Random number generator tested:

r250
Minimum value: 0
Maximum value: 4294967295
Random number generator algorithms:
This is the shift-register generator of Kirkpatrick and Stoll.
The sequence is xn = xn-103 ^ xn-250
where ^ denote "exclusive-or", defined on 32-bit words. The period of this generator is about 2250 and it uses 250 words of state per generator.

The first 250 elements x1 .. x250 are first initialized as xn = sn, where sn = (69069*sn-1) mod 232 and s0=s is the user-supplied seed. To ensure that the sequence does not lie on a subspace we force 32 of the entries to be linearly independent. We take the 32 elements x[3], x[10], x[17], x[24], ..., 213 and apply the following operations,

x[3]&= 11111111111111111111111111111111
x[3]|= 10000000000000000000000000000000
x[10]&= 01111111111111111111111111111111
x[10]|= 01000000000000000000000000000000
x[17]&= 00111111111111111111111111111111
x[17]|= 00100000000000000000000000000000
....         ...
x[206]&= 00000000000000000000000000000111
x[206]|= 00000000000000000000000000000100
x[213]&= 00000000000000000000000000000011
x[213]|= 00000000000000000000000000000010
x[220]&= 00000000000000000000000000000001
x[220]|= 00000000000000000000000000000001

i.e. the bits of the 32 elements as forming a 32x32array then we are setting the diagonal bits of the array to one and masking the lower triangle below the diagonal to zero.

With this initialization procedure the theoretical value of x10001 is 1100653588 for s = 1. The subscript 10001 means (1) seed the generator with s = 1 and then do 10000 actual iterations.

For more information see, S. Kirkpatrick and E. Stoll, "A very fast shift-register sequence random number generator", Journal of Computational Physics, 40, 517-526 (1981)