↑ and/or cast↓: one would need to write in�nite number of cast↓’s to make the type checker

loop forever (e.g., (λx : Int . x)(cast↓(cast↓ . . . z))). But it is impossible to write such program in

practice which has an in�nite length and cannot be stored with a �nite capacity.

3.2. Iso-Types by Example 35

Variants ofCasts. A reduction relation is used in cast operators to convert types. We study three
possible reduction relations: call-by-name reduction, call-by-value reduction and full reduction.

Call-by-name and call-by-value reduction cannot reduce sub-terms at certain positions (e.g., inside

λ or Π binders), while full reduction can reduce sub-terms at any position. We also create three

variants of PITS for each variant of casts. Speci�cally, full PITS uses a decidable parallel reduction
relation with full cast operators cast⇑ and cast⇓. All variants re�ect the idea of iso-types, but have

trade-o�s between simplicity and expressiveness: call-by-name and call-by-value PITS use the

same reduction relation for both casts and evaluation to keep the system and metatheory simple,

but lose some expressiveness, e.g. cannot convert λx : Int . (1 + 1) to λx : Int . 2. Full PITS is

more expressive but results in a more complicated metatheory (see Section 4.3). Note that when

generally referring to PITS, we do not specify the reduction strategy, which could be any variant.

3.1.4 General Recursion

PITS supports general recursion and allows writing unrestricted recursive programs at term level.

The recursive construct is also used to model recursive types at type level. Recursive terms and

types are represented by the same µ primitive.

Recursive Terms. The primitive µx : A. e can be used to de�ne recursive functions. For

example, the factorial function would be written as:

fact = µf : Int → Int . λx : Int . if x == 0 then 1 else x× f (x− 1)

We treat the µ operator as a �xpoint, which evaluates µx : A. e to its recursive unfolding

e[x 7→ µx : A. e]. Term-level recursion in PITS works as in any standard functional language,

e.g., fact 3 produces 6 as expected (see Section 4.1.4).

Recursive Types. The same µ primitive is used at the type level to represent iso-recursive

types [Crary et al. 1999]. In the iso-recursive approach a recursive type and its unfolding are

di�erent, but isomorphic. The isomorphism is witnessed by two operations, typically called fold

and unfold (see also Section 2.3.1). In call-by-name PITS, such isomorphism is witnessed by cast↑
and cast↓. In fact, cast↑ and cast↓ generalize fold and unfold: they can convert any types, not just

recursive types, as we shall see in the example of encoding parametrized datatypes in Section 3.2.

To demonstrate the use of casts with recursive types, we show the formation of the “hungry”

type [Pierce 2002] H = µx : ?. Int → x . A term z of type H will accept one more integer every

time when it is unfolded by a cast↓:

(cast↓ z) 3 : H

cast↓ ((cast↓ z) 3) 3 : H

cast↓(. . . (cast↓ z) 3 . . .) 3 : H

3.2 Iso-Types by Example

PITS is a simple core calculus, but expressive enough to encode useful language constructs. In order

to show how features of modern functional languages can be encoded in PITS, we implemented a

simple functional language Fun, a thin layer that is desugared to a speci�c PITS with only a single

36 Chapter 3. Overview of Iso-Types

sort ? and “type-in-type” axiom. We focus on common features available in traditional functional

languages and some interesting type-level features, but not the full power of dependent types. Fun

is not logically consistent due to the “type-in-type” axiom. In this section, we brie�y introduce the

implementation of Fun and present interesting examples including algebraic datatypes (Section

3.2.1), higher-kinded types (Section 3.2.2), datatype promotion (Section 3.2.2), high-order abstract

syntax (Section 3.2.2) and object encodings (Section 3.2.3). All of those examples work in the 3

variants of PITS. We also discuss one �nal example on dependently typed vectors (Section 3.2.4)

that only works with parallel reduction. All examples can run in the prototype interpreter and

compiler (see Section 1.5).

3.2.1 Fun Implementation

Fun is built on top of a call-by-name PITS variant called λI [Yang et al. 2016] and provides

surface language constructs for algebraic datatypes and pattern matching. λI has the same PTS

speci�cation as λ? (see Section 2.1.2), where S = {?}, A = {(?, ?)} andR = {(?, ?, ?)}. Alge-

braic datatypes and pattern matching in Fun are implemented using Scott encodings [Mogensen

1992], which can be later desugared into PITS (λI) terms. For demonstration, we implemented a

prototype interpreter and compiler for Fun, both written in GHC Haskell [Marlow 2010]. Fun

terms are �rstly desugared into λI terms and then type-checked using PITS typing rules. The

type-checked λI terms can be evaluated directly by interpreter or compiled to JavaScript or

Haskell code.

EncodingParametrizedAlgebraicDatatypes. We give an example of encoding parametrized

algebraic datatypes in PITS via the µ-operator and call-by-name casts. Importantly we should

note that having iso-recursive types alone (and alpha equality) would be insu�cient to encode

parametrized types: the generalization a�orded by iso-types is needed here.

In Fun we can de�ne a polymorphic list as

data List a = Nil | Cons a (List a);

This Fun de�nition is translated into PITS using a Scott encoding [Mogensen 1992] of datatypes:

List = µL : ?→ ?. λa : ?. Πb : ?. b → (a → L a → b)→ b

Nil = λa : ?. cast2↑ [List a] (λb : ?. λn : b. λc : (a → List a → b). n)

Cons = λa : ?. λx : a. λ(xs : List a).

cast2↑ [List a] (λb : ?. λn : b. λc : (a → List a → b). c x xs)

The type constructor List is encoded as a recursive type. The body is a type-level function that

takes a type parameter a and returns a dependent function type, i.e., Π-type. The body of Π-type

is universally quanti�ed by a type parameter b, which represents the result type instantiated

during pattern matching. Following are the types corresponding to data constructors: b for Nil ,

and a → L a → b for Cons , and the result type b at the end. The data constructors Nil and

Cons are encoded as functions. Each of them selects a di�erent function from the parameters (n

and c). This provides branching in the process �ow, based on the constructors. Note that cast↑
is used twice here (written as cast2↑): one for one-step expansion from τ to (λa : ?. τ) a and the

other for folding the recursive type from (λa : ?. τ) a to List a , where τ is the type of cast2↑ body.

3.2. Iso-Types by Example 37

We have two notable remarks from the example above. Firstly, iso-types are critical for the

encoding and cannot be replaced by iso-recursive types. Since type constructors are parametrized,

not only folding/unfolding recursive types, but also type-level reduction/expansion is required,

which is only possible with casts. Secondly, although casts using call-by-value and call-by-name

reduction are not as powerful as casts using full beta-reduction, they are still capable of encoding

many useful constructs, such as algebraic datatypes and records. Nevertheless full-reduction

casts enable other important applications. Some applications of full casts are discussed later (see

Section 3.2.4).

3.2.2 Combining Algebraic Datatypes with Advanced Features

Languages like Haskell support several advanced type-level features. Such features, when used

in combination with algebraic datatypes, have important applications. Next we discuss some

of these features and their applications. The purpose is to show all these advanced features are

encodable in PITS. For simplicity reasons, we use arrow syntax (x : A)→ B as syntactic sugar

for Π-types Πx : A.B in the following text.

Higher-kinded Types. Higher-kinded types are type-level functions. To support higher-

kinded types, languages like Haskell use core languages that account for kind expressions. The

existing core language of Haskell, System FC [Sulzmann et al. 2007], is an extension of System

Fω [Girard 1972], which natively supports higher-kinded types. We can similarly construct

higher-kinded types in PITS. We show an example of encoding the functor “type-class” as a record:

data Functor (f : ?→ ?) =

Func {fmap : (a : ?)→ (b : ?)→ (a → b)→ f a → f b};

Note that in PITS, records are encoded using algebraic datatypes in a similar way as Haskell’s

record syntax [Marlow 2010]. Here we use a record to represent a functor, whose only �eld is a

function called fmap. The functor “instance” of the Maybe datatype is:

data Maybe (a : ?) = Nothing | Just a;

def maybeInst : Functor Maybe =

Func Maybe (λa : ?. λb : ?. λf : a → b. λx : Maybe a.

case x of

Nothing ⇒ Nothing b

| Just (z : a)⇒ Just b (f z));

After the translation process, the Functor record is desugared into a datatype with only one data

constructor (Func) that has type:

(f : ?→ ?)→ (a : ?)→ (b : ?)→ (a → b)→ f a → f b

Since Maybe has kind ?→ ?, it is legal to apply Func to Maybe .

Datatype Promotion. Recent versions of Haskell introduced datatype promotion [Yorgey et al.

2012], in order to allow ordinary datatypes as kinds, and data constructors as types. With the

power of uni�ed syntax, data promotion is made trivial in Fun. We show a representation of a

labeled binary tree, where each node is labeled with its depth in the tree. Below is the de�nition:

38 Chapter 3. Overview of Iso-Types

data Nat = Z | S Nat ;

data PTree (n : Nat) = Empty

| Fork (z : Int) (x : PTree (S n)) (y : PTree (S n));

Notice how the datatype Nat is “promoted” to be used at the kind level in the de�nition of PTree .

Next we can construct a binary tree that keeps track of its depth statically:

Fork Z 1 (Empty (S Z)) (Empty (S Z))

If we accidentally write the wrong depth, for example:

Fork Z 1 (Empty (S Z)) (Empty Z)

The above will fail to pass type checking.

Higher-order Abstract Syntax. Higher-order abstract syntax [Pfenning and Elliott 1988]

(HOAS) is a representation of abstract syntax where the function space of the meta-language is

used to encode the binders of the object language. We show an example of encoding a simple

lambda calculus:

data Exp = Num Int

| Lam (Exp → Exp)

| App Exp Exp;

Note that in the lambda constructor (Lam), the recursive occurrence of Exp appears in a negative

position (i.e. in the left side of a function arrow). Systems like Coq [The Coq development team

2016] and Agda [Norell 2007b] would reject such programs since it is well-known that such

datatypes can lead to logical inconsistency. Moreover, such logical inconsistency can be exploited

to write non-terminating computations, and make type checking undecidable. In contrast, Fun is

able to express HOAS in a straightforward way, while preserving decidable type checking.

Using Exp we can write an evaluator for the lambda calculus. As noted by Fegaras and

Sheard [Fegaras and Sheard 1996], the evaluation function needs an extra function (reify) to

invert the result of evaluation. The code for the evaluator is shown next (we omit most of the

unsurprising cases; texts after “--” are comments):

data Value = VI Int | VF (Value → Value);

data Eval = Ev {eval ′ : Exp → Value, reify ′ : Value → Exp};
defrec ev : Eval =

Ev (λe : Exp. case e of ... -- excerpted
| Lam f ⇒ VF (λe ′ : Value. eval ′ ev (f (reify ′ ev e ′)))

(λv : Value. case v of ... -- excerpted
| VF f ⇒ Lam (λe ′ : Exp. reify ′ ev (f (eval ′ ev e ′)));

def eval : Exp → Value = eval ′ ev ;

The de�nition of the evaluator is mostly straightforward. Here we create a record Eval , inside

which are two name �elds eval ′ and reify ′. Similarly to the record syntax of Haskell, both eval ′

and reify ′ are also functions for projections of �elds. The eval ′ function is conventional, dealing

with each possible shape of an expression. The tricky part lies in the evaluation of a lambda

3.2. Iso-Types by Example 39

abstraction, where we need a second function, called reify ′, of type Value → Exp that lifts values

into terms. Thanks to the �exibility of the µ primitive, mutual recursion can be encoded by using

records.

Evaluation of a lambda expression proceeds as follows:

def show = λv : Value. case v of VI n ⇒ n;

def expr = App (Lam (λf : Exp. App f (Num 42))) (Lam (λg : Exp. g));

show (eval expr) -- returns 42

3.2.3 Object Encodings

Casts are useful for modeling examples other than algebraic datatypes. For example, we can model

a simple form of object encodings with call-by-name cast operators. We present an example of

existential object encodings [Pierce and Turner 1994] in Fun, which originally requires System

Fω . Note that the example here relies on the facility of algebraic datatypes and records in Fun. It

does not involve message passing due to the lack of subtyping in PITS. A more complete example

of object encodings will be shown in Section 5.1.5. First, we encode the existential type and

its constructor in Fun by standard Church encoding [Pierce 2002] using the universal type (i.e.

Π-type):

def Ex = λP : ?→ ?. (z : ?)→ ((x : ?)→ P x → z)→ z ;

def pack = λP : ?→ ?. λe1 : ?. λe2 : P e1.

cast↑ [Ex P] (λz : ?. λf : (x : ?)→ P x → z . f e1 e2);

where pack is the constructor to build an existential package, which is similar to the encoding of

pack operators for weak sums as introduced in Section 2.2.1. Thus, we can encode an existential

type ∃x. A as Ex (λx : ?. A) in Fun. The object type operator Obj can be encoded as follows:

data Pair (A : ?) (B : ?) = MkPair {fst : A, snd : B };
def Obj = λI : ?→ ?. Ex (λX : ?. Pair X (X → I X));

where Pair A B encodes the pair type A×B. In the de�nition of Obj , the binder I denotes the

interface. The body is an existential type which packs a pair. The pair consists of a hidden state

(with type X) and methods which are functions depending on the state (with type X → I X).

For a concrete example of objects, we use the interface of cell objects [Bruce et al. 1999]:

data Cell (X : ?) = MkCell {get : Int , set : Int → X , bump : X };

The interface indicates that a cell object consists of three methods: a getter get to return the

current state, a setter set to return a new cell with a given state, and bump to return a new cell

with the state increased by one.

We can de�ne a cell object c as follows:

data Var = MkVar {getVar : Int };
def CellT = λX : ?. Pair X (X → Cell X);

def pair = MkPair Var (Var → Cell Var)

(MkVar 0) -- Initial state

40 Chapter 3. Overview of Iso-Types

(λs : Var . MkCell Var -- Methods
(getVar s) -- Method get
(λn : Int .MkVar n) -- Method set
(MkVar (getVar s + 1))); -- Method bump

def p = pack CellT Var (cast↑ [CellT Var] pair);

def c = cast↑ [Obj Cell] p;

The body of object c is an existential package p of type ΣX .Pair X (X → Cell X) built

by the pack operator. The �rst parameter of pack is CellT that represents the body of the

existential type. The second parameter is the integer variable type Var which corresponds to the

existential binder X . The third parameter has type CellT Var which can be reduced to a pair

type Var × (Var → Cell Var) which is de�ned in the de�nition pair constructed by MkPair .

The �rst component of the pair is the initial hidden state MkVar 0. The second component is a

function containing three methods that are de�ned in a record by MkCell and abstracted by the

state variable s. The de�nition of the three methods follows the cell object interface Cell .

Note that we have two cast↑ operators here: one over the existential package p and another

over the pair . Due to the lack of a conversion rule in PITS, the desired type of the object c

(i.e. Obj Cell) is an application, which is di�erent from the type of the existential package (i.e.

Ex CellT). Noticing that

Obj Cell ↪→ Ex (λX : ?. Pair X (X → Cell X)) = Ex CellT

We can use cast↑ to do one-step type expansion for the package. Similarly, the second cast↑
operator used in the third parameter of pack converts the pair type into CellT Var . We emphasize

that the object encoding example exploits fundamental features of PITS, namely higher-kinded

types, higher-order polymorphism and explicit casts. The absence of a conversion rule does not

prevent the object encoding because the required type-level computation is recovered by explicit

casts.

3.2.4 Fun with Full Reduction

So far all the examples can be encoded in Fun with casts using weak-head reduction. However

for some applications full reduction is needed at the type level. In this subsection particularly, we

show one such application. For brevity, we move types of arguments in def bindings to top-level

annotations without repeating them in λ-binders, e.g., we change def f = λx : Int . 1 into

def f : Int → Int = λx . 1

Leibniz Equality, Kind Polymorphism and Vectors. One interesting type-level feature of

GHC Haskell is generalized algebraic datatypes, or GADTs [Xi et al. 2003; Cheney and Hinze

2003; Peyton Jones et al. 2004]. GADTs require a non-trivial form of explicit type equality, which

is built in Haskell’s core language (System FC [Sulzmann et al. 2007]), called a coercion. PITS

does not have such built-in equality. However a form of equality can be encoded using Leibniz
Equality:

data Eq (k : ?) (a : k) (b : k) =

Proof {subst : (f : k → ?)→ f a → f b};

3.2. Iso-Types by Example 41

Note that the de�nition requires kind polymorphism: the kind of types a and b is k , which is

polymorphic and not limited to ?. For brevity, we use a ≡ b to denote Eq k a b by omitting the

kind k . Then we can encode a GADT, for example, length-indexed list (or vector) as follows:

data Vec (a : ?) (n : Nat) =

Nil (Eq Nat n Z)

| Cons (m : Nat) (Eq Nat n (S m)) a (Vec a m);

However, it is di�cult to use such encoding approach to express the injectivity of construc-

tors [Cheney and Hinze 2003], e.g., deducing n ≡ m from S n ≡ S m . It would be challenging

to encode the tail function of a vector:

def tail : (a : ?)→ (n : Nat)→ (v : Vec a (S n))→ Vec a n =

λa. λn. λv . case v of

Cons m p x xs ⇒ xs; -- ill-typed

The case expression above is ill-typed: xs has the type Vec a m , but the function requires the

case branch to return Vec a n . To convert xs to the correct type, we need to show n ≡ m . But

the equality proof p has type Eq Nat (S n) (S m), i.e., S n ≡ S m . Thus, the injectivity of

constructor S is needed.

Fun incorporates two full cast operators (cast⇑ and cast⇓) from full PITS. With the power

of full casts, we can “prove” the injectivity of S . We �rst de�ne a partial function predNat to

destruct S :

def predNat : Nat → Nat =

λn. case n of S m ⇒ m;

Given S n ≡ S m , by congruence of equality, it is trivial to show predNat (S n) ≡ predNat (S m).

Noticing the reduction predNat (S n) ↪→ n holds, we can use a full cast operator cast⇓ to reduce

both sides of the equality to obtain n ≡ m :

def injNat : (n : Nat)→ (m : Nat)→ Eq Nat (S n) (S m)→ Eq Nat n m =

λn. λm. λp. cast⇓ (lift Nat Nat (S n) (S m) predNat p);

The function lift (de�nition omitted) lifts the type of equality proof p from S n ≡ S m to

predNat (S n) ≡ predNat (S m). Then cast⇓ converts it to Eq Nat n m (type annotations are

omitted for brevity):

p : S n ≡ S m

lift predNat p : predNat (S n) ≡ predNat (S m)

cast⇓ (lift predNat p) : n ≡ m

We can �nally write a well-typed version of tail :

def castVec : (a : ?)→ (n : Nat)→ (m : Nat)→
Eq Nat n m → Vec a m → Vec a n = ...; -- excerpted

def tail : (a : ?)→ (n : Nat)→ (v : Vec a (S n))→ Vec a n =

λa. λn. λv . case v of

Cons m p x xs ⇒ castVec a n m (injNat n m p) xs;

42 Chapter 3. Overview of Iso-Types

where castVec uses the proof n ≡ m to convert xs from Vec a m to Vec a n . Note that Fun is

not logically consistent and does not check whether the proof is terminating. However, it is easy

to see the injectivity proof injNat from the example above is total — though predNat is a partial

function, it is always applied to numbers with the form S n .

43

CHAPTER4

Pure Iso-Type Systems

This chapter formally presents Pure Iso-Type Systems (PITS), a family of calculi which employs

uni�ed syntax, supports general recursion and preserves decidable type-checking. PITS is compa-

rable in simplicity to PTS. The main idea is to recover decidable type-checking through iso-types.

In PITS, every type-level computation step is explicit and each type-level reduction or expansion is

controlled by a type-safe cast. Since single computation steps are trivially terminating, decidability

of type checking is possible even in the presence of non-terminating programs at the type level.

At the same time term-level programs using general recursion work as in any conventional

functional languages, and can be non-terminating.

Such design choice is useful to serve as a foundation for functional languages that stand

in-between traditional ML-like languages and fully-blown dependently typed languages. In PITS,

recursion and recursive types are completely unrestricted and type equality is simply based on

alpha-equality, just like traditional ML-style languages. However, like most dependently typed

languages, PITS uses uni�ed syntax, naturally supporting many advanced type system features

(such as higher-kinded types [Girard 1972], or kind polymorphism [Yorgey et al. 2012], see also

Section 3.2).

In this chapter, we study three di�erent variants of PITS that di�er on term evaluation strategy,

as well as the reduction strategy employed by the cast operators. They have di�erent trade-o�s in

terms of simplicity and expressiveness. Call-by-name PITS (Section 4.1) uses weak-head call-by-

name reduction, while call-by-value PITS (Section 4.2) enables standard call-by-value reduction

by employing a value restriction [Swamy et al. 2011; Sjöberg et al. 2012]. In both designs the

key idea is that the same reduction strategy is used for both term evaluation and type casts,

ensuring a consistent behavior
1

of reduction at both type and term level. While such consistency

is easily ensured in a strongly normalizable calculus, as a term will always evaluate to the same

normal form regardless of the reduction strategy, this it is not true for PITS which enables general

recursion and loses strong normalization. For example, given term (λx : Int . 1) ⊥, where ⊥ is

any diverging computation, such term evaluates to 1 with call-by-name semantics, but diverges

with call-by-value semantics. In call-by-name/value PITS, we can trivially guarantee that no

invalid reasoning steps can happen due to mismatches with the evaluation strategy.

Unfortunately, both call-by-name and call-by-value reduction are not congruent for type

equivalence (e.g. λx : Int . 1 + 1 6↪→ λx : Int . 2), which loses some expressiveness in terms of

type level computation. The third variant called full PITS (Section 4.3) uses parallel reduction for

1

Note that the consistency of behavior is not logical consistency, but meant for reduction relations.

44 Chapter 4. Pure Iso-Type Systems

casts. Full PITS is more expressive than call-by-name/value PITS, and its type-level reduction

is complete with respect to full beta-reduction employed by traditional PTS. Full PITS allows

equating terms such as Int → Vec (1 + 1) and Int → Vec 2 as equal, which is not possible

in call-by-name/value PITS. The price to pay for this more expressive and congruent design

is some additional complexity of the formalization, and the lack of consistency between term

and type level reduction
2

(see Section 4.4.6). For all variants, type soundness and decidability of

type-checking are proved.

One key �nding is that while using call-by-value or call-by-name reduction in casts loses some

expressive power for type-level computation, it allows those variants of PITS to have a simple and

direct operational semantics and proofs. In contrast, the variant of PITS with parallel reduction

retains the expressive power of PTS conversion, at the cost of a more complex metatheory where

type-safety proofs must be shown indirectly by showing soundness/completeness to another

variant of PTS. Similarly, many previous calculi including PTSf , a closely related calculus which is

also based on PTS and explicit type conversions, rely on other variants of PTS to provide dynamic

semantics and type-safety proofs. A detailed discussion of the trade-o�s between the variants of

PITS, as well as PTSf , is given in Section 4.4.

4.1 Call-by-name Pure Iso-Type Systems

We formally present the �rst variant of Pure Iso-Type Systems. PITS is very close to Pure Type

Systems (PTS) [Barendregt 1992], except for two key di�erences: the existence of cast operators

and general recursion. In this section, we focus on the call-by-name variant of PITS, which uses

a call-by-name weak-head reduction strategy in casts. We show type safety for any PITS and

decidability of type checking for a particular subset, i.e., functional PITS (see De�nition 4.1.1).

One important remark is that the dynamic semantics of call-by-name PITS is given by a direct

small-step operational semantics, and type-safety is proved using the usual preservation and

progress theorems.

4.1.1 Syntax

Fig. 4.1 shows the syntax of PITS, including expressions, values and contexts. Like Pure Type

Systems (PTS), PITS uses a uni�ed representation for di�erent syntactic levels. There is no

syntactic distinction between terms, types or kinds/sorts. Such uni�ed syntax brings economy

for type checking, since one set of typing rules can cover all syntactic levels. As in PTS, PITS

contains a set of constants called Sorts, e.g., ?, 2, denoted by metavariable s. By convention, we

use metavariables A, B , etc. for an expression on the type-level position and e for one on the

term level. We use A→ B as a syntactic sugar for Πx : A. B if x does not occur free in B .

Cast Operators. We introduce two new primitives cast↑ and cast↓ (pronounced as “cast up” and

“cast down”) to replace the implicit conversion rule of PTS with one-step explicit type conversions.

The cast operators perform two directions of conversion: cast↓ is for the one-step reduction of

types, and cast↑ is for the one-step expansion. The cast↑ construct needs a type annotation A as

2

For example, (λx : Int . 1 + 1) ⊥ is a non-terminating term under call-by-value reduction but can be reduced to

(λx : Int . 2) ⊥ by parallel reduction.

4.1. Call-by-name Pure Iso-Type Systems 45

Expressions e,A,B ::= x | s | e1 e2 | λx : A. e | Πx : A. B
| µx : A. e | cast↑ [A] e | cast↓ e

Values v ::= s | λx : A. e | Πx : A. B | cast↑ [A] e
Contexts Γ ::= ∅ | Γ, x : A
Syntactic Sugar

A→ B , Πx : A. B where x 6∈ FV(B)

castn↑ [A1] e , cast↑[A1](cast↑[A2](. . . (cast↑ [An] e) . . .))

where A1 ↪→ A2 ↪→ · · · ↪→ An
castn↓ e , cast↓(cast↓(. . . (cast↓︸ ︷︷ ︸

n

e) . . .))

Figure 4.1. Syntax of call-by-name PITS

the result type of one-step expansion for disambiguation, while cast↓ does not, since the result

type of one-step reduction can be uniquely determined as discussed in Section 4.1.5.

We use syntactic sugar castn↑ and castn↓ to denote n consecutive cast operators (see Fig.

4.1). Alternatively, one can introduce them as built-in operators and treat one-step casts as

syntactic sugar instead. Though using built-in n-step casts can reduce the number of individual

cast constructs, we do not adopt such alternative design in order to simplify the discussion of

metatheory. Note that castn↑ is simpli�ed to take just one type parameter, i.e., the last type A1

of the n cast operations. Due to the determinacy of one-step reduction (see Lemma 4.1.2), the

intermediate types can be uniquely determined and left out.

General Recursion. We use the µ-operator to uniformly represent recursive terms and types.

The expression µx : A. e can be used on the type level as a recursive type, or on term level as

a �xpoint that is possibly non-terminating. For example, A can be a single sort s , as well as a

function type such as Int → Int or s1 → s2.

4.1.2 Operational Semantics

Fig. 4.2 shows the small-step, call-by-name operational semantics. Three base cases include

rule R-Beta for beta reduction, rule R-Mu for recursion unfolding and rule R-CastElim for

cast canceling. Two inductive cases, rule R-App and rule R-Castdn, de�ne reduction at the

head position of an application, and the inner expression of cast↓ terms, respectively. Note that

rule R-CastElim and rule R-Castdn do not overlap because in the former rule, the inner term of

cast↓ is a value (see Fig. 4.1), i.e., cast↑ [A] e . In rule R-Castdn, the inner term is reducible and

cannot be a value.

The reduction rules are called weak-head since only the head term of an application can be

reduced, as indicated by the rule R-App. Reduction is also not allowed inside the λ-term and

Π-term which are both de�ned as values. Weak-head reduction rules are used for both type

conversion and term evaluation. To evaluate the value of a term-level expression, we apply

the one-step (weak-head) reduction multiple times, i.e., multi-step reduction, the transitive and

re�exive closure of the one-step reduction.

4.1.3 Typing

Fig. 4.3 gives the syntax-directed typing rules of PITS, including rules of context well-formedness

` Γ and expression typing Γ ` e : A. Note that there is only a single set of rules for expression

46 Chapter 4. Pure Iso-Type Systems

e1 ↪→ e2 (Call-by-name Reduction)

R-Beta

(λx : A. e1) e2 ↪→ e1[x 7→ e2]

R-App

e1 ↪→ e ′1
e1 e2 ↪→ e ′1 e2

R-Mu

µx : A. e ↪→ e[x 7→ µx : A. e]

R-Castdn

e ↪→ e ′

cast↓ e ↪→ cast↓ e ′

R-CastElim

cast↓ (cast↑ [A] e) ↪→ e

Figure 4.2. Operational semantics of call-by-name PITS

Γ ` e : A (Typing of Call-by-name PITS)

T-Ax

` Γ (s1, s2) ∈ A
Γ ` s1 : s2

T-Var

` Γ x : A ∈ Γ

Γ ` x : A

T-Abs

Γ ` A : s1 Γ, x : A ` e : B
Γ, x : A ` B : s2 (s1, s2, s3) ∈ R

Γ ` λx : A. e : Πx : A. B

T-App

Γ ` e1 : Πx : A. B Γ ` e2 : A

Γ ` e1 e2 : B [x 7→ e2]

T-Prod

Γ ` A : s1
Γ, x : A ` B : s2 (s1, s2, s3) ∈ R

Γ ` Πx : A. B : s3

T-Mu

Γ ` A : s Γ, x : A ` e : A

Γ ` µx : A. e : A

T-Castup

Γ ` B : s Γ ` e : A B ↪→ A

Γ ` cast↑ [B] e : B

T-Castdn

Γ ` e : A A ↪→ B

Γ ` cast↓ e : B

` Γ (Well-formedness)

W-Nil

` ∅

W-Cons

Γ ` A : s x fresh in Γ

` Γ, x : A

Figure 4.3. Typing rules of call-by-name PITS

typing, as there is no distinction of di�erent syntactic levels. Most typing rules are quite standard.

We write ` Γ if a context Γ is well-formed. We use Γ ` A : s to check if A is a well-formed type.

PITS is a family of type systems similarly to PTS, parametrized by the axiom setA ⊆ (S ×S)

for typing sorts and rule set R ⊆ (S × S × S) for checking well-formedness of Π-types (see

also Section 2.1.1). Rule T-Ax checks whether sort s1 can be typed by sort s2 if (s1, s2) ∈ A
holds. Rule T-Var checks the type of variable x from the valid context. Rule T-App and rule T-Abs

check the validity of application and abstraction respectively. Rule T-Prod checks the type well-

formedness of the dependent function type by checking if (s1, s2, s3) ∈ R. Rule T-Mu checks the

validity of a recursive term. It ensures that the recursion µx : A. e should have the same type A

as the binder x and also the inner term e .

Note that unlike the traditional presentation of PTS (see Figure 2.1), rule T-Abs does not rely

on rule T-Prod to check the well-formedness of Pi-types, but directly embeds the premises from

rule T-Prod. Several PTS-based calculi in the literature such as PTSf also use such a de�nition

4.1. Call-by-name Pure Iso-Type Systems 47

that can reduce dependencies between rules and simplify proofs of metatheory.

The Cast Rules. We focus on the rule T-Castup and rule T-Castdn that de�ne the semantics

of cast operators and replace the conversion rule of PTS. The relation between the original and

converted type is de�ned by one-step call-by-name reduction (see Fig. 4.2). For example, given

a judgment Γ ` e : A2 and relation A1 ↪→ A2 ↪→ A3, cast↑ [A1] e expands the type of e from

A2 to A1, while cast↓ e reduces the type of e from A2 to A3. We can formally give the typing

derivations of the examples in Section 3.1.3:

Γ ` e : (λx : ?. x) Int

(λx : ?. x) Int ↪→ Int

Γ ` (cast↓ e) : Int

Γ ` 3 : Int Γ ` (λx : ?. x) Int : ?

(λx : ?. x) Int ↪→ Int

Γ ` (cast↑ [(λx : ?. x) Int] 3) : (λx : ?. x) Int

Importantly, in PITS term-level and type-level computation are treated di�erently. Term-level

computation is dealt in the usual way, by using multi-step reduction until a value is �nally

obtained. Type-level computation, on the other hand, is controlled by the program: each step of

the computation is induced by a cast. If a type-level program requires n steps of computation to

reach the normal form, then it will require n casts to compute a type-level value.

Syntactic Equality. Finally, the de�nition of type equality in PITS di�ers from PTS. Without

the conversion rule, the type of a term in PITS cannot be converted freely against beta equality,

unless using cast operators. Thus, types of expressions are equal only if they are syntactically

equal (up to alpha renaming).

4.1.4 The Two Faces of Recursion

One key di�erence from PTS is that PITS supports general recursion for both terms and types. We

discuss general recursion on two levels and show how iso-types generalize iso-recursive types.

Term-level Recursion. In PITS, the µ-operator works as a �xpoint on the term level. By

rule R-Mu, evaluating a term µx : A. e will substitute all x ’s in e with the whole µ-term itself,

resulting in the unfolding e[x 7→ µx : A. e]. The µ-term is equivalent to a recursive function that

should be allowed to unfold without restriction.

Recall the factorial function example in Section 3.1.4. By rule T-Mu, the type of fact is

Int → Int . Thus we can apply fact to an integer. Note that by rule R-Mu, fact will be unfolded to

a λ-term. Assuming the evaluation of if -then-else construct and arithmetic expressions follows

the one-step reduction, we can evaluate the term fact 3 as follows:

fact 3

↪→ (λx : Int . if x == 0 then 1 else x× fact (x− 1)) 3 -- by rule R-App

↪→ if 3 == 0 then 1 else 3× fact (3− 1) -- by rule R-Beta

↪→ · · · ↪→ 6

Note that we never check if a µ-term can terminate or not, which is an undecidable problem

for general recursive terms. The factorial function example above can stop, while there exist some

terms that will loop forever. However, term-level non-termination is only a runtime concern and

48 Chapter 4. Pure Iso-Type Systems

does not block the type checker. In Section 4.1.5 we show type checking PITS is still decidable in

the presence of general recursion.

Type-level Recursion. On the type level, µx : A. e works as an iso-recursive type [Crary et al.

1999], a kind of recursive type that is not equal but only isomorphic to its unfolding (see also

Section 2.3.1). In PITS, we do not need to introduce fold and unfold operators, because with the

rule R-Mu, cast↑ and cast↓ generalize fold and unfold, respectively. Suppose that we have terms

e1 and e2 such that e1 : µx : A. B and e2 : B [x 7→ µx : A. B]. The type of e2 is the unfolding of

e1’s type, which follows the one-step reduction relation by rule R-Mu:

µx : A. B ↪→ B [x 7→ µx : A. B]

By applying rule T-CastUp and rule T-Castdn, we can obtain the following typing results:

cast↓ e1 : B [x 7→ µx : A. B]

cast↑ [µx : A. B] e2 : (µx : A. B)

Thus, cast↑ and cast↓ witness the isomorphism between the original recursive type and its

unfolding, behaving in the same way as fold and unfold in iso-recursive types as in Section 2.3.1.

µx : A. B
cast↓−−−−−−−−−⇀↽−−−−−−−−−

cast↑ [µx :A. B]
B [x 7→ µx : A. B]

An important remark is that casts are necessary, not only for controlling the unfolding of recursive

types, but also for type conversion of other constructs, which is essential for encoding parametrized

algebraic datatypes (see Section 3.2.1).

4.1.5 Metatheory of Call-by-name PITS

We now discuss the metatheory of call-by-name PITS. We focus on two properties: the decidability

of type checking and the type safety of the language. Firstly, we show that type checking for a

functional subset [Siles and Herbelin 2012] of PITS is decidable without requiring strong normal-

ization. Secondly, any PITS is type-safe, proven by subject reduction and progress lemmas [Wright

and Felleisen 1994].

Decidability of Type Checking for Functional PITS. We limit the discussion in this para-

graph to a subclass of PITS, functional PITS:

De�nition 4.1.1. A PITS is functional if:

1. for all s1, s2, s
′
2, if (s1, s2) ∈ A and (s1, s

′
2) ∈ A, then s2 ≡ s ′2.

2. for all s1, s2, s3, s
′
3, if (s1, s2, s3) ∈ R and (s1, s2, s

′
3) ∈ R, then s3 ≡ s ′3.

Such de�nition is the same as the one of functional PTS [Siles and Herbelin 2012], or singly-sorted
PTS [Barendregt 1992] (see also Section 2.1.1). Functional PITS enjoys uniqueness of typing, i.e.,

typing result is unique up to alpha equality:

Lemma 4.1.1 (Uniqueness of Typing for Functional PITS). In any functional PITS, if Γ ` e : A

and Γ ` e : B , then A ≡ B .

4.1. Call-by-name Pure Iso-Type Systems 49

For simplicity reasons, we only discuss decidability for functional PITS, where the proof can

be signi�cantly simpli�ed by the uniqueness of typing lemma. For non-functional PITS, one

may follow the proof strategy similarly used in non-functional PTS [van Benthem Jutting 1993],

by proving the “Uniqueness of Domains” lemma instead. We leave the decidability proof for

non-functional PITS as future work.

For functional PITS, the proof for decidability of type checking is by induction on the structure

of e . The non-trivial case is for cast-terms with typing rule T-CastUp and rule T-Castdn. Both

rules contain a premise that needs to judge if two types A and B follow the one-step reduction, i.e.,

if A ↪→ B holds. We show that B is unique with respect to the one-step reduction, or equivalently,

reducing A by one step will get only a sole result B . Such property is given by the following

lemma:

Lemma 4.1.2 (Determinacy of One-step Call-by-name Reduction). If e ↪→ e1 and e ↪→ e2, then
e1 ≡ e2.

We use the notation ≡ to denote the alpha equivalence of e1 and e2. Note that the presence of

recursion does not a�ect this lemma: given a recursive term µx : A. e , by rule R-Mu, there always

exists a unique term e ′ ≡ e[x 7→ µx : A. e] such that µx : A. e ↪→ e ′. With this result, we show

that it is decidable to check whether the one-step relation A ↪→ B holds. We �rst reduce A by

one step to obtain A′ (which is unique by Lemma 4.1.2), and compare if A′ and B are syntactically

equal. Thus, we can further show type checking cast-terms is decidable.

By the de�nition of functional PITS, checking the type of sorts and well-formedness of Π-

types are decidable. For other cases, type checking is decidable by the induction hypothesis and

uniqueness of typing (see Lemma 4.1.1). Thus, we can conclude the decidability of type checking
3
:

Theorem 4.1.1 (Decidability of Type Checking for Functional PITS). In any functional PITS,
given a well-formed context Γ and a term e , it is decidable to determine if there exists A such that
Γ ` e : A.

We emphasize that when proving the decidability of type checking, we do not rely on strong

normalization. Intuitively, explicit type conversion rules use one-step call-by-name reduction,

which already has a decidable checking algorithm according to Lemma 4.1.2. We do not need to

further require the normalization of terms. This is di�erent from the proof for PTS which requires

the language to be strongly normalizing [van Benthem Jutting 1993]. In PTS the conversion

rule needs to examine the beta equivalence of terms, which is decidable only if every term has a

normal form.

Type Safety for all PITS. Type safety holds for any PITS, not just functional PITS. The proof

of the type safety is by showing subject reduction and progress lemmas [Wright and Felleisen

1994]:

Theorem 4.1.2 (Subject Reduction of Call-by-name PITS). If Γ ` e : A and e ↪→ e′ then
Γ ` e ′ : A.

Theorem 4.1.3 (Progress of Call-by-name PITS). If ∅ ` e : A then either e is a value v or there
exists e ′ such that e ↪→ e ′.

3

This theorem is also called decidability of typability [Barendregt 1992, Section 4.4] where the typing result A is

not given and constructed by the typing algorithm.

50 Chapter 4. Pure Iso-Type Systems

The proof of subject reduction is straightforward by induction on the derivation of Γ ` e : A

and inversion of e ↪→ e′. Some cases need supporting lemmas: rule R-CastElim requires Lemma

4.1.2; rule R-Beta and rule R-Mu require the following substitution lemma:

Lemma 4.1.3 (Substitution of Call-by-name PITS). If Γ1, x : B ,Γ2 ` e1 : A and Γ1 ` e2 : B ,
then Γ1,Γ2[x 7→ e2] ` e1[x 7→ e2] : A[x 7→ e2].

The proof of progress is also standard by induction on ∅ ` e : A. Notice that cast↑ [A] e is a

value, while cast↓ e1 is not: by rule R-Castdn, e1 will be constantly reduced until it becomes a

value that could only be in the form cast↑ [A] e by typing rule T-Castdn. Then rule R-CastElim

can be further applied and the evaluation does not get stuck. Another notable remark is that

when proving the case for application e1 e2, if e1 is a value, it could only be a λ-term but not

a cast↑-term. Otherwise, suppose e1 has the form cast↑ [Πx : A. B] e ′1. By inversion, we have

∅ ` e ′1 : A′ and Πx : A. B ↪→ A′. But such A′ does not exist because Πx : A. B is a value which

is not reducible.

4.2 Call-by-value Pure Iso-Type Systems

Pure Iso-Type Systems enjoy the �exibility of choosing di�erent reduction rules for type conversion

or term evaluation. In this section, we present another variant of PITS which uses call-by-value
reduction, a more commonly used reduction strategy. All metatheory presented in Section 4.1,

including type safety and decidability of typing, still holds for this variant. Call-by-value is

interesting because, for applications, the arguments are reduced before beta reduction. Such

reduction is problematic for dependent functions types in a setting with iso-types. We address

this problem by using a form of value restriction, inspired by previous work [Swamy et al. 2011;

Sjöberg et al. 2012].

4.2.1 Value Restriction

Call-by-value reduction (↪→v) requires the argument of beta reduction to be a value (v). A typical

leftmost reduction strategy of an application is that, one �rst reduces the function part to a value,

then further reduces the argument. Such process is witnessed by the following reduction rules:

RV-Beta

(λx : A. e) v ↪→v e[x 7→ v]

RV-AppL

e1 ↪→v e ′1

e1 e2 ↪→v e ′1 e2

RV-AppR

e ↪→v e ′

v e ↪→v v e ′

A function in PITS can be dependent. That is the function type can depend on the argument.

For example, suppose that f is a dependent function generating a length-indexed list with given

length n, with the following type:

f : (Πn : Int .Vec n)

By rule RV-AppR, the reduction f (1 + 1) ↪→v f 2 holds. However, the types of two sides of the

reduction are di�erent:

f (1 + 1) : Vec (1 + 1)

f 2 : Vec 2

4.2. Call-by-value Pure Iso-Type Systems 51

Notice that PITS does not contain an implicit conversion rule. Without an explicit type conversion,

subject reduction does not hold. There are at least two possible ways to deal with this issue: 1)

introducing a type cast for reduction; 2) requiring the dependent function to be applied to a value

only. For simplicity reasons, we choose the second method: a value restriction. The �rst method

entangles types with reduction, which makes the semantics more complicated.

