For 0 <= j < n, let v[j] = max(u[tj], u[tj+1], ... , u[tj+t-1]). Now apply the Kolmogorov-Smirnov test to the sequence v[0], v[1], ... v[n-1] with the distribution function F(x) = x^t, 0 < = x <= 1. The function returns a uniform no. in [0,1]. The test is failed if the value less than 0.001 or larger than 0.999