Typing Rules with Value Restriction. Now we have two typing rules for the function appli-

cation:

TV-AppV

Γ `v e : Πx : A. B Γ `v v : A

Γ `v e v : B [x 7→ v]

TV-App

Γ `v e1 : A→ B Γ `v e2 : A

Γ `v e1 e2 : B

If a function is dependent the argument must be a value (v). Otherwise, the function is non-

dependent and there is no restriction on its argument. Recall that the arrow type is syntactic

sugar for the non-dependent Π-type (see Figure 4.1). Note that these two typing rules overlap:

the Π-type of e in rule TV-AppV could be non-dependent. In such case, B = B [x 7→ v] and

rule TV-AppV has the same typing result as rule TV-App. Thus, such overlapping does not cause

any determinacy issues.

Two Sides of Value Restriction. Imposing such value restriction in PITS has both pros and

cons. On one side, type-safety proofs are quite simple (see Section 4.2.3). We can safely rule

out the case that breaks type preservation when reducing the argument of a dependent function

application. Recalling the example above, a reduction like f (1 + 1) ↪→v f 2 is not possible since

f (1 + 1) will be rejected by the type system in the �rst place. The argument (1 + 1) of the

dependent function f is not a value, so f (1 + 1) is not a well-typed term. Thus, if a function

is applied to a reducible argument it must be a non-dependent function in order to ensure type

preservation.

Though users can easily write f 2 as a workaround to satisfy the type system instead of

f (1 + 1), there is no alternative way to express terms such as f (x + y) where the argument

cannot be reduced to a value. Thus, the value restriction makes the type system become more

restrictive on dependent function applications — users can only provide values but not arbitrary

arguments to dependent functions. Nonetheless, there is no restriction on applying non-dependent
functions to arguments, e.g., id (x+ y) where id = λz : Int . z . In other words, there is no loss

of expressiveness with respect to non-dependently typed programming.

Alternative to the Value Restriction. Instead of the value restriction, one could simultane-

ously add casts when reducing dependent function applications. Supposing we drop the value

restriction, for the same example of f , noticing that Vec (1 + 1) ↪→v Vec 2, we can obtain

f 2 : Vec 2

cast↑[Vec (1 + 1)](f 2) : Vec (1 + 1)

Then, f (1 + 1) ↪→v cast↑[Vec (1 + 1)](f 2) preserves the type with an extra cast↑. However,

such reduction relation involves types due to the annotation of casts. For simplicity reasons, we

52 Chapter 4. Pure Iso-Type Systems

leave this extension as future work (see Section 8.2) and stick to value restriction for a simpler

meta-theory.

4.2.2 Reduction with Open Terms

In call-by-value PITS, cast operators also use one-step call-by-value reduction to perform type

conversions. Open terms that contain free variables may occur during reduction, e.g., (λx :

Int . x) y , where y is a free variable. Using the rule RV-Beta, the reduction can only be performed

if y is a value. To allow beta reduction of such open terms, we allow variables as values. Traditional

call-by-value calculi do not have such de�nitions, since reduction is used for term evaluation

but not type conversion. Nevertheless, several call-by-value calculi that involve type conversion

allow treating variables as values, such as Fireball Calculus [Paolini and Della Rocca 1999], as

well as several open call-by-value calculi [Accattoli and Guerrieri 2016], and Zombie [Sjöberg et al.

2012; Casinghino et al. 2014]. To make such de�nition work, we need to ensure that a variable is

substituted with a value. The rule RV-Beta already ensures such requirement.

Recursion and Recursive Types. For a recursive term µx : A. e , its unfolding has the form

e[x 7→ µx : A. e] such that the substituted term is the term itself. Thus, we need to treat µ-terms
as values as in traditional call-by-value settings. One consequence is that a µ-term now is only

unfolded when it is placed at the function part of an application, or inside cast↓:

RV-Mu

(µx : A. e) v ↪→v (e[x 7→ µx : A. e]) v

RV-Castdn-Mu

cast↓ (µx : A. e) ↪→v cast↓ (e[x 7→ µx : A. e])

Thus, µ-terms only represents term-level recursive functions, as in most call-by-value languages.

They cannot directly represent recursive types at the same time. This is di�erent from the call-by-

name PITS where µ-terms are both term-level �xpoints and recursive types, since substituted

terms are not necessarily values. Nevertheless, one can still recover recursive types in call-by-

value PITS by feeding the type-level recursive function a dummy argument, e.g., the unit value

():

PITS Variant Recursive Type Reduction
Call-by-name f = µy : A. e f ↪→ e[y 7→ f]

Call-by-value f ′ = µx : Unit → A. e[y 7→ x ()] f ′ () ↪→v (e[y 7→ x ()][x 7→ f ′]) ()

where x does not occur free in e. The recursive type f in call-by-name PITS can be simulated by

a type-level recursive function f ′ applied to a dummy argument, i.e., f ′ ().

Finally, we show the full de�nition of call-by-value PITS in Figure 4.4. The changes from the

call-by-name variant are highlighted.

4.2.3 Metatheory

All the metatheory of call-by-name PITS still holds in the call-by-value variant, including two

key properties: type safety and decidability of type checking. The proofs are almost the same.

The only relevant change is the statement of the substitution lemma:

4.2. Call-by-value Pure Iso-Type Systems 53

(Syntax)

Expressions e,A,B ::= x | s | e1 e2 | λx : A. e | Πx : A. B | µx : A. e
| cast↑ [A] e | cast↓ e

Values v ::= x | s | λx : A. e | Πx : A. B | µx : A. e | cast↑ [A] v

Contexts Γ ::= ∅ | Γ, x : A

e1 ↪→v e2 (Call-by-value Reduction)

RV-Beta

(λx : A. e) v ↪→v e[x 7→ v]

RV-Mu

(µx : A. e) v ↪→v (e[x 7→ µx : A. e]) v

RV-AppL

e1 ↪→v e ′1
e1 e2 ↪→v e ′1 e2

RV-AppR

e ↪→v e ′

v e ↪→v v e ′

RV-Castup

e ↪→v e ′

cast↑ [A] e ↪→v cast↑ [A] e ′

RV-Castdn

e ↪→v e ′

cast↓ e ↪→v cast↓ e ′

RV-Castdn-Mu

cast↓ (µx : A. e) ↪→v cast↓ (e[x 7→ µx : A. e])

RV-CastElim

cast↓ (cast↑ [A] v) ↪→v v

Γ `v e : A (Typing of Call-by-value PITS)

TV-Ax

`v Γ (s1, s2) ∈ A
Γ `v s1 : s2

TV-Var

`v Γ x : A ∈ Γ

Γ `v x : A

TV-Abs

Γ `v A : s1 Γ, x : A `v e : B
Γ, x : A `v B : s2 (s1, s2, s3) ∈ R

Γ `v λx : A. e : Πx : A. B

TV-App

Γ `v e1 : A→ B Γ `v e2 : A

Γ `v e1 e2 : B

TV-AppV

Γ `v e : Πx : A. B Γ `v v : A

Γ `v e v : B [x 7→ v]

TV-Prod

Γ `v A : s1
Γ, x : A `v B : s2 (s1, s2, s3) ∈ R

Γ `v Πx : A. B : s3

TV-Mu

Γ `v A : s Γ, x : A `v e : A

Γ `v µx : A. e : A

TV-Castup

Γ `v B : s Γ `v e : A B ↪→v A

Γ `v cast↑ [B] e : B

TV-Castdn

Γ `v e : A A ↪→v B

Γ `v cast↓ e : B

`v Γ (Well-formedness)

WV-Nil

`v ∅

WV-Cons

Γ `v A : s x fresh in Γ

`v Γ, x : A

Figure 4.4. Call-by-value PITS

Lemma 4.2.1 (Substitution of Call-by-value PITS). If Γ1, x : B ,Γ2 `v e : A and Γ1 `v v : B ,
then Γ1,Γ2[x 7→ v] `v e[x 7→ v] : A[x 7→ v].

We now require substituted terms to be values. With such a change, type preservation of reducing

open terms is possible, as discussed in Section 4.2.2. Such restricted substitution lemma is su�cient

54 Chapter 4. Pure Iso-Type Systems

for proving subject reduction, because all substituted terms are values in reduction rules (see

Figure 4.4). The subject reduction and progress lemmas can be proved in a similar way to

call-by-name PITS:

Theorem 4.2.1 (Subject Reduction of Call-by-value PITS). If Γ `v e : A and e ↪→v e
′ then

Γ `v e ′ : A.

Theorem 4.2.2 (Progress of Call-by-value PITS). If ∅ `v e : A then either e is a value v or there
exists e ′ such that e ↪→v e ′.

Like call-by-name reduction, the one-step call-by-value reduction is deterministic:

Lemma 4.2.2 (Determinacy of One-step Call-by-value Reduction). If e ↪→v e1 and e ↪→v e2, then
e1 ≡ e2.

Similarly, for functional PITS, we have typing uniqueness and decidable type checking:

Lemma 4.2.3 (Uniqueness of Typing for Functional PITS). In any functional PITS, if Γ `v e : A

and Γ `v e : B , then A ≡ B .

Theorem 4.2.3 (Decidability of Type Checking for Functional PITS). In any functional PITS,
given a well-formed context Γ and a term e , it is decidable to determine if there exists A such that
Γ `v e : A.

4.3 Iso-Types with Full Casts

In Sections 4.1 and 4.2, we have introduced two variants of PITS that use one-step call-by-

name/value reduction for both term evaluation and type conversion. The use of those reduction

strategies simpli�es the design and metatheory, at the cost of some expressiveness (e.g. cannot

encode the vector example in Section 3.2.4). To gain extra expressiveness, we take one step further

to generalize casts with full reduction. In this section, we present a third variant of PITS called full
PITS, where casts use a decidable parallel reduction relation for type conversion. The trade-o� is

some extra complexity in the metatheory. We show that full PITS has decidable type checking and

type safety that holds up to erasure. The proofs and metatheory design is inspired by approaches

used in Zombie [Sjöberg and Weirich 2015] and Guru [Stump et al. 2008].

4.3.1 Full Casts with Parallel Reduction

Cast operators in call-by-name/value PITS use the same one-step reduction as term evaluation

for type-level computation. We refer to them as weak casts, because they lack the ability to do

full type-level computation where reduction can occur at any position of terms. For example,

weak casts cannot convert the type Vec (1 + 1) to Vec 2, because 1) for call-by-name reduction,

the desired reduction is at the non-head position; 2) for call-by-value reduction, the term is

rejected due to the value restriction. Thus, we generalize weak casts to full casts (cast⇑ and cast⇓)

utilizing a one-step decidable parallel reduction (↪→p) relation for type conversion. Figure 4.5 shows

the de�nition of ↪→p. This relation allows reducing terms at any position, including non-head

positions or inside binders, e.g., λx : Int . 1 + 1 ↪→p λx : Int . 2. Thus full type-level computation

for casts is enabled.

4.3. Iso-Types with Full Casts 55

r1 ↪→p r2 (Decidable Parallel Reduction)

P-Red

(λx : R. r1) r2 ↪→p r1[x 7→ r2]

P-Var

x ↪→p x

P-Sort

s ↪→p s

P-App

r1 ↪→p r ′1 r2 ↪→p r ′2
r1 r2 ↪→p r ′1 r ′2

P-Abs

R ↪→p R′ r ↪→p r ′

λx : R. r ↪→p λx : R′. r ′

P-Prod

R1 ↪→p R′1 R2 ↪→p R′2
Πx : R1. R2 ↪→p Πx : R′1. R′2

P-MuRed

µx : R. r ↪→p r [x 7→ µx : R. r]

P-Mu

R ↪→p R′ r ↪→p r ′

µx : R. r ↪→p µx : R′. r ′

Figure 4.5. One-step decidable parallel reduction of erased terms

|e| (Term Erasure)

|x| = x
|s| = s
e1 e2	=	e1		e2
λx : A. e	= λx :	A	.	e
Πx : A. B	= Πx :	A	.	B
µx : A. e	= µx :	A	.	e
cast⇑ [A] e	=	e		
cast⇓ [A] e	=	e		

|Γ| (Context Erasure)

|∅| = ∅
|Γ, x : A| = |Γ|, x : |A|

Figure 4.6. Erasure of casts

There are three remarks for parallel reduction worth mentioning. Firstly, parallel reduction is

de�ned up to erasure denoted by |e| (see Figure 4.6), a process that removes all casts from term e.

We also extend erasure to context denoted by |Γ|. It is feasible to de�ne parallel reduction only

for erased terms because casts in full PITS (also call-by-value PITS) are only used to ensure the

decidability of type checking and have no e�ect on dynamic semantics, thus are computationally
irrelevant. Note that casts in call-by-name PITS do not have this property, as we de�ne cast↑ [A] e

to be a value. If we erase the cast operator, e can be further reducible, which changes the dynamic

semantics. In full (call-by-value) PITS, cast⇑ [A] v (cast↑ [A] v) is a value and becomes v after

erasure, which is still a value and does not change the computational behavior.

We use metavariables r and R to range over erased terms and types, respectively. The only

syntactic change of erased terms is that there is no cast. The type system after erasure is essentially

a variant of PTS with recursion. We call it PTSµ. The syntax and semantics of PTSµ is shown in

Figure 4.7.

56 Chapter 4. Pure Iso-Type Systems

(Syntax)

Expressions r,R ::= x | s | r1 r2 | λx : R. r | Πx : R1. R2 | µx : R. r
Values u ::= s | λx : R. r | Πx : R1. R2

Contexts ∆ ::= ∅ | ∆, x : R

r1 ↪→ r2 (Weak-head Reduction)

RE-Beta

(λx : R. r1) r2 ↪→ r1[x 7→ r2]

RE-App

r1 ↪→ r ′1
r1 r2 ↪→ r ′1 r2

RE-Mu

µx : R. r ↪→ r [x 7→ µx : R. r]

∆ ` r : R (Typing of PTSµ)

TE-Ax

` ∆ (s1, s2) ∈ A
∆ ` s1 : s2

TE-Var

` ∆ x : R ∈ ∆

∆ ` x : R

TE-Abs

∆ ` R1 : s1 ∆, x : R1 ` r : R2

∆, x : R1 ` R2 : s2 (s1, s2, s3) ∈ R
∆ ` λx : R1. r : Πx : R1. R2

TE-App

∆ ` r1 : Πx : R1. R2 ∆ ` r2 : R1

∆ ` r1 r2 : R2[x 7→ r2]

TE-Prod

∆ ` R1 : s1
∆, x : R1 ` R2 : s2 (s1, s2, s3) ∈ R

∆ ` Πx : R1. R2 : s3

TE-Mu

∆ ` R : s ∆, x : R ` r : R

∆ ` µx : R. r : R

TE-Conv

∆ ` r : R1 ∆ ` R2 : s R1 ≡β R2

∆ ` r : R2

` ∆ (Well-formedness)

WE-Nil

` ∅

WE-Cons

∆ ` R : s x fresh in Γ

` ∆, x : R

Figure 4.7. PTSµ

Secondly, the de�nition of parallel reduction in Figure 4.5 is slightly di�erent from the standard

one for PTS [Adams 2006]. It is partially parallel: rule P-Red and rule P-MuRed do not parallel

reduce sub-terms, but only do beta reduction and recursion unfolding, respectively. The con�uence

property for one-step reduction is lost
4
. Nevertheless, such de�nition makes the decidability

property (see Lemma 4.3.5) easier to prove than the conventional fully parallel version, thus it is

called decidable parallel reduction. It also requires fewer reduction steps than the non-parallel

version, thus correspondingly needs fewer casts.

Thirdly, parallel reduction does not have the determinacy property like weak-head reduction

(Lemma 4.1.2). For example, for the term (λx : Int . 1 + 1) 3, we can (parallel) reduce it to

either (λx : Int . 2) 3 by rule P-App and rule P-Abs, or 1 + 1 by rule P-Red. Thus, to ensure the

decidability, we also need to add the type annotation for cast⇓ operator to indicate what exact

type we want to reduce to. Similarly to cast⇑, cast⇓ [A] v is a value, which is di�erent from the

4

Notice that multi-step reduction ↪→→p is still con�uent since it is equivalent to multi-step full beta reduction −→∗β
(see Lemma 4.3.3) which is con�uent.

4.3. Iso-Types with Full Casts 57

(Syntax)

Expressions e,A,B ::= x | s | e1 e2 | λx : A. e | Πx : A. B

| µx : A. e | cast⇑ [A] e | cast⇓ [A] e

Contexts Γ ::= ∅ | Γ, x : A

Γ `f e : A (Typing of Full PITS)

TF-Ax

`f Γ (s1, s2) ∈ A
Γ `f s1 : s2

TF-Var

`f Γ x : A ∈ Γ

Γ `f x : A

TF-Abs

Γ `f A : s1 Γ, x : A `f e : B
Γ, x : A `f B : s2 (s1, s2, s3) ∈ R

Γ `f λx : A. e : Πx : A. B

TF-App

Γ `f e1 : Πx : A. B Γ `f e2 : A

Γ `f e1 e2 : B [x 7→ e2]

TF-Prod

Γ `f A : s1
Γ, x : A `f B : s2 (s1, s2, s3) ∈ R

Γ `f Πx : A. B : s3

TF-Mu

Γ `f A : s Γ, x : A `f e : A

Γ `f µx : A. e : A

TF-Castup

Γ `f B : s Γ `f e : A |B | ↪→p |A|
Γ `f cast⇑ [B] e : B

TF-Castdn

Γ `f B : s Γ `f e : A |A| ↪→p |B |

Γ `f cast⇓ [B] e : B

`f Γ (Well-formedness)

WF-Nil

`f ∅

WF-Cons

Γ `f A : s x fresh in Γ

`f Γ, x : A

Figure 4.8. Full PITS

call-by-name/value variant.

Figure 4.8 shows the speci�cation of full PITS. Changes from call-by-name/value PITS are

highlighted. Note that we do not de�ne operational semantics directly but up to erasure. Reduction

relations are de�ned in PTSµ only for terms after erasure. Similarly, syntactic values are not

de�ned in full PITS but de�ned for erased terms, ranged over by u in PTSµ (see Figure 4.7).

This is di�erent from call-by-name/value PITS, where reduction rules for type casting and term

evaluation are the same, i.e., the one-step call-by-name/value reduction. In full PITS, parallel

reduction is only used by casts, while a separate reduction is used for term evaluation. For

simplicity reasons, we choose the call-by-name reduction (↪→) for term evaluation for erased

terms in PTSµ (see Figure 4.7).

4.3.2 Metatheory

We show that the two key properties, type safety and decidability of type checking, still hold in

full PITS.

58 Chapter 4. Pure Iso-Type Systems

r1 −→β r2 (Full Reduction)

B-Red

(λx : R. r1) r2 −→β r1[x 7→ r2]

B-App1

r1 −→β r ′1
r1 r2 −→β r ′1 r2

B-App2

r2 −→β r ′2
r1 r2 −→β r1 r ′2

B-Abs1

R −→β R′

λx : R. r −→β λx : R′. r

B-Abs2

r −→β r ′

λx : R. r −→β λx : R. r ′

B-Prod1

R1 −→β R′1
Πx : R1. R2 −→β Πx : R′1. R2

B-Prod2

R2 −→β R′2
Πx : R1. R2 −→β Πx : R1. R′2

B-MuRed

µx : R. r −→β r [x 7→ µx : R. r]

B-Mu1

R −→β R′

µx : R. r −→β µx : R′. r

B-Mu2

r −→β r ′

µx : R. r −→β µx : R. r ′

Figure 4.9. Full beta reduction

Type Safety. Full casts are more expressive but also complicate the metatheory: term evaluation

could get stuck using full casts. For example, the following term,

(cast⇓ [Int → Int] (λx : ((λy : ?. y) Int). x)) 3

cannot be further reduced because the head position is already a value but not a λ-term. Note

that weak casts do not have such problem because only cast↑ is annotated and it is not legal to

have a Π-type in the annotation (see last paragraph of Section 4.1.5). To avoid getting stuck by

full casts, one could introduce several cast push rules similar to System FC [Sulzmann et al. 2007].

For example, the stuck term above can be further evaluated by pushing cast⇓ into the λ-term:

(cast⇓ [Int → Int] (λx : ((λy : ?. y) Int). x)) 3 ↪→ (λx : Int . x) 3

However, adding “push rules” signi�cantly complicates the reduction relations and metatheory.

Instead, we adopt the erasure approach inspired by Zombie [Sjöberg and Weirich 2015] and

Guru [Stump et al. 2008] that removes all casts when proving the type safety. The typing of erased

terms follow the type system PTSµ (see Figure 4.7). The typing judgment is ∆ ` r : R where ∆

ranges over the erased context.

PTSµ is a variant of PTS with recursion. We follow the standard proof steps for PTS [Barendregt

1992]. The substitution and progress lemmas are stated as follows:

Lemma 4.3.1 (Substitution of PTSµ). If ∆1, x : R′,∆2 ` r1 : R and ∆1 ` r2 : R′, then
∆1,∆2[x 7→ r2] ` r1[x 7→ r2] : R[x 7→ r2].

Theorem 4.3.1 (Progress of PTSµ). If ∅ ` r : R then either r is a value u or there exists r ′ such
that r ↪→ r ′.

Notice that term evaluation uses the weak-head reduction ↪→. We only need to prove subject

reduction and progress theorems for ↪→. But we generalize the result for subject reduction, which

holds up to the parallel reduction ↪→p. We �rst show subject reduction holds for one-step full

4.3. Iso-Types with Full Casts 59

beta reduction −→β (see Figure 4.9) and multi-step full beta reduction −→∗β , i.e., re�exive and

transitive closure of −→β :

Lemma 4.3.2 (Subject Reduction for Full Beta Reduction). 1. If ∆ ` r : R and r −→β r ′

then ∆ ` r ′ : R.

2. If ∆ ` r : R and r −→∗β r ′ then ∆ ` r ′ : R.

Then we show −→∗β is equivalent to multi-step parallel reduction ↪→→p, i.e., transitive closure of

↪→p (since it is already re�exive):

Lemma 4.3.3 (Equivalence of Parallel Reduction). Given r1 and r2, r1 −→∗β r2 holds if and only
if r1 ↪→→p r2 holds.

Thus, subject reduction for parallel reduction ↪→p is an immediate corollary:

Theorem 4.3.2 (Subject Reduction for Parallel Reduction). If ∆ ` r : R and r ↪→p r ′ then
∆ ` r ′ : R.

Finally, given that the PTSµ is type-safe, if we want to show the type-safety of full PITS, it is

su�cient to show the typing is preserved after erasure:

Lemma 4.3.4 (Soundness of Erasure). If Γ `f e : A then |Γ| ` |e| : |A|.

Decidability of Type Checking. The proof of decidability of type checking full PITS is similar

to call-by-name PITS in Section 4.1.5. We also limit discussion of decidability to functional

PITS (see De�nition 4.1.1). The only di�erence is for cast rule TF-Castup and rule TF-Castdn,

which use parallel reduction |A1| ↪→p |A2| as a premise. We �rst show the decidability of parallel

reduction:

Lemma 4.3.5 (Decidability of Parallel Reduction). Given r1 and r2, it is decidable to determine
whether r1 ↪→p r2 holds.

The proof is by induction on the length of r1 and does not rely on the single-step con�uence of

↪→p. The con�uence of ↪→p is lost due to two base reduction rules P-Red and P-MuRed, which do

not simultaneously reduce sub-terms but only do one-step beta reduction and recursive unfolding,

respectively (see Section 4.3.1). However, both rules become deterministic, which makes it easier to

determine if ↪→p in both cases. We can just check if one-step reduction of r1 is equal to r2, similarly

to the proof for call-by-name PITS (see Section 4.1.5). For example, consider r1 = (λx : R3. r3) r4

and r2 = r5 r6. If case P-App applies, i.e., λx : R3. r3 ↪→p r5 and r4 ↪→p r6 hold, then r1 ↪→p r2

holds trivially. Otherwise, r1 ↪→p r2 holds if and only if P-Red holds. The latter can be determined

by testing the equality of r3[x 7→ r4] and r5 r6. By contrast, the proof will be much complicated

for the standard parallel reduction. To ensure one-step con�uence, the rule P-Red becomes

r1 ↪→p r ′1 r2 ↪→p r ′2

(λx : R. r1) r2 ↪→p r ′1[x 7→ r ′2]

We now need to determine if r3 ↪→p r ′3 holds or not. This is non-trivial since the induction

hypothesis only gives the hint whether λx : R3. r3 ↪→p r5 holds but not directly for r3.

60 Chapter 4. Pure Iso-Type Systems

∆ � r : R (Typing of PTSstep)

TS-Ax

� ∆ (s1, s2) ∈ A
∆ � s1 : s2

TS-Var

� ∆ x : R ∈ ∆

∆ � x : R

TS-Abs

∆ � R1 : s1 ∆, x : R1 � r : R2

∆, x : R1 � R2 : s2 (s1, s2, s3) ∈ R
∆ � λx : R1. r : Πx : R1. R2

TS-App

∆ � r1 : Πx : R1. R2 ∆ � r2 : R1

∆ � r1 r2 : R2[x 7→ r2]

TS-Prod

∆ � R1 : s1
∆, x : R1 � R2 : s2 (s1, s2, s3) ∈ R

∆ � Πx : R1. R2 : s3

TS-mu

∆ � R : s ∆, x : R � r : R

∆ � µx : R. r : R

TS-Betaup

∆ � r : R1 ∆ � R2 : s R2 −→β R1

∆ � r : R2

TS-Betadn

∆ � r : R1 ∆ � R2 : s R1 −→β R2

∆ � r : R2

� ∆ (Well-formedness)

WS-Nil

� ∅

WS-Cons

∆ � R : s x fresh in Γ

� ∆, x : R

Figure 4.10. Typing rules of PTSstep

As cast⇑ and cast⇓ are annotated, both A1 and A2 can be determined and the well-typedness

is checked in the original system. By Lemma 4.3.4, the erased terms keep the well-typedness.

By Lemma 4.3.5, it is decidable to check if |A1| ↪→p |A2|. We conclude the decidability of type

checking by following lemmas:

Lemma 4.3.6 (Uniqueness of Typing for functional PITS). In any functional PITS, if Γ `f e : A1

and Γ `f e : A2, then A1 ≡ A2.

Theorem 4.3.3 (Decidability of Type Checking for functional PITS). In any functional PITS,
given a well-formed context Γ and a term e , it is decidable to determine if there exists A such that
Γ `f e : A.

4.3.3 Completeness to Pure Type Systems

We have shown that full PITS is complete to a variant of PTSµ. Such variant uses an alternative

single-step conversion rule [Geuvers 1995]:

TS-Betaup

∆ � r : R1 ∆ � R2 : s R2 −→β R1

∆ � r : R2

TS-Betadn

∆ � r : R1 ∆ � R2 : s R1 −→β R2

∆ � r : R2

4.4. Discussion 61

where−→β denotes full beta reduction (see Figure 4.9). We call this variant PTSstep (see Figure 4.10).

Its typing judgment is denoted by ∆ � r : R. PITS can be seen as an annotated version of PTSstep.

We �rst show that full PITS is complete to PTSstep:

Lemma 4.3.7 (Completeness of Full PITS to PTSstep). If ∆ � r : R, then there exists Γ,e and A

such that Γ `f e : A where |Γ| = ∆, |e| = r and |A| = R.

Furthermore, Siles and Herbelin have proved that single-step conversion rule is equivalent to

the original conversion rule using beta conversion in PTS (see Corollary 2.9 in [Siles and Herbelin

2012]). We have the following relation between PTSstep and PTSµ:

Lemma 4.3.8 (Completeness of One-step PTS to PTS). If ∆ ` r : R, then ∆ � r : R holds.

Thus, we can conclude the full PITS is complete to PTSµ:

Theorem 4.3.4 (Completeness of Full PITS to PTSµ). If ∆ ` r : R, then there exists Γ, e, A such
that Γ `f e : A where |Γ| = ∆, |e| = r and |A| = R.

4.4 Discussion

We have developed PITS with the aim of using such family of calculi as foundations to program-

ming languages supporting uni�ed syntax and recursion. PITS trades the convenience of implicit

type conversion that is a�orded in most dependently typed calculi by a simple meta-theory that

allows for decidable type-checking. Closely related to our work is PTS with explicit convertibility
proofs (PTSf) [van Doorn et al. 2013], which is a variant of PTS that replaces the conversion rule

by embedding explicit conversion steps into terms. PTSf has strong connections to PITS in the

sense that both systems are based on Pure Type Systems and require explicit type conversions —

PTSf uses proof-annotated terms, while PITS uses cast operators. Although PTSf was motivated

by applications to theorem proving, PTSf (like PTS) can be instantiated to form inconsistent

calculi, which can encode �xpoints and general recursion. Therefore PTSf could also, in principle,

be used as a foundation for programming languages. However, the underlying mechanisms and

foundations of PTSf and PITS are di�erent. Generally speaking, when dealing with programming

languages with general recursion it is important to study not only the static semantics, but also

the dynamic semantics. Unlike strongly normalizing languages where any choice of reduction

leads to termination, in languages that are not strongly normalizing this is not usually the case

and the choice of reduction is important. Furthermore the choice of the style of reduction in casts

has a profound impact on the properties and metatheory of the language. Our work on PITS

puts great emphasis on the study of the dynamic semantics and the trade-o�s between di�erent

choices, while in PTSf only the static semantics is studied. In the rest of this section, we give a

detailed comparison on features between PTSf and the three variants of PITS, summarized in

Table 4.1. Other closely related work will be discussed in Section 7.1.

4.4.1 Direct Dynamic Semantics

One important di�erence between call-by-value and call-by-name PITS and the variant with full

reduction is that the former two calculi have a direct small-step operational semantics, while the

semantics of the later calculus is indirectly given by elaboration. A direct operational semantics

has the advantage that the reduction rules can be used to directly reason about expressions in

62 Chapter 4. Pure Iso-Type Systems

Table 4.1. Comparison between PTSf and PITS

Features PTSf Call-by-name

PITS

Call-by-value

PITS

Full PITS

Direct Dynamic Semantics # #
Direct Proofs # G#1

No Mutually Dependent Judgments #
Implicit Proofs by Reduction #
Full Type-Level Computation # #
Consistency of Reduction — #
Decidability with Recursion G#2
SLOC of Coq proofs 7318 1217 1477 3796

Lemmas of Coq proofs 319 62 66 221

1
Proofs for typing decidability are direct, but not for type-safety.

2
We believe that decidability should hold, but no there is no discussion or proofs in the formalization of

PTSf [van Doorn et al. 2013].

the calculus. This reasoning can be used to perform, for example, equational reasoning steps or

to justify the correctness of some optimizations. In an elaboration-based semantics the lack of

reduction rules means that one must �rst translate the source expression into a corresponding

expression in the target calculus, and then do all reasoning there. This is a much more involved

process.

As discussed in Section 4.3.2, it is di�cult to directly de�ne a type-preserving operational

semantics for full PITS. The problem is not intrinsic to PITS, but rather it is a general problem

whenever full reduction is used in cast-like operators. Indeed this problem has been identi�ed

previously in the literature [Sjöberg et al. 2012; Sulzmann et al. 2007], and two major approaches

have been used to address it. One approach is not to use a direct semantics but instead to use an

elaboration semantics, which is precisely the approach that we used in our variant of PITS with

full reduction. This approach is quite common and it is also the approach used in PTSf as well as

several other calculi [Sjöberg et al. 2012; Sjöberg and Weirich 2015; Stump et al. 2008]. Another

approach that has been presented in the literature is to use push rules as in System FC [Sulzmann

et al. 2007; Yorgey et al. 2012; Weirich et al. 2013] and System DC [Weirich et al. 2017]. However

push rules signi�cantly complicate the reduction rules (see Section 4.3.2).

In this work we show a third approach to achieve a simple type-preserving direct dynamic

semantics: we can use alternative weaker reduction relations (call-by-value or call-by-name) for

type conversion. The weaker reduction relations are straightforward and do not have the extra

complication of the push rules (although some expressiveness is lost).

There is no discussion on how to achieve direct dynamic semantics using the proof term

approach by PTSf , since they use an elaboration approach. Furthermore this is unlikely to be

trivial. We expect that it may be possible to give a direct operational semantics to full PITS or PTSf

using push rules similar to the ones employed in System DC [Weirich et al. 2017], but this would

come at the cost of a much more involved set of reduction rules (as well as the corresponding

meta-theory) (see Section 8.2).

4.4.2 Direct Proofs

Because of the direct dynamic semantics it is possible to do direct proofs of preservation and

progress in call-by-value and call-by-name PITS. The meta-theory of Full PITS is signi�cantly

4.4. Discussion 63

more involved because we need a target calculus and to prove several lemmas in both the target

and the source, as well as showing the correspondence between the two systems. To give a rough

idea of the complexity of the di�erent developments, Table 4.1 shows the total number of lines of

Coq code used and lemmas used to formalize the three variants of PITS. Roughly speaking the

development of full PITS requires twice as many SLOC and nearly four times more lemmas than

the other two variants, since we also need to formalize PTSµ along with full PITS.

PTSf is shown to be equivalent to plain PTS and its type-safety then can be guaranteed by

showing the correspondence to plain PTS [Barendregt 1991]. However the proof for soundness

and completeness between PTSf and PTS is highly non-trivial [van Doorn et al. 2013; Siles and

Herbelin 2012]. In PTSf there is no discussion on proving subject reduction directly in PTSf . The

type-safety of PTSf is indirectly shown by erasure of explicit proofs to generate valid plain PTS

terms. This is similar to the proof strategy for type-safety of full PITS, which is shown up to

erasure of casts (see Section 4.3.2). The formalization of PTSf requires about 7000 SLOC and 300

lemmas (see Table 4.1), including auxiliary systems such as plain PTS and PTSe. These numbers

cannot be directly compared to the numbers of the PITS formalizations, since di�erent approaches

and libraries are employed to deal with binding and the formalization of PTSf does not include

proofs of decidability of type-checking. Nevertheless the numbers are useful to give an idea of

the e�ort in the PTSf formalization.

Ultimately we believe that direct proofs and a direct operational semantics of the call-by-name

and call-by-value PITS are quite simple. Furthermore, such simplicity is helpful when trying to

extend calculi to study additional features. For example, we will study a non-trivial extension

to PITS, i.e. subtyping, in the second part of the thesis. Integrating subtyping and some form of

dependent types is a widely acknowledged di�cult problem [Aspinall and Compagnoni 1996;

Castagna and Chen 2001; Hutchins 2010]. Nevertheless, in Chapter 5 we will show that using

the call-by-name instance of PITS extension with subtyping, we can develop a calculus that

subsumes System F6 [Cardelli et al. 1994] and has several interesting properties, including subject

reduction and transitivity of subtyping. We believe this development would be a lot harder to do

by extending full PITS or PTSf .

4.4.3 No Mutually Dependent Judgments

PTSf requires more language mechanisms for type conversions, including proof terms (H) and

their typing rules (Γ `f H : A = B) to ensure coercions (A = B) are well-typed. Moreover, the

well-formedness checking of coercions depends on typing judgments (Γ `f e : A), which causes

mutual dependency of judgments and complicates proofs. Casts in PITS use reduction relations

(A ↪→ B), which are untyped and do not depend on typing rules. The well-formedness of types

is checked separately in typing rules of cast operators, e.g. TF-Castup and TF-Castdn in full

PITS. The fact that PITS does not require such mutually dependent judgments means that many

proofs can be proved using simple inductions. In PTSf the mutually dependent judgments leads

to several lemmas that need to be mutually proved.

4.4.4 Implicit Proofs by Reduction

PTSf uses coercions (i.e. equivalence relations) to explicitly write equality proofs, while PITS uses

reduction relations that implicitly construct such proofs. Equality proofs in PTSf are constructed

by proof terms. Each language construct requires a corresponding proof term to reason about

64 Chapter 4. Pure Iso-Type Systems

equality of sub-terms, which adds to the number of language constructs. On the contrary, PITS

does not require proof terms but two extra cast operators, thus has fewer language constructs.

Type conversions in PTSf are more “explicit” than in PITS. One needs to specify which

proof terms to be used exactly in PTSf , while he/she just needs casts without specifying which

underlying reduction rule to use. This makes it easier to do explicit type conversions in PITS.

Assume that we have integer literals and use beta reduction to evaluate addition (1 + 1 ↪→ 2):

e : Πx : Int . Vec (1 + 1)

e′ : Πx : Int . Vec 2

To obtain e′ from e, in PTSf , e′ = eH where H is a proof term such that

H = {Int , [x : Int](Vec β(1 + 1))}

In full PITS, e′ = cast⇓ [Πx : Int . Vec 2] e, which implicitly uses the reduction rules P-Prod,

P-App and P-Red in the cast operator. In call-by-name/value PITS, due to the determinacy of

reduction used in casts, the cast↓ operator even does not require a type annotation. For example,

consider a simpler type conversion (λx : ?. x) Int ↪→ Int from Section 3.1.3:

e : (λx : ?. x) Int

e′ : Int

where e′ can simply be cast↓ e without any annotation.

Generally speaking we believe that for programming, and especially more traditional forms

of programming that do not involve complex forms of type-level reasoning, having such implicit

proofs of conversion is good. We believe that for a practical language design to be based directly

on PTSf it would require some degree of inference of the equality proof terms. In some sense full

PITS can be thought of a system that implicitly generates proof terms and in principle could be

translated to PTSf , but it is one step closer to a source language that infers equality proof terms.

Of course if the goal is to do theorem proving and/or heavy uses of type level computation then

having explicit control over the equality proof terms can be an advantage. However for PITS our

focus is on programming languages with general recursion.

4.4.5 Full Type-Level Computation

PTSf has full type-level computation since type conversion uses equivalence relations which are

congruent. It has the same expressive power as Pure Type Systems. Full PITS similarly has full

type-level computation, while call-by-name/value PITS do not. Full type-level computation is

useful for theorem proving and full-spectrum dependently typed programming as in Coq and

Agda, but not necessarily required for traditional programming. As the examples presented in

Section 3.2 show, iso-types that just use weak-head call-by-name reductions in casts can encode

many advanced type-level features. The extra expressiveness of PTSf and full PITS also comes at

the cost of additional complexity in the metatheory and makes it non-trivial to achieve features

like direct dynamic semantics and direct type-safety proofs.

4.4. Discussion 65

4.4.6 Consistency of Reduction

In many strongly normalizing languages a basic assumption is that the order of reduction does not

matter. This justi�es reasoning that can be done in any order of reduction. Reduction strategies

such as parallel reduction embody this principle and enable reductions in terms to occur in

multiple orders. However, in languages with general recursion this assumption is broken: i.e.

reduction order does matter. For example, term “(λx : Int . 1) ⊥” loops in call-by-value reduction,

but terminates in call-by-name reduction. If we want to conduct precise reasoning about programs

and their behavior we cannot ignore the order of reduction. In particular, if we want the type-

level reduction to respect the run-time semantics/reduction then we need to ensure that the two

reductions are in some sense consistent. To (trivially) ensure consistency call-by-name/value PITS

uses the same reduction relation for both term evaluation and type conversion. In full PITS, the

use of parallel reduction breaks consistency because type-level reduction allows some reductions

that are not allowed by term-level reduction. For example, Int → Vec (1 + 1) can be reduced to

Int → Vec 2 by type-level parallel reduction but not term-level reduction. We believe that it may

be possible to have a variant of PITS that uses call-by-name or call-by-value and has a consistent

form of full reduction that respects the reduction order. However we leave this for future work

(see Section 8.2).

PTSf has no discussion on reduction rules for term evaluation, since its dynamic semantics is

given by elaboration into PTS. Since the focus of PTSf is primarily on the applications to theorem

proving the issues of consistency between term and type-level reduction are not relevant, because

such for theorem proving calculi are normally strongly normalizing and reduction order does not

a�ect the semantics.

4.4.7 Decidability in the Presence of Recursion

There is no formal discussion or a direct proof on decidability of the type system for PTSf , though

this seems to be a plausible property since the typing rules of PTSf are syntax-directed. Only

uniqueness of typing is formally discussed and proved for functional PTSf . This is similar to

functional PITS which have uniqueness of typing up to only alpha equality due to the absence of

implicit beta conversion (see Lemma 4.1.1). Uniqueness of typing is used in the decidability proof

of functional PITS (see Section 4.1.5), and we believe that it should be useful to prove decidability

of PTSf as well.

Alternatively, note that an indirect proof for decidability of typing can be derived from

the plain metatheory of PTS through the equivalence of PTSf and PTS. However, the original

decidability proof for PTS relies on the normalization property [van Benthem Jutting 1993]. Thus,

non-normalizing PTSf cannot use such indirect approach to prove decidability for variants of

PTSf with recursion/�xpoints.

For all three variants of PITS, decidability of type checking has been proved directly in the

presence of general recursion without relying on normalization, though the proof is done only

for functional PITS for simplicity reasons. We expect that a similar proof would work for PTSf as

well, and this would be interesting to prove in future work.

67

Part II:

Iso-Types with Subtyping

69

CHAPTER5

Unifying Typing and Subtyping

In this chapter, we present λI6, which is a dependently typed generalization of System F6. The

motivation is to design a simple yet expressive calculus that combines dependent types and

OOP features. Subtyping is one of the key OOP features but the combination of subtyping and

dependent types causes mutual dependency of typing and subtyping judgments and circularity in

the metatheory. To address these challenges, λI6 employs a novel technique that uni�es typing
and subtyping. In λI6 there is only one judgment that is akin to a typed version of subtyping.

Both the typing relation, as well as type well-formedness are just special cases of the subtyping

relation. Therefore, λI6 takes a signi�cantly di�erent approach compared to previous work.

Previous work essentially attempts to �ght the entanglement between typing and subtyping. In

contrast, what we propose with λI6 is to embrace such tangling, and essentially collapsing the

typing and subtyping relations into the same relation. Our approach is also di�erent from the

technique of Pure Subtype Systems by Hutchins [2010], which simply eliminates types and typing.

λI6 retains types.

The λI6 calculus employs the idea of iso-types in PITS. It follows the PTS-style uni�ed

syntax and contains a single uni�ed syntactic sort that accounts for expressions, types and kinds.

Iso-types provide a simple form of type casts, and λI6 adopts that idea to address the issues

arising from the combination of recursion and dependent types. The novelty over PITS is the

support for OOP features such as higher-order subtyping [Pierce and Ste�en 1997], bounded
quanti�cation [Cardelli et al. 1994] and top types. To illustrate the expressive power of λI6, we

show how object encodings relying on higher-order subtyping can be done in λI6. The resulting

calculus enjoys several standard and desirable properties, such as subject reduction, transitivity of
subtyping, narrowing as well as standard substitution lemmas. We also provide an algorithmic

version of λI6 based on bi-directional type-checking [Pierce and Turner 2000], which is shown

to be sound and complete with respect to the declarative version. Finally we show that λI6
completely subsumes System F6 in expressive power.

5.1 Overview

In this section, we brie�y discuss the problem of combining dependent types with subtyping. We

informally introduce the key features of λI6 calculus, namely uni�ed subtyping and the support

for dependent types by explicit casts. To illustrate the suitability of λI6 to model objects, we

adapt the existential object encoding [Bruce et al. 1999; Pierce and Turner 1994] (originally based

70 Chapter 5. Unifying Typing and Subtyping

on System Fω6) to λI6. The formal details of λI6 are further discussed in Sections 5.2 and 5.3.

5.1.1 Unified Syntax versus Stratified Syntax

Calculi with high-order subtyping are usually complex. For example, System Fω6 [Pierce and

Ste�en 1997] adds higher-order subtyping and bounded quanti�cation to System Fω and is

formalized using strati�ed syntax. Because of the separation of syntax, the subtyping relation in

System Fω6 needs to be de�ned over multiple syntactic forms of abstraction, i.e., abstraction over

terms, types and type operators:

Term abstraction λx : A. e

Type abstraction λX 6 A. e
Operator abstraction λX 6 A. B

This causes duplication and complexity in the metatheory.

It is tempting to adopt the PTS-style uni�ed syntax in System Fω6 to simplify the subtyping

relation. Because System Fω (without subtyping) can be modeled with PTS-style uni�ed syntax: it

is a special case of PTSs and covered by Barendregt’s λ-cube [Barendregt 1992] (see Section 2.1.2).

However, there are several di�culties in applying such simpli�cation to a higher-order system with

bounded quanti�cation. Recall that there are three di�erent forms of abstraction in SystemFω6 . It is

hard to unify them because the abstraction can quantify over a variable using two distinct relations,

i.e., typing (x : A) and subtyping (X 6 A). To obtain a uniform representation of abstraction, we

need to unify the typing and subtyping relation in the �rst place. Moreover, calculi with PTS-style

uni�ed syntax usually allow dependent types, e.g., the calculus of constructions [Coquand and

Huet 1988]. Combining dependent types and subtyping has its own problems, as discussed in the

coming subsection.

5.1.2 Challenges in Combining Subtyping with Dependent Types

Mutual Dependency of Typing and Subtyping. Subtyping and dependent types are well-

known features of programming languages. Individually, each of them is well-studied. However,

combining them in the same system is usually di�cult. A major reason is that allowing de-

pendent types makes the typing and subtyping relations entangled. The subtyping and typing
1

judgments become mutually dependent. The typing judgment depends on subtyping because of

the subsumption rule (see also Section 2.4.1):

Γ ` e : A Γ ` A 6 B
Γ ` e : B

Subtyping relations are de�ned over well-formed types, which are checked by the typing judgment

in a dependently typed system. For example, the subtyping rule for the top type (>), a universal

supertype of any well-formed types (i.e. with kind ?), is de�ned as follows:

Γ ` A : ?

Γ ` A 6 >
1

Some strati�ed systems [Aspinall and Compagnoni 1996; Castagna and Chen 2001] also have the kinding judgment,

which is mutually dependent on typing. We uniformly refer to them as typing.

5.1. Overview 71

Circularity in the Metatheory. The mutual dependency causes circularity in the metatheory,

since one cannot study properties of subtyping independently from typing. For example, λP6 [As-

pinall and Compagnoni 1996] is an extension of the second-order dependently typed calculus

λP [Barendregt 1992] with subtyping. In λP6, the substitution lemmas for typing and subtyping

depend on each other and require a more complicated proof by simultaneously induction on four

di�erent judgments, i.e. subtyping, typing, kinding and formation [Aspinall and Compagnoni

1996]:

Γ ` A 6 B A is a subtype of B in context Γ

Γ `M : A term M has type A in context Γ

Γ ` A : K type A has kind K in context Γ

Γ ` K K is a kind in context Γ

Moreover, λP6 contains the following algorithmic transitivity rule:

Γ ` (Γ(α)M1 · · ·Mn)β2 6 A
α bound in Γ, A 6≡ αM1 · · ·Mn

Γ ` αM1 · · ·Mn 6 A

The �rst premise requires to normalize the term Γ(α)M1 · · ·Mn using β2-reduction, a beta

reduction relation on types. Thus, the transitivity proof depends on β2-strong normalization. Also,

the transitivity property requires types to be well-formed through β2-conversion, i.e., the subject

reduction of β2-reduction. As a consequence, the proofs of transitivity, strong normalization and

subject reduction depend on each other.

Problems of Existing Solutions. There are several existing options to deal with the circularity.

One could carefully prove mutually dependent lemmas together by �nding a proper decreasing

metric of induction, similar to the proof of substitution lemma in λP6. But such method is usually

too speci�c and cannot be generally applied to other systems, e.g., the substitution proof in λP6
does not apply to λΠ&

[Castagna and Chen 2001].

Another approach is to break the mutual dependency simply by forbidding typing from

occurring in the subtyping judgments. The subtyping judgments are de�ned over pre-terms, terms

that may not be well-formed. Then one could prove results about subtyping before typing. An

obvious limitation is that subtyping rules that must depend on typing are no longer supported, such

as the top type rule shown above. Several systems using this method, such as PTS6 [Zwanenburg

1999], drop the support of top types because of such limitation.

5.1.3 Our Solution: Unified Subtyping

We propose a new approach to solve the circularity problem, which also simpli�es the syntax. The

λI6 calculus features a single relation for both typing and subtyping, namely uni�ed subtyping.

The relation has the form:

Γ ` e1 6 e2 : A

It simultaneously contains the subtyping relation, i.e., e1 is a subtype of e2, and the typing relation,

i.e., e1 and e2 have type A. The ordinary typing judgment can be seen as a special case of uni�ed

subtyping:

Γ ` e : A , Γ ` e 6 e : A

72 Chapter 5. Unifying Typing and Subtyping

We solve the circularity problem because typing and subtyping cannot be mutually dependent

in the �rst place: they are essentially the same relation. In λI6, subtyping relations can be de�ned

over well-formed terms. Subtyping rules that depend on typing are allowed without causing

mutual dependencies. As a result, top types are supported in λI6. Moreover, the metatheory of

λI6 is signi�cantly simpli�ed, e.g., there is only one form of substitution lemma to be proved, as

discussed in Section 5.3.

Bounded quanti�cation in λI6. λI6 adopts a uni�ed syntax and supports bounded quanti�-

cation. Because of the uni�ed representation of typing and subtyping, instead of three separate

forms of abstraction in System Fω6 , λI6 has a single form of abstraction: λx 6 e1 : A. e2. By con-

vention, the ordinary unbounded abstraction can be treated as syntactic sugar of a top-bounded

one:

λx : A. e , λx 6 > : A. e

Notice that the top type (>) is generalized to have any kind A instead of ?. With uni�ed syntax,

λI6 has fewer language constructs than System Fω6 and a simpler de�nition of (uni�ed) subtyping

relation (see Section 5.2).

5.1.4 Iso-Types: Dependent Types without Strong Normalization

Most traditional dependently typed languages are strongly normalizing (i.e. all programs ter-

minate). Strong normalization plays a fundamental role in the metatheory of those languages.

However, nearly all general-purpose programming languages allow non-terminating programs,

so depending on strong normalization is a non-starter if we want to model traditional general-

purpose languages. The root of the dependency on strong normalization is the conversion rule (see

Section 3.1.1). For dependently typed languages with subtyping, the conversion rule is usually

subsumed by the subsumption rule (see Section 5.1.2), which requires the subtyping relation

Γ ` A 6 B to subsume beta-equivalence A =β B. Thus, the transitivity of subtyping may also

depend on strong normalization if its proof requires to �rst normalize the types [Aspinall and

Compagnoni 1996].

An alternative to the conversion rule. Several existing studies [Stump et al. 2008; Sjöberg

et al. 2012; Kimmell et al. 2012; Sjöberg and Weirich 2015; Yang et al. 2016] provide a way to

combine general recursion with dependent types, while preserving important properties (such as

decidability of type-checking). The key idea is to replace the implicit conversion rule with explicit
type casts. This has the e�ect that term/type equality becomes weaker: two terms are only equal

up to syntactic equality (not beta-equality). To recover type conversion, an explicit cast must be

used. The bene�t of this design is that it decouples several properties from strong-normalization.

λI6 adopts the iso-type approach [Yang et al. 2016] of PITS introduced in Chapters 3 and 4. The

cast operators of λI6 employ the weak-head call-by-name reduction relation (see Section 5.2.2),

similarly to the one used by call-by-name PITS (see Section 4.1). This makes the type conversion

by casts less expressive than what is provided by the implicit conversion rule. Nevertheless, we do

not consider such loss of expressiveness problematic. The absence of conversion rule signi�cantly

simpli�es the metatheory of λI6 because typing and subtyping are up to alpha-equality and

strong normalization is not a necessity for proofs. Since our goal is to design a calculus for

traditional programming, we do not require the ability to do full type-level computation that is

5.1. Overview 73

required for dependently typed programming. Call-by-name casts are still expressive enough

for our purposes: to model object encodings. Furthermore, there are alternative designs of casts

using call-by-value or full reduction rules (see Sections 4.2 and 4.3), but they introduce some extra

complications to the metatheory. Alternative approaches are discussed in Section 5.6.

5.1.5 Example: Object Encodings using λI6

We show an example of object encodings in λI6 using the existential encoding method [Pierce

and Turner 1994; Bruce et al. 1999] originally based on System Fω6 . The example in this section

has two notable di�erences from the previous example shown in Section 3.2.3 for PITS. First, the

object encodings in this section do not rely on Scott-encodings of algebraic datatypes. Instead, we

directly encode pairs, records and existential types by Church-encoding weak dependent sums in

λI6. Second, the example in this section supports generic message passing that requires subtyping,

which was missing in Section 3.2.3.

Encoding Existential Types and Pairs using Weak Sums. Existential types and pairs are

special cases of dependent sums. Existential types specialize A to kind ?:

∃x. B , Σx : ?. B

The constructor and destructor of an existential package are simply pack and unpack operators

of dependent sums, respectively. Pairs are non-dependent sums where x is not free in B. The

pair type, constructor and destructors can be encoded as follows:

A×B , Σx : A. B where x /∈ FV(B)

(e1, e2) , pack [e1, e2] as Σx : A. B where x /∈ FV(B)

fst e , unpack e as [x, y] in x

snd e , unpack e as [x, y] in y

where in the encoding of constructor, A and B are types of e1 and e2, respectively.

Notice that here we only need the weak destructor of dependent sums [Schmidt 1994], i.e., the

unpack operator that requires x and y are not free in the type C of e2 (see Section 2.2.1). We use

the same Church-encodings of weak sums from Section 2.2.1 and show that subtyping and typing

rules of weak sums are admissible in λI6. The proof is trivial and available in Appendix A.1.

However, it is non-trivial to Church-encode strong dependent sums without restrictions on

unpack and using only Pi-types [Cardelli 1986b]. In Chapter 6, we will discuss how to support

primitive constructs of strong sums with uni�ed subtyping. For examples in this section, weak

dependent sums are su�cient for our purpose to encode existential types and non-dependent pairs

and yet more expressive than those constructs. Note that unpack operator allows unrestricted

projection of existential witnesses:

λe : (Σx : A. B). unpack e as [x, y] in x

No such operation is allowed on existential types in System F or F6 [Amin et al. 2016].

Encoding Objects. Now that pairs and existential types can be encoded in λI6, we present

the encoding of objects. Note again that records can be encoded with pairs using standard

74 Chapter 5. Unifying Typing and Subtyping

techniques [Pierce 2002] and that we assume λI6 is extended with integers, pairs, records and

existential types in the following text. We use the same example of cell objects as shown in

Section 3.2.3. We �rst present the existential encoding of objects [Pierce and Turner 1994] in λI6:

Obj = λI : ?→ ?. ∃X. X × (X → I X)

The de�nition of cell objects [Bruce et al. 1999] is as follows:

Cell = λX : ?. {get : Int , set : Int → X, bump : X}

Similarly, a cell object c can be de�ned as follows:

c = cast↑[Obj Cell] pack [{x : Int}, ({x = 0}, λs : {x : Int}. cast↑ [Cell {x : Int}]
{get = s.x, set = λn : Int . {x = n},
bump = {x = s.x+ 1}})]

as CellT

We use the pack operator to create an existential package. The type {x : Int} corresponds

to the existential binder X . The pair afterwards corresponds to the body of the existential type.

The �rst component of the pair is the initial hidden state {x = 0}. The second component is a

function containing three methods that are de�ned in a record and abstracted by the state variable

s. The de�nition of the three methods follows the cell object interface Cell . The result type of

the package, i.e., CellT , is the one-step reduction of Obj Cell :

CellT = ∃X. X × (X → Cell X)

As in Section 3.2.3, we also use two cast↑ operators here: one over the pack operator and another

over the record of methods. Note that the desired type of the object c (i.e. Obj Cell) is a type-level

application, which is di�erent from CellT . We use cast↑ to do one-step type expansion for

the package: Obj Cell ↪→ CellT . Similarly, we use another cast↑ operator in the de�nition of

methods to convert the record type into Cell {x : Int}. We use the following syntactic sugar for

consecutive cast↑ and pack:

pack [A, e] up B , cast↑ [B] (pack [A, e] as B′)

where B ↪→ B ′, i.e., B′ is the one-step reduction of B.

In addition to the previous example in Section 3.2.3, we can further de�ne message passing

to the object by the unpack operator to open a package. For example, sending message get to

the cell object c is denoted by c⇐ get , which is syntactic sugar of the generic message function

getM :

c⇐ get , getM Cell c

getM = λI 6 Cell : ?→ ?. λo : Obj I.

unpack (cast↓ o) as [X, (s,m)] in (cast↓ (m s)).get

getM is parameterized by interface I and object o with such interface, where I can be any

sub-interface of Cell . We �rst use the cast↓ operator to convert the type of o from Obj I to

the existential type ∃X. X × (X → I X). Note that we extend the syntax of unpack with

5.1. Overview 75

(c⇐ bump)⇐ get

= ((cast↑[Obj Cell] pack [{x : Int}, ({x = 0}, f)] as CellT)⇐ bump)⇐ get

= (unpack (cast↓ (cast↑[Obj Cell] pack [{x : Int}, ({x = 0}, f)] as CellT)) as [X, (s,m)] in

pack [X, ((cast↓ (m s)).bump,m)] up (Obj Cell))⇐ get

↪→ (unpack (pack [{x : Int}, ({x = 0}, f)] as CellT) as [X, (s,m)] in

pack [X, ((cast↓ (m s)).bump,m)] up (Obj Cell))⇐ get

↪→ (pack [{x : Int}, ((cast↓ (f {x = 0})).bump, f)] up (Obj Cell))⇐ get

= unpack (cast↓ (pack [{x : Int}, ((cast↓ (f {x = 0})).bump, f)] up (Obj Cell)))

as [X, (s,m)] in (cast↓ (m s)).get

= unpack (cast↓ cast↑[Obj Cell] (pack [{x : Int}, ((cast↓ (f {x = 0})).bump, f)] as CellT))

as [X, (s,m)] in (cast↓ (m s)).get

↪→ unpack (pack [{x : Int}, ((cast↓ (f {x = 0})).bump, f)] as CellT)

as [X, (s,m)] in (cast↓ (m s)).get

↪→ (cast↓(f ((cast↓ (f {x = 0})).bump))).get

↪→ (cast↓(f [(cast↓ (f {x = 0})).bump])).get

↪→ { get = ((cast↓ (f {x = 0})).bump).x, set = λn : Int . {x = n},
bump = {x = ((cast↓ (f {x = 0})).bump).x+ 1} }.get

↪→ ((cast↓ (f {x = 0})).bump).x

↪→ ((cast↓ f [{x = 0}]).bump).x

↪→ ({ get = {x = 0}.x, set = λn : Int . {x = n},
bump = {x = {x = 0}.x+ 1} }.bump).x

↪→ {x = {x = 0}.x+ 1}.x ↪→ · · · ↪→ 1

Figure 5.1. Evaluation of (c⇐ bump)⇐ get

simple pattern matching on pairs for brevity. The hidden state is unpacked as s with type X . The

function containing methods is m with type X → I X . The record of methods can be obtained

by applying m to s. Noting that the subtyping relation I X 6 Cell X holds, the type of m s

can be converted from I X to Cell X by subsumption. Another cast↓ further reduces Cell X to

record type for accessing the member get . The encoding of message bump is similar but needs to

repack the resulting object:

c⇐ bump , bumpM Cell c

bumpM = λI 6 Cell : ?→ ?. λo : Obj I.

unpack (cast↓ o) as [X, (s,m)] in

pack [X, ((cast↓ (m s)).bump,m)] up (Obj I)

since the bump method returns a record but not an object. The extra pack here is required to

create a new object using the result of bump as the new hidden state.

Similarly to the original example [Bruce et al. 1999], we can examine the encoding by evalu-

ating the expression (c ⇐ bump) ⇐ get using call-by-name reduction (↪→). In Figure 5.1, we

show the evaluation steps of the expression (c⇐ bump)⇐ get using call-by-name reduction

(↪→). The evaluation result is 1 as expected, where f is the function containing the de�nition of

methods:

f = λs : {x : Int}. cast↑ [Cell {x : Int}]
{get = s.x, set = λn : Int . {x = n}, bump = {x = s.x+ 1}}

76 Chapter 5. Unifying Typing and Subtyping

and f [r] is one-step reduction of the application f r:

f [r] = cast↑ [Cell {x : Int}]
{get = r.x, set = λn : Int . {x = n}, bump = {x = r.x+ 1}}

Note that we assume reduction rules for records, existential packages and integer addition are

available in the call-by-name reduction relation (↪→). We skip steps for desugaring the message

sending operation, e.g., o ⇐ get = getM [Cell][o]. We emphasize that the object encoding

example here requires the additional feature of λI6 over PITS, i.e., higher-order subtyping, which

is essential for encoding generic message functions.

5.2 The λI6 Calculus

We present the λI6 calculus in this section. The calculus features a uni�ed syntax with only

one syntactic level, and it is based on the λI calculus [Yang et al. 2016], a speci�c PITS with

a single sort ? and the “type-in-type” axiom (see Section 3.2.1). The novelty over λI/PITS is

subtyping. To integrate subtyping, typing is uni�ed with the subtyping relation. Thus the typing

relation can be viewed as a special case of subtyping. We demonstrate the syntax, operational

and static semantics of λI6 in the rest of this section. Notice that λI6 discussed in this section

does not contain recursion, which can be supported by following PITS. We leave the discussion

of recursion to Section 5.6.

5.2.1 Syntax

Figure 5.2 shows the syntax of expressions in λI6. It follows the uni�ed syntax of Pure Type

Systems [Barendregt 1992] where terms, types and a single kind ? are de�ned in the same syntactic

category. By convention, we still use di�erent metavariables to indicate if expressions are terms

(e) or types (A,B,C , etc.).

Cast Operators. As in PITS, cast operators cast↑ and cast↓ are used for explicit type-level

computation in λI6. In particular, cast↓ and cast↑ convert the type of an expression by a one-step

reduction or expansion, respectively. cast↑ needs to be annotated with the result type of one-step

expansion, while cast↓ does not, since one-step reduction is deterministic (see Section 5.3.4).

Bounded Quanti�cation. Functions are written as λx 6 e1 : A. e2, which support bounded
quanti�cation as in System F6 [Cardelli et al. 1994]. The bound term e1 is annotated with a

type A. Correspondingly, function types written as Πx 6 e : A. B also contain a bound term

e. Function types can be dependent if x occurs free in B. The top type > is a supertype of any

well-formed term, e.g., 3 6 >. The top type generalizes the conventional top type in System F6,

which is only a supertype of well-formed types, e.g., Int 6 >.

Syntactic Sugar. Unbounded functions (λx : A. e) and function types (Πx : A. B) are not

de�ned as primitives in the syntax. With the generalized top type, we can de�ne them as syntactic

sugar of top-bounded ones, i.e., λx 6 > : A. e and Πx 6 > : A. B as shown in Figure 5.2. We

also treat arrow types A→ B as syntactic sugar of Πx : A. B if x does not occur free in B .

5.2. The λI6 Calculus 77

Expressions e,A,B ::= x | ? | > | e1 e2 | cast↑ [A] e | cast↓ e
| λx 6 e1 : A. e2 | Πx 6 e : A. B

Contexts Γ ::= ∅ | Γ, x 6 e : A
Inert Terms u ::= x | > | u e | cast↓ u
Values v ::= ? | λx 6 e1 : A. e2 | Πx 6 e : A. B | cast↑ [A] e | u
Syntactic Sugar λx : A. e , λx 6 > : A. e

Πx : A. B , Πx 6 > : A. B

A→ B , Πx : A. B where x 6∈ FV(B)

Figure 5.2. Syntax

Context. The syntax of context Γ is de�ned in Figure 5.2. The variable binding only has the

bounded form x 6 e : A where the bound term e has type A. Similar to the treatment of

unbounded functions above, we can treat an unbounded variable binding as the syntactic sugar

of a top-bounded binding, i.e., Γ, x : A , Γ, x 6 > : A.

5.2.2 Operational Semantics

Figure 5.3 shows the de�nition of one-step reduction (↪→), which is used for both evaluation and

type conversion (via cast operators). It follows the call-by-name style and is weak-head. R-Beta

performs the beta reduction and does not require the argument to be a value. R-CastElim cancels

consecutive cast↓ and cast↑. R-App and R-CastDn perform reduction at the head term of an

application and the inner term of cast↓, respectively.

Since the reduction relation (↪→) is also used for type conversion, we may encounter open
terms during reduction. However, some open terms are stuck terms that are not reducible by

↪→. For example, an application starting with a variable: x e1 e2 . . . en. Also, as the top type is

generalized, assuming it is a supertype of an n-ary function, we can have a well-formed but stuck

term such as > e1 e2 . . . en. Furthermore, if we replace x and > in both stuck terms by cast↓ x

and cast↓> respectively, they still cannot be reduced.

We introduce a syntactic category called inert terms to cover such stuck terms. The terminology

is inspired by the �reball calculus [Paolini and Della Rocca 1999; Accattoli and Guerrieri 2016].

Figure 5.2 shows the de�nition of inert terms, ranged over by metavariable u. Two base inert

terms are variables and the top type. Compound inert terms are either an application leading

with an inert term, i.e., u e , or down-cast inert term, i.e., cast↓ u . We treat inert terms as values.

Figure 5.2 shows the syntax of values, ranged over by metavariable v, as shown in Figure 5.2. A

value can either be the kind ?, a function, a function type, a cast↑ term or an inert term.

There are several alternative designs on reduction rules and syntax of values, e.g., beta-top

(β>) reduction [Pierce and Ste�en 1997] and cast↑ [A] v as a value [Pierce 2002; Yang et al. 2016].

We will discuss these designs and their trade-o�s later in Section 5.6.

5.2.3 Static Semantics

Figure 5.4 shows the rules of static semantics, including two judgment forms: context well-

formedness ` Γ and uni�ed subtyping Γ ` e1 6 e2 : A. The uni�ed subtyping judgment

Γ ` e1 6 e2 : A serves as both subtyping and typing judgment. It can be interpreted as “e1 is a

subtype of e2 and both of them have type A”. The inference rules are developed to satisfy such

interpretation. For brevity, if e1 and e2 are the same (i.e. e1 = e2 = e), we use the syntactic

78 Chapter 5. Unifying Typing and Subtyping

e1 ↪→ e2 (Call-by-name Reduction)

R-Beta

(λx : A. e1) e2 ↪→ e1[x 7→ e2]

R-App

e1 ↪→ e ′1
e1 e2 ↪→ e ′1 e2

R-Mu

µx : A. e ↪→ e[x 7→ µx : A. e]

R-Castdn

e ↪→ e ′

cast↓ e ↪→ cast↓ e ′

R-CastElim

cast↓ (cast↑ [A] e) ↪→ e

Figure 5.3. Operational semantics

sugar Γ ` e : A (see Figure 5.4), which also has the same form of typing judgment in traditional

systems. We also use Γ ` A : ? to check if type A is well-formed, i.e., has the kind ?. Thus in λI6,

subtyping, typing and well-formedness of types are all uni�ed by the uni�ed subtyping judgment:

Uni�ed Subtyping Γ ` e1 6 e2 : A

Typing Γ ` e : A , Γ ` e 6 e : A

Well-formed Types Γ ` A : ? , Γ ` A 6 A : ?

A key bene�t of uni�ed subtyping is that the mutual dependency issue between typing and

subtyping found in many traditional higher-order subtyping systems can be avoided since typing

is just a special case of subtyping.

The context well-formedness judgment ` Γ is de�ned inductively on the structure of Γ.

Whenever adding a fresh binding x 6 e : A to the context Γ, the judgment ensures e has a

well-formed type A.

We brie�y introduce the basic rules and discuss the rest in detail. S-Ax de�nes the re�exivity

of the kind ? and follows the “type-in-type” axiom [Cardelli 1986b] for the typing of ?. S-VarRefl

de�nes the re�exivity of a variable and its typing by looking up the context. S-VarTrans de�nes

the variable lookup followed by transitivity, which follows the algorithmic version of System

F6 [Curien and Ghelli 1992].

Generalized Top Type. S-Top de�nes subtyping for the generalized top type: a supertype of

any term e which has the same type A as e. A special case is when e is also a top type. For this

case we need to de�ne the re�exivity of top type as in the rule S-TopRefl, which indicates that

the top type can have any well-formed type A. In other words, any well-formed type can be

inhabited by the generalized top type, which causes logical inconsistency. Note that allowing

“type-in-type” axiom in S-Ax already brings logical inconsistency [Barendregt 1992]. Our goal is

to investigate the calculus for traditional programming that allows general recursion, which is

logically inconsistent any way. Thus, we do not consider generalized top type or “type-in-type”

axiom problematic. With top type generalized, bounded and unbounded quanti�cation are uni�ed,

which signi�cantly simpli�es the system.

Functions and Function Types. S-Abs de�nes the subtyping relation between functions,

which follows the invariant rule for type operators in System Fω6 [Pierce and Ste�en 1997]. It

requires the bounds and argument types being compared to be identical. The �rst line of premises

in S-Abs checks the well-formedness of binding. The second line of premises checks if the function

bodies are covariant and their type is well-formed.

5.2. The λI6 Calculus 79

` Γ Context Well-formedness
WU-Empty

` ∅

WU-Cons

Γ ` e : A Γ ` A : ?

` Γ, x 6 e : A

Γ ` e1 6 e2 : A (Uni�ed Subtyping)

S-Ax

` Γ

Γ ` ? 6 ? : ?

S-VarRefl

` Γ x 6 e : A ∈ Γ

Γ ` x 6 x : A

S-VarTrans

x 6 e1 : A ∈ Γ Γ ` e1 6 e2 : A

Γ ` x 6 e2 : A

S-Top

Γ ` e : A

Γ ` e 6 > : A

S-TopRefl

Γ ` A : ?

Γ ` > 6 > : A

S-Abs

Γ ` e1 : A
Γ ` A : ? Γ, x 6 e1 : A ` e2 6 e ′2 : B

Γ, x 6 e1 : A ` B : ?

Γ ` (λx 6 e1 : A. e2) 6 (λx 6 e1 : A. e ′2) : Πx 6 e1 : A. B

S-App

Γ ` e1 6 e2 : Πx 6 e3 : B . C Γ ` A 6 e3 : B

Γ ` e1 A 6 e2 A : C [x 7→ A]

S-Prod

Γ ` A′ 6 A : ?
Γ ` e : A′ Γ ` A : ? Γ, x 6 e : A ` B : ?

Γ, x 6 e : A′ ` B 6 B ′ : ?

Γ ` (Πx 6 e : A. B) 6 (Πx 6 e : A′. B ′) : ?

S-CastUp

Γ ` B : ? Γ ` e1 6 e2 : A B ↪→ A

Γ ` cast↑ [B] e1 6 cast↑ [B] e2 : B

S-CastDn

Γ ` B : ? Γ ` e1 6 e2 : A A ↪→ B

Γ ` cast↓ e1 6 cast↓ e2 : B

S-Sub

Γ ` e1 6 e2 : A Γ ` A 6 B : ?

Γ ` e1 6 e2 : B

Syntactic Sugar Γ ` e : A , Γ ` e 6 e : A

Figure 5.4. Static semantics

S-Prod de�nes the relation between function types. Unlike S-Abs, it only requires the bounds

to be identical. The argument types can vary and are contravariant. Such design follows the Kernel
Fun variant [Cardelli and Wegner 1985] of System F6. S-Prod can be viewed as a combination of

the subtyping rules for arrow types and universal types of System F6:

FS-Arrow

∆ ` T1 6 U1 ∆ ` U2 6 T2

∆ ` (U1 → U2) 6 (T1 → T2)

FS-Forall

∆,X 6 U ` T1 6 T2

∆ ` (∀X 6 U . T1) 6 (∀X 6 U . T2)

The �rst premise of S-Prod checks the contravariance of argument types, similar to the rule for

arrow types. The last premise checks the covariance of co-domains of function types with bound

�xed, similar to the rule for universal types. Other premises check the well-formedness.

Pointwise Subtyping. S-App de�nes subtyping between applications and uses a pointwise
subtyping rule originated from System Fω6 [Pierce and Ste�en 1997], which is also used in many

systems with higher order subtyping [Hutchins 2010; Aspinall and Compagnoni 1996; Zwanenburg

1999]. When comparing two applications, we require the arguments to be identical and only

compare the head terms, equivalently to type operators in Fω6 . The �rst premise of S-App ensures

the head term to have a function type, e.g., Πx 6 e3 : B . C . The second premise checks the

bound and typing requirements: if the argument A is a subtype of e3 and A has the type B.

80 Chapter 5. Unifying Typing and Subtyping

Explicit Casts and Syntactic Equality. S-CastUp and S-CastDn are rules for explicit cast

operators. They can be seen as a generalization of typing rules of fold and unfold from iso-

recursive types (see Section 4.1.4). Weak-head reduction (↪→) is used for type-level conversion.

Note that when comparing cast↑ terms, we require the annotations to be the same. S-Sub is

the subsumption rule. The second premise checks the subtyping relation between well-formed

types by reusing the uni�ed subtyping judgment. Note that S-Sub does not subsume the implicit

conversion rule, which can be found in Fω6 and Pure Type Systems. Because the uni�ed subtyping

judgment does not subsume beta conversion, i.e., (λx : ?. x) Int 6 Int does not hold. As a

consequence, types of expressions are equal only up to syntactic equality (i.e. alpha equality),

but not beta equality. Nevertheless, we can recover type-level computation through explicit cast

operators.

Algorithmic up to Subtyping. The uni�ed subtyping rules shown in Figure 5.4 are declarative
because of the subsumption rule S-Sub. But the system is almost algorithmic: if we ignore the

typing result and only consider the subtyping part, the system becomes algorithmic. Like the

algorithmic version of System F6, there is no built-in transitivity rule de�ned in λI6. Actually,

transitivity can be proved from other rules (see Section 5.3.2).

5.3 The Metatheory of Unified Subtyping

In this section, we discuss the metatheory of λI6 by focusing on two main targets: transitivity

and type safety. We emphasize here that in previous work the metatheory for the combination

between dependent types and subtyping was a key di�culty, greatly due to the entanglement

between the metatheory of subtyping and typing. With uni�ed subtyping we develop a single

metatheory for the new relation instead. Traditional theorems related to the metatheory of typing

and subtyping can then be viewed as particular instantiations of the uni�ed subtyping theorems.

Because the uni�ed subtyping relation is new, working out the metatheory for our system actually

required �guring out which theorems to prove (i.e. what form should they have); and in which

order to prove them. It is crucial (and non-trivial) to prove the right theorems in the correct

order. Nevertheless, once the form of the theorems and the order in which they should be proved

are set, then the proofs can actually be done with simple techniques similar to those used in

more traditional systems. The dependency diagram of main lemmas in this section is shown in

Figure 5.5.

5.3.1 Basic Lemmas

Before going to the proof of transitivity, we �rst discuss several important basic lemmas including

re�exivity, weakening, consistency of typing and narrowing.

Re�exivity. The subtyping relation in System F6 is re�exive, i.e., ∆ ` T 6 T holds for any

well-formed type T and context ∆. Since uni�ed subtyping in λI6 tracks typing results, the

relation in re�exive form, i.e., Γ ` e 6 e : A, works like a typing judgment Γ ` e : A (recall the

syntactic sugar in Figure 5.4). Re�exivity does not hold for arbitrary e and A. However re�exivity

does hold for any well-(sub)typed terms. That is:

Lemma 5.3.1 (Re�exivity). If Γ ` e1 6 e2 : A, then both Γ ` e1 : A and Γ ` e2 : A hold.

5.3. The Metatheory of Unified Subtyping 81

Type Preservation (5.3.13)

Generalized Subtype Preservation (5.3.15)

Substitution (5.3.10)

Right Reflexivity (5.3.3)

Correctness of Types (5.3.11)

Weakening (5.3.4)

Left Reflexivity (5.3.2)

Bound Narrowing (5.3.7)

Transitivity (5.3.9)

Type Narrowing (5.3.6)

Consistency of Typing (5.3.5)

Figure 5.5. Dependency of lemmas for the metatheory of uni�ed subtyping

This lemma is also called validity in some literature [Abel and Rodriguez 2008]. Here we call

it “re�exivity” because conclusions are still (uni�ed) subtyping relations in re�exive form. It

also meets the interpretation of uni�ed subtyping mentioned in Section 5.2.3. We separate the

re�exivity lemma into two sub-lemmas by dividing the conclusion:

Lemma 5.3.2 (Left Re�exivity). If Γ ` e1 6 e2 : A, then Γ ` e1 : A holds.

Lemma 5.3.3 (Right Re�exivity). If Γ ` e1 6 e2 : A, then Γ ` e2 : A holds.

Left re�exivity can be proved by induction on the derivation of Γ ` e1 6 e2 : A. However, right

re�exivity is di�cult to prove due to the generalized top type. Consider the case of S-Top, i.e.,

Γ ` e 6 > : A. We know Γ ` e : A from the premise. The target Γ ` > : A requires A to be

well-formed, i.e., Γ ` A : ?, as indicated by the premise of S-TopRefl. To prove Γ ` A : ? from

Γ ` e : A, we need a lemma called correctness of types (Lemma 5.3.11), which is not available

currently. We will show the full proof later in Section 5.3.3. Currently without right re�exivity,

we add redundant premises in typing rules to simplify the proofs. For example, in rule S-Prod,

the third premise Γ ` A : ? is derivable from the �rst premise Γ ` A′ 6 A : ? by right re�exivity.

Once right re�exivity is shown, such additional premises can be removed without changing the

type system.

Weakening. The weakening lemma is standard:

Lemma 5.3.4 (Weakening). If Γ1,Γ3 ` e1 6 e2 : A and ` Γ1,Γ2,Γ3, then Γ1,Γ2,Γ3 ` e1 6 e2 :

A.

The proof is by induction on the derivation of Γ1,Γ3 ` e1 6 e2 : A. The only interesting case

is when S-Prod is the last derivation. The last premise of S-Prod adds binding x 6 e : A′ into

the context Γ. We need to ensure A′ is well-formed, i.e., Γ ` A′ : ?, as required by context

well-formedness. Though not included in the premise, it can be derived by applying left re�exivity

(Lemma 5.3.2) to the �rst premise, i.e., Γ ` A′ 6 A : ?.

Consistency of Typing. We prove a simple yet important lemma, called consistency of typing:

82 Chapter 5. Unifying Typing and Subtyping

Lemma 5.3.5 (Consistency of Typing). If Γ ` e1 : A and Γ ` e1 6 e2 : B , then Γ ` e1 6 e2 : A.

The proof is by induction on the derivation of Γ ` e1 6 e2 : B . This lemma is the key to

decoupling typing from uni�ed subtyping. To prove Γ ` e1 6 e2 : A, we can individually show

1) e1 has the type A and 2) e1 is a subtype of e2 regardless of typing, as long as there is some type

B such that Γ ` e1 6 e2 : B .

Narrowing. We have two narrowing lemmas in λI6, type narrowing and bound narrowing:

Lemma 5.3.6 (Type Narrowing). Given Γ1, x 6 e : B ,Γ2 ` e1 6 e2 : C , if Γ1 ` A 6 B : ? and
Γ1 ` e : A, then Γ1, x 6 e : A,Γ2 ` e1 6 e2 : C .

Lemma 5.3.7 (Bound Narrowing). If Γ1, x 6 e : B ,Γ2 ` e1 6 e2 : C and Γ1 ` e ′ 6 e : B , then
Γ1, x 6 e ′ : B ,Γ2 ` e1 6 e2 : C .

As indicated by the name, for a binding x 6 e : B in the context, type narrowing changes its type

from B to a subtype A, while bound narrowing changes its bound from e to a subtype e′. We only

prove type narrowing here, since bound narrowing depends on transitivity, as will be discussed

later in Section 5.3.3. The type narrowing lemma is proved by induction on the derivation of

Γ1, x 6 e : B ,Γ2 ` e1 6 e2 : C . The only interesting case is when the last derivation uses

S-VarTrans, i.e., e1 is a variable. It is easy to prove by the induction hypothesis when e1 is not x.

When e1 = x, we know B = C and our target is to show Γ1, x 6 e : A,Γ2 ` x 6 e2 : B . By

applying the subsumption rule S-Sub and S-VarTrans, our target becomes Γ1, x 6 e : A,Γ2 `
e 6 e2 : A. Note that we have Γ1, x 6 e : A,Γ2 ` e 6 e2 : B by the induction hypothesis. The

only gap is the typing result, which should be A but not B. Thus, we can apply the consistency

of typing lemma (Lemma 5.3.5) and prove Γ1, x 6 e : A,Γ2 ` e : A instead, which is immediate

by weakening (Lemma 5.3.4).

5.3.2 Transitivity

Transitivity is a desirable property of systems with subtyping. Declarative presentations of calculi

often include a built-in transitivity rule:

Γ ` e1 6 e2 : A Γ ` e2 6 e3 : A

Γ ` e1 6 e3 : A
S-Trans

This simpli�es the proof of lemmas such as narrowing and substitution. However, noticing that e1

and e3 can be in any form, the rule can be applied any time during derivation, which complicates

the inversion of subtyping judgments. A process called transitivity elimination [Pierce 2002;

Pierce and Ste�en 1997; Compagnoni 1995] can be used to avoid such complexity brought by

the transitivity rule. The declarative system is reformulated into an algorithmic one without a

transitivity rule. The transitivity property is then proved against the algorithmic system. Similarly,

we formulate λI6 without a built-in transitivity rule but only with a base case for variables (i.e.

S-VarTrans), as mentioned in Section 5.2.3. Next we show the proof of transitivity in λI6.

First, we need to generalize the form of transitivity. The form of rule S-Trans is too restricted:

conditions are required to have the same type. This causes issues when both conditions are

5.3. The Metatheory of Unified Subtyping 83

derived from S-Sub:

S-Sub

Γ ` e1 6 e2 : B1 Γ ` B1 6 A : ?

Γ ` e1 6 e2 : A

S-Sub

Γ ` e2 6 e3 : B2 Γ ` B2 6 A : ?

Γ ` e2 6 e3 : A

Γ ` e1 6 e3 : A
S-Trans

We only know B1 and B2 are both subtypes of A but cannot determine the relation between them.

The induction hypothesis cannot be applied since it requires B1 and B2 to be the same. Thus, we

generalize the property into

Γ ` e1 6 e2 : A Γ ` e2 6 e3 : B

Γ ` e1 6 e3 : A
S-Trans2

where the conditions are allowed to have di�erent types and the conclusion needs to have the

same type as the �rst condition. The proof of the generalized transitivity is standard [Pierce 2002]

by induction on the size of e2 and an inner induction on the derivation of the �rst condition

Γ ` e1 6 e2 : A. We only discuss the interesting case when both derivations end with S-Prod.

We have e1 = Πx 6 e : A1. B1, e2 = Πx 6 e : A2. B2, and e3 = Πx 6 e : A3. B3, with

Γ ` A2 6 A1 : ? (1) Γ, x 6 e : A2 ` B1 6 B2 : ? (2)

Γ ` A3 6 A2 : ? (3) Γ, x 6 e : A3 ` B2 6 B3 : ? (4)

For clarity, we omit all derivations for well-formedness checking in the discussion, which can

be trivially proved by the induction hypothesis. Our target is to prove Γ ` A3 6 A1 : ? and

Γ, x 6 e : A3 ` B1 6 B3 : ?. The �rst target can be obtained by combining (1) and (3) using the

outer induction hypothesis since A2 has smaller size than e2. Noting that the context of the (2) is

di�erent from (4) and the second target, we use Lemma 5.3.6 to narrow the type of the binding

to obtain Γ, x 6 e : A3 ` B1 6 B2 : ?. Then we can similarly obtain the second target by the

outer induction hypothesis since the size of B2 is smaller than e2. We conclude the generalized

transitivity by the following lemma:

Lemma 5.3.8 (Generalized Transitivity). If Γ ` e1 6 e2 : A and Γ ` e2 6 e3 : B , then
Γ ` e1 6 e3 : A.

Thus, the original transitivity is an immediate corollary:

Lemma 5.3.9 (Transitivity). If Γ ` e1 6 e2 : A and Γ ` e2 6 e3 : A, then Γ ` e1 6 e3 : A.

As shown in Figure 5.5, the proof of generalized transitivity depends on type narrowing (Lemma

5.3.6) and type narrowing depends on consistency of typing (Lemma 5.3.5). Actually, we can view

consistency of typing as a special case of generalized transitivity by letting e1 = e2 = e′1 and

e3 = e′2. This indicates that type narrowing can also be proved using generalized transitivity. Thus,

an alternative approach is to prove generalized transitivity and type narrowing simultaneously. A

potential issue is that this approach makes these two lemmas mutually dependent. We choose

to �rst prove a weaker version of generalized transitivity, i.e., consistency of typing, which has

a much simpler proof. Then we can show type narrowing before transitivity without causing

circularity.

84 Chapter 5. Unifying Typing and Subtyping

5.3.3 Basic Lemmas, Revisited

Recall that in Section 5.3.1 we leave two lemmas unproved, i.e., right re�exivity (Lemma 5.3.3)

and bound narrowing (Lemma 5.3.7), which depend on other lemmas that were not available yet.

As we have proved transitivity in Section 5.3.2, we can recover the proof of these two lemmas.

Bound Narrowing. Similar to type narrowing (Lemma 5.3.6), bound narrowing (Lemma 5.3.7)

is proved by induction on the derivation of Γ1, x 6 e : B ,Γ2 ` e1 6 e2 : C . We consider the

interesting case when the derivation ends with S-VarTrans. If e1 is not x, it is trivial to prove

by the induction hypothesis. If e1 = x, we have B = C and our target is to show Γ1, x 6 e ′ :

B ,Γ2 ` x 6 e2 : B . By the induction hypothesis, we have Γ1, x 6 e ′ : B ,Γ2 ` e 6 e2 : B .

Noticing that by weakening (Lemma 5.3.4), we can obtain Γ1, x 6 e ′ : B ,Γ2 ` e ′ 6 e : B from

the second condition. By transitivity (Lemma 5.3.9), we have Γ1, x 6 e ′ : B ,Γ2 ` e ′ 6 e2 : B .

Also noticing that x 6 e ′ : B ∈ Γ1, x 6 e ′ : B ,Γ2, we obtain the target by the rule S-VarTrans.

Substitution. We show that the substitution lemma holds in λI6:

Lemma 5.3.10 (Substitution). If Γ1, x 6 e : B ,Γ2 ` e1 6 e2 : A and Γ1 ` e ′ 6 e : B , then
Γ1,Γ2[x 7→ e ′] ` e1[x 7→ e ′] 6 e2[x 7→ e ′] : A[x 7→ e ′].

The proof is standard by induction on the derivation of the �rst condition. It is similar to the proof

of bound narrowing. Transitivity and weakening are also required for the case when S-TransVar

is the last derivation. Note that the second condition Γ1 ` e ′ 6 e : B contains both subtyping

requirement (e′ is a subtype of e) and typing requirement (e′ has type B). Thus, the substitution

lemma in λI6 has only one form.

Right Re�exivity. As mentioned in Section 5.3.1, right re�exivity (Lemma 5.3.3) depends on

correctness of types:

Lemma 5.3.11 (Correctness of Types). If Γ ` e1 6 e2 : A, then Γ ` A : ?.

But correctness of types also depends on right re�exivity. Consider the last derivation of Γ `
e1 6 e2 : A is S-Sub, where the premises are Γ ` e1 6 e2 : B and Γ ` B 6 A : ?. The conclusion

Γ ` A : ? holds if we apply right re�exivity to the second premise. Thus, we prove these two

lemmas simultaneously by induction on the derivation of Γ ` e1 6 e2 : A. Note that the proof of

correctness of types also depends on the substitution lemma (Lemma 5.3.10) when the derivation

ends with S-App.

With both left and right re�exivity proved, we conclude the re�exivity (Lemma 5.3.1) holds

and the interpretation of uni�ed subtyping in Section 5.2.3 is correct. One key insight here is that

we do not prove the full re�exivity lemma �rst. Otherwise, it will cause circular dependency in

the metatheory (imagine merging two nodes of left and right re�exivity in Figure 5.5).

5.3.4 Type Safety

We prove type safety by showing type preservation and progress lemmas [Wright and Felleisen

1994]. Though both lemmas have the same form as traditional systems, the typing judgment is

just syntactic sugar of uni�ed subtyping, as mentioned in Section 5.2.3.

5.3. The Metatheory of Unified Subtyping 85

Determinacy of Reduction. We �rst show that the one-step reduction relation is deterministic:

Lemma 5.3.12 (Determinacy of Reduction). If e ↪→ e1 and e ↪→ e2, then e1 = e2.

The proof is straightforward by induction on the derivation of e ↪→ e1. Note that the equality used

in the conclusion is syntactic equality. The result of type-level reduction in the rule S-CastDn

(i.e. type B) is unique. Thus, the cast↓ term is not required to be annotated with the result type.

Type Preservation. Type preservation, also known as subject reduction [Wright and Felleisen

1994], states that reducing a term does not change its type:

Lemma 5.3.13 (Type Preservation). If Γ ` e : A and e ↪→ e ′, then Γ ` e ′ : A.

However, if we try to directly prove this lemma by induction on the derivation of Γ ` e 6 e : A

(i.e. Γ ` e : A), the proof will get stuck. Consider the last derivation is S-CastDn and e ↪→ e ′ is

an instance of R-CastElim with e = cast↓ (cast↑ [B ′] e) and e′ = e. We have Γ ` cast↑ [B ′] e : B

and B ↪→ A. By inversion of S-CastUp, we can obtain Γ ` e : A′, B ′ ↪→ A′ and Γ ` B ′ 6 B : ?.

Our target is to show Γ ` e : A. If we can prove Γ ` A′ 6 A : ?, then the target can be obtained

immediately by the subsumption rule S-Sub. The relation is shown as follows:

B′ B

A′ A

6

6

The subtyping relation in the second line requires a proof, which can be shown by the following

lemma with a more general typing result other than the kind ?:

Lemma 5.3.14 (Subtype Preservation). If Γ ` e1 6 e2 : A, e1 ↪→ e ′1, e2 ↪→ e ′2, then Γ ` e ′1 6
e ′2 : A.

We call this lemma subtype preservation indicating that the uni�ed subtyping relation is preserved

by reduction. Type preservation is just a special case of it when e1 = e2 = e and e ′1 = e ′2 =

e′. A naïve proof is by induction on the derivation of Γ ` e1 6 e2 : A. The substitution

lemma (Lemma 5.3.10) is required for the case when the derivation ends with S-App and both

reductions are instances of R-Beta. However, the proof gets stuck when the derivation ends with

S-CastDn, and both reductions are instances of R-CastElim with e1 = cast↓ (cast↑ [B] e ′1) and

e2 = cast↓ (cast↑ [B] e ′2). The induction hypothesis does not work as it requires cast↑ [B] e ′1 and

cast↑ [B] e ′2 to be reducible, while both of them are values (see Figure 5.2). To solve this issue, we

need to generalize the subtype preservation lemma into the following one:

Lemma 5.3.15 (Generalized Subtype Preservation). Given that Γ ` e1 6 e2 : A holds,

1. if both e1 and e2 are cast↑ terms, i.e., e1 = cast↑ [B] e ′1 and e2 = cast↑ [B] e ′2, and A ↪→ A′,
B ↪→ B ′, then Γ ` e ′1 6 e ′2 : A′;

2. otherwise, if e1 ↪→ e ′1 and e2 ↪→ e ′2, then Γ ` e ′1 6 e ′2 : A.

Now the proof by induction can proceed with the generalized lemma. For the case which was

stuck in the previous attempt, the conclusion is exactly the induction hypothesis that follows the

case (1) of the lemma. The non-trivial case is when the derivation ends with the subsumption rule

86 Chapter 5. Unifying Typing and Subtyping

S-Sub. When e1 and e2 are not both cast↑ terms, the proof is trivial by the induction hypothesis.

Otherwise, we have e1 = cast↑ [C] e ′1 and e2 = cast↑ [C] e ′2 such that

Γ ` cast↑ [C] e ′1 6 cast↑ [C] e ′2 : B (1) Γ ` B 6 A : ? (2)

A ↪→ A′ (3) C ↪→ C ′ (4)

Our target is to show Γ ` e ′1 6 e ′2 : A′. Note that the annotations of cast↑ in both terms must be

the same (i.e. C) by S-CastUp. By inversion of (1), we have Γ ` C 6 B : ?. We �rst show there

exists some B′ such that B ↪→ B ′ by proving the following lemma:

Lemma 5.3.16 (Reduction Exists in the Middle). Given that Γ ` C 6 B : D and Γ ` B 6 A : D,
if C ↪→ C ′ and A ↪→ A′, then there exists B′ such that B ↪→ B ′.

Then by induction hypothesis, we have Γ ` e ′1 6 e ′2 : B ′ from (1) by the �rst case of lemma and

Γ ` B ′ 6 A′ : ? from (2) by the second (1st case impossible). Thus, we can prove the target by S-

Sub and conclude Lemma 5.3.15. Finally, it is trivial to show that the original subtype preservation

lemma is a corollary of the generalized one. Thus, we can conclude the type preservation lemma

which is an immediate corollary of subtype preservation.

Progress. Progress states that well-formed terms do not get stuck:

Lemma 5.3.17 (Progress). If ∅ ` e : A then either e is a value v or there exists e ′ such that
e ↪→ e ′.

As we mentioned in Section 5.2.2, the type-level reduction in cast operators may encounter open

terms. We prove a stronger progress lemma with a non-empty context:

Lemma 5.3.18 (Generalized Progress). If Γ ` e : A then either e is a value v or there exists e ′

such that e ↪→ e ′.

Then the original progress lemma is an immediate corollary of the stronger version. The proof is

straightforward by induction on the derivation of Γ ` e : A. The de�nition of values is critical to

the proof as it covers many stuck terms with variables and the top type (see also the discussion of

inert terms in Section 5.2.2).

5.4 Algorithmic Version

As we mentioned in Section 5.2.3, the uni�ed subtyping judgment presented in Figure 5.4 is

declarative but almost algorithmic. The typing part is declarative because of the subsumption

rule, while the subtyping part is algorithmic. If we separately check the typing part and subtyping

part, we just need to develop an algorithm for type checking. We use bidirectional type check-
ing [Pierce and Turner 2000], a standard technique to develop the type checking algorithm for

type systems with subtyping. We show the soundness and completeness of the type and subtype

checking algorithm with respect to the original uni�ed subtyping judgment. Developing a uni�ed

algorithmic system is left as future work, as will be discussed in Section 8.2.

5.4. Algorithmic Version 87

|e| Erasure of Annotations

|x | = x
|?| = ?
|>| = >

e1 e2	=	e1		e2		
λx 6 e1 : A. e2	= λx 6	e1	:	A	.	e2
Πx 6 e : A. B	= Πx 6	e	:	A	.	B
cast↑ [A] e	= cast↑ [A]	e		
cast↓ e	= cast↓	e				
(e : A)	=	e				

|Γ| Erasure of Annotations in Contexts

|∅| = ∅
|Γ, x 6 e : A| = |Γ| , x 6 |e| : |A|

Figure 5.6. Erasure of annotations

Γ ` e1 6 e2 (Algorithmic Subtyping)

AS-Star

Γ ` ? 6 ?

AS-VarRefl

x 6 e : A ∈ Γ

Γ ` x 6 x

AS-VarTrans

x 6 e1 : A ∈ Γ Γ ` e1 6 e2

Γ ` x 6 e2

AS-Top

Γ ` e 6 >

AS-App

Γ ` e1 6 e2

Γ ` e1 A 6 e2 A

AS-Abs

Γ, x 6 |e3| : |A| ` e1 6 e2

Γ ` (λx 6 e3 : A. e1) 6 (λx 6 e3 : A. e2)

AS-Prod

Γ ` C 6 A Γ, x 6 |e| : |C | ` B 6 D

Γ ` (Πx 6 e : A. B) 6 (Πx 6 e : C . D)

AS-CastUp

Γ ` e1 6 e2

Γ ` cast↑ [A] e1 6 cast↑ [A] e2

AS-CastDn

Γ ` e1 6 e2

Γ ` cast↓ e1 6 cast↓ e2

Figure 5.7. Algorithmic subtyping

5.4.1 Bidirectional Type Checking

We extend the syntax of λI6 with annotations, denoted by (e : A) (parentheses are required). We

use |e| to denote the erasure of all annotation from a term and |Γ| for the erasure of a context

(see Figure 5.6). The algorithmic subtyping judgment is denoted by Γ ` e1 6 e2 in Figure 5.7. It

is developed by removing the typing part of uni�ed subtyping rules in Figure 5.4.

The algorithmic typing judgment has two directions: the checking judgment Γ ` e ⇐ A and

the synthesis judgment Γ ` e ⇒ A, as shown in Figure 5.8. For brevity, we omit the context

well-formedness in all algorithmic typing judgments. Typing rules are developed by following

the typing part of uni�ed subtyping. Most syntactic forms are typed by the synthesis judgment,

including functions and function types since both binders are annotated. Two syntactic forms

that are not annotated require the checking judgment, namely the top type (>) and cast↓ term.

The subsumption rule from the uni�ed subtyping is adapted to the checking direction.

88 Chapter 5. Unifying Typing and Subtyping

Γ ` e ⇒ A (Synthesis)

AT-Ax

Γ ` ?⇒ ?

AT-Var

x 6 e : A ∈ Γ

Γ ` x ⇒ A

AT-Abs

Γ ` e1 ⇐ |A|
Γ ` A⇐ ? Γ, x 6 |e1| : |A| ` e2 ⇒ B

Γ ` λx 6 e1 : A. e2 ⇒ Πx 6 |e1| : |A| . B

AT-App

Γ ` e ⇒ Πx 6 e3 : B . C
Γ ` A⇐ B Γ ` |A| 6 e3

Γ ` e A⇒ C [x 7→ |A|]

AT-Prod

Γ ` e ⇐ |A|
Γ ` A⇐ ? Γ, x 6 |e| : |A| ` B ⇐ ?

Γ ` Πx 6 e : A. B ⇒ ?

AT-CastUp

Γ ` B ⇐ ? Γ ` e ⇒ A |B | ↪→ |A|
Γ ` cast↑ [B] e ⇒ |B |

AT-Anno

Γ ` e ⇐ A Γ ` A⇐ ?

Γ ` (e : A)⇒ |A|

Γ ` e ⇐ A (Checking)

AT-Top

Γ ` A⇐ ?

Γ ` > ⇐ A

AT-CastDn

Γ ` B ⇐ ? Γ ` e ⇒ A |A| ↪→ |B |
Γ ` cast↓ e ⇐ B

AT-Sub

Γ ` e ⇒ A Γ ` A 6 |B | Γ ` B ⇐ ?

Γ ` e ⇐ B

AT-Chk

Γ ` e ⇒ A

Γ ` e ⇐ A

Figure 5.8. Bidirectional typing

We use erasure in the typing judgment to ensure there are no annotations in 1) the typing

result and the context, 2) the terms being compared by the algorithmic subtyping judgment, and

3) the terms checked by the reduction relation (↪→). However, if erasure is used in the typing

result of a premise using synthesis, i.e., Γ ` e ⇒ |A|, the original form of A requires guessing.

Referring to the original A in other premises renders the typing rule not algorithmic. Thus, we

make sure there is no such form of synthesis in the premises of typing rules. Note that the typing

rule is still algorithmic if the erased typing result appears in the conclusion of a synthesis rule or

a premise using checking judgment.

5.4.2 Soundness and Completeness

We show that the algorithmic subtyping and typing are both sound and complete to the original

uni�ed subtyping. We use Γ ` e ⇔ A to denote a judgment which can either be the checking

judgment Γ ` e ⇐ A or the synthesis judgment Γ ` e ⇒ A. The main theorems are stated as

follows:

Theorem 5.4.1 (Soundness of Algorithm). If Γ ` e1 ⇔ A, Γ ` e2 ⇔ A and Γ ` e1 6 e2, then
|Γ| ` |e1| 6 |e2| : |A|.

Theorem 5.4.2 (Completeness of Algorithm). If Γ ` e1 6 e2 : A, then Γ ` e1 6 e2 and there
exists e ′1 and e ′2 such that Γ ` e ′1 ⇒ A and Γ ` e ′2 ⇒ A with |e ′1| = e1 and |e ′2| = e2.

5.5. Subsumption of System F6 89

T ∗ = A Mapping of Type t∗ = e Mapping of Term

>∗ = >
X ∗ = X

(T1 → T2)∗ = Πx 6 > : T1
∗. T2

∗

(x Fresh)
(∀X 6 T1. T2)∗ = ΠX 6 T1

∗ : ?. T2
∗

x∗ = x
(λx : T . t)∗ = λx 6 > : T ∗. t∗

(t1 t2)∗ = t1
∗ t2
∗

(ΛX 6 T . t)∗ = λX 6 T ∗ : ?. t∗

(t [T])∗ = t∗ T ∗

∆∗ = Γ Mapping of Context

∅∗ = ∅
(∆, x : T)∗ = ∆∗, x 6 > : T ∗

(∆,X 6 T)∗ = ∆∗,X 6 T ∗ : ?

Figure 5.9. Translation of System F6

5.5 Subsumption of System F6

λI6 is a generalization of System F6 with dependent types. In this section, we show that λI6 can

completely subsume the Kernel Fun variant [Cardelli and Wegner 1985] of System F6. We �rst

show the translation from System F6 to λI6 and prove that the typing and subtyping judgments

of System F6 still hold in λI6 up to mapping. The full speci�cation of System F6 was presented

in Section 2.4.2 (see Figure 2.3). The full proofs are available in Appendix A.2.

5.5.1 Translating System F6 to λI6

We show the mapping (denoted by
∗
) of types, terms and contexts from System F6 to λI6 in

Figure 5.9. We use the metavariable T for types, t for terms and ∆ for contexts in System F6. The

arrow type is non-dependent and unbounded and therefore mapped to a top-bounded function

type, similar to the treatment of syntactic sugar in Figure 5.2. The universal type is mapped to the

dependent function type since X can appear in T2. The bound T1 is a proper type and mapped to

T1
∗

with kind ?. The term and type abstraction, as well as term and type binding of the context,

are treated similarly. Other mappings hold few surprises.

5.5.2 Subsumption of Typing and Subtyping

We prove that the mapped typing and subtyping relations still hold in λI6. The type system

of System F6 we used here is the algorithmic [Curien and Ghelli 1992] and Kernel Fun vari-

ant [Cardelli and Wegner 1985]. We �rst show the well-formedness of types and contexts still

hold after mapping:

Lemma 5.5.1 (Mapping of Well-formedness .). (1) If ∆ ` T , then ∆∗ ` T ∗ : ?; (2) If ` ∆, then
` ∆∗.

The proof is by simultaneous induction on the derivation of well-formedness of types ∆ ` T

and contexts ` ∆. Then we show the mapped subtyping and typing still hold:

Theorem 5.5.1 (Subsumption of Subtyping .). If ∆ ` T1 6 T2, then ∆∗ ` T1
∗ 6 T2

∗ : ?.

Theorem 5.5.2 (Subsumption of Typing .). If ∆ ` t : T , then ∆∗ ` t∗ : T ∗.

90 Chapter 5. Unifying Typing and Subtyping

The proof is straightforward by induction on the derivation of subtyping relation ∆ ` T1 6 T2

and typing relation ∆ ` t : T , respectively. Note that the mapped typing relation ∆∗ ` t∗ : T ∗

is syntactic sugar of uni�ed subtyping relation, i.e., ∆∗ ` t∗ 6 t∗ : T ∗ (see Figure 5.2).

5.6 Discussion

In this section, we discuss alternative designs for λI6 and justify their trade-o�s to the current

design.

Recursion and Recursive Types. The current syntax of λI6 does not contain any form of

recursion. Adding recursion and recursive types is easy by simply following the treatment of

recursion in PITS. We have an alternative formulation of our system (including full proofs) with

those features. However subtyping recursive types reveals an interesting problem. The typical

Amber rule [Cardelli 1986a], or even the following restricted invariant rule

Γ, x 6 > : A ` e1 6 e2 : A Γ ` A : ?

Γ ` (µx : A. e1) 6 (µx : A. e2) : A
S-MuI

does not work well with λI6. Here µx : A. e1 is a recursive type with the recursive binder x that

can appear in the body e1. The rule requires the types of recursive binders to be the same. We

add a new reduction rule to unfold a recursive type: µx : A. e ↪→ e[x 7→ µx : A. e]. In order

to keep type soundness, we need to ensure subtype preservation (Lemma 5.3.14) still holds. If

f = λy : ?. y is an identity type operator with type ?→ ?, consider

µx : ?. f x 6 µx : ?. > x

This relation holds by the rule S-MuI because we have f 6 > : ? → ? by S-Top and then

x : ? ` f x 6 > x : ? by S-App. Subtype preservation requires that the subtyping relation still

holds with both sides reduced by one step:

f (µx : ?. f x) 6 > (µx : ?. > x) (5.1)

However, (5.1) does not hold because the pointwise subtyping rule S-App requires arguments of

two applications should be the same. Thus, types are not preserved using the invariant rule for

subtyping recursive types. This issue appears to be common to most systems with higher-order
subtyping [Pierce and Ste�en 1997; Aspinall and Compagnoni 1996; Zwanenburg 1999], as it arises

from the interaction between the rules for recursive types and rules that use pointwise subtyping.

To solve this issue, we either change the S-App rule to be polarized [Ste�en 1998], or only

allow subtyping two identical recursive types. The former approach is interesting, but requires a

major modi�cation to the system. We leave that approach for future work (see Section 8.2). The

latter approach is relatively simple by using the following rule:

Γ, x 6 > : A ` e : A Γ ` A : ?

Γ ` (µx : A. e) 6 (µx : A. e) : A
S-Mu

Due to the uni�ed syntax, µx : A. e can serve as both the term-level �xpoint and recursive type.

Though full subtyping of recursive types is not possible in λI6 currently, we are still able to

5.6. Discussion 91

introduce general recursion and recursive types to the system with S-Mu. This is precisely the

approach used in our alternative formulation.

Operational Semantics. λI6 uses the same call-by-name (CBN) operational semantics that

call-by-name PITS uses (see Section 4.1). However most OO languages use call-by-value (CBV).

CBV semantics is more complicated because of the existence of dependent types and explicit casts

in λI6. We also treat cast↑ [A] e as a value (see Section 5.2.2), which follows the standard call-

by-name semantics of iso-recursive types [Harper 2013]. Such design makes the cast↑ operator

computationally relevant (see Section 4.3.1). Alternatively, we can take the approach from call-

by-value PITS (see Section 4.2), which treats cast↑ [A] v as a value and adds a reduction rule to

further reduce the inner term of cast↑. However, the alternative semantics of cast↑ leads to more

complex reduction rules and metatheory. The cast canceling rule R-CastElim (See Figure 5.3)

now needs to check if the inner term of cast↑ is a value, which requires some non-trivial changes

to current proofs of the metatheory. We will later discuss the use of call-by-value casts for typing

strong dependent sums in the next chapter (see Section 6.1.2).

Top Types. For top types, we can alternatively treat only > as a value but not > e1 . . . en,

which is an inert term (see Figure 5.2). In such design additional reduction rules similar to the

β>-reduction rules of System Fω6 [Pierce and Ste�en 1997] are needed to further reduce “stuck”

terms to values, i.e., > e ↪→ >. However, the approach of using β>-reduction needs to de�ne

reduction rules for each form of stuck terms, e.g., > e and cast↓ >, while the de�nition of inert

terms deals with stuck terms in a more uniform way.

Weak vs Full Casts. Cast operators in λI6 use the same weak-head reduction for type-level

computation. As mentioned in Section 5.1.4, certain type conversions cannot be performed by

weak-head reduction/expansion if they require reduction at non-head position, e.g., converting

Vec (1 + 1) to Vec 2. To address this limitation we can use an alternative design from the full

PITS (see Section 4.3). Full PITS uses full parallel reduction is used in cast operators, which allows

reduction at any position of a term. However the metatheory of full PITS is signi�cantly more

complicated than call-by-name/value PITS. Since weak-head reduction was simpler and su�cient

for our purposes (to model object encodings) we opted for that variant. It would be interesting to

study the full-cast variant of PITS with subtyping as well in future work.

Full Contravariance of Function Types. As mentioned in Section 5.2.3, the uni�ed subtyping

rule of function types is partially contravariant in the sense that bounds of function types are

identical, which follows the treatment of universal types in the Kernel Fun variant [Cardelli and

Wegner 1985] of System F6. An alternative is to follow the full System F6 that allows bounds to

be contravariant:

Γ ` A′ 6 A : ? Γ ` e ′ 6 e : A Γ, x 6 e ′ : A′ ` B 6 B ′ : ?

Γ ` e : A Γ ` e ′ : A′ Γ ` A : ? Γ, x 6 e : A ` B : ?

Γ ` (Πx 6 e : A. B) 6 (Πx 6 e ′ : A′. B ′) : ?
S-ProdF

We formulated an alternative system with such full contravariant rule and proved all lemmas in

Section 5.3 still hold. The corresponding Coq formalization can be found with the companion

materials of this thesis available online (See Section 1.5). However, full System F6 is proved to be

92 Chapter 5. Unifying Typing and Subtyping

undecidable [Pierce 1992]. With contravariance of bounds, λI6 using rule S-ProdF can subsume

full System F6, rendering the system undecidable. Though we have not proved the decidability of

λI6 yet, we adopt the Kernel-Fun rule in λI6 and can at least rule out the undecidability caused

by the full contravariance.

93

CHAPTER6

Iso-Types with Strong Dependent Sums

In this chapter, we present the λIΣ calculus. The motivation of proposing λIΣ is to model OOP

structures with abstract type members using dependent types and strong dependent sums. The

λIΣ calculus is a variant of λI6 and enables the combination of strong sums and dependent types.

It is based on the ideas of iso-types and uni�ed subtyping. λIΣ employs the PTS-style uni�ed

syntax and contains the single sort ? and the “type-in-type” axiom as in λI6. Moreover, λIΣ

supports impredicative polymorphism with strong sums, which usually cannot be supported

simultaneously by previous work [Harper and Mitchell 1993; Stump 2017; Bowman et al. 2017].

Impredicativity and strong sums together lead to logical inconsistency [Coquand 1986; Hook and

Howe 1986] and breaks strong normalization. Moreover, some dependently typed calculi with

subtyping, such as λP6 [Aspinall and Compagnoni 1996] and λΠ6 [Chen 1998], rely on strong

normalization to prove many desirable properties, such as transitivity and subject reduction,

which will be lost if both impredicativity and strong sums are allowed. In contrast λIΣ uses the

iso-type approach that decouples proofs from strong normalization. It enjoys the same desirable

properties as λI6, e.g., transitivity of subtyping and type-safety, which can be proved in the

absence of strong normalization.

Iso-types are used in λIΣ to type destructors of strong sums. We call this form of strong

sums iso-strong sums. Unlike the call-by-name casts in λI6, call-by-value casts are used in λIΣ

for type conversions of strong sums. The typing results of strong destructors (i.e. the second

projection and strong opening) are intermediate type-level applications instead of standard direct

substitutions. This makes it possible to solely use call-by-value casts for the required type-level

computation instead of full casts. Using call-by-value casts also makes it easy to combine uni�ed

subtyping and avoids the complex metatheory of full casts.

Notice that for simplicity reasons, several features are dropped in λIΣ so as to focus on

the development of dependent sums, such as generalized top type and bounded quanti�cation.

Nevertheless, λIΣ is still expressive enough to encode Scala-like type members and traits. Finally,

for demonstration purposes, we create a lightweight surface language Sig built on top of λIΣ. Sig

supports Scala-like type members, path-dependent types and traits by a type-directed elaboration

that produces type-sound λIΣ terms.

94 Chapter 6. Iso-Types with Strong Dependent Sums

Table 6.1. Properties of dependently typed calculi with beta equality

Features Example Calculi Properties

Π+Impredicativity λC Subject Reduction does not depend on Strong Nor-

malization.

Π+Σ+Impredicativity λC with strong sums No Strong Normalization or Logical Consistency, but

Subject Reduction holds.
Π+Subtyping λP6 and λΠ6 Transitivity & Subject Reduction depend on Strong

Normalization.

Π+Σ+Subtyping+ No known calculus Strong Normalization, Transitivity & Subject

Reduction may not hold.Impredicativity

6.1 Overview

In this section, we informally present features of λIΣ. The motivation of developing the λIΣ cal-

culus is to support various features of strong dependent sums, which are useful to model many

language constructs, including type members and traits in Scala [Odersky et al. 2004], as well as

various features of module systems in ML [MacQueen 1986]. However, it is non-trivial to combine

strong sums, dependent types and subtyping in a single system. We brie�y discuss such problem

and present our solution in λIΣ, i.e. iso-strong sums that utilize call-by-value casts without the

need of full casts. We show how to encode modular structures with strong sums by examples

written in Sig, a lightweight surface language built on top of λIΣ. The formal presentation of

λIΣ and Sig will be in Sections 6.2 and 6.4, respectively.

6.1.1 The Trouble with Impredicativity and Strong Sums

Strong sum types (Sigma-types) bring extra expressiveness over dependent function types (Pi-

types). However, it is non-trivial to combine strong sums with dependent type systems and keep

desirable properties. For example, the calculus of constructions (λC) with strong sums is logically
inconsistent [Coquand 1986; Hook and Howe 1986], since the inclusion of strong sums leads to

the subsumption of the “type-in-type” axiom. The subsumption of “type-in-type” is enabled by

the combination of strong sums and impredicativity. A system is impredicative if it contains an

impredicative sort s where certain types of sort s have quanti�ers of the sort s itself [Adams

2008]. For example, the sort ? in λC is an impredicative sort since Πx : ?. x has type ?. As a

result, strong normalization does not hold in such system and some other properties may also be

lost, e.g., the decidability of type checking, which is entangled with the normalization property in

λC (also other PTS) [van Benthem Jutting 1993].

The Problem of Adding Subtyping. Subtyping is a desirable language feature to support,

which is crucial for modeling parametric polymorphism in OOP or information hiding in ML

modules [Dreyer 2005; Leroy 1994]. However, combining subtyping and dependent types is

already di�cult (see Section 5.1.2), resulting in a more complex metatheory. In certain calculi that

support both dependent types and subtyping, several important metatheory results depend on

strong normalization. For example, in λP6 [Aspinall and Compagnoni 1996] and λΠ6 [Castagna

and Chen 2001; Chen 1998], both subject reduction and transitivity of subtyping rely on strong

normalization. In contrast, λC and also PTS do not require strong normalization to prove subject

reduction. We summarize the properties of previously mentioned calculi in Table 6.1 where Π

6.1. Overview 95

stands for dependent function types and Σ stands for strong sum types. The situation becomes

more complex when further considering to combine subtyping and strong sums. If we add strong

sums to calculi such as λP6 and λΠ6, allowing impredicativity will break strong normalization

and eventually break subject reduction and transitivity, as indicated by the last row of Table 6.1.

Thus, it becomes rather di�cult to simultaneously allow impredicativity, subtyping and strong

sums and keep all desirable properties in such calculi.

Previous Solution: Abandoning Impredicativity. One approach to supporting strong sums

without breaking logical consistency and strong normalization is to abandon impredicativity. For

example, Harper and Mitchell [1993] proposed XML, an extension of Standard ML with strong

sums, which supports only predicative polymorphism by stratifying types into di�erent universes.

Dropping impredicativity is reasonable in the context of an ML-like language, since predicativity

is crucial for other language features, e.g., let-polymorphism and type inference. However, such

restriction still signi�cantly limits the expressiveness of the language, making it unable to fully

subsume System F or F6 which both supports impredicative polymorphism.

6.1.2 Iso-Strong Sums: Typing Strong Sums with Iso-Types

Unlike the previous work, λIΣ features iso-strong sums, which employs the iso-type approach and

uses explicit call-by-value cast operators for type-level computation with strong sums. By using

iso-types, the metatheory proofs are decoupled from strong normalization (see Sections 3.1.3

and 5.1.4). In λIΣ, we can prove transitivity of (uni�ed) subtyping and subject reduction without

requiring normalization (see Section 6.3). Thus, impredicative polymorphism, (iso-type style)

strong sums and (uni�ed) subtyping can coexist in λIΣ without breaking desirable properties. In

the rest of this subsection, we show how iso-strong sums are typed in λIΣ through call-by-value

casts.

Standard Typing of Second Projection. The typing of strong dependent sums involves type-

level computation. Speci�cally, the type of the second projection of a term depends on its �rst

projection. It is the key complication over weak sums which do not support second projection

but only weak existential opening. Given a term e that has a Sigma-type, the standard typing of

its second projection e.2 is shown as follows:

Γ ` e : Σx : A. B

Γ ` e.2 : B [x 7→ e.1]

where the type of e.2 is a substitution and depends on e.1. Consider an expression e which is

exactly a dependent sum, i.e.,

e = 〈e1, e2 as Σx : A. B〉
e1 : A

e2 : B [x 7→ e1]

96 Chapter 6. Iso-Types with Strong Dependent Sums

where the type of the second component depends on the �rst. Noting that the �rst projection e.1

can be reduced to the �rst component e1, we need type-level computation to convert e.1 into e1:

〈e1, e2 as Σx : A. B〉.1 ↪→ e1

e.2 : B [x 7→ 〈e1, e2 as Σx : A. B〉.1]

e.2 : B [x 7→ e1]

After conversion, the type of e.2 matches the type of e2 and the reduction 〈e1, e2 as Σx :

A. B〉.2 ↪→ e2 preserves the type.

Second Projections and Alpha Equality. In λIΣ, there is no implicit type conversion and

we need to add cast operators explicitly for such conversion:

e.2 : B [x 7→ 〈e1, e2 as Σx : A. B〉.1]

cast⇓ (e.2) : B [x 7→ e1]

The full cast⇓ operator
1

from the full PITS (see Section 4.3) is required here, which utilizes parallel

reduction. The call-by-name/value reduction is not congruent and not strong enough to convert

such types inside the substitution. For example, consider e = 〈Int , (λy : Int . y) as Σx : ?. (x →
x)〉. Then we have e.1 ↪→ Int and

e : Σx : ?. (x → x)

e.2 : (e.1)→ (e.1)

cast⇓ (e.2) : Int → Int

Notice that the type of e.2 is a Pi-type (i.e. Πy : (e.1). (e.1)) which is not reducible by call-

by-name/value reduction. However, as discussed in Section 4.3, using full casts signi�cantly

complicates the metatheory and makes it di�cult to support subtyping. With full casts, one relies

on a separate system that erases all casts for proving type soundness. The technique of uni�ed

subtyping that uses iso-types does not apply in such erased system, making it hard to prove

relevant properties, such as transitivity and subject reduction. We still prefer call-by-name/value

reduction for explicit casts, which is compatible with the existing method of uni�ed subtyping.

Typing Second Projection with CBV Casts. Alternatively to full casts, we can slightly

weaken the type of second projection and make it convertible with call-by-value casts. The

approach is to “take one step back” by changing the type substitution back into an application

form as follows
2
:

Γ ` e : Σx : A. B

Γ ` e.2 : (λx : A. B) (e.1)

The original standard type “B [x 7→ e.1]” can be imagined as a reduced term of the current type.

The new typing result of e.2 can be seen as an intermediate step where e.1 is not yet substituted

intoB and remains as an argument. Thus, we can use call-by-value reduction to further reduce e.1

1

For brevity, we leave out the annotation of cast⇓.

2

The rule presented here is for demonstrating the idea of typing and is a bit di�erent from the one used in λIΣ. It

does not employ the value restriction, i.e., requiring e to be a value v. We will later discuss the value restriction of λIΣ
in Section 6.2.

6.1. Overview 97

until it becomes a value. For example, suppose that e is a dependent sum whose �rst component

is a value:

e = 〈v1, e2 as Σx : A. B〉
e.2 : (λx : A. B) (〈v1, e2 as Σx : A. B〉.1)

Note that a dependent sum is already a value. We can use two consecutive call-by-value cast↓
operators to obtain the desired type:

e.2 : (λx : A. B) (〈v1, e2 as Σx : A. B〉.1)

cast↓ (e.2) : (λx : A. B) v1

cast2↓ (e.2) : B [x 7→ v1]

Speci�cally, we use one cast for reducing the �rst projection and the other cast for beta reduction,

i.e.,

〈v1, e2 as Σx : A. B〉.1 ↪→ v1

(λx : A. B) v1 ↪→ B [x 7→ v1]

The type of cast2↓ (e.2) matches the type of e2. In the reduction rule for 〈v1, e2 as Σx : A. B〉.2,

we need to correspondingly add two extra cast↑ operators for the reduced term needs to balance

the type:

〈e1, e2 as Σx : A. B〉.2 ↪→ cast2↑ e2

Then the whole reduction process preserves the types:

cast2↓ (〈v1, e2 as Σx : A. B〉.2) ↪→ cast2↓ (cast2↑ e2) ↪→ ... ↪→ e2

Thus by weakening the substitution form into a type-level application, we can now convert

the type of second projection using non-congruent call-by-value reduction without the need of

full parallel reduction. The trade-o� is that we need more type conversion steps with CBV cast

than full casts, e.g., two call-by-value cast↓ operators but only one cast⇓ in the example above.

Nevertheless, CBV casts are still able to perform necessary type conversions for strong sums.

Also, subtyping in λIΣ can be supported by applying the technique of uni�ed subtyping which is

compatible with CBV casts.

6.1.3 Example: Type Members and Traits

In Sections 1.3.3 and 2.2.3, we showed that Scala-like traits with type members can be encoded

using dependent sums. Recall the example of an abstract integer set trait. We can write the same

example in Sig, a simple surface language over λIΣ, as follows:

Set = trait {
type T: Type;
val empty: T;
val member: Int -> T -> Bool;
val insert: Int -> T -> T;

}

We use monospaced font forSig programs. We can translate Set to a Sigma-type in λIΣ (assuming

that we have records and primitive types such as integers and booleans):

Set = ΣT : ?.{

98 Chapter 6. Iso-Types with Strong Dependent Sums

empty : T ,

member : Int → T → Bool ,

insert : Int → T → T ,

}

The type member T corresponds to the type binder of the Sigma-type. The methods of the trait

are encoded as record members of the record type: empty returns an empty set; member checks if

an element is in the set; and insert adds an element into the set. We can also write the generic

function f from Section 2.2.3 in Sig:

f = λ(s:Set) => s.member 3 (s.insert 3 s.empty)

which is encoded in λIΣ by the open operator, a stronger version of the unpack operator of

weak sums:

f = λs : Set . open s as 〈T , s ′〉 in s ′.member 3 (s ′.insert 3 s ′.empty)

Limitations of Weak Sums. The examples by far can be encoded using only weak sums.

However, weak sums are not su�cient to encode all type member features in Scala, such as

path-dependent types. The function f is encodable by weak sums because the type of the whole

function body is Bool and does not contain the abstract type member T . Recall the same function

g from Section 2.2.3, a simple function that returns an empty set:

g = λ(s:Set) => s.empty

Note that the type of the function body now refers to the abstract type member. In Scala, the type

of s.empty is s.T, which is a path-dependent type. We cannot translate s.empty with weak sums,

such as “unpack s as [T , s ′] in s ′.empty”, because s ′.empty has type T which is out of the

scope of the unpack-term.

Encoding with Iso-Strong Sums. In λIΣ, we can encode g with open:

g = λs : Set . open s as 〈T , s ′〉 in s ′.empty

Unlike unpack, the open operator permits the body to refer to the abstract type member T . In

λIΣ, the type of g is as follows:

g : Πs : Set . (λT : ?. T) (s.1)

where s.1 is the projection of the �rst component of s . Similarly to the treatment of typing second

projection (see Section 6.1.2), the type of strong open is a type-level application: (λT :?. T) (s.1).

Essentially, we know that the type of the open-term should be the same as the actual type

member of s , i.e. s.1, the �rst component of s . But s is abstract and we do not know what the

actual type member is yet. The type-level application can be viewed as an intermediate step, which

is waiting for the actual implementation of s . Once s is given, we can continue the type-level

computation with explicit casts to obtain the �nal type. Consider s is instantiated by ListSet, a

set implementation using a list. We borrow the syntax of Haskell’s list type and functions in the

following Sig pseudo-code:

6.1. Overview 99

ListSet = obj {
type T = [Int];
val empty = [];
val member = elem;
val insert = (:);

}

which is translated to a dependent sum in λIΣ:

ListSet = 〈[Int], {empty = [],member = elem, insert = (:)} as Set〉

Two components of the dependent sum are wrapped by angle brackets and separated by a comma.

The type annotation Set is put after the keyword as. Then the �rst projection of ListSet is its

�rst component [Int], i.e., ListSet .1 ↪→ [Int]. We can eliminate the type-level application as

follows:

g ListSet : (λT : ?. T) (ListSet .1)

cast↓ (g ListSet) : (λT : ?. T) [Int]

cast2↓ (g ListSet) : [Int]

which needs two consecutive cast↓ operators to obtain the target type: one for reducing the �rst

projection, and the other one for reducing the application.

We emphasize three points from the translation of g:

• First, the encoding of g relies on the exclusive features of strong sums in λIΣ, thus cannot

be encoded with weak sums in λI6.

• Second, the reduction relation used in cast↓ is call-by-value, which reduces the argument

into a value before beta-reduction. Using call-by-value casts is more appropriate here

because call-by-name reduction cannot reduce the argument and does not meet the purpose.

The full cast with parallel reduction is over powerful and complicates the metatheory (see

Section 4.3), which makes it di�cult to combine with other features, such as subtyping.

• Third, we use a strong open operator here instead of the second projection (see Section 2.2.3)

due to the typing of iso-strong sums. Otherwise, the typing result of the second projection

of a iso-strong sum is a type-level application but not directly a record type. This forbids us

to do further record projection to obtain the �eld empty . We will later discuss this issue in

Section 6.2.3.

6.1.4 ML Module Systems and Strong Sums

The ML family of languages, such as Standard ML [Milner et al. 1990] and OCaml [Leroy et al.

2018], usually contains an advanced module system. The basic constructs are signatures, structures
and functors. A structure is a module that consists of types and values. A signature is the type of a

structure, containing the speci�cation for each component of the structure. A functor is a function

from structures to structures. Many languages have similar constructs to ML modules. For

example in Scala (also Sig), traits correspond to signatures and objects correspond to structures.

The Sig examples in Section 6.1.3, i.e., Set trait and ListSet object, can be easily adapted to

constructs of the module system in OCaml:

100 Chapter 6. Iso-Types with Strong Dependent Sums

module type Set = sig
type t
val empty: t
val member: int -> t -> bool
val insert: int -> t -> t

end

module ListSet = struct
type t = int list
let empty = []
let member = List.mem
let insert x l = x :: l

end

Functions of objects correspond to functors. For example, the function g can be modeled as a

functor G that takes a Set parameter and returns a new structure wrapping the actual function g:

module G(S:Set) = struct
let g = S.empty

end

The function application g ListSet can be simulated by a functor application G(ListSet):

let module M = G(ListSet) in M.g

First-class Modules. In a certain sense, we can treat Sig as a very simple ML-like module

system, though many features are missing in Sig, such as transparent types [Lillibridge 1997;

Leroy 1994; Harper and Lillibridge 1994; Harper and Mitchell 1993]. It is not a coincidence since

ML modules can also be modeled by strong dependent sums [MacQueen 1986]. Speci�cally,

“modules” (objects indeed) are �rst-class values in Sig. Usually, ML modules are second-class and

separated from terms and types. The core language of ML cannot freely manipulate modules, e.g.,

choosing modules at run-time:

module FastSet = if size > 20 then HashSet else ListSet

In Sig, there is no such restriction and modules/objects can be even more expressive due to

dependent types. It is possible to de�ne a trait such that the type of trait members can depend on

values, for example:

BitMap = trait {
type Dim: {m:Int, n:Int};
val pixels: Array<Dim.m, Dim.n>;

}

The dimension type Dim is a record with two integers, which represents maximum rows and

columns of a bitmap. The member pixels is a two-dimensional bit array that stores the data.

The array type is a dependent type: it depends on the numbers m and n given by Dim. The BitMap
trait encapsulates the information of dimensions. All BitMap objects have the same type, even if

their dimensions are di�erent. This makes it easier to de�ne generic functions on the trait than

the dependently-typed array type, i.e., Array<m, n>, since arrays have di�erent types if their

dimensions are not the same.

6.2 The λIΣ Calculus

In this section, we formally introduce the λIΣ calculus, a variant to λI6 with iso-strong sums. λIΣ

keeps core features of λI6, including iso-types, uni�ed syntax and uni�ed subtyping. To focus on

the support of dependent sums and simplify the metatheory, several features are dropped, such

as bounded quanti�cation and generalized top type. λIΣ also features a call-by-value semantics

6.2. The λIΣ Calculus 101

for type casts, which enables the typing of second projection on dependent sums. The value

restriction is employed similarly to call-by-value PITS. We present the syntax, dynamic and static

semantics of λIΣ in the rest of this section.

6.2.1 Syntax

The syntax of λIΣ is shown in Figure 6.1. Similarly to λI6, there is no distinction between terms

and types. The novelties over λI6 are language constructs for dependent sums. We follow the

similar convention that metavariables are lowercase for terms and uppercase for types.

Dependent Sums. The dependent sum type, i.e., Sigma-type, is denoted by Σx : A. B . De-

pendent sums are denoted by 〈e1, e2 as Σx : A. B〉 with the dependent sum type annotated

after the as keyword. The type annotation is provided to simplify typing and reduction rules. As

mentioned in Section 5.1.5, only weak dependent sums can be encoded. To obtain native support

for strong dependent sums, we treat both constructs as primitives in λIΣ.

Projection andOpening. λIΣ supports two kinds of operations on dependent sums: projection

and opening. Dependent sum types can be seen as a generalization to both product type A×B
and existential type ∃x.B. The projection operator follows the dot syntax commonly used for

pairs. The �rst (second) projection e.1 (e.2) extracts the �rst (second) component of the dependent

sum e . The unrestricted second projection e.2 can only be supported with strong dependent sums.

The opening expression open e1 as 〈x , y〉 in e2 follows the semantics of existential opening,

which is similar to a pattern-matching binding. Expression e1 is destructed into �rst and second

components, which are bound to pattern variables x and y, respectively. The pattern variables

can be used in another expression e2. The opening operation is strong in the sense that x can

show in the type of e2, which is prohibited by the scoping restriction of weak existential opening.

Both projection and opening are destructors of dependent sums and their usage may overlap.

For example, we will show the second projection can actually be expressed by strong opening

(see Section 6.2.3). We keep an individual form of the second projection for better presenting the

system. However, we cannot leave out the form of the �rst projection, which is used in the typing

result of second projection and opening (see Figure 6.3).

Other Changes to λI6. There are several simpli�cations in λIΣ for focusing on discussion of

dependent sums. We drop bounded quanti�cation, which is an orthogonal feature to dependent

sums. This signi�cantly simpli�es the syntax since the binder does not need to contain subtyping

constraints. The de�nition of the context Γ only contains type bindings x : A. Without the

demand to unify two forms of binders in λI6 (i.e. λx : A. e and λx 6 e ′ : A. e), we also drop the

generalized top type that allows > to have any type. In λIΣ, > is only a type and has kind ?. The

ordinary top type also makes type-safety proofs easier (see Section 6.3.3). Finally, we drop the

annotation in the cast↑ operator for simplifying reduction rules (see Section 6.2.2). Though type

checking an unannotated cast↑ expression is not algorithmic, the uni�ed subtyping judgment is

declarative anyway due to the subsumption rule (see Section 6.2.3).

102 Chapter 6. Iso-Types with Strong Dependent Sums

Expressions e,A,B ::= x | ? | > | e1 e2 | cast↑ e | cast↓ e
| λx : A. e | Πx : A. B
| Σx : A. B | 〈e1, e2 as Σx : A. B〉
| e.1 | e.2 | open e1 as 〈x , y〉 in e2

Contexts Γ ::= ∅ | Γ, x : A
Values v ::= ? | x | > | λx : A. e | Πx : A. B

| cast↑ e | Σx : A. B | 〈v , e as Σx : A. B〉
Syntactic Sugar A→ B , Πx : A. B where x 6∈ FV(B)

Figure 6.1. Syntax of λIΣ

e1 ↪→ e2 (Partially Call-by-Value Reduction)

RP-Beta

(λx : A. e) v ↪→ e[x 7→ v]

RP-AppL

e ↪→ e ′

e v ↪→ e ′ v

RP-AppR

e2 ↪→ e ′2
e1 e2 ↪→ e1 e ′2

RP-Castdn

e ↪→ e ′

cast↓ e ↪→ cast↓ e ′

RP-CastElim

cast↓ (cast↑ e) ↪→ e

RP-Fst

e ↪→ e ′

e.1 ↪→ e ′.1

RP-Proj1

〈v , e as Σx : A. B〉.1 ↪→ v

RP-Proj2

〈v , e as Σx : A. B〉.2 ↪→ cast↑ (cast↑ e)

RP-Open

open 〈v , e1 as Σx : A. B〉 as 〈x , y〉 in e ↪→ cast↑ (cast↑ (((λx : A. λy : B . e) v) e1))

Figure 6.2. Operational semantics of λIΣ

6.2.2 Dynamic Semantics

The reduction relation ↪→ is shown in Figure 6.2. Similarly to λI6, ↪→ is used for both type

conversion in casts and term evaluation. The di�erence is that ↪→ in λIΣ is partially call-by-value,
which is mostly call-by-value along with several call-by-name rules. The reduction rules related

to function applications are rightmost call-by-value, also called right-to-left call-by-value [Leroy

1990]. RP-Beta requires the argument to be a value. Arguments are reduced �rst in RP-AppR

and functions can be further reduced in RP-AppL when arguments are values. Note that we use

the metavariable v to range over values. The syntax of values is de�ned in Figure 6.1. As in

call-by-value PITS, variables are values, which enables reduction with open terms (see Section

4.2.2).

Other reduction rules related to casts and dependent sums are call-by-name, which do not

reduce sub-terms to values as in λI6. RP-Proj1 only accepts a dependent sum that is a value

where its �rst component is a value. RP-Fst reduces sub-terms of �rst projections but there is no

such rule for second projections. This is due to a value restriction [Swamy et al. 2011; Sjöberg et al.

2012]: we only treat 〈v , e as Σx : A. B〉 and v .2 as well-typed terms. RP-Proj2 and RP-Open

both add two consecutive cast↑ operators (also written as cast2↑) in reduced terms to preserve

types. We will discuss value restriction and typing related issues later in Section 6.2.3.

The major reason of using the non-standard partially call-by-value semantics is to ensure

type-safety, especially the subtype preservation lemma (see Lemma 6.3.9). Using the rightmost

6.2. The λIΣ Calculus 103

style of call-by-value semantics is not a necessity but simpli�es the proof for subtype preservation.

The common leftmost/left-to-right call-by-value semantics can also be used in λIΣ but at the

expense of more complex proofs and incompatibility with other language features such as bounded

quanti�cation. Moreover, there are other useful applications of the rightmost variant, e.g., for an

e�cient implementation of multiple application in ML [Leroy 1990]. We will discuss these issues

later in Section 6.3.3.

6.2.3 Static Semantics

Figure 6.3 shows the static semantics of λIΣ, i.e., uni�ed subtyping Γ ` e1 6 e2 : A and context

well-formedness ` Γ. Similarly to λI6, uni�ed subtyping is a single judgment that combines both

typing and subtyping. The typing judgment Γ ` e : A is syntactic sugar for Γ ` e 6 e : A. The

context well-formedness judgment ` Γ ensures every newly added type binding x : A is fresh

and A is a well-formed type. Note that there is no bounded quanti�cation in λIΣ and only type

binding is supported in Γ. For the uni�ed subtyping judgment, we focus on the discussion of new

rules about dependent sums and other di�erences to λI6, e.g., value restriction.

Variables and Top Types. As bounded quanti�cation is not supported in λIΣ, assumptions

about subtyping cannot be added into the context. Thus, there is no subtyping of variables as

indicated by SP-Var, i.e., the subtype of a variable is itself. As mentioned in Section 6.2.1, top types

in λIΣ are now just ordinary types with kind ? as in SP-Top and SP-TopRefl. The simpli�cation

of rules for variables and top types also eases the metatheory proof, as discussed in Section 6.3.1.

Value Restriction. Unlike the call-by-name semantics of λI6, we use a (partially) call-by-value

semantics in λIΣ and employ value restriction as in call-by-value PITS to ensure type preservation

in a simple way (see Section 4.2.1). There are two rules for function applications, SP-App for

non-dependent ones and SP-AppV for dependent ones. Dependent functions can only be applied

to value arguments, while there is no restriction for non-dependent functions. Also, variables are

treated as values (see Figure 6.1) as in call-by-value PITS, which enables reduction of open terms
(e.g. (λx : Int . x) y) in call-by-value semantics. As a result, when doing substitutions, substitutes

must be values in order to maintain the computational behavior of variables.

Dependent Sums. SP-Sigma checks the well-formedness of dependent sum types (i.e. Sigma-

types). The binder x can show in the body B1 or B2. Like rule SP-Abs for subtyping functions,

we limit the subtyping of Sigma-types to be pointwise, which requires the types of binders to be

identical. This is di�erent from subtyping Pi-types in rule SP-Prod, where the argument types

are contravariant.

SP-Pair de�nes the constructor of dependent sums, which also uses pointwise subtyping

that �xes the �rst component. A dependent sum allows the �rst component (v) to show in the

type of the second component (e1 and e2). The type of the second component is a substitution

B [x 7→ v] and the substitute v, i.e., the �rst component, must be a value since variables are values

(see Figure 6.1).

Projections. SP-Fst and SP-Snd are the rules for �rst and second projection, respectively.

Allowing the typing of second projection indicates dependent sums in λIΣ are strong. In rule SP-

Snd, we follow the design of pointwise subtyping and disable the subtyping of second projection

104 Chapter 6. Iso-Types with Strong Dependent Sums

Γ ` e1 6 e2 : A (Uni�ed Subtyping)

SP-Ax

` Γ

Γ ` ? 6 ? : ?

SP-Var

` Γ x : A ∈ Γ

Γ ` x 6 x : A

SP-Top

Γ ` e : ?

Γ ` e 6 > : ?

SP-TopRefl

` Γ

Γ ` > 6 > : ?

SP-Abs

Γ ` A : ?
Γ, x : A ` e1 6 e2 : B Γ, x : A ` B : ?

Γ ` (λx : A. e1) 6 (λx : A. e2) : Πx : A. B

SP-App

Γ ` e1 6 e2 : A→ B
Γ ` e3 : A Γ ` B : ?

Γ ` e1 e3 6 e2 e3 : B

SP-AppV

Γ ` e1 6 e2 : Πx : A. B Γ ` v : A

Γ ` e1 v 6 e2 v : B [x 7→ v]

SP-Prod

Γ ` A2 6 A1 : ?
Γ, x : A1 ` B1 : ? Γ, x : A2 ` B1 6 B2 : ?

Γ ` (Πx : A1. B1) 6 (Πx : A2. B2) : ?

SP-Castup

Γ ` B : ? Γ ` e1 6 e2 : A B ↪→ A

Γ ` cast↑ e1 6 cast↑ e2 : B

SP-Castdn

Γ ` e1 6 e2 : A A ↪→ B

Γ ` cast↓ e1 6 cast↓ e2 : B

SP-Sigma

Γ ` A : ? Γ, x : A ` B1 6 B2 : ?

Γ ` (Σx : A. B1) 6 (Σx : A. B2) : ?

SP-Pair

Γ ` v : A Γ ` e1 6 e2 : B [x 7→ v]
Γ ` A : ? Γ, x : A ` B : ?

Γ ` 〈v , e1 as Σx : A. B〉 6 〈v , e2 as Σx : A. B〉 : Σx : A. B

SP-Fst

Γ ` e1 6 e2 : Σx : A. B

Γ ` e1.1 6 e2.1 : A

SP-Snd

Γ ` v : Σx : A. B

Γ ` v .2 6 v .2 : (λx : A. B) (v .1)

SP-Open

Γ ` v : Σx : A. B
Γ, x : A, y : B ` e : C Γ ` A : ?
Γ, x : A ` B : ? Γ, x : A ` C : ?

Γ ` open v as 〈x , y〉 in e 6 open v as 〈x , y〉 in e : (λx : A. C) (v .1)

SP-Sub

Γ ` e1 6 e2 : A Γ ` A 6 B : ?

Γ ` e1 6 e2 : B

` Γ (Well-formedness)

WP-Nil

` ∅

WP-Cons

Γ ` A : ? x fresh in Γ

` Γ, x : A

Syntactic Sugar Γ ` e : A , Γ ` e 6 e : A

Figure 6.3. Static semantics of λIΣ

by requiring both sides of the relation to be the same. We also employ value restriction and

require the dependent sum to be a value. The reason is similar to rule SP-AppV. The typing

result of SP-Snd is dependent on the form of input terms. Pointwise subtyping simpli�es the rule

de�nition (see Section 5.2.3). Restricting input terms as values forbids the reduction of sub-terms

in second projection, which ensures type preservation (see Section 4.2.1).

Assume that we drop the value restriction for typing second projections and allow reducing

6.2. The λIΣ Calculus 105

the sub-terms of second projections as follows:

e ↪→ e ′

e.2 ↪→ e ′.2

Then e.2 and e ′.2 have di�erent types due to lack of beta-equivalence, since their types contain e

and e ′, respectively, which breaks type preservation.

Iso-strong sums use a di�erent typing rule for the second projection. The typing of second

projection is di�erent from the standard de�nition:

Γ ` v : Σx : A. B

Γ ` v .2 : B [x 7→ v .1]

where the typing result is a substitution B [x 7→ v .1]. As mentioned in Section 6.1.2, in order to

avoid the use of full casts with parallel reduction, we do not use the standard typing rule above

that involves direct type substitution. In SP-Snd, the typing result is a type-level application,

i.e., (λx : A. B) (v .1). Note that the typing result is well-formed since λx : A. B is a non-

dependent function where B has type ? with no x . The type-level application can be viewed as an

intermediate step before substitution. We can use explicit type casts to obtain the �nal substituted

type. For example, consider v is a dependent sum v = 〈v ′, e ′ as Σx : A. B〉. Notice that the

following reduction steps hold:

〈v ′, e ′ as Σx : A. B〉.1 ↪→ v ′

(λx : A. B) v ′ ↪→ B [x 7→ v ′]

We can add two consecutive cast↓ operators to obtain the substituted type:

v .2 : (λx : A. B) (〈v ′, e ′ as Σx : A. B〉.1)

cast2↓ v .2 : B [x 7→ v ′]

The type of cast2↓ v .2 follows the premise in SP-Pair for typing second component. Recall that

the reduction rule for second projection, i.e., RP-Proj2, adds two cast↑s, which exactly balance

the manually added two cast↓s:

v .2 ↪→ cast2↑ v ′

cast2↓ v .2 ↪→ cast2↓ (cast2↑ v ′) ↪→ v′

Thus, we can achieve type-preserving reduction for the second projection through explicit casts.

Openings. SP-Open is the rule for the opening operation, an alternative to projection for

destructing a dependent sum. It has the same restrictions as SP-Snd: value restriction and no

subtyping. The typing result is also similar, which adopts the approach of iso-strong sums and

is a type-level application. Two pattern variables x and y correspond to the �rst and second

component of a dependent sum v, respectively. The inner term e is typed as C against pattern

variables with typing x : A and y : B. Note that we only allow x to show in C but not y, which

is checked by the last premise. Such restriction ensures the typing result, i.e., (λx : A. C) (v .1),

will not be out of scope. Despite of such restriction, the opening operation is still more expressive

106 Chapter 6. Iso-Types with Strong Dependent Sums

than the ordinary existential opening that even does not allow x to show in C . Opening operation

can be seen as a generalization of second projection:

v .2 = open v as 〈x , y〉 in y

where both sides have the same typing result. Opening allows directly using the type of the

second component as a pattern variable y inside e, while the type of second projection is an

application that cannot be directly used. For example, imagine that v is a dependent sum whose

second component is a function that takes an integer:

v : Σx : ?. Int → x

The second projection of v has type

v .2 : (λx : ?. Int → x) (v .1)

which cannot take an integer, say (v .2) 3. In λIΣ, we use opening instead:

open v as 〈x , y〉 in (y 3) : (λx : ?. x) (v .1)

where the pattern y can take an integer since y : Int → x .

No Nested Second Projections. The value restriction simpli�es the metatheory but unfor-

tunately limits the ability of nesting second projections in λIΣ. For example, (v.2).2 is not a

well-formed term since v.2 is not a value. Furthermore, we cannot use openings to simulate

nested second projections either. Consider the following example:

v : Σx1 : A1. (Σx2 : A2. B)

open v as 〈x1,y〉 in
open y as 〈x2, z〉 in z

:
(λx1 : A1.

(λx2 : A2. B) (y.1)) (v.1)

We simulate nested second projections (v.2).2 by two consecutive openings. However, the typing

result is not well-formed since the pattern variable y leaks out of the scope. This violates the

restriction imposed by the last premise of SP-Open, which requires that the second pattern

variables (e.g. y) should not show in the result type.

Notice that nested �rst projections are still allowed. Iso-strong sums are still more expressive

than weak sums and su�cient for our purposes to encode interesting examples such as traits with

type members (see Section 6.1.3). Restricting nested projections is also used by other calculi to

simplify the presentation and metatheory. For example, DOT [Rompf and Amin 2016; Amin et al.

2016] only supports a single level of type selection on variables such as x.A. Removing value

restriction and supporting nested second projections are left as future work (see Section 8.2).

No Direct Subsumption of Non-dependent Pairs. Finally, due to the non-standard typing

in SP-Snd and SP-Open, iso-strong sums in λIΣ cannot directly subsume non-dependent pairs

or ordinary weak existentials. Consider a non-dependent pair v = 〈1, 2 as Σx : Int . Int〉. By

the standard typing rule, the type of v .2 is Int [x 7→ v .1] = Int where the substitution has no

e�ect and the typing result is the same as non-dependent pairs. In contrast, by SP-Snd we have

6.3. Metatheory of λIΣ 107

v .2 : (λx : Int . Int) v .1, where the typing result is still a type-level application but not Int .

Nonetheless, we can add explicit casts to recover the standard typing results as examples above

(see also Sections 6.1.2 and 6.1.3). Alternatively, we can just encode typing rules for non-dependent

pairs and weak existentials using standard Church encodings [Pierce 2002].

6.3 Metatheory of λIΣ

We discuss the metatheory of the λIΣ calculus, mainly on two results: transitivity and type-safety.

The proof process is mostly similar to the one of λI6 (see Section 5.3). However, due to di�erences

of dynamic and static semantic, especially call-by-value reduction and dependent sums, λIΣ

requires additional lemmas and some changes in proof strategies. We will focus on discussion of

such changes from the metatheory of λI6. Note that we have not proved the decidability of λIΣ

yet, though we believe the property should hold and leave it as future work (see Section 8.2).

6.3.1 Basic Lemmas

We �rst discuss the changes to basic lemmas compared to λI6. Due to the absence of bounded

quanti�cation, some basic lemmas now can be proved independently, such as re�exivity and type

narrowing.

Re�exivity. The re�exivity lemma of uni�ed subtyping is de�ned as follows:

Lemma 6.3.1 (Re�exivity). If Γ ` e1 6 e2 : A, then both Γ ` e1 : A and Γ ` e2 : A hold.

In λI6, re�exivity is proved by splitting into two sub-lemmas, left and right re�exivity (Lemma

5.3.2 and 5.3.3). Such proof strategy is necessary because right re�exivity has a mutual dependency

on another lemma, correctness of types (Lemma 5.3.11). The mutual dependency is caused by

generalized top type (see discussion in Section 5.3.1). In λIΣ, such mutual dependency does not

exist because top type is an ordinary type but not generalized:

SP-Top

Γ ` e : ?

Γ ` e 6 > : ?

SP-TopRefl

` Γ

Γ ` > 6 > : ?

For cases SP-Top and SP-TopRefl, re�exivity can be shown immediately from the induction

hypothesis. Thus, we can prove the re�exivity lemma �rst without relying on other results.

Weakening, Narrowing and Substitution. The weakening lemma can be proved similarly

as in λI6 by induction on the derivation of Γ1,Γ3 ` e1 6 e2 : A:

Lemma 6.3.2 (Weakening). If Γ1,Γ3 ` e1 6 e2 : A and ` Γ1,Γ2,Γ3, then Γ1,Γ2,Γ3 ` e1 6 e2 :

A.

Due to the absence of bounded quanti�cation, there is no subtyping binding in the context. The

narrowing lemma in λIΣ has just one form, type narrowing:

Lemma 6.3.3 (Type Narrowing). Given Γ1, x : B ,Γ2 ` e1 6 e2 : C , if Γ1 ` A 6 B : ? and
Γ1 ` e : A, then Γ1, x : A,Γ2 ` e1 6 e2 : C .

108 Chapter 6. Iso-Types with Strong Dependent Sums

The proof is by induction on the derivation of Γ1, x : B ,Γ2 ` e1 6 e2 : C . Also notice that the

subtyping of variables in λIΣ is only a re�exive relation (see Section 6.2.3). There is no transitivity

rule for variables, such as S-VarTrans in λI6. The proof does not rely on the transitivity lemma or

consistency of typing lemma (Lemma 5.3.5), a special case of transitivity. Finally, the substitution

lemma in λIΣ has a di�erent form:

Lemma 6.3.4 (Substitution). If Γ1, x : B ,Γ2 ` e1 6 e2 : A and Γ1 ` v : B , then Γ1,Γ2[x 7→
v] ` e1[x 7→ v] 6 e2[x 7→ v] : A[x 7→ v].

where the substitute should be a value v, since we treat variables as values and allow reduction of

open terms, as mentioned in Section 6.2.3. Such form is similar to the one in call-by-value PITS

(see Lemma 4.2.1). The proof relies on transitivity as in λI6, as well as two additional lemmas,

value substitution and reduction substitution due to value restriction in rules:

Lemma 6.3.5 (Value Substitution).

If v1 and v2 are values, then v1[x 7→ v2] is still a value.

Lemma 6.3.6 (Reduction Substitution).

If v is a value and e1 ↪→ e2 holds, then e1[x 7→ v] ↪→ e2[x 7→ v] still holds.

Proofs of two lemmas are straightforward by induction on the structure of v1 and derivation

of e1 ↪→ e2, respectively. Note that although the proof of substitution lemma still depends on

transitivity, this is only one-way dependency. Thus, we can similarly show substitution later after

proving transitivity as in λI6.

6.3.2 Transitivity

The uni�ed subtyping rules in λIΣ do not contain a built-in transitivity rule. We need to prove the

transitivity property. Due to the presence of the subsumption rule (RP-Sub), we need to prove a

generalized transitivity property as in λI6 (see Section 5.3.2). However, we use a slightly di�erent

generalization:

Lemma 6.3.7 (Generalized Transitivity). If Γ ` e1 6 e2 : A and Γ ` e2 6 e3 : B , then
Γ ` e1 6 e3 : B .

which is a rightmost generalization. The di�erence is the type of the conclusion judgment: we use

Γ ` e1 6 e3 : B in λIΣ, while Γ ` e1 6 e3 : A in λI6 which is a leftmost generalization. The

reason is that the typing of the top type (>) is di�erent. In λI6, the top type is generalized to be

any type by rule S-Top, while it is an ordinary type of kind ? in λIΣ by rule SP-Top:

S-Top

Γ ` e : A

Γ ` e 6 > : A

SP-Top

Γ ` e : ?

Γ ` e 6 > : ?

Consider the case that e3 = > and we have Γ ` e1 6 e2 : A and Γ ` e2 6 > : B . For the

generalized top type, we know Γ ` e1 : A by re�exivity from the former judgment. By S-Top,

we obtain the target judgment Γ ` e1 6 > : A, which has the same type as the leftmost term e1.

For the ordinary top type, we know B = ? by inversion of SP-Top. Note that the target is the

subtyping relation between e1 and >, which requires the type to be ? by SP-Top. It is natural

6.3. Metatheory of λIΣ 109

to set the target as Γ ` e1 6 > : B which uses the rightmost type of >. Otherwise, if we set

the target type to be the leftmost one, i.e., Γ ` e1 6 > : A, we ought to show A = ? which is

unknown to be true. Thus, using rightmost generalized transitivity in λIΣ simpli�es the proof for

the case of ordinary top type.

We prove the rightmost generalized transitivity by the same approach used in the leftmost

one (see Section 5.3.2). The proof is by induction on the size of e2 and an inner induction on the

derivation of the �rst judgment Γ ` e1 6 e2 : A. The case for Pi-types (SP-Prod) also needs the

type narrowing lemma (Lemma 6.3.3). Then we can immediately show the original transitivity

lemma which is a direct corollary:

Lemma 6.3.8 (Transitivity). If Γ ` e1 6 e2 : A and Γ ` e2 6 e3 : A, then Γ ` e1 6 e3 : A.

6.3.3 Type Safety

Type-safety of λIΣ is shown by the standard type preservation and progress lemmas [Wright

and Felleisen 1994]. We discuss the design choices of one-step reduction for keeping subtype

preservation and focus on the change of proofs due to the call-by-value semantics used in λIΣ.

Partially Call-by-value. As in λI6, we need to show a generalized preservation lemma for

the uni�ed subtyping judgment, i.e., subtype preservation:

Lemma 6.3.9 (Subtype Preservation). If Γ ` e1 6 e2 : A, e1 ↪→ e ′1, e2 ↪→ e ′2, then Γ ` e ′1 6 e ′2 :

A.

To ensure that such property holds, we need to restrict the call-by-value semantics to be partial
(see Section 6.2.2). We only allow call-by-value semantics for function applications, but call-

by-name rules for other constructs, e.g., no reduction of sub-terms in casts or dependent sums.

Otherwise, call-by-value rules for casts and dependent sums would break subtype preservation.

We show two counter-examples.

Counter-examples for Full Call-by-value. Assume that we treat cast↑ v as a value and allow

reducing the sub-term in cast↑ by the following rule:

e ↪→ e ′

cast↑ e ↪→ cast↑ e ′

Let e1 = cast↓ (cast↑ (cast↑ e)) and e2 = cast↓ (cast↑ (cast↑>)) and assume there exists e ′ such

that e ↪→ e ′. Note that cast↑ e is reducible and cast↑> is a value. Relations in the subtype

preservation lemma are as follows:

cast↓ (cast↑ (cast↑ e)) 6 cast↓ (cast↑ (cast↑>))

↪→ ↪→

cast↓ (cast↑ (cast↑ e ′)) 66 cast↑>

The target subtyping relation would not hold because the outer most constructs of both sides are

di�erent, i.e., left side is cast↓ left, while right side is cast↑.

110 Chapter 6. Iso-Types with Strong Dependent Sums

Assume that we treat 〈v1, v2 as Σx : A. B〉 as a value and allow reducing the second

component of a dependent sum by the following rule:

e ↪→ e ′

〈v , e as Σx : A. B〉 ↪→ 〈v , e ′ as Σx : A. B〉

Let e1 = 〈?, e as Σx : ?. ?〉.1 and e2 = 〈?,> as Σx : ?. ?〉.1 and assume there exists e ′ such

that e ↪→ e ′. Note that 〈?, e as Σx : ?. ?〉 is reducible, while 〈?,> as Σx : ?. ?〉 is a value. The

following diagram show the relations in the subtype preservation lemma:

〈?, e as Σx : ?. ?〉.1 6 〈?,> as Σx : ?. ?〉.1

↪→ ↪→
〈?, e ′ as Σx : ?. ?〉.1 66 ?

Apparently, the target subtyping relation does not hold, since the only subtype of ? is itself.

The Problem of Leftmost Call-by-value. Another unusual design of one-step reduction (↪→)

is the adoption of rightmost call-by-value semantics (see Section 6.2.2). In function applications,

we �rst reduce all arguments to values and then reduce the functions, as indicated by the following

reduction rules:

RP-AppR

e2 ↪→ e ′2

e1 e2 ↪→ e1 e ′2

RP-AppL

e ↪→ e ′

e v ↪→ e ′ v

Alternatively, one can use the following the leftmost variant of reduction rules that reduce the

functions �rst:

e1 ↪→ e ′1

e1 e2 ↪→ e ′1 e2

e2 ↪→ e ′2

v e2 ↪→ v e ′2

The two variants have di�erent impact on the proof of subtype preservation lemma, especially

when disproving two diverging cases. Unlike the weak-head call-by-name reduction in λI6 that

only reduces the function part, it is possible in λIΣ that the reduction happens on di�erent

positions within an application and diverges on two sides of a subtyping relation. We need to

rule out such cases, which would break the subtype preservation.

For the leftmost variant, the diverging cases can be illustrated by the following diagram:

e1 e2 6 v e2↪→ ↪→

e ′1 e2 66 v e ′2

v e2 6 e1 e2↪→ ↪→

v e ′2 66 e ′1 e2

(1) (2)

where we assume e1 ↪→ e ′1 and e2 ↪→ e ′2. Note that e ′2 6= e2 and subtyping of applications is

pointwise in rules SP-App and SP-AppV. Both targets in (1) and (2) do not hold.

In case (1), the function part e1 on the left-hand side is still reducible, while the right-hand

side term v e2 only has the reducible argument e2. Thus, the reduction happens in di�erent places:

the function position on the left-hand side and the argument position on the right-hand side.

Case (2) is simply the mirror of case (1), which exchanges the sides of the subtyping relation.

By inversion of the condition, we know e1 6 v and v 6 e1 from case (1) and (2), respectively.

We can disprove case (1) and (2) by show that e1 is a value which is not reducible:

6.3. Metatheory of λIΣ 111

Lemma 6.3.10 (Value Preservation).

1. If Γ ` e1 6 e2 : (Πx : A. B) and e2 is a value, then e1 is also a value.

2. If Γ ` e1 6 e2 : A and e1 is a value, then e2 is also a value.

Thus, both diverging cases are impossible and will not break the subtype preservation lemma.

Notice that the proof depends on several speci�c rules of λIΣ. The �rst sub-lemma relies on the

fact that T has kind ? by SP-Top. The second sub-lemma relies on the subtyping rule SP-Var

which limits subtyping of variables to be re�exive only. For the �rst sub-lemma, if we use the

generalized top type that can have a Pi-type, when e2 = >, e1 can be any well-typed function that

may not be a value. For the second sub-lemma, if bounded quanti�cation is allowed, when e1 = x ,

e2 is not necessarily a value but can be any term as long as x 6 e2 : A ∈ Γ. If we want to extend

λIΣ with generalized top type or bounded quanti�cation like λI6, the value preservation lemma

will not hold and we may not be able to disprove the diverging cases of subtype preservation for

the leftmost variant.

Rightmost Call-by-value to the Rescue. For the rightmost variant, the diverging cases are

simply not possible. If we try to follow the diagram of the leftmost variant, assuming that e1 ↪→ e ′1,

e2 ↪→ e ′2, we have

e1 v 6 e2 v

↪→ 6↪→

e ′1 v 66 e2 e

e1 v 6 e2 v6↪→ ↪→

e1 e 66 e ′2 v

(3) (4)

In (3) and (4), the arguments are already values due to the rightmost reduction strategy. They also

should be the same due to the pointwise subtyping rules. Then, the reduction of the argument

part, i.e., v ↪→ e , is contradictory, since values are not reducible.

Thus, the rightmost call-by-value strategy is more suitable for meta-theoretical development

in λIΣ. It naïvely rules out the diverging cases and simpli�es the proof of subtype preservation. It

is also less restrictive and does not rely on the value preservation lemma, which makes it possible

to extend λIΣ with features such as bounded quanti�cation and generalized top type without

breaking subtype preservation.

Determinacy of Reduction. Though the one-step reduction is changed to use the (partially)

call-by-value semantics, it still has the same determinacy property as the call-by-name variant in

λI6:

Lemma 6.3.11 (Determinacy of Reduction). If e ↪→ e1 and e ↪→ e2, then e1 = e2.

The proof holds few surprises, which is done by induction on the derivation of e ↪→ e1 and

inversion on e ↪→ e2.

Preservation and Progress. Similarly to λI6, we prove a generalized subtype preservation

lemma to avoid induction hypothesis issues in the cast↑ case:

Lemma 6.3.12 (Generalized Subtype Preservation). Given that Γ ` e1 6 e2 : A holds,

112 Chapter 6. Iso-Types with Strong Dependent Sums

1. if A ↪→ A′ and both e1 and e2 are cast↑ terms, i.e., e1 = cast↑ e ′1 and e2 = cast↑ e ′2, then
Γ ` e ′1 6 e ′2 : A′;

2. otherwise, if e1 ↪→ e ′1 and e2 ↪→ e ′2, then Γ ` e ′1 6 e ′2 : A.

The �rst case is slightly changed since we drop the annotation of cast↑. The proof is by

induction on the derivation of Γ ` e1 6 e2 : A, which is similar to the one of λI6. The diverging

cases can be trivially disproved due to the choice of rightmost call-by-value reduction. The proof

similarly depends on the “reduction in the middle” lemma, which holds for one-step call-by-value

reduction:

Lemma 6.3.13 (Reduction Exists in the Middle). Given that Γ ` C 6 B : D and Γ ` B 6 A : D,
if C ↪→ C ′ and A ↪→ A′, then there exists B′ such that B ↪→ B ′.

Finally, we can conclude the type preservation lemma, which is simply a corollary of subtype

preservation:

Lemma 6.3.14 (Type Preservation). If Γ ` e : A and e ↪→ e ′, then Γ ` e ′ : A.

We prove the progress lemma that has the judgment with an empty context:

Lemma 6.3.15 (Progress). If ∅ ` e : A then either e is a value v or there exists e ′ such that
e ↪→ e ′.

Unlike λI6, we do not prove a generalized progress lemma (Lemma 5.3.18) since the inert

terms (see Section 5.2.2), which cover all stuck open terms, are not de�ned for the call-by-value

semantics in λIΣ.

6.4 The Sig Language

We formally present the surface language namely Sig, which supports Scala-like �rst-class traits

with type members. Sig is a lightweight layer built on top of λIΣ for presenting how iso-strong

sums in λIΣ can encode complex constructs such as traits. Expressions of Sig will be elaborated

into λIΣ terms through a type-directed translation. Sig does not expose explicit cast operators.

The translation process will automatically insert necessary casts to keep terms well-typed. In

spite of many language limitations in Sig, the main purpose of Sig is to show the application of

iso-strong sums and the inference of casts via the elaboration semantics. In the rest of this section,

we will show the syntax, static semantics, type-directed translation and translation soundness of

Sig.

6.4.1 Syntax

Figure 6.4 shows the syntax of Sig, which is uni�ed as λIΣ. Terms (E) and types (T) are in the

same syntactic category. Basic language constructs can be directly mapped to λIΣ terms, e.g.,

Type corresponds to ? and the function type corresponds to a Pi-type, etc. We use the syntactic

sugar T1 → T2 for non-dependent function types. Note that there are no explicit type cast

operators in Sig.

6.4. The Sig Language 113

Expressions E ,T ::= x | Type | (x : T1)→ T2 | E1 E2 | λ(x : T)⇒ E
| trait { typeL : T ; S} | obj { typeL = E ; M }asT
| x .l | x .L

Trait Bindings S ::= val l1 : T1; .. ; val ln : Tn

Object Bindings M ::= val l1 = E1; .. ; val ln = En

Contexts ∆ ::= ∅ | ∆, x : T | ∆, x = 〈x1, x2〉 : T
Values V ::= Type | x | (x : T1)→ T2 | λ(x : T)⇒ E

| obj { typeL = E ; M }asT | x .L
Syntactic Sugar T1 → T2 , (x : T1)→ T2 where x 6∈ FV(T2)

Figure 6.4. Syntax of Sig

Traits and Objects. A trait has the syntax trait { typeL : T ; S} which is a compound type

that has one type member L and multiple value members. The bindings of value members S have

the form val li : Ti , which means the label li has type Ti . Only the type member L but not value

members li can show in Ti . We use the upper-case metavariable L for the label of type member,

and the lower-case l for the label of value members. Objects are instances of traits. The syntax

of objects is obj { typeL = E ; M }asT where E is the actual type member implementation

for the abstract label L. M is the object bindings with the form val li = Ei where Ei is the

implementation of the member li . Type T after the keyword as is the type annotation. The

member access of objects is denoted by x .L and x .l , which are for the type member and value

member, respectively.

Restrictions on Traits. For simplicity reasons, we have several restrictions related to traits:

• There is only one type member in traits, so that traits can be directly mapped to Sigma-types

of λIΣ which have just one binder. Nonetheless, we can simulate multiple type members.

For example, noting that the type T of the type member is polymorphic, which is not

limited to Type, we can specify T as a compound type such as records to represent multiple

type members.

• The member access operations are bound only to variables (e.g. x.L) but not paths (e.g.

x.y.L). This is due to the value restriction in the target language λIΣ. The restriction of

member access is also commonly used in other calculi for a simpler formalization of traits,

such as Dependent Object Types (DOT) [Rompf and Amin 2016; Amin et al. 2016].

• We do not support subtyping of type members in Sig because there is no bounded quanti�-

cation in the target language.

6.4.2 Static Semantics

The static semantics of Sig is shown in Figure 6.5 and 6.6. The typing context ∆ has two kinds

of bindings, namely the type binding x : T and trait binding x = 〈x1, x2〉 : T (see Figure 6.4).

Typing rules only use the typing binding. The trait binding is used only for translation and will

be discussed later in Section 6.4.3. The well-formedness of context is checked by the judgment

` ∆. Object typing ∆ ` M : S and trait well-formedness ∆ ` S reuse the typing judgment for

inferring the type of object bindings and checking if types of value members are well-formed,

respectively. The typing judgment is denoted by ∆ ` E : T . Typing rules for basic constructs

114 Chapter 6. Iso-Types with Strong Dependent Sums

∆ ` E : T (Term Typing)

ST-Ax

` ∆

∆ ` Type : Type

ST-Var

x : T ∈ ∆ ` ∆

∆ ` x : T

ST-Pi

∆ ` T1 : Type ∆, x : T1 ` T2 : Type
T2 is x.L-only-projection if T1 is a trait

∆ ` (x : T1)→ T2 : Type

ST-App

∆ ` E1 : T1 → T2 ∆ ` E2 : T1

∆ ` E1 E2 : T2

ST-AppV

∆ ` E : (x : T1)→ T2

∆ ` V : T1 V is not an object

∆ ` E V : T2[x 7→ V]

ST-AppM

∆ ` E : (x : T1)→ T2

∆ ` V1 : T1 T1 = trait { typeL : T ; S}
V1 = obj { typeL = V ; M }asT1

∆ ` E V1 : T2[x .L 7→ V]

ST-Lam

∆ ` T1 : Type ∆, x : T1 ` E : T2

T2 is x.L-only-projection if T1 is a trait

∆ ` (λ(x : T1)⇒ E) : (x : T1)→ T2

ST-Mod

∆ ` V : T
∆ ` M [L 7→ V] : S [L 7→ V] ∆ ` T1 : Type
T1 = trait { typeL : T ; S} T is not a trait

∆ ` obj { typeL = V ; M }asT1 : trait { typeL : T ; S}

ST-Sig

∆ ` T : Type
∆,L : T ` S T is not a trait

∆ ` trait { typeL : T ; S} : Type

ST-ProjT

∆ ` x : trait { typeL : T ; S}
∆ ` x .L : T

ST-Proj

∆ ` x : trait { typeL : T ; S} val l : T2 ∈ S

∆ ` x .l : T2[L 7→ x .L]

Figure 6.5. Typing rules of Sig

are similar to ones in λIΣ. There is no explicit or implicit type conversion rule. Also, there is no
subtyping relation in Sig and thus no subsumption rule in the typing judgment. In the following

text, we focus on typing rules related to traits.

Applications. Due to the value restriction of the target language, we have multiple application

rules in Sig, namely ST-App, ST-AppV and ST-AppM. Similarly to λIΣ, rules ST-App and ST-

AppV are for non-dependent and dependent function application, respectively. The arguments to

dependent functions need to be values V (see de�nitions in Figure 6.4). The case when arguments

are objects is speci�cally handled by rule ST-AppM. We rule out such case in ST-AppV by requiring

V not to be an object.

Rule ST-AppM checks if the argument V1 is an object and T1 in the function type is a trait

type. The conclusion type is obtained by replacing all type member access x .L in T2 by the actual

type member V . We use a special form of substitution T2[x .L 7→ V], called projection substitution.

It pattern-matches the member access form x.L which contains two variables.

Additionally, to ensure the substitution result is well-formed, we need to restrict how x occurs

in T2, namely if x shows free in T2, it must be in the form x .L. Then after projection substitution,

we can guarantee that x will not be out of scope in the conclusion type. We formally de�ne such

restriction and call T2 a x.L-only-projection term:

De�nition 6.4.1 (Projection-Only Terms). We call E x.L-only-projection if x and L are free
variables in E and x /∈ FV(E [x .L 7→ y]) for any fresh variable y 6= x.

6.4. The Sig Language 115

` ∆ (Context Well-formedness)

SW-Nil

` ∅

SW-Cons

` ∆ ∆ ` T : Type x fresh in ∆

` ∆, x : T

∆ ` M : S (Object Typing)

SM-Bind

∆ ` Ei : Ti
i

∆ ` val li = Ei
i

: val li : Ti
i

∆ ` S (Trait Well-formedness)

SG-Sig

∆ ` Ti : Type
i

∆ ` val li : Ti
i

Figure 6.6. Other rules of Sig

We check if T2 satis�es such restriction when the argument type T1 is a trait in rules ST-Lam

and ST-Pi, i.e., rules for type-checking functions and function types.

Handling the object case separately and using projection substitution in ST-AppM is due

to value restrictions on member access and lack of explicit or implicit type conversion in Sig.

Otherwise, consider using ST-AppV for the object case. Since only member access on variables is

supported, after substitution, all x .L in T2 will become V1.L which is not well-formed. Further-

more, there is no type conversion to transform V1.L into V . We directly replace all x .L with V ,

without the need of an individual type conversion rule or operator.

Objects and Traits. Objects and traits are type-checked by ST-Mod and ST-Sig, respectively.

The actual type member V is limited to a value. The reason is that an object will be mapped to a

dependent sum in λIΣ and the actual type member corresponds to the �rst component, which

is required to be a value (see SP-Pair). The type of object bindings M is obtained by replacing

all abstract type member L with the actual one V . And we use the trait binding S from the

annotation T1 to check if the type of M is S [L 7→ V]. We also require T , the type of V , not to

be a trait. Otherwise, there could exists the form L.li in object bindings M . Then M [L 7→ V]

contains V .li , which is an ill-formed member access. Correspondingly, in the typing rule of traits

ST-Sig, the type T of abstract type member L should not be a trait.

Member Access. ST-ProjT and ST-Proj are typing rules for type and value member access,

respectively. For a certain value member l, its type T2 is extracted from S by its label and may

contain the abstract type member L. We replace all L in T2 with member access x.L to prevent L

being out of scope. Sig only supports object member access of variables. Because member access

will be translated to projection and opening operations in λIΣ. Both projection and opening have

value restrictions which only take values as input. Variables are values both in λIΣ and Sig,

116 Chapter 6. Iso-Types with Strong Dependent Sums

which satis�es the restriction. Member access on other values, such as objects is not allowed.

Otherwise, type conversion will be needed. If V.l is allowed in ST-Proj where V is an object,

its type would be T2[x 7→ V.L] which needs to further convert the type V.L to the actual type

member.

No Subsumption Rule or Subtyping Relation. Finally, for simplicity reasons, we exclude

the subsumption rule and subtyping relation in Sig. The subsumption rule would make the

system declarative and harden the development of metatheory. Moreover, we focus on presenting

the typing of Sig, as well as the type-directed elaboration which involves the inferences of casts

(see Section 6.4.3). The elaboration of subtyping is less interesting because subtyping relations

between traits can be directly mapped to record subtyping in λIΣ. We leave adding subtyping in

Sig as future work (see Section 8.2).

6.4.3 Elaboration Semantics

The semantics of Sig is given by elaboration to λIΣ. The elaboration is a type-directed translation

of the surface language Sig to the target language. For simplicity reasons, we assume the target

language is λIΣ extended with multi-�eld records. Records can be encoded using top types with

standard techniques [Pierce 2002]. Typing and subtyping rules of records are admissible in λIΣ.

The main purpose of presenting the elaboration semantics is to illustrate how necessary

type-safe casts can be automatically added to target terms. The translation process of Sig is

particularly for the inference of casts with traits and objects. For encoding other constructs

with casts, we may need di�erent elaboration approaches. For example, in Section 3.2.1 we use

Scott-encodings for elaborating algebraic datatypes of Fun into PITS terms with casts.

The judgment for term translation is denoted by ∆ ` E : T e , shown in Figure 6.7 and 6.8.

If we ignore the target term e and trait binding x = 〈x1, x2〉 : T in ∆, the translation judgment

becomes exactly the typing judgment ∆ ` E : T (see Figure 6.5). Most translation rules are

straightforward mappings to λIΣ terms. We distinguish the translation for terms with or without

objects/traits. The name of rules related to traits has a su�x letter “M”. We focus on such rules in

the following text.

Other translation judgments are shown in Figure 6.9, which reuse the term translation judg-

ment. The context translation judgment ` ∆ Γ translates a surface context to a target one.

In rule TRW-Mod, the trait binding x = 〈x1, x2〉 : T is used to save the translation result of an

object variable x. We decompose x as fresh variables x1 and x2, which represent the �rst and

second components of a dependent sum translated from an object. The object and trait binding

translation judgments, i.e., ∆ ` M : S e and ∆ ` S e , translate bindings in objects and

traits to records and record types, respectively.

Object Variables. Rule TR-VarM in Figure 6.7 translates a variable x when it is a trait binding

x = 〈x1, x2〉 : T from the context. Its type T is a trait and translated into a Sigma-type Σx1 : A.B .

The object variable x is then translated to a dependent sum 〈x1, x2 as Σx1 : A. B〉. Note that x

does not show in the translated term. One can only refer to x by its component variables x1 or

x2, which are both already in the translated context by TRW-Mod. This rule follows the form of

the translation of object de�nitions in rule TR-Mod. Thus, we can translate an object value V in

a uni�ed form ∆ ` V : T 〈e1, e2 as Σx : A. B〉.

6.4. The Sig Language 117

∆ ` E : T e (Term Translation)

TR-Ax

` ∆ Γ

∆ ` Type : Type ?

TR-Var

x : T ∈ ∆ ` ∆ Γ

∆ ` x : T x

TR-VarM

x = 〈x1, x2〉 : T ∈ ∆
` ∆ Γ ∆ ` T : Type Σx1 : A. B

∆ ` x : T 〈x1, x2 as Σx1 : A. B〉
TR-Pi

∆ ` T1 : Type A1

∆, x : T1 ` T2 : Type A2 T1 is not a trait

∆ ` (x : T1)→ T2 : Type Πx : A1. A2

TR-Lam

∆ ` T1 : Type A
∆, x : T1 ` E : T2 e T1 is not a trait

∆ ` (λ(x : T1)⇒ E) : (x : T1)→ T2 λx : A. e

TR-PiM

∆ ` T1 : Type Σx1 : A. B
∆, x = 〈x1, x2〉 : T1 ` T2 : Type C

T1 = trait { typeL : T ; S}
T2 is x.L-only-projection

∆ ` (x : T1)→ T2 : Type Πy : (Σx1 : A. B). (λx1 : A. C) (y .1)

TR-LamM

∆ ` T1 : Type Σx1 : A. B
∆, x = 〈x1, x2〉 : T1 ` E : T2 e

T1 = trait { typeL : T ; S}
T2 is x.L-only-projection

∆ ` (λ(x : T1)⇒ E) : (x : T1)→ T2 λy : (Σx1 : A. B). open y as 〈x1, x2〉 in e

Figure 6.7. Translation of terms

Functions with Traits. Rules TR-PiM and TR-LamM in Figure 6.7 translate function types

and functions where the argument type T1 is a trait. The trait T1 is translated to a Sigma-type

Σx1 : A. B . The formal parameter x is added into the context as a trait binding x = 〈x1, x2〉 : T1

correspondingly. Recall that in TR-VarM and TRW-Mod, x does not exist in the translated context

and can only be referred by component variables x1 or x2. In TR-LamM, the function body E

will be translated to e. The member access operations in E will be directly mapped to operations

on component variables in e (see TR-ProjT and TR-Proj). Such behavior can be mapped to the

opening operation in λIΣ, which replaces the input variable x with two pattern variables x1 and

x2. The whole function λ(x : T1)⇒ E is then translated into a lambda term with opening. We

explicitly replace x with a fresh variable y in the translated term to distinguish from x1 and x2.

Rule TR-PiM matches the type of the translated term in TR-LamM. The whole translated type is a

Pi-type, parametrized by the fresh variable y. The body is exactly the type of the open-term in

TR-LamM, which follows SP-Open of the target language.

Applications with Traits. Functions with traits as input are translated to lambdas with open-

terms in TR-LamM separately from ordinary functions. Thus, applications with such functions also

need a special treatment. Rules TR-AppX and TR-AppM in Figure 6.8 translate dependent functions

applied to object values, which cover two cases: variables x or obj de�nitions, respectively.

118 Chapter 6. Iso-Types with Strong Dependent Sums

∆ ` E : T e (Term Translation)

TR-App

∆ ` E1 : T1 → T2 e1
∆ ` E2 : T1 e2 T1 is not a trait

∆ ` E1 E2 : T2 e1 e2

TR-AppV

∆ ` E : (x : T1)→ T2 e1
∆ ` V : T1 e2 T1 is not a trait

∆ ` E V : T2[x 7→ V] e1 e2

TR-AppX

∆ ` E : (x : T1)→ T2 e
∆ ` y : T1 〈y1, y2 as Σx1 : A. B〉

T1 = trait { typeL : T ; S}
∆ ` E y : T2[x 7→ y] cast2↓ (e 〈y1, y2 as Σx1 : A. B〉)

TR-AppM

∆ ` E : (x : T1)→ T2 e
∆ ` V1 : T1 〈e1, e2 as Σx1 : A. B〉

T1 = trait { typeL : T ; S}
V1 = obj { typeL = V ; M }asT1

∆ ` E V1 : T2[x .L 7→ V] cast2↓ (e 〈e1, e2 as Σx1 : A. B〉)
TR-Mod

∆ ` V : T e1
∆ ` M [L 7→ V] : S [L 7→ V] e2

∆ ` T1 : Type Σx1 : A. B
T1 = trait { typeL : T ; S} T is not a trait

∆ ` obj { typeL = V ; M }asT1 : trait { typeL : T ; S} 〈e1, e2 as Σx1 : A. B〉
TR-Sig

∆ ` T : Type A
∆,L : T ` S B T is not a trait

∆ ` trait { typeL : T ; S} : Type Σx1 : A. B [L 7→ x1]

TR-ProjT

∆ ` x : T1 〈x1, x2 as Σx1 : A. B〉
T1 = trait { typeL : T ; S}

∆ ` x .L : T x1

TR-Proj

∆ ` x : T1 〈x1, x2 as Σx1 : A. B〉
T1 = trait { typeL : T ; S} val l : T2 ∈ S

∆ ` x .l : T2[L 7→ x .L] x2.l

Figure 6.8. Translation of terms (cont.)

Note that the type of a translated trait function, i.e., a open-term, is a type-level application

(λx1 : A. C) (y .1) in TR-PiM. We need two consecutive cast↓s in the target term to reduce

the �rst projection and lambda application, similarly to the treatment of second projections

(see Section 6.2.3). The function part E is translated to e by TR-LamM. The argument part is

translated to a dependent sum. In TR-AppX, the object variable is translated to a dependent sum

with component variables by TR-VarM. In TR-AppM, the object de�nition V1 is translated to a

dependent sum by TR-Mod.

Other Translations with Traits. TR-Mod translates an object de�nition into a dependent

sum. The actual type member V is mapped to the �rst component e1. The object bindings

M are mapped to the second component e2, which is a record by object binding translation

∆ ` M : S e . The members in M have the same labels as in e1, which can be extracted

directly by record projections. TR-Sig translates a trait into a Sigma-type. The type of abstract

type member T is translated to the binder type A. The trait binding S is translated to a record

6.4. The Sig Language 119

` ∆ Γ (Context Translation)

TRW-Nil

` ∅ ∅

TRW-Cons

` ∆ Γ
∆ ` T : Type A x fresh in ∆

` ∆, x : T Γ, x : A

TRW-Mod

` ∆ Γ ∆ ` T : Type Σx1 : A. B
x fresh in ∆ x1, x2 fresh in Γ

` ∆, x = 〈x1, x2〉 : T Γ, x1 : A, x2 : B

∆ ` M : S e (Object Binding Translation)

TRM-Bind

∆ ` Ei : Ti ei
i

∆ ` val li = Ei
i

: val li : Ti
i
 { li = ei

i }

∆ ` S e (Trait Binding Translation)

TRS-Sig

∆ ` Ti : Type Ai
i

∆ ` val li : Ti
i
 { li : Ai

i }

Figure 6.9. Translation of contexts and bindings

typeB by trait binding translation ∆ ` S e . The type and value member access operations are

translated by TR-ProjT and TR-Proj, respectively. Type member access is directly mapped to the

�rst component. Value member access is mapped to record projection of the second component.

6.4.4 Soundness of Translation

We show that the type-direct translation of Sig is sound, i.e., the translated target terms are

well-typed. The main lemma is stated as follows:

Lemma 6.4.1 (Soundness of Translation .).

Given ` ∆ Γ, if ∆ ` E : T e and ∆ ` T : Type A, then Γ ` e : A.

The proof is straightforward by induction on the derivation of the term translation judgment

∆ ` E : T e .

Substitution Lemmas. The soundness proof depends on special substitution lemmas. As

mentioned in Section 6.4.2, rule ST-AppM involves the projection substitution with form T2[x .L 7→
V] that replaces a type member access with a value. Also, value substitution such as E [x 7→ V]

for an arbitrary term E may fail since E may contain member access operations x .L and x .l ,

which are only for variables and become malformed after substitution with V . If terms do not

have member access on variables to substitute, the terms should keep well-formedness after

substitution. We de�ne such terms formally as non-projection terms:

De�nition 6.4.2 (Non-projection Terms). We call E x-non-projection if it does not contain any
projection form of x (i.e. x .L or x .l where x occurs free in E). Similarly, bindings ∆, M and S are
x-non-projection if they only contain x-non-projection terms.

120 Chapter 6. Iso-Types with Strong Dependent Sums

It is easy to see that all sub-terms of a x-non-projection term are still x-non-projection. Thus, a

substitution “x 7→ V ” on x-non-projection terms is safe. We can show the following value, typing

and projection substitution lemmas:

Lemma 6.4.2 (Value Substitution .). If V1 is a x-non-projection value and V2 is a value, then
V1[x 7→ V2] is still a value.

Lemma 6.4.3 (Typing Substitution .). If ∆1, z : T1,∆2 ` E : T e and ∆1 ` V2 : T1 v ,
where E and ∆2 are z-non-projection, then ∆1,∆2[z 7→ V2] ` E [z 7→ V2] : T [z 7→ V2]
e[z 7→ v].

Lemma 6.4.4 (Projection Substitution .). Given T ′ = trait { typeL1 : T3; S1}, if ∆1, z =

〈z1, z2〉 : T ′,∆2 ` E : T e and ∆1 ` V2 : T3 v , where E and ∆2 are z.L1-only-projection,
then ∆1,∆2[z .L1 7→ V2] ` E [z .L1 7→ V2] : T [z .L1 7→ V2] e[z1 7→ v].

Proofs are straightforward by induction. Notice that for value substitution lemma, when V1 is

a type member access, it cannot be x .L since it is x-non-projection. Thus, V1 = y .L for some

y 6= x, then V1[x 7→ V2] = V1 = y .L is still a value.

121

CHAPTER7

Related Work

7.1 Dependently Typed Calculi without Subtyping

7.1.1 Core Calculus for Functional Languages

Girard’s System Fω [Girard 1972] is a typed lambda calculus with higher-kinded polymorphism.

For the well-formedness of type expressions, an extra level of kinds is added to the system. In

comparison, because of uni�ed syntax, PITS is considerably simpler than System Fω , both in terms

of language constructs and complexity of proofs. As for type-level computation, System Fω di�ers

from PITS in that it uses a conversion rule, while PITS uses explicit casts. PITS is also inspired

by the treatment of datatype constructors in Haskell [Jones 1993]. Iso-types have similarities

to newtypes and datatypes which involve explicit type-level computations. The current core

language for GHC Haskell, System FC [Sulzmann et al. 2007] is a signi�cant extension of System

F , which supports GADTs [Peyton Jones et al. 2004], functional dependencies [Jones 2000], type

families [Eisenberg et al. 2014], and kind equality [Weirich et al. 2013]. System DC [Weirich

et al. 2017] is a further extension to FC and foundation of Dependently Typed Haskell (DTH)

that extends Haskell with full-spectrum dependent types. System FC and its extensions require a

non-trivial form of type equality, which is currently missing from PITS. One possible direction

for future work is to investigate the addition of such forms of non-trivial type-equality. On the

other hand, PITS uses uni�ed syntax and has only 8 language constructs, whereas the original

System FC uses multiple levels of syntax and currently has over 30 language constructs, making

it signi�cantly more complex. The simplicity of PITS makes it suitable to be combined with other

language features, such as subtyping and strong sums, which seem hard to support in FC and

its extensions. For example, we have presented the λI6 calculus that extends a variant of PITS

(i.e. λI) with subtyping in Chapter 5, and the λIΣ calculus which is a variant of λI6 with strong

sums in Chapter 6.

7.1.2 Unified Syntax with Decidable Type-checking

Pure Type Systems [Barendregt 1991] show how a whole family of type systems can be imple-

mented using just a single syntactic form. PTSs are an obvious source of inspiration for our

work. An early attempt of using a PTS-like syntax for an intermediate language for functional

programming was Henk [Peyton Jones and Meijer 1997]. The Henk proposal was to use the

lambda cube as a typed intermediate language, unifying all three levels, i.e., terms, types and

122 Chapter 7. Related Work

kinds. However the authors have not studied the addition of general recursion, full dependent

types or the meta-theory.

Zombie [Casinghino et al. 2014] is a dependently typed language using a single syntactic

category. It is composed of two fragments: a logical fragment where every expression is known

to terminate, and a programmatic fragment that allows general recursion. Though Zombie has

one syntactic category, it is still fairly complicated (with around 24 language constructs) as it tries

to be both consistent as a logic and pragmatic as a programming language. Even if one is only

interested in modeling a programmatic fragment, additional mechanisms are required to ensure

the validity of proofs [Sjöberg et al. 2012; Sjöberg and Weirich 2015]. In contrast to Zombie, PITS

takes another point of the design space, giving up logical consistency and reasoning about proofs

for simplicity in the language design.

7.1.3 Unified Syntax with General Recursion and Undecidable Type Checking

Cayenne [Augustsson 1998] integrates the full power of dependent types with general recursion,

which bears some similarities with PITS. It uses one syntactic form for both terms and types,

allows arbitrary computation at type level and is logically inconsistent because of the presence

of unrestricted recursion. However, the most crucial di�erence from PITS is that type checking

in Cayenne is undecidable. From a pragmatic point of view, this design choice simpli�es the

implementation, but the desirable property of decidable type checking is lost. Cardelli’s Type:Type

language [Cardelli 1986b] also features general recursion to implement equi-recursive types.

Recursion and recursive types are uni�ed in a single construct. However, both equi-recursive

types and the Type:Type axiom make the type system undecidable. ΠΣ [Altenkirch et al. 2010] is

another example of a language that uses one recursion mechanism for both types and functions.

The type-level recursion is controlled by lifted types and boxes since de�nitions are not unfolded

inside boxes. However, ΠΣ does not have decidable type checking due to the “type-in-type”

axiom, and its metatheory is not formally developed.

7.1.4 Casts for Managed Type-level Computation

Type-level computation in PITS is controlled by explicit casts. Several studies [Stump et al. 2008;

Sjöberg et al. 2012; Kimmell et al. 2012; Sjöberg and Weirich 2015; Sulzmann et al. 2007; Gundry

2013; Weirich et al. 2017] also attempt to use explicit casts for managed type-level computation.

However, casts in those approaches are not inspired by iso-recursive types. Instead they require

equality proof terms, while casts in PITS do not. The need for equality proof terms complicates the

language design because: 1) building equality proofs requires various other language constructs,

adding to the complexity of the language design and metatheory; 2) It is desirable to ensure that

the equality proofs are valid. Otherwise, one can easily build bogus equality proofs with non-

termination, which could endanger type safety. Guru [Stump et al. 2008] and Sep3 [Kimmell et al.

2012] make syntactic separation between proofs and programs to prevent certain programmatic

terms turning into invalid proofs. System DC [Weirich et al. 2017] and other FC variants [Sulzmann

et al. 2007; Yorgey et al. 2012] similarly distinguish coercions (i.e. equality proofs) and programs

syntactically. The programmatic part of Zombie [Sjöberg et al. 2012; Sjöberg and Weirich 2015],

which has no such separation, employs a value restriction that restricts proofs to be syntactic

values to avoid non-terminating terms. Gundry’s evidence language [Gundry 2013] also uni�es all

syntactic levels including coercions, but uses di�erent phases for separating programs and proofs.

7.2. Calculi with Subtyping and Dependent Types 123

Table 7.1. Comparison between λI6 and related calculi

Features λI6 F6 PTS
6

PSS λP6 λΠ6 λC6

Dependent types #
Beta equality # #
Uni�ed syntax # # #
Contravariance #
Bounded quanti�cation G#1 # # #
Top type # # # #
Transitivity not rely on normalization —

2 # #
1

No subtyping relation for lambdas with bounded quanti�cation.

2
Metatheory not fully developed.

The typing rules contain an access policy relation to determine the conversion of phases. Such

mechanism is �ner-grained yet more complicated. Note that our treatment of full casts in full

PITS, using a separate erased system for developing metatheory, is similar to the approach of

Zombie or Guru which uses an unannotated system.

7.1.5 Restricted Recursion with Termination Checking

As proof assistants, dependently typed languages such as Coq [The Coq development team 2016]

and Agda [Norell 2007b] are conservative as to what kind of computation is allowed. They require

all programs to terminate by means of a termination checker, ensuring that recursive calls are

decreasing. Decidable type checking and logical consistency are preserved. But the conservative,

syntactic criteria is insu�cient to support a variety of important programming styles. Agda

o�ers an option to disable the termination checker to allow writing arbitrary functions. However,

this may endanger both decidable type checking and logical consistency. Idris [Brady 2011] is

a dependently typed language that allows writing unrestricted functions. However, to achieve

decidable type checking, it also requires termination checker to ensure only terminating functions

are evaluated by the type checker. While logical consistency is an appealing property, it is not a

goal of PITS. Instead PITS aims at retaining (term-level) general recursion as found in languages

like Haskell or ML, while bene�ting from a uni�ed syntax to simplify the implementation and the

meta-theory of the core language.

7.2 Calculi with Subtyping and Dependent Types

In this section, we discuss several related calculi that support subtyping and dependent types

(except System Fω6 and Fω··). The comparison of features between several closely related calculi

and λI6 is summarized in Table 7.1. One quick observation from the table is that only λI6 can

support all language features of F6, while other calculi cannot fully subsume F6.

7.2.1 Subtyping with Unified Syntax

It is appealing to combine subtyping with the uni�ed syntax of Pure Type Systems [Barendregt

1991] (PTS) for obtaining a concise and expressive system. Chen proposed λC6 [Chen 1997], an

extension of the calculus of constructions (λC) with subtyping. λC6 supports neither top types

nor bounded quanti�cation in order to simplify the metatheory. The proof of transitivity in λC6
is simpler and does not depend on strong normalization, though decidability still depends on

124 Chapter 7. Related Work

strong normalization as in λC . Zwanenburg proposed PTS6 [Zwanenburg 1999] by extending

PTS with subtyping and bounded quanti�cation. It has the PTS-style uni�ed syntax but with two

distinct forms of abstraction for type and bound. In PTS6, the subtyping rules do not depend on

the typing rules, which allows proving subtyping properties independently from typing properties.

However, such design makes it di�cult to extend the framework with two desirable features:

1) subtyping on bounded abstractions, since subtyping rules are de�ned only for pre-terms; 2)

top types, since the subtyping rule of top types depends on typing. Neither of those features are

supported by PTS6.

Hutchins proposed another framework called Pure Subtype Systems [Hutchins 2010] (PSS)

which also adopts the uni�ed syntax based on PTS. The design is simpli�ed by making the system

solely based on subtyping without the typing relation. The simplicity of the system comes at

the cost of the complexity of metatheory. The proof of transitivity elimination is partial, and

therefore subject reduction cannot be proved. Note that although λI6 shares the similar idea of

being based on the subtyping relation, it has two major di�erences from PSS. First, λI6 uni�es

subtyping with typing in a more conservative way. The uni�ed subtyping relation still tracks

types and it intuitively subsumes the traditional typing relation. In contrast, PSS takes a more

aggressive approach to make the typing relation completely absent from the system. In PSS there

are no types or typing. Second, PSS eliminates the distinction of function and function types,

which are uni�ed into the same syntax of abstraction. In contrast, λI6 still distinguishes these

two concepts as in PTSs. Since the subtyping rule of abstractions in PSS is pointwise, any form of

contravariance is not supported. An unfortunate consequence is that PSS cannot subsume System

F6 with contravariant arrow types, including the Kernel Fun variant [Cardelli and Wegner 1985].

7.2.2 Stratified Syntax with High-Order Subtyping

System Fω6 is a lambda calculus with strati�ed syntax by extending System Fω [Girard 1972] with

higher-order subtyping. To simplify the metatheory, early formalizations of System Fω6 [Pierce

and Ste�en 1997; Compagnoni 1995] do not allow a bounded type operator. Compagnoni and

Goguen later proposed a technique called typed operational semantics [Compagnoni and Goguen

2003] to fully enable bounded quanti�cation in System Fω6 . But its metatheory becomes quite

complicated and relies on strong normalization, making it hard to apply such technique to systems

with general recursion. Note that Compagnoni and Goguen’s presentation of System Fω6 contains

a kinded subtyping judgment Γ ` A 6 B : K which has a similar shape to the uni�ed subtyping

relation in λI6. But the typing relation is separately de�ned in their system and not subsumed by

the kinded subtyping judgment. System Fω·· [Stucki 2017] is an extension of Fω6 with type intervals.
Fω·· supports higher-order subtyping with both lower and upper bounded quanti�cations but its

metatheory is complex due to the strati�ed syntax. The canonical/algorithmic system of Fω·· relies

on normalization. The transitivity rule cannot be fully eliminated but partially eliminated for

top-level uses.

7.2.3 Stratified Subtyping Systems with Dependent Types

System λP6 [Aspinall and Compagnoni 1996] is a strati�ed system with dependent types and

higher-order subtyping. The metatheory becomes more complex than System Fω6 due to the

circular dependency of typing, kinding and subtyping. A novel proof technique that splits beta

reduction on terms and types is proposed to break such dependency. However, System λP6 does

7.3. Strong Sum Types and ML Modules 125

not support polymorphism (i.e. abstraction over types), bounded quanti�cation or top types.

System λΠ6 [Castagna and Chen 2001; Chen 1998] is an improvement of λP6. It has the property

of complete type-level transitivity elimination, while System λP6 has transitivity elimination only

for normalized types. However, λΠ6 is proved to be equivalent to λP6 in typing and subtyping,

meaning that it has no increased expressiveness. Both λΠ6 and λP6 require strong normalization

to prove the transitivity of subtyping. In contrast, λI6 employs iso-types for explicit type-level

computations and decouples strong normalization from the proofs of metatheory.

7.2.4 Subtyping with Restricted Dependent Types

There have been several studies focusing on exploring subtyping with restricted forms of dependent

types but not full dependent types in the context of object-oriented (OO) programming. The

Dependent Object-Oriented Language [Campos and Vasconcelos 2015, 2018] (DOL) is an imperative

OO programming language with subtyping and index re�nements, a restricted notion of dependent

types originated from Dependent ML [Xi and Pfenning 1999], which allows types to depend

on static indices of natural numbers. DOL supports the veri�cation of mutable objects and

unrestricted use of shared objects. The type checking of DOL is decidable. Compared to λI6,

DOL does not support full dependent types or general bounded quanti�cation. In DOL, Pi-types

are denoted by Πa : I.T and can be quanti�ed only by index types I . Quanti�ers in Pi-types only

support propositions on indexes, such as comparing natural numbers a 6 b.
νObj [Odersky et al. 2003] is a dependently typed calculus for objects with type members.

It is developed as a theoretic foundation for Scala [Odersky et al. 2004] and features a weaker

form of dependent types called path-dependent types. In νObj , types can depend on paths which

are type selections on variables, i.e., x.L. Compared to traditional dependent types used in

λI6, it is di�cult to use path-dependent types to model dependency on non-path values, e.g.,

Πn : Int . Vec n. The richness of the type system makes the metatheory of νObj complex and

type checking is not decidable. Another recent e�ort of developing a core calculus for Scala is the

Dependent Object Types (DOT) calculus [Amin et al. 2012b, 2014; Rompf and Amin 2016; Amin et al.

2016]. DOT is also based on path-dependent types. It is simpler and has fewer type forms than

νObj , e.g., no class types, but still expressive to model many features of Scala. Similarly to λI6,

DOT subsumes System F6 but has a richer notion of bounds. Type variables can be quanti�ed by

both lower bounds and upper bounds, as opposed to the traditional bounded quanti�cation used

in λI6 that only supports upper bounds. The metatheory of DOT is well-developed [Rompf and

Amin 2016], though the soundness proof requires many non-standard techniques. Transitivity of

subtyping needs to be treated as an axiom and transitivity elimination is not possible [Rompf and

Amin 2016]. Both νObj and DOT use the strati�ed syntax in contrast to the uni�ed syntax of

λI6.

7.3 Strong Sum Types and ML Modules

7.3.1 Dependently Typed Calculi with Strong Sigma-types

It is challenging to combine strong dependent sums with traditional dependently typed systems. If

both impredicative polymorphism and strong sums are allowed, Girard’s paradox can be derived

and logical consistency is lost [Coquand 1986; Hook and Howe 1986]. Previous studies usually

drop impredicativity to obtain a consistent system with strong sums. XML [Harper and Mitchell

126 Chapter 7. Related Work

1993] extends Standard ML with a module system encoded by strong dependent sums. XML

uses implicit type conversions by equality relations and utilizes strati�ed universes to abandon

impredicative polymorphism.

Instead of completely dropping impredicativity, another feasible approach [Harper and

Mitchell 1993] is to limit predicativity only in strong Sigma-types and allow impredicativity

in Pi-types. However, such predicative Sigma-types are more restricted and less expressive, since

both the binder type and body should be at the same small kind level, i.e., for Σx : A. B , both

A : ? and B : ? are required. For example, Σx : ?. x is not predicative with strati�ed universes

where ? : 2. The Calculus of Dependent Lambda Eliminations (CDLE) [Stump 2017] supports

impredicativity and encoding strong sums without treating them as built-in constructs, though the

encoded Sigma-types are predicative. Bowman et al. [2017] proposed an extension of the Calculus

of Constructions with strong dependent sums for type-preserving CPS translation. Similarly, in

their system Pi-types are impredicative but strong sum types are predicative so as to prevent the

inconsistency issue.

The λIΣ calculus supports impredicativity both in Pi-types and strong Sigma-types by using

a single uni�ed universe (i.e. ?) and the “type-in-type” axiom. Thus, the calculus is logically

inconsistent. Nonetheless, we do not consider inconsistency problematic for λIΣ. We focus more

on the traditional programming patterns, while the related studies mentioned above mostly focus

on logical uses such as proof assistant. The loss of strong normalization does not cause problems

either, since iso-types untangles normalization from other properties of λIΣ.

7.3.2 Strong Sigma-types with Subtyping

It is even more challenging to allow subtyping with Sigma-types. There is not so much existing

work due to the complexity of combining subtyping and dependent sum types. On exception is

the work by Luo et al. [2004] on coherent subtyping rules of strong Sigma-types. They propose

a new subtyping rule for the �rst projection of Sigma-types and achieve both coherence and

admissibility of transitivity. Their system only supports predicative strong sums, similarly to the

calculi by Stump [2017] and Bowman et al. [2017]. Several other work, such as dependent records

by Pollack [2002], is based on Luo et al.’s rules. One fundamental di�erence is that they use coercive
subtyping, while we use structural subtyping based on the approach of uni�ed subtyping [Yang

and Oliveira 2017]. Coercive subtyping allows more �exible subtyping rules in their system,

however also requires the additional relation, i.e., coercion, and needs to ensure its coherence.

The uni�ed subtyping approach used in λIΣ directly reasons on the structures of types.

7.3.3 Core Languages for Scala

As shown in the surface language Sig, dependent sums in λIΣ can model several Object-oriented

Programming (OOP) structures in Scala [Odersky et al. 2004], e.g., traits and type members.

There are several calculi which aim to serve as theoretical foundations of Scala as mentioned in

Section 5.6, including νObj [Odersky et al. 2003] andDependent Object Types (DOT) calculus [Amin

et al. 2012b, 2014; Rompf and Amin 2016; Amin et al. 2016]. The key feature is path-dependent
types for modeling member access of traits. νObj supports full paths p.L, while DOT supports

short paths on variables only, i.e., x.L, similarly to the restriction in Sig. Both calculi can model

more complete Scala features, including both lower and upper bounds for type members, which is

missing in λIΣ. Nonetheless, λIΣ is not intended for modeling full Scala features, though it can

7.3. Strong Sum Types and ML Modules 127

support some features of type members as shown in Sig. Traditional full dependent types, such

as Πn : Int . Vec n, are not expressible in νObj or DOT. Higher-kinded types are not currently

available in DOT but supported by Fω·· [Stucki 2017], a Fω variant of DOT with upper and lower

bounds but without type members or path-dependent types. λIΣ supports both dependent types

and high-kinded types. Both transitivity elimination and type-safety are proved for λIΣ. In

contrast, νObj does not have fully-developed metatheory. DOT has a relatively more complex

soundness proof [Rompf and Amin 2016; Rapoport et al. 2017]. DOT needs a built-in transitivity

rule and does not support transitivity elimination.

7.3.4 Encoding ML Modules by Dependent Types

Dependent sums are the key novelty ofλIΣ overλI6. Besides OOP language constructs, dependent

sums can also model ML-like model systems. MacQueen [1986] proposed such an idea to model

functors and signatures using dependent types and strong existential types, i.e., strong sum types.

Several other work also tries to encode modules with strong sums, e.g., XML by Harper and

Mitchell [1993], as well as Leroy’s calculus that employs both strong sums and weak manifest

sums [Leroy 1994]. For a proper module system, one needs the strong existential opening and

second projection from strong sums, because traditional existential opening is too restrictive. It

does not allow free access to the witness and interpretation components of an existential package.

Notice that all these previous studies use an implicit conversion rule with equality judgments,

while λIΣ employs the iso-type approach with explicit type casts. Instead of using the standard

typing rule for the second projection, in λIΣ, we slightly weaken the typing rule of the second

projection and strong opening to make them compatible with call-by-value casts. Alternatively,

strong sums can be typed using full casts with parallel reduction. But the cost is the complexity

of metatheory and the di�culty to combine with other features, such as subtyping.

7.3.5 Encoding ML Modules by F-ing Modules

Instead of directly using dependent sums, ML module systems can be encoded through indirect
semantics by second-order type systems and ordinary existential types. Rossberg et al. [2010]

proposed F-ing modules which elaborate ML modules into System Fω . The target language does

not need dependent types or dependent sums. But such encoding requires a complex elaboration

process. The semantics of modules is indirect, which is represented di�erently in the surface and

target language. For example, an abstract signature is an existential type ∃α.Σ in the surface

ML language that binds abstract types α. It will be instantiated into a concrete signature Σ in Fω
which is a record type. Thus, member access of a module can be done internally in an existential

package, because the semantics signature is “virtual”, i.e., an existential package with abstract

binders. There is no actual existential opening and thus the encoding does not require strong

existentials, i.e., strong dependent sums.

Type members and traits encoded in Sig share some similarities to ML-like modules: traits

are like signatures and objects are like structures. We use a type-directed translation from Sig

to λIΣ, similarly to the elaboration used in F-ing modules. However, our translation process is

much simpler. The surface structures of Sig have direct mappings in the target language. With

dependent sums, we can directly use existential openings. Note that the opening operation in

λIΣ has an intermediate type which is a type-level application. The actual type is delayed until

the actual implementation is provided, and then can be obtained by cast↓s. This is similar to the

128 Chapter 7. Related Work

treatment of obtaining concrete signatures in F-ing modules. However, λIΣ uses dependent types

and does not need “virtual” signatures that always carry existential binders.

7.3.6 First-class ML Modules

Traditionally, ML modules are treated as a separate system from the core language. Modules

cannot be freely mixed with terms. 1ML [Rossberg 2015] is such an attempt to unify the core

and modules, which features F-ing modules to elaborate both predicative ML core and module

systems into a well-studied target language, i.e., System Fω . Another earlier work by Harper

and Lillibridge is translucent sums [Harper and Lillibridge 1994; Lillibridge 1997] that support

transparent type de�nitions (i.e. type L = T) in signatures. Modules encoded by translucent sums

are �rst-class values. Essentially, translucent sums are weak sums extended with type equality.

Similarly to 1ML, Harper and Lillibridge’s calculus is based on System Fω but not a dependent

type theory.

Thanks to uni�ed syntax in λIΣ, objects of traits are encoded as �rst-class values in Sig.

Considering the similarities between traits and modules, Sig can also be viewed as a language

with lightweight support of �rst-class ML modules. Though Sig lacks many features of ML

module systems, such as translucent type members [Leroy 1994; Lillibridge 1997], it still shows

the potential of encoding �rst-class modules with uni�ed syntax and strong dependent sums.

Moreover, Sig can support signature types that depend on values, e.g., trait { typeL : Int ; val l :

Vec L}. Such type is not supported by 1ML or translucent sums, which depend on System Fω that

do not have full dependent types.

7.3.7 Module Systems for Dependently Typed Calculi

So far we have discussed module systems for core languages which are non-dependent. Several

dependently typed languages, such as Coq [The Coq development team 2016], also employ ML-

like module systems. One attempt to formalize such module systems isMC2 [Courant 2007,

1997] that extends Pure Type Systems with a ML-like module system. The approach ofMC2 is

more traditional. Modules inMC2 are second-class, which are distinct syntactic levels separated

from core terms of PTS and require duplicated constructs, such as functors and signatures. In

contrast modules/objects in Sig are �rst-class and uni�ed with core terms. Modules/objects are

encoded by strong sums but not treated as built-in primitives in λIΣ. Moreover,MC2 aims at

modularizing proofs for proof assistants, while λIΣ and Sig focus on modeling modular constructs

for traditional programming.

129

CHAPTER8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we explored the design space of dependently typed languages for general-purpose

programming that stand in-between traditional languages and full-spectrum dependently typed

languages. We showed how the advantages of dependent types, especially the economy of

concepts and added expressiveness, can bene�t the designs of traditional languages. In particular,

we developed three dependently typed calculi that combine features for traditional programming:

• We developed Pure Iso-Type Systems (PITS), a family of dependently typed calculi with

general recursion. PITS employs uni�ed syntax and has comparable simplicity to Pure

Type Systems (PTS). To retain decidable type checking in the presence of general recursion,

we proposed iso-types. Iso-types make every type-level computation steps explicit by

cast operators and decouple properties such as decidability of type checking from strong

normalization. We studied three variants of PITS that di�er on reduction strategies of casts

and have trade-o�s in terms of expressiveness and simplicity of metatheory. We proved

type-safety and decidability of type checking for all variants.

• We developed the λI6λI6λI6 calculus, a dependently typed calculus with subtyping. λI6 is a

variant of PITS with extra features for object-oriented programming, including higher-

order subtyping, bounded quanti�cation and top types. To address the issues arising

from combining dependent types and subtyping, we proposed uni�ed subtyping. Uni�ed

subtyping combines typing and subtyping into a single relation and eliminates the circularity

of typing and subtyping. We developed the metatheory of λI6 and proved transitivity of

subtyping and type-safety. We also showed that λI6 can fully subsume System F6.

• We developed the λIΣλIΣλIΣ calculus, a dependently typed calculus with subtyping and strong

dependent sums. λIΣ employs the approach of uni�ed subtyping and is a variant of λI6.

λIΣ also features iso-strong sums whose destructors are typed as intermediate type-level

applications instead of direct substitutions. Call-by-value casts are capable of performing

necessary type-level computation without the need of full casts. We proved transitivity

and type-safety for λIΣ in the presence of impredicativity. We also showed an application

of strong sums for encoding Scala-like traits by elaborating surface constructs of Sig into

λIΣ terms.

130 Chapter 8. Conclusion and Future Work

8.2 Future Work

In this section, we discuss several interesting avenues for future work.

Modeling Functional Languages with PITS. We believe that PITS is suitable to serve as a

core language for functional languages with expressiveness in-between traditional languages

and full-spectrum dependently typed languages. For future work, we would like to employ PITS

for modeling traditional functional languages like (older versions of) Haskell and ML with some

extra features that come “for free” from the use of dependent types and uni�ed syntax. We

have already shown such possibility in Section 3.2 that PITS can model many type-level features

which are language extensions to classic Haskell or ML. However, writing a new compiler for full

Haskell or ML requires a lot of engineering e�orts, even if only considering the classic Haskell

98. We would like to take a more pragmatic approach by modifying existing compilers and

replacing the core language with PITS. For example, JHC [Meacham 2006] is a Haskell compiler

that implements Haskell 98 and has a much smaller code base than the de facto standard Haskell

compiler GHC [The GHC Team 2018]. JHC uses the PTS-style core language Henk [Peyton Jones

and Meijer 1997] for implementing type classes. Based on the work of JHC, we hope to replace

Henk with PITS and implement more language extensions from modern Haskell such as datatype

promotion [Yorgey et al. 2012].

Relax the Value Restriction for Call-by-value PITS. We employ a value restriction in call-

by-value PITS to retain subject reduction with a simple proof. As discussed in Section 4.2.1, we

will consider an alternative approach by adding cast operators during dynamic semantics for

future work. The proposal is to add two special constructs. The syntax of expressions and values

is extended as follows:

e,A ::= · · · | (e1; e2) | cast↑ [e3] (e1; e2)

v ::= · · · | (v1; v2) | cast↑ [e3] (e1; e2)

We use the syntax (e1; e2) to denote dependent function applications whose arguments are not

values. A special cast-up operator denoted by cast↑ [e3] (e1; e2) is used to expand types of such

applications. The typing rules of new constructs are as follows:

Γ ` e1 : Πx : A. B Γ ` e2 : A x ∈ FV(B)

Γ ` (e1; e2) : (λx : A. B) e2

Γ ` e1 : Πx : A. B Γ ` e2 : A Γ ` e3 : A e3 ↪→ e2 x ∈ FV(B)

Γ ` cast↑ [e3] (e1; e2) : (λx : A. B) e3

We use the same approach as iso-strong sums (see Section 6.1.2) for the typing of dependent

applications. The typing result is a type-level application that carries the argument e2. The type

annotation of the special cast-up operator saves an argument e3 which is a beta-expansion of the

original argument e2. The special cast-up operator makes it possible to track the types through

8.2. Future Work 131

reductions. We have the following new reduction rules:

e1 ↪→ e ′1

(e1; e2) ↪→ (e ′1; e2)

e ↪→ e ′

(v ; e) ↪→ cast↑ [e] (v ; e ′)

cast↓ (cast↑ [e3] (e1; e2)) ↪→ (e1; e2) cast↓ (v1; v2) ↪→ v1 v2

When trying to reduce (v ; e), we will add a cast-up operator to save the original argument and

retain the type for the reduced term: cast↑ [e] (v ; e ′). We can use cast↓ operators to eliminate the

cast-up operators and the special form of dependent applications. Our preliminary experiment

shows that with this approach we can prove type-safety, namely subject reduction and progress

lemmas. Although the typing and reduction rules become complex, we hope that this approach

will help recover some missing expressiveness due to the value restriction.

Push Rules for Full PITS. In Section 4.3.2, we discuss an alternative design of full PITS that

we can use “push rules” as in System FC [Sulzmann et al. 2007] instead of erasing all casts like

Zombie [Sjöberg and Weirich 2015] or Guru [Stump et al. 2008]. For example, we can de�ne a

push rule for the case when the function is wrapped by a cast⇑ operator:

(cast⇓ [A′ → B ′] (λx : A. y)) e ↪→ cast⇓ [B ′] ((λx : A. y) (cast⇑ [A] e))

The example from Section 4.3.2 can be reduced as follows:

(cast⇓ [Int → Int] (λx : Id Int . x)) 3

↪→ cast⇓ [Int] ((λx : Id Int . x) (cast⇑ [Id Int] 3))

↪→ cast⇓ [Int] (cast⇑ [Id Int] 3)

↪→ 3

where Id = λy : ?. y . However, this rule is still limited since it only works when the function is

non-dependent, i.e., with an arrow type and needs to be exactly a lambda term. For future work,

we hope to work out more push rules that can cover all possible cases, so that we can directly

prove type-safety with such rules. We also believe that a direct operational semantics of full PITS

will be helpful to simplify the metatheory and enable the combination of other techniques, such

as uni�ed subtyping.

Consistent Full Reduction for Casts. Full PITS employs two di�erent reduction strategies:

a parallel reduction for casts and a call-by-name reduction for term evaluation (see Section 4.3.1).

This causes some inconsistency in the calculus, e.g. λx : Int . 1 + 1 is a value but reducible by

full casts, and complicates the design. For future work, we would like to explore a consistent full

reduction for both type casts and term evaluation. One possible approach is to use the one-step

full beta reduction rules (as in Figure 4.9) with a particular order. We have already proved that the

current parallel reduction used by full casts has the same expressive power as full beta reduction

(see Lemma 4.3.3). This alternative design will not reduce the expressiveness of the calculus.

132 Chapter 8. Conclusion and Future Work

Surface Mechanisms for Iso-Types. We would like to explore mechanisms in surface lan-

guages that make iso-types more convenient to use. One possible direction is the lightweight
inference of casts. The end users will be not aware of casts at the surface level and the underlying

compiler will help generating necessary casts for keeping type-safety. Note that we do not expect

a general full inference of casts, which is di�cult or even impossible. A more realistic approach is

to infer casts for speci�c constructs. For example, we have shown how to automatically generate

casts in the target language by an elaboration of surface constructs, such as algebraic datatypes

using Scott encodings (Section 3.2.1) and Scala-like traits using strong sums (Section 6.4.3).

Algorithmic Uni�ed Subtyping. The current algorithmic version of λI6 has a notable dif-

ference from the declarative system: the typing and subtyping relations are de�ned separately

(see Section 5.4). This causes complexity in developing metatheory for the algorithmic system.

For example, if we want to prove the decidability, we need cover both subtyping and typing

judgments. The algorithmic system also heavily relies on the erasure of annotations, making it

di�cult to prove inversion lemmas. For future work, we hope to develop new algorithmic uni�ed
subtyping judgments for both λI6 and λIΣ calculi. Instead of separated typing and subtyping

judgments, there will be only uni�ed subtyping judgments with two directions: the checking

judgment Γ ` e1 6 e2 ⇐ A and the synthesis judgment Γ ` e1 6 e2 ⇒ A. We would like to

prove the soundness and completeness of the new judgments to the original declarative uni�ed

subtyping judgment.

Decidability of Uni�ed Subtyping. We discussed the impact of using the Pi-type rule with full

contravariance in λI6, which makes the uni�ed subtyping relation undecidable (see Section 5.6).

However, we did not answer whether the calculus is decidable with the Kernel Fun rule. Like

System F6, we need to �rst create an algorithmic presentation of the calculus. In Section 5.4, we

presented a sound and complete algorithmic version of λI6 but did not prove its decidability due

to the complexity of its judgments. For future work, we would like to develop sound and complete

algorithmic versions of λI6 and λIΣ based on the algorithmic uni�ed subtyping judgments and

prove their decidability.

More Features for Uni�ed Subtyping. We would like to explore more features for the uni�ed

subtyping relation. For example, as discussed in Section 5.6, the full subtyping of recursion is not

yet supported with uni�ed subtyping due to the pointwise subtyping rules. Similarly, subtyping

applications is not complete, e.g., in rules S-App and SP-App, since the arguments are required

to be �xed. We hope to remove such restrictions by the polarized subtyping approach [Ste�en

1998], which provides a mechanism called polarities for a �ner-grained control of covariance and

contravariance.

Another example is to extend the bounded quanti�cation with both lower and upper bounds

as in DOT [Amin et al. 2012a]. Currently, only upper bound is supported in λI6, which follows

the treatment of System F6. However, the metatheory of DOT is signi�cantly more complex than

λI6. If only considering to add bounds, we could adopt the method by Stucki [2017] that extends

Fω with type intervals (i.e. both upper and lower bounds), which hopefully will not complicate

the metatheory too much. We would also like to take the same approach to add bounds for λIΣ

that currently drops bound quanti�cation for simplicity reasons. One long-term goal is to add

8.2. Future Work 133

more features in λIΣ, making it be able to subsume DOT [Amin et al. 2012a] and model more

Scala-like programming idioms.

Relax the Value Restriction in λIΣ. Similarly to call-by-value PITS, λIΣ uses call-by-value

casts and imposes value restrictions. For future work, we would like to relax value restrictions of

λIΣ and introduce a special cast↑ operator, similarly to the previously mentioned proposal for

call-by-value PITS:

Γ ` e : Σx : A. B

Γ ` e.2 : (λx : A. B) (e.1)

Γ ` e : Σx : A. B Γ ` e ′ : Σx : A. B e ↪→ e ′

Γ ` cast↑ [e] (e ′.2) : (λx : A. B) (e.1)

Cast-up operators will be automatically inserted in the reduction rule of the second projections

and can also be canceled by cast↓ operators:

e ↪→ e ′

e.2 ↪→ cast↑ [e] (e ′.2) cast↓ (cast↑ [e] (e ′.2)) ↪→ e ′.2

To allow nested second projections, we can use a full cast⇓ operator to eliminate the intermediate

type-level application:

e : Σx : A. B

e.2 : (λx : A. B) (e.1)

cast⇓ (e.2) : B [x 7→ e.1]

Then we can further perform another second projection such as (cast⇓ (e.2)).2 if B is also a

Sigma-type.

Extensions to Sig. The Sig language presented in Section 6.4 is a very simple language built

directly based on λIΣ. It has several language restrictions to keep the design simple and focus on

presenting the application of iso-strong sums. For future work, we would like to support more

surface-level features in Sig. One important missing feature in Sig is subtyping. Since the core

language λIΣ already supports (uni�ed) subtyping, we can develop the surface subtyping rules

based subtyping rules in λIΣ. For example, the subtyping rule for traits can be de�ned as follows:

∆ ` Tj 6 T ′i ∀i ∈ 1..n,∃j ∈ 1..m, lj = l′i

∆ ` trait { typeL : T ; val l1 : T1; .. ; val lm : Tm} 6
trait { typeL : T ; val l ′1 : T ′1; .. ; val l ′n : T ′n}

This rule follows record subtyping (see Section 2.4.1). Thus, the subtyping relation of traits still

holds for the translated terms in the core since traits are translated to Sigma-types with record

types.

Another example is to support transparent types, which are useful constructs in the ML

module systems. We would like to follow the approach proposed by Leroy [1994] and Lillibridge

[1997] to support translucent sum types, i.e., dependent sum types containing equality quanti�ers,

denoted by Σx = e : A. B. Transparent type de�nitions in Sig can be encoded as follows:

trait { type L : T = E ; · · · } ΣL = e : A. · · ·

134 Chapter 8. Conclusion and Future Work

Translucent sums can be modeled as weak sums using weak opening operations [Lillibridge 1997],

which will (hopefully) have a relatively simple metatheory.

135

APPENDIXA

Manual Proofs

A.1 Encoding Weak Sums in λI6

We show the subtyping and typing rules of weak dependent sums are admissible in λI6.

Lemma A.1.1. The following uni�ed subtyping rule is admissible:

Γ ` A1 6 A2 : ? Γ, x : A1 ` B1 6 B2 : ?

Γ ` (Σx : A1. B1) 6 (Σx : A2. B2) : ?

Proof. By encoding in Section 2.2.1, the conclusion is equivalent to

Γ ` (Πz : ?. (Πx : A1. B1 → z)→ z) 6 (Πz : ?. (Πx : A2. B2 → z)→ z) : ?

We show this relation holds:

Γ, z : ? ` A1 6 A2 : ? by Lemma 5.3.4

Γ, z : ?, x : A1 ` B1 6 B2 : ? by Lemma 5.3.4

Γ, z : ?, x : A1 ` (B2 → z) 6 (B1 → z) : ? by rule S-Prod

Γ, z : ? ` (Πx : A2. B2 → z) 6 (Πx : A1. B1 → z) : ? by rule S-Prod

Γ, z : ? ` ((Πx : A1. B1 → z)→ z) 6 ((Πx : A2. B2 → z)→ z) : ? by rule S-Prod

Γ ` (Πz : ?. (Πx : A1. B1 → z)→ z) 6 (Πz : ?. (Πx : A2. B2 → z)→ z) : ? by rule S-Prod

Note that Γ, x : A is syntactic sugar of Γ, x 6 > : A.

Lemma A.1.2. The typing rules for pack and unpack [Schmidt 1994] are admissible.

Proof. The typing rule for pack is

Γ ` e1 : A Γ ` e2 : B [x 7→ e1]

Γ ` pack [e1, e2]as (Σx : A. B) : (Σx : A. B)

By encoding in Section 2.2.1, the conclusion is equivalent to

Γ ` (λz : ?. λf : (Πx : A. B → z). f e1 e2) : (Πz : ?. (Πx : A. B → z)→ z)

We show this relation holds:

136 Appendix A. Manual Proofs

Γ, z : ?, f : Πx : A. B → z ` e1 : A by Lemma 5.3.4

Γ, z : ?, f : Πx : A. B → z ` e2 : B [x 7→ e1] by Lemma 5.3.4

Γ, z : ?, f : Πx : A. B → z ` f e1 : B [x 7→ e1]→ z by rule S-App

Γ, z : ?, f : Πx : A. B → z ` f e1 e2 : z by rule S-App

Γ ` (λz : ?. λf : (Πx : A. B → z). f e1 e2) : (Πz : ?. (Πx : A. B → z)→ z) by rule S-Abs

The typing rule for unpack is

Γ ` e1 : (Σx : A. B) Γ, x : A, y : B ` e2 : C Γ ` C : ?

Γ ` unpack e1 as [x , y] in e2 : C

By encoding in Section 2.2.1, the typing of e1 and the conclusion are equivalent to

Γ ` e1 : (Πz : ?. (Πx : A. B → z)→ z)

Γ ` e1 C (λx : A. λy : B . e2) : C

where z /∈ FV(Πx : A. B) and x, y /∈ FV(C). We show the conclusion holds:

Γ ` e1 C : (Πx : A. B → C)→ C by rule S-App and z fresh

Γ ` (λx : A. λy : B . e2) : (Πx : A. B → C) by rule S-Abs and y /∈ FV(C)

Γ ` e1 C (λx : A. λy : B . e2) : C by rule S-App

A.2 Subsumption of System F6 in λI6

Lemma A.2.1 (Commutativity of Type Substitution). (T1[X 7→ T2])∗ = T1
∗[X 7→ T2

∗] holds.

Proof. By induction on the structure of T1:

• Case T1 = >:

(>[X 7→ T2])∗ = >∗ = >
>∗[X 7→ T2

∗] = >[X 7→ T2
∗] = >

• Case T1 = Y :

– Case X = Y :

(X [X 7→ T2])∗ = T2
∗

X ∗[X 7→ T2
∗] = X [X 7→ T2

∗] = T2
∗

– Case X 6= Y :

(Y [X 7→ T2])∗ = Y

Y ∗[X 7→ T2
∗] = Y [X 7→ T2

∗] = Y

• Case T1 = U1 → U2:

IH:

(U1[X 7→ T2])∗ = U1
∗[X 7→ T2

∗]

(U2[X 7→ T2])∗ = U2
∗[X 7→ T2

∗]

((U1 → U2)[X 7→ T2])∗ = (U1[X 7→ T2]→ U2[X 7→ T2])∗

= Πx 6 > : (U1[X 7→ T2])∗. (U2[X 7→ T2])∗ (x Fresh)

= Πx 6 > : (U1
∗[X 7→ T2

∗]). (U2
∗[X 7→ T2

∗])

(U1 → U2)∗[X 7→ T2
∗] = (Πx 6 > : U1

∗. U2
∗)[X 7→ T2

∗] (x Fresh)

= Πx 6 >[X 7→ T2
∗] : (U1

∗[X 7→ T2
∗]). (U2

∗[X 7→ T2
∗])

= Πx 6 > : (U1
∗[X 7→ T2

∗]). (U2
∗[X 7→ T2

∗])

• Case T1 = ∀Y 6 U1. U2 and X 6= Y :

A.2. Subsumption of System F6 in λI6 137

IH:

(U1[X 7→ T2])∗ = U1
∗[X 7→ T2

∗]

(U2[X 7→ T2])∗ = U2
∗[X 7→ T2

∗]

((∀Y 6 U1. U2)[X 7→ T2])∗ = (∀Y 6 U1[X 7→ T2]. U2[X 7→ T2])∗

= ΠY 6 (U1[X 7→ T2])∗ : ?. (U2[X 7→ T2])∗

= ΠY 6 (U1
∗[X 7→ T2

∗]) : ?. (U2
∗[X 7→ T2

∗])

(∀Y 6 U1. U2)∗[X 7→ T2
∗] = (ΠY 6 U1

∗ : ?. U2
∗)[X 7→ T2

∗]

= ΠY 6 (U1
∗[X 7→ T2

∗]) : ?[X 7→ T2
∗]. (U2

∗[X 7→ T2
∗])

= ΠY 6 (U1
∗[X 7→ T2

∗]) : ?. (U2
∗[X 7→ T2

∗])

Lemma A.2.2 (Well-formedness).

1. If ∆ ` T , then ∆∗ ` T ∗ : ?.

2. If ` ∆, then ` ∆∗.

Proof. By mutual induction on the derivation of ∆ ` T and ` ∆:

• Case

` ∆

∆ ` >
:

` ∆∗ by IH

∆∗ ` ? : ? by rule S-Ax

∆∗ ` > : ? by rule S-TopRefl

∆∗ ` >∗ : ? by de�nition of T ∗

• Case

` ∆ X 6 U ∈ ∆

∆ ` X
:

` ∆∗ by IH

X 6 U ∗ : ? ∈ ∆∗ by de�nition of ∆∗

∆∗ ` X : ? by rule S-VarRefl

∆∗ ` X ∗ : ? by de�nition of T ∗

• Case

∆ ` U1 ∆ ` U2

∆ ` U1 → U2

:

∆∗ ` U1
∗ : ? by IH

∆∗ ` U2
∗ : ? by IH

∆∗ ` > : U1
∗

by rule S-TopRefl

∆∗, x 6 > : U1
∗ ` U2

∗ : ? by Lemma 5.3.4 (x Fresh)

∆∗ ` Πx 6 > : U1
∗. U2

∗ : ? by rule S-Prod

∆∗ ` (U1 → U2)∗ : ? by de�nition of T ∗

• Case

∆ ` U1 ∆,X 6 U1 ` U2

∆ ` ∀X 6 U1. U2

:

∆∗ ` U1
∗ : ? by IH

(∆,X 6 U1)∗ ` U2
∗ : ? by IH

∆∗,X 6 U1
∗ : ? ` U2

∗ : ? by de�nition of ∆∗

∆∗ ` ΠX 6 U1
∗ : ?. U2

∗ : ? by rule S-Prod

∆∗ ` (∀X 6 U1. U2)∗ : ? by de�nition of T ∗

• Case

` ∅
:

Trivial.

138 Appendix A. Manual Proofs

• Case

` ∆ ∆ ` U

` ∆,X 6 U
:

` ∆∗ by IH

∆∗ ` U ∗ : ? by IH

∆∗ ` ? : ? by rule S-Ax

` ∆∗,X 6 U ∗ : ? by rule W-Cons

` (∆,X 6 U)∗ by de�nition of ∆∗

• Case

` ∆ ∆ ` U

` ∆, x : U
:

` ∆∗ by IH

∆∗ ` U ∗ : ? by IH

∆∗ ` > : U ∗ by rule S-TopRefl

` ∆∗, x 6 > : U ∗ by rule W-Cons

` (∆, x : U)∗ by de�nition of ∆∗

Lemma A.2.3 (Subtyping). If ∆ ` T1 6 T2, then ∆∗ ` T1
∗ 6 T2

∗ : ?.

Proof. By induction on the derivation of ∆ ` T1 6 T2:

• Case

∆ ` U

∆ ` U 6 >
:

∆∗ ` U ∗ : ? by Lemma A.2.2

∆∗ ` U ∗ 6 > : ? by rule S-Top

∆∗ ` U ∗ 6 >∗ : ? by de�nition of T ∗

• Case

∆ ` X

∆ ` X 6 X
:

∆∗ ` X ∗ : ? by Lemma A.2.2

∆∗ ` X ∗ 6 X ∗ : ? i.e.

• Case

X 6 U1 ∈ ∆ ∆ ` U1 6 U2

∆ ` X 6 U2

:

X 6 U1
∗ : ? ∈ ∆∗ by de�nition of ∆∗

∆∗ ` U1
∗ 6 U2

∗ : ? by IH

∆∗ ` X 6 U2
∗ : ? by rule S-VarTrans

∆∗ ` X ∗ 6 U2
∗ : ? i.e.

• Case

∆ ` T1 6 U1 ∆ ` U2 6 T2

∆ ` U1 → U2 6 T1 → T2

:

∆∗ ` T1
∗ 6 U1

∗ : ? by IH

∆∗ ` U1
∗ : ? by Lemma 5.3.1

∆∗ ` T1
∗ : ? by Lemma 5.3.1

∆∗ ` > : T1
∗

by rule S-Top

∆∗ ` U2
∗ 6 T2

∗ : ? by IH

∆∗, x 6 > : T1
∗ ` U2

∗ 6 T2
∗ : ? by Lemma 5.3.4 (x Fresh)

∆∗ ` > : U1
∗

by rule S-Top

∆∗ ` U2
∗ : ? by Lemma 5.3.1

∆∗, x 6 > : U1
∗ ` U2

∗ : ? by Lemma 5.3.4

∆∗ ` (Πx 6 > : U1
∗. U2

∗) 6 (Πx 6 > : T1
∗. T2

∗) : ? by rule S-Prod

∆∗ ` (U1 → U2)∗ 6 (T1 → T2)∗ : ? by de�nition of T ∗

A.2. Subsumption of System F6 in λI6 139

• Case

∆,X 6 U ` T1 6 T2

∆ ` ∀X 6 U . T1 6 ∀X 6 U . T2

:

(∆,X 6 U)∗ ` T1
∗ 6 T2

∗ : ? by IH

∆∗,X 6 U ∗ : ? ` T1
∗ 6 T2

∗ : ? by de�nition of ∆∗

∆∗,X 6 U ∗ : ? ` T1
∗ : ? by Lemma 5.3.1

` ∆∗,X 6 U ∗ : ? by regularity

∆∗ ` U ∗ : ? by inversion of rule W-Cons

` ∆∗ by regularity

∆∗ ` ? : ? by rule S-Ax

∆∗ ` (ΠX 6 U ∗ : ?. T1
∗) 6 (ΠX 6 U ∗ : ?. T2

∗) : ? by rule S-Prod

∆∗ ` (∀X 6 U . T1)∗ 6 (∀X 6 U . T2)∗ : ? by de�nition of T ∗

Lemma A.2.4 (Typing). If ∆ ` t : T , then ∆∗ ` t∗ : T ∗.

Proof. By induction on the derivation of ∆ ` t : T :

• Case

` ∆ x : U ∈ ∆

∆ ` x : U
:

` ∆∗ by Lemma A.2.2

x 6 > : U ∗ ∈ ∆∗ by de�nition of ∆∗

∆∗ ` x∗ : U ∗ by rule S-VarRefl

• Case

∆, x : T1 ` t : T2

∆ ` λx : T1. t : T1 → T2

:

(∆, x : T1)∗ ` t∗ : T2
∗

by IH

∆∗, x 6 > : T1
∗ ` t∗ : T2

∗
by de�nition of ∆∗

∆∗, x 6 > : T1
∗ ` T2

∗ : ? by Lemma 5.3.11

` ∆∗, x 6 > : T1
∗

by regularity

∆∗ ` > : T1
∗

by inversion of rule W-Cons

∆∗ ` T1
∗ : ? by inversion of rule W-Cons

∆∗ ` (λx 6 > : T1
∗. t∗) : Πx 6 > : T1

∗. T2
∗

by rule S-Abs

∆∗ ` (λx : T1. t)
∗ : (T1 → T2)∗ by de�nition of T ∗ and t∗

• Case

∆ ` t1 : U1 → U2 ∆ ` t2 : U1

∆ ` t1 t2 : U2

:

∆∗ ` t1
∗ : (U1 → U2)∗ by IH

∆∗ ` t1
∗ : Πx 6 > : U1

∗. U2
∗

by de�nition of T ∗

∆∗ ` t2
∗ : U1

∗
by IH

∆∗ ` t2
∗ 6 > : U1

∗
by rule S-Top

∆∗ ` t1
∗ t2
∗ : U2

∗[x 7→ t2
∗] by rule S-App

U2
∗[x 7→ t2

∗] = U2
∗ x Fresh

∆∗ ` (t1 t2)∗ : U2
∗

by de�nition of t∗

• Case

∆,X 6 T1 ` t : T2

∆ ` ΛX 6 T1. t : ∀X 6 T1. T2

:

140 Appendix A. Manual Proofs

(∆,X 6 T1)∗ ` t∗ : T2
∗

by IH

∆∗,X 6 T1
∗ : ? ` t∗ : T2

∗
by de�nition of ∆∗

∆∗,X 6 T1
∗ : ? ` T2

∗ : ? by Lemma 5.3.11

` ∆∗,X 6 T1
∗ : ? by regularity

∆∗ ` T1
∗ : ? by inversion of rule W-Cons

` ∆∗ by regularity

∆∗ ` ? : ? by rule S-Ax

∆∗ ` (λX 6 T1
∗ : ?. t∗) : ΠX 6 T1

∗ : ?. T2
∗

by rule S-Abs

∆∗ ` (ΛX 6 T1. t)
∗ : (∀X 6 T1. T2)∗ by de�nition of T ∗ and t∗

• Case

∆ ` t : ∀X 6 U1. U2 ∆ ` T 6 U1

∆ ` t [T] : U2[X 7→ T]
:

∆∗ ` T ∗ 6 U1
∗ : ? by Lemma A.2.3

∆∗ ` t∗ : (∀X 6 U1. U2)∗ by IH

∆∗ ` t∗ : ΠX 6 U1
∗ : ?. U2

∗
by de�nition of T ∗

∆∗ ` t∗ T ∗ : U2
∗[X 7→ T ∗] by rule S-App

U2
∗[X 7→ T ∗] = (U2[X 7→ T])∗ by Lemma A.2.1

∆∗ ` (t [T])∗ : (U2[X 7→ T])∗ by de�nition of t∗

• Case

∆ ` t : T ∆ ` T 6 U

∆ ` t : U
:

∆∗ ` t∗ : T ∗ by IH

∆∗ ` T ∗ 6 U ∗ : ? by Lemma A.2.3

∆∗ ` t∗ : U ∗ by rule S-Sub

A.3 Soundness of Translation for Sig

Lemma A.3.1 (Translation of Values). If ∆ ` V : T e , then e is a value.

Proof. Trivial by induction on the derivation of ∆ ` V : T e .

Lemma A.3.2 (Context Well-formedness). If ∆ ` E : T e , then ` ∆ Γ.

Proof. Trivial by induction on the derivation of ∆ ` E : T e .

Lemma A.3.3 (Weakening). If ∆1,∆3 ` E : T e and ` ∆1,∆2,∆3 Γ, then ∆1,∆2,∆3 `
E : T e .

Proof. Trivial by induction on the derivation of ∆1,∆3 ` E : T e .

Lemma A.3.4 (Uniqueness). If ∆ ` E : T1 e1 and ∆ ` E : T2 e2, then T1 = T2 and
e1 = e2.

Proof. Trivial by induction on the derivation of ∆ ` E : T1 e1.

De�nition A.3.1 (Projection-Only Terms). We call E x.L-only-projection if x and L are free
variables in E and x /∈ FV(E [x .L 7→ y]) for any fresh variable y 6= x. Similarly, bindings ∆, M

and S are x.L-only-projection if they only contain x.L-only-projection terms.

Lemma A.3.5 (Value Projection Substitution). If V1 is a value and V2 is a value, then V1[x .L 7→
V2] is still a value.

A.3. Soundness of Translation for Sig 141

Proof. Trivial by induction on the form of V1.

Lemma A.3.6 (Projection Substitution). Assume T ′ = trait { typeL1 : T3; S1}.

(1) If ∆1, z = 〈z1, z2〉 : T ′,∆2 ` E : T e and ∆1 ` V2 : T3 v , where E and ∆2 are z.L1-
only-projection, then ∆1,∆2[z .L1 7→ V2] ` E [z .L1 7→ V2] : T [z .L1 7→ V2] e[z1 7→ v].

(2) If ` ∆1, z = 〈z1, z2〉 : T ′,∆2 Γ1, z1 : A, z2 : B ,Γ2 and ∆1 ` V2 : T3 v , where ∆2 is
z.L1-only-projection, then ` ∆1,∆2[z .L1 7→ V2] Γ1,Γ2[z1 7→ v].

(3) If ∆1, z = 〈z1, z2〉 : T ′,∆2 ` M : S e and ∆1 ` V2 : T3 v , where M and ∆2 are z.L1-
only-projection, then ∆1,∆2[z .L1 7→ V2] ` M [z .L1 7→ V2] : S [z .L1 7→ V2] e[z1 7→ v].

(4) If ∆1, z = 〈z1, z2〉 : T ′,∆2 ` S e and ∆1 ` V2 : T1 v , where S and ∆2 are
z.L1-only-projection, then ∆1,∆2[z .L1 7→ V2] ` S [z .L1 7→ V2] e[z1 7→ v].

Proof. By mutual induction on the derivation of translation. The cases for (2,3,4) are trivial. We

only show proof cases for (1). For source meta-variables, we use E ∗ to denote E [z .L1 7→ V2], ∆∗

to denote ∆[z .L1 7→ V2], etc. For target meta-variables, we use e∗ to denote e[z1 7→ v].

• Case TR-Ax: Noting that Type∗ = Type, trivial by IH.

• Case TR-Var, TR-VarM: If x = z, then x is not z.L1-only-projection. Thus x∗ = x , the conclusion is trivial by

IH.

• Case TR-Pi:

T1
∗

is not a trait by de�nition since V cannot be a trait

(see Figure 6.4, similarly for other cases)

T1,T2, (∆2, x : T2) are z.L1-only-projection by de�nition

∆1,∆
∗
2 ` T1

∗ : Type A1
∗

by IH

∆1,∆
∗
2, x : T1

∗ ` T2
∗ : Type A2

∗
by IH

∆1,∆
∗
2 ` (x : T1

∗)→ T2
∗ : Type Πx : A1

∗. A2
∗

by TR-Pi

∆1,∆
∗
2 ` ((x : T1)→ T2)∗ : Type (Πx : A1. A2)∗ by de�nition

• Case TR-PiM:

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

T1,T2, (∆2, x = 〈x1, x2〉 : T1) are z.L1-only-projection by de�nition

∆1,∆
∗
2 ` T1

∗ : Type (Σx1 : A. B)∗ by IH

∆1,∆
∗
2, x = 〈x1, x2〉 : T1

∗ ` T2
∗ : Type C ∗ by IH

∆1,∆
∗
2 ` (x : T1

∗)→ T2
∗ : Type Πy : (Σx1 : A. B)∗. (λx1 : A∗. C ∗) (y .1) by TR-PiM

∆1,∆
∗
2 ` ((x : T1)→ T2)∗ : Type (Πy : (Σx1 : A. B). (λx1 : A. C) (y .1))∗ by de�nition

• Case TR-App:

T1
∗

is not a trait by de�nition

E1,E2 are z.L1-only-projection by de�nition

∆1,∆
∗
2 ` E1

∗ : T1
∗ → T2

∗ e1
∗

by IH

∆1,∆
∗
2 ` E2

∗ : T1
∗ e2

∗
by IH

∆1,∆
∗
2 ` E1

∗ E2
∗ : T2

∗ e1
∗ e2
∗

by TR-App

∆1,∆
∗
2 ` (E1 E2)∗ : T2

∗ (e1 e2)∗ by de�nition

• Case TR-AppV:

T1
∗

is not a trait by de�nition

E ,V are z.L1-only-projection by de�nition

V ∗ is a value by value substitution

∆1,∆
∗
2 ` E∗ : (x : T1

∗)→ T2
∗ e1

∗
by IH

∆1,∆
∗
2 ` V ∗ : T1

∗ e2
∗

by IH

∆1,∆
∗
2 ` E∗V ∗ : T2

∗[x 7→ V ∗] e1
∗ e2
∗

by TR-AppV

∆1,∆
∗
2 ` (E V)∗ : (T2[x 7→ V])∗ (e1 e2)∗ by de�nition

142 Appendix A. Manual Proofs

• Case TR-AppX: z = y is impossible similarly to case TR-VarM. When z 6= y , y∗ = y .

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

E is z.L1-only-projection by de�nition

∆1,∆
∗
2 ` E∗ : (x : T1

∗)→ T2
∗ e∗ by IH

∆1,∆
∗
2 ` y : T1

∗ 〈y1, y2 as Σx1 : A. B〉∗ by IH

∆1,∆
∗
2 ` E∗ y : T2

∗[x 7→ y] cast2↓ (e∗ 〈y1, y2 as Σx1 : A. B〉∗) by TR-AppX

∆1,∆
∗
2 ` (E y)∗ : (T2[x 7→ y])∗ (cast2↓ (e 〈y1, y2 as Σx1 : A. B〉))∗ by de�nition

• Case TR-AppM:

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

V1
∗ = obj { typeL = V ∗;M ∗}asT1

∗
by de�nition

E ,V1 are z.L1-only-projection by de�nition

V1
∗

is a value by value subst.

∆1,∆
∗
2 ` E∗ : (x : T1

∗)→ T2
∗ e∗ by IH

∆1,∆
∗
2 ` V1

∗ : T1
∗ 〈e1, e2 as Σx1 : A. B〉∗ by IH

∆1,∆
∗
2 ` E∗V1

∗ : T2
∗[x .L 7→ V ∗] cast2↓ (e∗ 〈e1, e2 as Σx1 : A. B〉∗) by TR-AppM

∆1,∆
∗
2 ` (E V1)∗ : (T2[x .L 7→ V])∗ (cast2↓ (e 〈e1, e2 as Σx1 : A. B〉))∗ by de�nition

• Case TR-Lam:

T1
∗

is not a trait by de�nition

T1,E , (∆2, x : T1) are z.L1-only-projection by de�nition

∆1,∆
∗
2 ` T1

∗ : Type A∗ by IH

∆1,∆
∗
2, x : T1

∗ ` E∗ : T2
∗ e∗ by IH

∆1,∆
∗
2 ` λ(x : T1

∗)⇒ E∗ : (x : T1
∗)→ T2

∗ λx : A∗. e∗ by TR-Lam

∆1,∆
∗
2 ` (λ(x : T1)⇒ E)∗ : ((x : T1)→ T2)∗ (λx : A. e)∗ by de�nition

• Case TR-LamM:

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

T1,E , (∆2, x : T1) are z.L1-only-projection by de�nition

∆1,∆
∗
2 ` T1

∗ : Type (Σx1 : A. B)∗ by IH

∆1,∆
∗
2, x = 〈x1, x2〉 : T1

∗ ` E∗ : T2
∗ e∗ by IH

∆1,∆
∗
2 ` λ(x : T1

∗)⇒ E∗ : (x : T1
∗)→ T2

∗ e1 by TR-LamM

where e1 = λy : (Σx1 : A. B)∗. open y as 〈x1, x2〉 in e∗

∆1,∆
∗
2 ` (λ(x : T1)⇒ E)∗ : ((x : T1)→ T2)∗ e2

∗
by de�nition

where e2 = λy : (Σx1 : A. B). open y as 〈x1, x2〉 in e

• Case TR-Mod:

T ∗ is not a trait by de�nition

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

V ,M ,T1 are z.L1-only-projection by de�nition

M ∗[L 7→ V ∗] is z.L1-only-projection by de�nition

∆1,∆
∗
2 ` V ∗ : T ∗ e1

∗
by IH

∆1,∆
∗
2 ` M ∗[L 7→ V ∗] : S∗[L 7→ V ∗] e2

∗
by IH

∆1,∆
∗
2 ` T1

∗ : Type Σx1 : A∗. B∗ by IH

∆1,∆
∗
2 ` obj { typeL = V ∗;M ∗}asT1

∗ : T1
∗ 〈e1

∗, e2
∗ as Σx1 : A∗. B∗〉 by TR-Mod

∆1,∆
∗
2 ` (obj { typeL = V ;M }asT1)∗ : T1

∗ 〈e1, e2 as Σx1 : A. B〉∗ by de�nition

• Case TR-Sig:

T ∗ is not a trait by de�nition

T ,S , (∆2,L : T) are z.L1-only-projection by de�nition

∆1,∆
∗
2 ` T ∗ : Type A∗ by IH

∆1,∆
∗
2,L : T ∗ ` S∗ B∗ by IH

∆1,∆
∗
2 ` trait { typeL : T ∗;S∗} : Type Σx1 : A∗. B∗[L 7→ x1] by TR-Sig

∆1,∆
∗
2 ` (trait { typeL : T ;S})∗ : Type (Σx1 : A. B [L 7→ x1])∗ by de�nition

• Case TR-ProjT:

A.3. Soundness of Translation for Sig 143

– Case x = z : we have L = L1, otherwise x .L is not z .L1-only-projection. Thus, x .L = z .L1 and

(x .L)∗ = V2.

∆1, z = 〈z1, z2〉 : T ′,∆2 ` z .L1 : T3 z1 by TR-ProjT

∆1, z = 〈z1, z2〉 : T ′,∆2 ` x .L : T x1 by condition

T3 = T , z1 = x1 by uniqueness

x1
∗ = v by equality

T3 = T3
∗

by z /∈ FV(T3)

∆1 ` V2 : T3
∗ v by equality

∆1,∆
∗
2 ` V2 : T3

∗ v by weakening

∆1,∆
∗
2 ` (x .L)∗ : T ∗ x1

∗
by equality

– Case x 6= z : we have (x .L)∗ = x .L.

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

∆1,∆
∗
2 ` x : T1

∗ 〈x1, x2 as Σx1 : A∗. B∗〉 by IH

∆1,∆
∗
2 ` x .L : T ∗ x1 by TR-ProjT

∆1,∆
∗
2 ` (x .L)∗ : T ∗ x1

∗
by x∗ = x

• Case TR-Proj: Note that x 6= z otherwise x .l is not z.L1-only-projection. Thus (x .l)∗ = x .l .

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

∆1,∆
∗
2 ` x : T1

∗ 〈x1, x2 as Σx1 : A∗. B∗〉 by IH

val l : T2
∗ ∈ S∗ by de�nition

∆1,∆
∗
2 ` x .l : T2

∗[L 7→ x .L] x2.l by TR-Proj

∆1,∆
∗
2 ` (x .l)∗ : (T2[L 7→ x .L])∗ (x2.l)

∗
by x∗ = x

De�nition A.3.2 (Non-projection Terms). We call E x-non-projection if it does not contain any
projection form of x (i.e. x .L or x .l where x occurs free in E). Similarly, bindings ∆, M and S are
x-non-projection if they only contain x-non-projection terms.

Lemma A.3.7 (Value Substitution). If V1 is a x-non-projection value and V2 is a value, then
V1[x 7→ V2] is still a value.

Proof. Trivial by induction on the form of V1.

Lemma A.3.8 (Typing Substitution).

(1) If ∆1, z : T1,∆2 ` E : T e and ∆1 ` V2 : T1 v , where E and ∆2 are z-non-projection,
then ∆1,∆2[z 7→ V2] ` E [z 7→ V2] : T [z 7→ V2] e[z 7→ v].

(2) If ` ∆1, z : T1,∆2 Γ1, z : A,Γ2 and ∆1 ` V2 : T1 v , where ∆2 is z-non-projection,
then ` ∆1,∆2[z 7→ V2] Γ1,Γ2[z 7→ v].

(3) If ∆1, z : T1,∆2 ` M : S e and ∆1 ` V2 : T1 v , where M and ∆2 are z-non-projection,
then ∆1,∆2[z 7→ V2] ` M [z 7→ V2] : S [z 7→ V2] e[z 7→ v].

(4) If ∆1, z : T1,∆2 ` S e and ∆1 ` V2 : T1 v , where S and ∆2 are z-non-projection, then
∆1,∆2[z 7→ V2] ` S [z 7→ V2] e[z 7→ v].

Proof. By mutual induction on the derivation of translation. The cases for (2,3,4) are trivial. We

only show proof cases for (1). For source meta-variables, we use E ∗ to denote E [z 7→ V2], ∆∗ to

denote ∆[z 7→ V2], etc. For target meta-variables, we use e∗ to denote e[z 7→ v].

• Case TR-Ax: Trivial by IH.

144 Appendix A. Manual Proofs

• Case TR-Var: Suppose E = x ,

– Case z = x : Immediate by x /∈ FV(T) and weakening.

– Case z 6= x : We have x∗ = x and x : T ∈ ∆1, z : T1,∆2. If x : T ∈ ∆1, then z /∈ dom(∆1) and

z /∈ FV(T). Thus, T ∗ = T . The conclusion holds immediately by weakening. Otherwise, x : T ∈ ∆2

and x : T ∗ ∈ ∆∗2 . Note that ∆2 is z-non-projection, then ` ∆1,∆
∗
2 Γ. Thus, the conclusion holds

by TR-Var.

• Case TR-VarM: Suppose E = y ,

– Case z = x : Impossible. x : T1 ∈ ∆ and x = 〈x1, x2〉 : T1 ∈ ∆ are mismatched.

– Case z 6= x : We have x∗ = y and x = 〈x1, x2〉 : T ∈ ∆1, z : T1,∆2. If x = 〈x1, x2〉 : T ∈ ∆1,

then z /∈ FV(∆1) and z /∈ FV(T). Thus, T ∗ = T . The conclusion holds immediately by weakening.

Otherwise, x = 〈x1, x2〉 : T ∈ ∆2 and x = 〈x1, x2〉 : T ∗ ∈ ∆∗2 . By IH, we have ` ∆1,∆
∗
2 Γ1,Γ

∗
2 .

By inversion of TRW-Mod, we have ∆1,∆
∗
2 ` T ∗ : Type (Σx1 : A. B)∗ The conclusion holds by

TR-VarM.

• Case TR-Pi:

T1
∗

is not a trait by de�nition

T1,T2, (∆2, x : T2) are z-non-projection by de�nition

∆1,∆
∗
2 ` T1

∗ : Type A1
∗

by IH

∆1,∆
∗
2, x : T1

∗ ` T2
∗ : Type A2

∗
by IH

∆1,∆
∗
2 ` (x : T1

∗)→ T2
∗ : Type Πx : A1

∗. A2
∗

by TR-Pi

∆1,∆
∗
2 ` ((x : T1)→ T2)∗ : Type (Πx : A1. A2)∗ by de�nition

• Case TR-PiM:

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

T1,T2, (∆2, x = 〈x1, x2〉 : T1) are z-non-projection by de�nition

∆1,∆
∗
2 ` T1

∗ : Type (Σx1 : A. B)∗ by IH

∆1,∆
∗
2, x = 〈x1, x2〉 : T1

∗ ` T2
∗ : Type C ∗ by IH

∆1,∆
∗
2 ` (x : T1

∗)→ T2
∗ : Type Πy : (Σx1 : A. B)∗. (λx1 : A∗. C ∗) (y .1) by TR-PiM

∆1,∆
∗
2 ` ((x : T1)→ T2)∗ : Type (Πy : (Σx1 : A. B). (λx1 : A. C) (y .1))∗ by de�nition

• Case TR-App:

T1
∗

is not a trait by de�nition

E1,E2 are z-non-projection by de�nition

∆1,∆
∗
2 ` E1

∗ : T1
∗ → T2

∗ e1
∗

by IH

∆1,∆
∗
2 ` E2

∗ : T1
∗ e2

∗
by IH

∆1,∆
∗
2 ` E1

∗ E2
∗ : T2

∗ e1
∗ e2
∗

by TR-App

∆1,∆
∗
2 ` (E1 E2)∗ : T2

∗ (e1 e2)∗ by de�nition

• Case TR-AppV:

T1
∗

is not a trait by de�nition

E ,V are z-non-projection by de�nition

V ∗ is a value by value substitution

∆1,∆
∗
2 ` E∗ : (x : T1

∗)→ T2
∗ e1

∗
by IH

∆1,∆
∗
2 ` V ∗ : T1

∗ e2
∗

by IH

∆1,∆
∗
2 ` E∗V ∗ : T2

∗[x 7→ V ∗] e1
∗ e2
∗

by TR-AppV

∆1,∆
∗
2 ` (E V)∗ : (T2[x 7→ V])∗ (e1 e2)∗ by de�nition

• Case TR-AppX: z = y is impossible similarly to case TR-VarM. When z 6= y , y∗ = y .

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

E is z-non-projection by de�nition

∆1,∆
∗
2 ` E∗ : (x : T1

∗)→ T2
∗ e∗ by IH

∆1,∆
∗
2 ` y : T1

∗ 〈y1, y2 as Σx1 : A. B〉∗ by IH

∆1,∆
∗
2 ` E∗ y : T2

∗[x 7→ y] cast2↓ (e∗ 〈y1, y2 as Σx1 : A. B〉∗) by TR-AppX

∆1,∆
∗
2 ` (E y)∗ : (T2[x 7→ y])∗ (cast2↓ (e 〈y1, y2 as Σx1 : A. B〉))∗ by de�nition

A.3. Soundness of Translation for Sig 145

• Case TR-AppM:

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

V1
∗ = obj { typeL = V ∗;M ∗}asT1

∗
by de�nition

E ,V1 are z-non-projection by de�nition

V1
∗

is a value by value subst.

∆1,∆
∗
2 ` E∗ : (x : T1

∗)→ T2
∗ e∗ by IH

∆1,∆
∗
2 ` V1

∗ : T1
∗ 〈e1, e2 as Σx1 : A. B〉∗ by IH

∆1,∆
∗
2 ` E∗V1

∗ : T2
∗[x .L 7→ V ∗] cast2↓ (e∗ 〈e1, e2 as Σx1 : A. B〉∗) by TR-AppM

∆1,∆
∗
2 ` (E V1)∗ : (T2[x .L 7→ V])∗ (cast2↓ (e 〈e1, e2 as Σx1 : A. B〉))∗ by de�nition

• Case TR-Lam:

T1
∗

is not a trait by de�nition

T1,E , (∆2, x : T1) are z-non-projection by de�nition

∆1,∆
∗
2 ` T1

∗ : Type A∗ by IH

∆1,∆
∗
2, x : T1

∗ ` E∗ : T2
∗ e∗ by IH

∆1,∆
∗
2 ` λ(x : T1

∗)⇒ E∗ : (x : T1
∗)→ T2

∗ λx : A∗. e∗ by TR-Lam

∆1,∆
∗
2 ` (λ(x : T1)⇒ E)∗ : ((x : T1)→ T2)∗ (λx : A. e)∗ by de�nition

• Case TR-LamM:

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

T1,E , (∆2, x : T1) are z-non-projection by de�nition

∆1,∆
∗
2 ` T1

∗ : Type (Σx1 : A. B)∗ by IH

∆1,∆
∗
2, x = 〈x1, x2〉 : T1

∗ ` E∗ : T2
∗ e∗ by IH

∆1,∆
∗
2 ` λ(x : T1

∗)⇒ E∗ : (x : T1
∗)→ T2

∗ e1 by TR-LamM

where e1 = λy : (Σx1 : A. B)∗. open y as 〈x1, x2〉 in e∗

∆1,∆
∗
2 ` (λ(x : T1)⇒ E)∗ : ((x : T1)→ T2)∗ e2

∗
by de�nition

where e2 = λy : (Σx1 : A. B). open y as 〈x1, x2〉 in e

• Case TR-Mod:

T ∗ is not a trait by de�nition

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

V ,M ,T1 are z-non-projection by de�nition

M ∗[L 7→ V ∗] is z-non-projection by de�nition

∆1,∆
∗
2 ` V ∗ : T ∗ e1

∗
by IH

∆1,∆
∗
2 ` M ∗[L 7→ V ∗] : S∗[L 7→ V ∗] e2

∗
by IH

∆1,∆
∗
2 ` T1

∗ : Type Σx1 : A∗. B∗ by IH

∆1,∆
∗
2 ` obj { typeL = V ∗;M ∗}asT1

∗ : T1
∗ 〈e1

∗, e2
∗ as Σx1 : A∗. B∗〉 by TR-Mod

∆1,∆
∗
2 ` (obj { typeL = V ;M }asT1)∗ : T1

∗ 〈e1, e2 as Σx1 : A. B〉∗ by de�nition

• Case TR-Sig:

T ∗ is not a trait by de�nition

T ,S , (∆2,L : T) are z-non-projection by de�nition

∆1,∆
∗
2 ` T ∗ : Type A∗ by IH

∆1,∆
∗
2,L : T ∗ ` S∗ B∗ by IH

∆1,∆
∗
2 ` trait { typeL : T ∗;S∗} : Type Σx1 : A∗. B∗[L 7→ x1] by TR-Sig

∆1,∆
∗
2 ` (trait { typeL : T ;S})∗ : Type (Σx1 : A. B [L 7→ x1])∗ by de�nition

• Case TR-ProjT: Note that x 6= z otherwise x .L is not x-non-projection. Thus x∗ = x .

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

∆1,∆
∗
2 ` x : T1

∗ 〈x1, x2 as Σx1 : A∗. B∗〉 by IH

∆1,∆
∗
2 ` x .L : T ∗ x1 by TR-ProjT

∆1,∆
∗
2 ` (x .L)∗ : T ∗ x1

∗
by x∗ = x

• Case TR-Proj: Note that x 6= z otherwise x .l is not x-non-projection. Thus x∗ = x .

146 Appendix A. Manual Proofs

T1
∗ = trait { typeL : T ∗;S∗} by de�nition

∆1,∆
∗
2 ` x : T1

∗ 〈x1, x2 as Σx1 : A∗. B∗〉 by IH

val l : T2
∗ ∈ S∗ by de�nition

∆1,∆
∗
2 ` x .l : T2

∗[L 7→ x .L] x2.l by TR-Proj

∆1,∆
∗
2 ` (x .l)∗ : (T2[L 7→ x .L])∗ (x2.l)

∗
by x∗ = x

Lemma A.3.9 (Correctness of Types). If ∆ ` E : T e , then exists A such that ∆ ` T :

Type A.

Proof. By induction on the derivation of ∆ ` E : T e . Most cases are trivial by induction

hypothesis. We only show interesting cases where the conclusion type T involves substitution.

• Case TR-AppV:

T2 is x-non-projection by T1 is not a trait

∆, x : T1 ` T2 : Type A2 by inversion of TR-Pi

∆ ` V : T1 e2 by premise

e2 is a value by value translation

∆ ` T2[x 7→ V] : Type A2[x 7→ e2] by substitution

• Case TR-AppX:

∆, x = 〈x1, x2〉 : T1 ` T2 : Type C by inversion of TR-PiM

T2 is x.L-only-projection by inversion of TR-PiM

∆ ` y .L : T y1 by TR-ProjT

∆ ` T2[x .L 7→ y .L] : Type C [x1 7→ y1] by projection substitution

∆ ` T2[x 7→ y] : Type C [x1 7→ y1]

• Case TR-AppM:

∆, x = 〈x1, x2〉 : T1 ` T2 : Type C by inversion of TR-PiM

T2 is x.L-only-projection by inversion of TR-PiM

∆ ` V : T e1 by inversion of TR-Mod

e1 is a value by translation of values

∆ ` T2[x .L 7→ V] : Type C [x1 7→ e1] by projection substitution

• Case TR-Proj:

∆ ` T1 : Type Σx1 : A. B by IH

T is not a trait by inversion of TR-Sig

∆,L : T ` T2 : Type A2 by inversion of TRS-Sig

T2 is L-non-projection by T is not a trait

∆ ` x .L : T x1 by TR-ProjT

∆ ` T2[L 7→ x .L] : Type A2[L 7→ x1] by substitution

Lemma A.3.10 (Soundness of Translation).

(1) If ` ∆ Γ, then ` Γ.

(2) If ` ∆ Γ and ∆ ` S A, then Γ ` A : ?.

(3) Given ` ∆ Γ, if ∆ ` E : T e and ∆ ` T : Type A, then Γ ` e : A.

Proof. By simultaneous induction on the derivation of ∆ ` E : T e , ` ∆ Γ and

∆ ` M : S e . The cases in (1) and (2) are trivial. We only show the proofs regarding (3).

A.3. Soundness of Translation for Sig 147

• Case TR-Ax:

` Γ by IH

Γ ` ? : ? by SP-Ax

• Case TR-Var:

x : A ∈ Γ by TRW-Cons

∆ ` T : Type A by TRW-Cons

` Γ by IH

Γ ` x : A by SP-Var

• Case TR-VarM:

x1 : A, x2 : B ∈ Γ by TRW-Mod

Γ ` x1 : A by SP-Var

Γ ` x2 : B by SP-Var

Γ, x1 : A ` B : ? by well-formedness of Σx1 : A. B

Γ ` 〈x1, x2 as Σx1 : A. B〉 : Σx1 : A. B by SP-Pair

• Case TR-Pi:

Γ ` A1 : ? by IH

Γ, x : A1 ` A2 : ? by IH and TRW-Cons

Γ ` Πx : A1. A2 : ? by SP-Prod

• Case TR-PiM:

Γ ` Σx1 : A. B : ? by IH

Γ, x1 : A, x2 : B ` C : ? by IH and TRW-Mod

x2 /∈ FV(C) by T2 is x.L-only-projection

Γ ` λx1 : A. C : A→ ? by IH and SP-Abs

Γ, y : Σx1 : A. B ` y .1 : A by SP-Fst

Γ, y : Σx1 : A. B ` (λx1 : A. C) (y .1) : A by SP-App

Γ ` Πy : (Σx1 : A. B). (λx1 : A. C) (y .1) : ? by SP-Prod

• Case TR-App:

∆ ` T1 → T2 : Type A1 → A2 by correctness of types

∆ ` T1 : Type A1 by inversion of TR-Pi

∆ ` T2 : Type A2 by inversion of TR-Pi

Γ ` e1 : A1 → A2 by IH

Γ ` e2 : A1 by IH

Γ ` e1 e2 : A2 by SP-App

• Case TR-AppV:

∆ ` (x : T1)→ T2 : Type Πx : A1. A2 by correctness of types

∆ ` T1 : Type A1 by inversion of TR-Pi

∆, x : T1 ` T2 : Type A2 by inversion of TR-Pi

Γ ` e1 : Πx : A1. A2 by IH

Γ ` e2 : A1 by IH

e2 is a value by translation of values

Γ ` e1 e2 : A2[x 7→ e2] by SP-AppV

• Case TR-AppX:

148 Appendix A. Manual Proofs

∆ ` (x : T1)→ T2 : Type A1 by correctness of types

where A1 = Πy : (Σx1 : A. B). (λx1 : A. C) (y .1)

∆ ` T1 : Type Σx1 : A. B by inversion of TR-PiM

T2 is x.L-only-projection by inversion of TR-PiM

y = 〈y1, y2〉 : T1 ∈ ∆ by inversion of TR-VarM

y1 : A, y2 : B ∈ Γ by inversion of TRW-Mod

∆ ` y .L : T y1 by TR-ProjT

∆, x = 〈x1, x2〉 : T1 ` T2 : Type C by inversion of TR-PiM

∆ ` T2[x .L 7→ y .L] : Type C [x1 7→ y1] by projection substitution

∆ ` T2[x 7→ y] : Type C [x1 7→ y1]

Γ ` e : Πy : (Σx1 : A. B). (λx1 : A. C) (y .1) by IH

Γ ` 〈y1, y2 as Σx1 : A. B〉 : Σx1 : A. B by IH

Γ ` cast2↓ (e 〈y1, y2 as Σx1 : A. B〉) : C [x1 7→ y1] by SP-CastDn and SP-AppV

• Case TR-AppM:

∆ ` (x : T1)→ T2 : Type A1 by correctness of types

where A1 = Πy : (Σx1 : A. B). (λx1 : A. C) (y .1)

∆ ` T1 : Type Σx1 : A. B by inversion of TR-PiM

∆, x = 〈x1, x2〉 : T1 ` T2 : Type C by inversion of TR-PiM

T2 is x.L-only-projection by inversion of TR-PiM

∆ ` V : T e1 by inversion of TR-Mod

e1 is a value by translation of values

∆ ` T2[x .L 7→ V] : Type C [x1 7→ e1] by projection substitution

Γ ` e : Πy : (Σx1 : A. B). (λx1 : A. C) (y .1) by IH

Γ ` 〈e1, e2 as Σx1 : A. B〉 : Σx1 : A. B by IH

Γ ` cast2↓ (e 〈e1, e2 as Σx1 : A. B〉) : C [x1 7→ e1] by SP-CastDn and SP-AppV

• Case TR-Lam:

∆, x : T1 ` T2 : Type B by correctness of types

Γ ` A : ? by IH

Γ, x : A ` e : B by IH

∆ ` (x : T1)→ T2 : Type Πx : A. B by TR-Pi

Γ ` λx : A. e : Πx : A. B by SP-Abs

• Case TR-LamM:

∆, x = 〈x1, x2〉 : T1 ` T2 : Type C by correctness of types

Γ ` Σx1 : A. B : ? by IH

Γ, x1 : A, x2 : B ` e : C by IH

∆ ` (x : T1)→ T2 : Type A1 by TR-PiM

where A1 = Πy : (Σx1 : A. B). (λx1 : A. C) (y .1)

x2 /∈ FV(C) by T2 is x.L-only-projection

Γ, y : Σx1 : A. B ` open y as 〈x1, x2〉 in e : (λx1 : A. C) (y .1) by SP-Open

Γ ` λy : (Σx1 : A. B). open y as 〈x1, x2〉 in e : A1 by SP-Abs

• Case TR-Mod:

∆ ` T : Type A by inversion of TR-Sig

∆,L : T ` S B [x1 7→ L] by inversion of TR-Sig

S is L-non-projection by T is not a trait

∆ ` S [L 7→ V] B [x1 7→ e1] by substitution

Γ ` e1 : A by IH

Γ ` e2 : B [x1 7→ e1] by IH

e1 is a value by translation of values

Γ ` 〈e1, e2 as Σx1 : A. B〉 : Σx1 : A. B by SP-Pair

• Case TR-Sig:

A.3. Soundness of Translation for Sig 149

Γ ` A : ? by IH

Γ,L : A ` B : ? by IH

Γ, x1 : A ` B [L 7→ x1] : ? by substitution

Γ ` Σx1 : A. B [L 7→ x1] : ? by SP-Sig

• Case TR-ProjT:

x = 〈x1, x2〉 : T1 ∈ ∆ by inversion of TR-VarM

x1 : A, x2 : B ∈ Γ by inversion of TRW-Mod

∆ ` T1 : Type Σx1 : A. B by inversion of TRW-Mod

∆ ` T : Type A by inversion of TR-Sig

Γ ` x1 : A by SP-Var

• Case TR-Proj:

x = 〈x1, x2〉 : T1 ∈ ∆ by inversion of TR-VarM

x1 : A, x2 : B ∈ Γ by inversion of TRW-Mod

∆ ` T1 : Type Σx1 : A. B by inversion of TRW-Mod

∆ ` T : Type A by inversion of TR-Sig

∆,L : T ` S B by inversion of TR-Sig

∆,L : T ` T2 : Type A2 by inversion of TS-Sig

l : A2 ∈ B by inversion of TS-Sig

Γ,L : A ` x2.l : A2 by record projection

T2 is L-non-projection by T is not a trait

∆ ` x .L : T x1 by TR-ProjT

∆ ` T2[L 7→ x .L] : Type A2[L 7→ x1] by substitution

Γ ` x1 : A by SP-Var

Γ ` x2.l : A2[L 7→ x1] by substitution

151

References

Andreas Abel and Dulma Rodriguez. 2008. Syntactic metatheory of higher-order subtyping. In International
Workshop on Computer Science Logic (CSL ’08). 446–460.

Beniamino Accattoli and Giulio Guerrieri. 2016. Open Call-by-Value. In Programming Languages and
Systems, Atsushi Igarashi (Ed.). Springer International Publishing, Cham, 206–226.

Wilhelm Ackermann. 1928. Zum hilbertschen aufbau der reellen zahlen. Math. Ann. 99, 1 (1928), 118–133.

Robin Adams. 2006. Pure type systems with judgemental equality. Journal of Functional Programming 16,

02 (2006), 219–246.

Robin Adams. 2008. A Survey of Predicativity. (2008). h�ps://www.cs.ru.nl/R.Adams/predicativity3.pdf

Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and Nicolas Oury. 2010. ΠΣ: Dependent Types

without the Sugar. In Functional and Logic Programming, Matthias Blume, Naoki Kobayashi, and Germán

Vidal (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 40–55.

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The essence of

dependent object types. In A List of Successes That Can Change the World. Springer, 249–272.

Nada Amin, Adriaan Moors, and Martin Odersky. 2012a. Dependent object types. In 19th International
Workshop on Foundations of Object-Oriented Languages (FOOL ’12).

Nada Amin, Adriaan Moors, and Martin Odersky. 2012b. Dependent object types. In 19th International
Workshop on Foundations of Object-Oriented Languages (FOOL ’12). ACM.

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of path-dependent types. In OOPSLA ’14.

ACM, 233–249.

David Aspinall and Adriana Compagnoni. 1996. Subtyping dependent types. In LICS ’96. 86–97.

Lennart Augustsson. 1998. Cayenne — a Language with Dependent Types. In Proceedings of the Third ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98). ACM, New York, NY, USA,

239–250. h�ps://doi.org/10.1145/289423.289451

Henk Barendregt. 1991. Introduction to generalized type systems. Journal of Functional Programming 1, 2

(1991), 125–154.

Henk Barendregt. 1992. Lambda Calculi with Types. In Handbook of Logic in Computer Science, Vol. 2.

117–309.

Yves Bertot and Pierre Castran. 2010. Interactive Theorem Proving and Program Development: Coq’Art The
Calculus of Inductive Constructions (1st ed.). Springer Publishing Company, Incorporated.

https://www.cs.ru.nl/R.Adams/predicativity3.pdf
https://doi.org/10.1145/289423.289451

152 References

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017. Type-preserving CPS Translation

of Σ and Π Types is Not Not Possible. Proc. ACM Program. Lang. 2, POPL, Article 22 (Dec. 2017), 33 pages.

h�ps://doi.org/10.1145/3158110

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. 1998. Making the Future Safe for the

Past: Adding Genericity to the Java Programming Language. In Proceedings of the 13th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’98). ACM,

New York, NY, USA, 183–200. h�ps://doi.org/10.1145/286936.286957

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and

implementation. Journal of Functional Programming 23, 05 (2013), 552–593.

Edwin C. Brady. 2011. IDRIS — Systems Programming Meets Full Dependent Types. In Proceedings of the
5th ACM Workshop on Programming Languages Meets Program Veri�cation (PLPV ’11). ACM, New York,

NY, USA, 43–54. h�ps://doi.org/10.1145/1929529.1929536

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. 1999. Comparing object encodings. Information and
Computation 155, 1-2 (1999), 108–133.

Joana Campos and Vasco T. Vasconcelos. 2015. Imperative objects with dependent types. In Proceedings of
the 17th Workshop on Formal Techniques for Java-like Programs (FTfJP ’15). ACM, 2:1–2:6.

Joana Campos and Vasco T. Vasconcelos. 2018. Dependent Types for Class-based Mutable Objects. In 32nd
European Conference on Object-Oriented Programming (ECOOP 2018) (Leibniz International Proceedings in
Informatics (LIPIcs)), Todd Millstein (Ed.), Vol. 109. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 13:1–13:28. h�ps://doi.org/10.4230/LIPIcs.ECOOP.2018.13

Luca Cardelli. 1986a. Amber. In Combinators and Functional Programming Languages. Springer Berlin

Heidelberg, 21–47.

Luca Cardelli. 1986b. A Polymorphic lambda-calculus with Type: Type. Digital Systems Research Center.

Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1994. An extension of system F with

subtyping. Information and Computation 109, 1-2 (1994), 4–56.

Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys (CSUR) 17, 4 (1985), 471–523.

Chris Casinghino. 2014. Combining Proofs and Programs. Ph.D. Dissertation. The University of Pennsylvania.

Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. 2014. Combining Proofs and Programs in a

Dependently Typed Language. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’14). ACM, New York, NY, USA, 33–45. h�ps://doi.org/10.1145/2535838.
2535883

Giuseppe Castagna and Gang Chen. 2001. Dependent types with subtyping and late-bound overloading.

Information and Computation 168, 1 (2001), 1–67.

Gang Chen. 1997. Subtyping calculus of construction. Mathematical Foundations of Computer Science 1997
(1997), 189–198.

Gang Chen. 1998. Dependent type system with subtyping (I) type level transitivity elimination. Journal of
Computer Science and Technology 13, 6 (1998), 564–578.

Gang Chen. 2003. Coercive Subtyping for the Calculus of Constructions. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03). ACM, 150–159.

https://doi.org/10.1145/3158110
https://doi.org/10.1145/286936.286957
https://doi.org/10.1145/1929529.1929536
https://doi.org/10.4230/LIPIcs.ECOOP.2018.13
https://doi.org/10.1145/2535838.2535883
https://doi.org/10.1145/2535838.2535883

References 153

James Cheney and Ralf Hinze. 2003. First-Class Phantom Types. Technical Report CUCIS TR2003-1901.

Adam Chlipala. 2013. Certi�ed Programming with Dependent Types: A Pragmatic Introduction to the Coq
Proof Assistant. The MIT Press.

Adriana Compagnoni and Healfdene Goguen. 2003. Typed operational semantics for higher-order subtyping.

Information and Computation 184, 2 (2003), 242–297.

Adriana Beatriz Compagnoni. 1995. Higher-order subtyping with intersection types. Ph.D. Dissertation.

University of Nijmegen.

Thierry Coquand. 1986. An analysis of Girard’s paradox. Ph.D. Dissertation. INRIA.

Thierry Coquand and Gérard Huet. 1988. The Calculus of Constructions. Information and Computation 76

(1988), 95–120.

Judicaël Courant. 1997. A module calculus for pure type systems. In Typed Lambda Calculi and Applications,
Philippe de Groote and J. Roger Hindley (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 112–128.

Judicaël Courant. 2007. A module calculus for Pure Type Systems. Journal of Functional Programming 17, 3

(2007), 287–352.

Karl Crary, Robert Harper, and Sidd Puri. 1999. What is a Recursive Module?. In Proceedings of the ACM
SIGPLAN 1999 Conference on Programming Language Design and Implementation (PLDI ’99). ACM, New

York, NY, USA, 50–63. h�ps://doi.org/10.1145/301618.301641

Pierre-Louis Curien and Giorgio Ghelli. 1992. Coherence of subsumption, minimum typing and type-

checking in F6. Mathematical structures in computer science 2, 01 (1992), 55–91.

Derek Dreyer. 2005. Understanding and Evolving the ML Module System. Ph.D. Dissertation. Carnegie

Mellon University.

Richard A. Eisenberg. 2016. Dependent types in haskell: Theory and practice. Ph.D. Dissertation. University

of Pennsylvania.

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich. 2014. Closed Type

Families with Overlapping Equations. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 671–683. h�ps://doi.org/10.
1145/2535838.2535856

Leonidas Fegaras and Tim Sheard. 1996. Revisiting Catamorphisms over Datatypes with Embedded

Functions (or, Programs from Outer Space). In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’96). ACM, New York, NY, USA, 284–294. h�ps://doi.org/
10.1145/237721.237792

Herman Geuvers. 1995. A short and �exible proof of strong normalization for the calculus of constructions.

In Types for Proofs and Programs, Peter Dybjer, Bengt Nordström, and Jan Smith (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 14–38.

Jean-Yves Girard. 1972. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre
supérieur. Ph.D. Dissertation. Université Paris VII.

Brian Goetz. 2016. JEP 286: Local-Variable Type Inference. h�p://openjdk.java.net/jeps/286

James Gosling, Bill Joy, and Guy L. Steele. 1996. The Java Language Speci�cation (1st ed.). Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

https://doi.org/10.1145/301618.301641
https://doi.org/10.1145/2535838.2535856
https://doi.org/10.1145/2535838.2535856
https://doi.org/10.1145/237721.237792
https://doi.org/10.1145/237721.237792
http://openjdk.java.net/jeps/286

154 References

Adam Michael Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University

of Strathclyde.

Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. 1994. Type classes in Haskell. In

Programming Languages and Systems — ESOP ’94, Donald Sannella (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 241–256.

Robert Harper. 2013. Practical foundations for programming languages (1st ed.). Cambridge University

Press.

Robert Harper and Mark Lillibridge. 1994. A Type-theoretic Approach to Higher-order Modules with

Sharing. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’94). ACM, New York, NY, USA, 123–137. h�ps://doi.org/10.1145/174675.176927

Robert Harper and John C. Mitchell. 1993. On the Type Structure of Standard ML. ACM Trans. Program.
Lang. Syst. 15, 2 (April 1993), 211–252. h�ps://doi.org/10.1145/169701.169696

James G. Hook and Douglas J. Howe. 1986. Impredicative Strong Existential Equivalent to Type:Type.
Technical Report. Ithaca, NY, USA.

William A. Howard. 1980. The formulae-as-types notion of construction. To HB Curry: essays on combinatory
logic, lambda calculus and formalism 44 (1980), 479–490.

DeLesley S. Hutchins. 2010. Pure Subtype Systems. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’10). ACM, 287–298.

Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. 1999. Featherweight Java: A Minimal Core Calculus

for Java and GJ. In Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA ’99). ACM, New York, NY, USA, 132–146. h�ps://doi.org/
10.1145/320384.320395

Mark P. Jones. 1993. A System of Constructor Classes: Overloading and Implicit Higher-order Polymorphism.

In Proceedings of the Conference on Functional Programming Languages and Computer Architecture (FPCA
’93). ACM, New York, NY, USA, 52–61. h�ps://doi.org/10.1145/165180.165190

Mark P. Jones. 2000. Type Classes with Functional Dependencies. In Programming Languages and Systems,
Gert Smolka (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 230–244.

Jonas Kaiser, Tobias Tebbi, and Gert Smolka. 2017. Equivalence of System F and λ2 in Coq Based on Context

Morphism Lemmas. In Proceedings of the 6th ACM SIGPLAN Conference on Certi�ed Programs and Proofs
(CPP ’17). ACM, 222–234.

Garrin Kimmell, Aaron Stump, Harley D. Eades, III, Peng Fu, Tim Sheard, Stephanie Weirich, Chris

Casinghino, Vilhelm Sjöberg, Nathan Collins, and Ki Yung Ahn. 2012. Equational Reasoning About

Programs with General Recursion and Call-by-value Semantics. In Proceedings of the Sixth Workshop
on Programming Languages Meets Program Veri�cation (PLPV ’12). ACM, New York, NY, USA, 15–26.

h�ps://doi.org/10.1145/2103776.2103780

Xavier Leroy. 1990. The ZINC Experiment: An Economical Implementation of the ML Language. Technical

Report 117. INRIA. h�p://pauillac.inria.fr/~xleroy/bibrefs/Leroy-ZINC.html

Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compilation. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’94). ACM, New York, NY,

USA, 109–122. h�ps://doi.org/10.1145/174675.176926

https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/169701.169696
https://doi.org/10.1145/320384.320395
https://doi.org/10.1145/320384.320395
https://doi.org/10.1145/165180.165190
https://doi.org/10.1145/2103776.2103780
http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-ZINC.html
https://doi.org/10.1145/174675.176926

References 155

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2018.

The OCaml system release 4.07: Documentation and user’s manual. h�p://caml.inria.fr/pub/docs/
manual-ocaml/ Release 4.07.

Mark Lillibridge. 1997. Translucent sums: A foundation for higher-order module systems. Ph.D. Dissertation.

Carnegie Mellon University.

Yong Luo and Zhaohui Luo. 2004. Combining Incoherent Coercions for Σ -Types. In Types for Proofs and
Programs, Stefano Berardi, Mario Coppo, and Ferruccio Damiani (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 276–292.

David B. MacQueen. 1986. Using Dependent Types to Express Modular Structure. In Proceedings of the
13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’86). ACM, New

York, NY, USA, 277–286. h�ps://doi.org/10.1145/512644.512670

Simon Marlow. 2010. Haskell 2010 Language Report. h�ps://www.haskell.org/definition/haskell2010.pdf
2010.

Simon Marlow et al. 2010. Haskell 2010 language report. Available online http://www. haskell. org/(May
2011) (2010).

John Meacham. 2006. Jhc User’s Manual. h�p://repetae.net/computer/jhc/manual.html

Microsoft Corporation. 2016. TypeScript Language Speci�cation. h�ps://github.com/Microso�/TypeScript/
blob/master/doc/spec.md Version 1.8.

Robin Milner, Mads Tofte, and Robert Harper. 1990. The De�nition of Standard ML. MIT Press, Cambridge,

MA, USA.

John C. Mitchell and Gordon D. Plotkin. 1988. Abstract Types Have Existential Type. ACM Trans. Program.
Lang. Syst. 10, 3 (July 1988), 470–502. h�ps://doi.org/10.1145/44501.45065

T. Æ. Mogensen. 1992. Theoretical pearls: E�cient self-interpretation in lambda calculus. Journal of
Functional Programming 2, 3 (1992), 345–364.

Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Generics of a Higher Kind. In OOPSLA ’08.

ACM, 423–438.

Ulf Norell. 2007a. Towards a practical programming language based on dependent type theory. Ph.D.

Dissertation. Chalmers University of Technology.

Ulf Norell. 2007b. Towards a practical programming language based on dependent type theory. Ph.D.

Dissertation. Chalmers University of Technology.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Micheloud,

Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. 2004. An Overview of the Scala
Programming Language. Technical Report IC/2004/64. EPFL Lausanne, Switzerland.

Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. 2003. A nominal theory of objects

with dependent types. In European Conference on Object-Oriented Programming (ECOOP ’03). Springer,

201–224.

Luca Paolini and Simona Ronchi Della Rocca. 1999. Call-by-value Solvability. RAIRO-Theoretical Informatics
and Applications 33, 6 (1999), 507–534.

Simon Peyton Jones and Erik Meijer. 1997. Henk: a Typed Intermediate Language. In Types in Compilation
Workshop.

http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/
https://doi.org/10.1145/512644.512670
https://www.haskell.org/definition/haskell2010.pdf
http://repetae.net/computer/jhc/manual.html
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://doi.org/10.1145/44501.45065

156 References

Simon Peyton Jones, Geo�rey Washburn, and Stephanie Weirich. 2004. Wobbly types: type inference for
generalised algebraic data types. Technical Report MS-CIS-05-26. University of Pennsylvania.

F. Pfenning and C. Elliott. 1988. Higher-order Abstract Syntax. In Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation (PLDI ’88). ACM, New York, NY, USA,

199–208. h�ps://doi.org/10.1145/53990.54010

Frank Pfenning and Carsten Schürmann. 1999. System Description: Twelf — A Meta-Logical Framework

for Deductive Systems. In Proceedings of the International Conference on Automated Deduction. 202–206.

Benjamin C. Pierce. 1992. Bounded quanti�cation is undecidable. In Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL ’92). ACM, 305–315.

Benjamin C Pierce. 2002. Types and programming languages. MIT press.

Benjamin C. Pierce and Martin Ste�en. 1997. Higher-order subtyping. Theoretical computer science 176, 1

(1997), 235–282.

Benjamin C. Pierce and David N. Turner. 1994. Simple type-theoretic foundations for object-oriented

programming. Journal of functional programming 4, 02 (1994), 207–247.

Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Transactions on Programming
Languages and Systems (TOPLAS) 22, 1 (2000), 1–44.

Robert Pollack. 2002. Dependently Typed Records in Type Theory. Formal Aspects of Computing 13, 3 (01

Jul 2002), 386–402. h�ps://doi.org/10.1007/s001650200018

Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. 2017. A Simple Soundness Proof for Dependent

Object Types. Proc. ACM Program. Lang. 1, OOPSLA, Article 46 (Oct. 2017), 27 pages. h�ps://doi.org/10.
1145/3133870

John C. Reynolds. 1974. Towards a theory of type structure. In Proceedings of the ‘Colloque sur la Program-
mation’. Paris, France, 408–425.

Tiark Rompf and Nada Amin. 2016. Type soundness for dependent object types (DOT). In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’16). ACM, 624–641.

Andreas Rossberg. 2015. 1ML – Core and Modules United (F-ing First-class Modules). In Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). ACM, New York,

NY, USA, 35–47. h�ps://doi.org/10.1145/2784731.2784738

Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. 2010. F-ing Modules. In Proceedings of the 5th ACM
SIGPLAN Workshop on Types in Language Design and Implementation (TLDI ’10). ACM, New York, NY,

USA, 89–102. h�ps://doi.org/10.1145/1708016.1708028

Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. 2003. Traits: Composable

units of behaviour. In European Conference on Object-Oriented Programming. Springer, 248–274.

David A. Schmidt. 1994. The Structure of Typed Programming Languages. MIT Press.

Paula G. Severi and Fer-Jan J. de Vries. 2012. Pure Type Systems with Corecursion on Streams: From Finite to

In�nitary Normalisation. In Proceedings of the 17th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’12). ACM, New York, NY, USA, 141–152. h�ps://doi.org/10.1145/2364527.2364550

https://doi.org/10.1145/53990.54010
https://doi.org/10.1007/s001650200018
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3133870
https://doi.org/10.1145/2784731.2784738
https://doi.org/10.1145/1708016.1708028
https://doi.org/10.1145/2364527.2364550

References 157

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for Haskell. In Proceedings of
the 2002 ACM SIGPLAN Workshop on Haskell (Haskell ’02). ACM, New York, NY, USA, 1–16. h�ps:
//doi.org/10.1145/581690.581691

Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and Functional
Programming. 81–92.

Vincent Siles and Hugo Herbelin. 2012. Pure Type System conversion is always typable. Journal of
Functional Programming 22, 2 (2012), 153–180.

Vilhelm Sjöberg. 2015. A Dependently Typed Language with Nontermination. Ph.D. Dissertation. University

of Pennsylvania.

Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins, Harley D. Eades III, Peng Fu, Garrin

Kimmell, Tim Sheard, Aaron Stump, and Stephanie Weirich. 2012. Irrelevance, Heterogenous Equality,

and Call-by-value Dependent Type Systems. In Fourth workshop on Mathematically Structured Functional
Programming (MSFP ’12) (MSFP ’12). 112–162.

Vilhelm Sjöberg and Stephanie Weirich. 2015. Programming Up to Congruence. In Proceedings of the 42Nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM,

New York, NY, USA, 369–382. h�ps://doi.org/10.1145/2676726.2676974

Martin Ste�en. 1998. Polarized Higher-Order Subtyping. Ph.D. Dissertation. Technische Fakultät, Friedrich-

Alexander-Universität Erlangen-Nürnberg.

Sandro Stucki. 2017. Higher-Order Subtyping with Type Intervals. Ph.D. Dissertation. EPFL.

Aaron Stump. 2017. The calculus of dependent lambda eliminations. Journal of Functional Programming 27

(2017), e14. h�ps://doi.org/10.1017/S0956796817000053

Aaron Stump, Morgan Deters, Adam Petcher, Todd Schiller, and Timothy Simpson. 2008. Veri�ed Program-

ming in Guru. In Proceedings of the 3rd Workshop on Programming Languages Meets Program Veri�cation
(PLPV ’09). ACM, New York, NY, USA, 49–58. h�ps://doi.org/10.1145/1481848.1481856

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. 2007. System

F with Type Equality Coercions. In Proceedings of the 2007 ACM SIGPLAN International Workshop on
Types in Languages Design and Implementation (TLDI ’07). ACM, New York, NY, USA, 53–66. h�ps:
//doi.org/10.1145/1190315.1190324

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011.

Secure Distributed Programming with Value-dependent Types. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’11). ACM, New York, NY, USA, 266–278.

h�ps://doi.org/10.1145/2034773.2034811

Wouter Swierstra. 2008. Data types à la carte. Journal of functional programming 18, 4 (2008), 423–436.

The Coq development team. 2016. The Coq proof assistant reference manual. h�ps://coq.inria.fr/refman/
Version 8.6.

The GHC Team. 2018. The Glasgow Haskell Compiler. h�ps://www.haskell.org/ghc/

The Rust Project Developers. 2011. The Rust Programming Language. h�ps://doc.rust-lang.org/book/

Alan M Turing. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proceed-
ings of the London mathematical society 2, 1 (1937), 230–265.

https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/2676726.2676974
https://doi.org/10.1017/S0956796817000053
https://doi.org/10.1145/1481848.1481856
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/2034773.2034811
https://coq.inria.fr/refman/
https://www.haskell.org/ghc/
https://doc.rust-lang.org/book/

158 References

L. S. van Benthem Jutting. 1993. Typing in pure type systems. Information and Computation 105, 1 (1993),

30–41.

Floris van Doorn, Herman Geuvers, and Freek Wiedijk. 2013. Explicit Convertibility Proofs in Pure Type

Systems. In Proceedings of the Eighth ACM SIGPLAN International Workshop on Logical Frameworks &
Meta-languages: Theory & Practice (LFMTP ’13). ACM, New York, NY, USA, 25–36. h�ps://doi.org/10.
1145/2503887.2503890

Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. 2014. PEP 484 – Type Hints. h�ps://www.python.
org/dev/peps/pep-0484/

Philip Wadler. 1995. Monads for functional programming. In Advanced Functional Programming, Johan

Jeuring and Erik Meijer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 24–52.

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC with Explicit Kind Equality. In

Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13).
ACM, New York, NY, USA, 275–286. h�ps://doi.org/10.1145/2500365.2500599

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A. Eisenberg. 2017.

A Speci�cation for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug.

2017), 29 pages. h�ps://doi.org/10.1145/3110275

Andrew K. Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Information and
computation 115, 1 (1994), 38–94.

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recursive Datatype Constructors. In Proceedings
of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03). ACM,

New York, NY, USA, 224–235. h�ps://doi.org/10.1145/604131.604150

Hongwei Xi and Frank Pfenning. 1999. Dependent types in practical programming. In Proceedings of
the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL ’99). ACM,

214–227.

Yanpeng Yang, Xuan Bi, and Bruno C. d. S. Oliveira. 2016. Uni�ed Syntax with Iso-types. In Programming
Languages and Systems, Atsushi Igarashi (Ed.). Springer International Publishing, Cham, 251–270.

Yanpeng Yang and Bruno C. d. S. Oliveira. 2017. Unifying Typing and Subtyping. Proc. ACM Program. Lang.
1, OOPSLA, Article 47 (Oct. 2017), 26 pages. h�ps://doi.org/10.1145/3133871

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro

Magalhães. 2012. Giving Haskell a Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on
Types in Language Design and Implementation (TLDI ’12). ACM, New York, NY, USA, 53–66. h�ps:
//doi.org/10.1145/2103786.2103795

Jan Zwanenburg. 1999. Pure type systems with subtyping. In TLCA ’99. 381–396.

https://doi.org/10.1145/2503887.2503890
https://doi.org/10.1145/2503887.2503890
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://doi.org/10.1145/2500365.2500599
https://doi.org/10.1145/3110275
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/3133871
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1145/2103786.2103795

	Introduction
	Type Features of Static Type Systems
	The Design Space of Dependently Typed Languages
	Motivations and Challenges
	Unified Syntax, General Recursion and Decidable Type Checking
	Combining Dependent Types and Subtyping
	Combining Dependent Types and Strong Sums

	Our Proposals
	Pure Iso-Type Systems and Iso-Types
	The I Calculus and Unified Subtyping
	The I Calculus and Iso-Strong Sums

	Contributions and Outline

	Background
	Pure Type Systems
	Basics of PTS
	Examples of PTS
	Metatheory of PTS

	Dependent Sums
	Weak Sums
	Strong Sums
	Comparison of Weak and Strong Sums

	Iso-Recursive Types
	Iso-Recursive versus Equi-Recursive Types
	Iso-Recursive Types in Haskell

	Subtyping
	Important Subtyping Rules
	Bounded Quantification

	Path-Dependent Types

	I Pure Iso-Type Systems
	Overview of Iso-Types
	Motivation and Overview
	Implicit Type Conversion in Pure Type Systems
	Newtypes: Explicit Type Conversion in Haskell
	Iso-Types: Explicit Type Conversion in PITS
	General Recursion

	Iso-Types by Example
	Fun Implementation
	Combining Algebraic Datatypes with Advanced Features
	Object Encodings
	Fun with Full Reduction

	Pure Iso-Type Systems
	Call-by-name Pure Iso-Type Systems
	Syntax
	Operational Semantics
	Typing
	The Two Faces of Recursion
	Metatheory of Call-by-name PITS

	Call-by-value Pure Iso-Type Systems
	Value Restriction
	Reduction with Open Terms
	Metatheory

	Iso-Types with Full Casts
	Full Casts with Parallel Reduction
	Metatheory
	Completeness to Pure Type Systems

	Discussion
	Direct Dynamic Semantics
	Direct Proofs
	No Mutually Dependent Judgments
	Implicit Proofs by Reduction
	Full Type-Level Computation
	Consistency of Reduction
	Decidability in the Presence of Recursion

	II Iso-Types with Subtyping
	Unifying Typing and Subtyping
	Overview
	Unified Syntax versus Stratified Syntax
	Challenges in Combining Subtyping with Dependent Types
	Our Solution: Unified Subtyping
	Iso-Types: Dependent Types without Strong Normalization
	Example: Object Encodings using I

	The I Calculus
	Syntax
	Operational Semantics
	Static Semantics

	The Metatheory of Unified Subtyping
	Basic Lemmas
	Transitivity
	Basic Lemmas, Revisited
	Type Safety

	Algorithmic Version
	Bidirectional Type Checking
	Soundness and Completeness

	Subsumption of System F
	Translating System F to I
	Subsumption of Typing and Subtyping

	Discussion

	Iso-Types with Strong Dependent Sums
	Overview
	The Trouble with Impredicativity and Strong Sums
	Iso-Strong Sums: Typing Strong Sums with Iso-Types
	Example: Type Members and Traits
	ML Module Systems and Strong Sums

	The I Calculus
	Syntax
	Dynamic Semantics
	Static Semantics

	Metatheory of I
	Basic Lemmas
	Transitivity
	Type Safety

	The Sig Language
	Syntax
	Static Semantics
	Elaboration Semantics
	Soundness of Translation

	Related Work
	Dependently Typed Calculi without Subtyping
	Core Calculus for Functional Languages
	Unified Syntax with Decidable Type-checking
	Unified Syntax with General Recursion and Undecidable Type Checking
	Casts for Managed Type-level Computation
	Restricted Recursion with Termination Checking

	Calculi with Subtyping and Dependent Types
	Subtyping with Unified Syntax
	Stratified Syntax with High-Order Subtyping
	Stratified Subtyping Systems with Dependent Types
	Subtyping with Restricted Dependent Types

	Strong Sum Types and ML Modules
	Dependently Typed Calculi with Strong Sigma-types
	Strong Sigma-types with Subtyping
	Core Languages for Scala
	Encoding ML Modules by Dependent Types
	Encoding ML Modules by F-ing Modules
	First-class ML Modules
	Module Systems for Dependently Typed Calculi

	Conclusion and Future Work
	Conclusion
	Future Work

	Manual Proofs
	Encoding Weak Sums in I
	Subsumption of System F in I
	Soundness of Translation for Sig

	References

