Tuning the Collision Test for Stringency

W.W. Tsang, L.C.K. Hui, K.P. Chow and C.F. Chong
The University of Hong Kong
Email: tsang@csis.hku.hk

The collision test is one of the most important statistical tests for random number
generators. It simulates the throwing of balls randomly into urns. A problem in applying
this test isto determine the number of urns, m, and the number of balls, n, so that the test
is among the most stringent possible on a computer available for testing. Our studies
showed that for afixed m, n shall be determined subject to maximizing the variance of
the number of collisions. With this rule, the stringency of the resulting test increases as m

increases. And the test of m2 223 flunked a recorded number of generators, including
congruential generators, shift-register generators, additive generators of lags less than 40,
subtract-with-borrow generators of 1ags less than 24, and a combination of a congruential
and a shift-register generator.

Key Words: Random number testing, Statistical tests, Collision test

1. INTRODUCTION

The collision test suggested by H. Delgas Christiansen in 1975 is among the foremost
statistical tests for random number generators. The test simulates throwing balls
randomly into urns. The number of urns, m, is usually a power of 2 and the destination of
aball is determined by log, m bits produced by the generator being tested. When a ball
fallsinto an urn that is already occupied, a collision occurs. The collision test countsthe
number of collisions, c. A random number generator failsthetest if ¢ falls outside a
predefined interval. Let n be the number of ball thrown. The test requires m bitsin RAM
to keep track of the statuses of urns and the run-time complexity is O(n).

One reason that the collision test is important is that throwing of ballsisidentical
to insertions of items into a hash table and collisions are a major concern in both cases. It
isone of ahandful of statistical tests for random number generators that are highly
recommended by D. Knuth. A comprehensive description of the test, with an example

that throws n = 214 ballsinto m= 220 urns, was included in his classic book [Knuth
1997]. Since then, the collision test with these specific values for m and n was used to test
random number generators [V attulainen 1995]. A problem in applying the test is whether

n=2%is agood choicefor m= 220 or not. Will the test become more stringent, i.e.,

with higher ability in rejecting bad generators, if n =2 or n=2'%2n general, how
shall we determine the values of m and n so that the test reaches its highest stringency on
a computer available for testing? Can the stringency of the test be scaled up when more
RAM and more powerful cpu become available in the future?

Our studies showed that for afixed m, n shall be determined subject to
maximizing c. The stringency of the test with n determined this way increases asm
increases. This conclusion relies on a bold attempt in quantifying the stringency of atest.

First, we chose 64 sequences of bits whose randomness is increasing. The stringency
level of acollision test is then defined to be the number of sequences that the test flunks.
To verify the appropriateness of the definition, we have worked out the stringency levels
of numerous collision tests of different mand n values and have applied the tests on
random number generators of different kinds. The results confirm that the stringency
level so obtained does indicate atest’s general ability in rejecting bad generators.

With this quantitative measurement for stringency, we found that for afixed m,
when n increases, the stringency level increases but eventually levels off. As additional
effort is needed but no stringency is gained when n increases beyond a threshold, this
threshold value is a good choice for n in the collision test. Further investigation showed
that for afixed m, the variance of c is a bell-shaped function of n. An interesting
discovery isthat the location of the maximum of this function coincides with the
threshold. Thus, n shall be determined subject to maximizing the variance of c. With this
maximum variance criterion, we found that asymptotically, n = 1.256431m.

The collision test n = 1.25m, with changeable m was implemented. As expected,
the stringency of the test increases when mincreases. A generator being examined is tried

out with thistest of m= 2%, 22, ..., up to 2%°one by one. Many well-known generators
of various kinds were flunked starting from some point on the way. Three congruential

generators with modulus equal to 2%2failed when ms 22*. Two with modulus equa to
231 1 sustained the tests better but nonetheless failed when m3 228, Onewith
modulus equal to 2% failed when m3 22, Two shift-register generators [Golomb 1982]

failed when m3 223, The additive generators generally passed but those with lags less
than 40 failed. Similar results were obtained for the subtract-with-borrow generators
[Marsaglia 1991]. The least significant bits of words generated by Super-Duper, a

combination generator, failed asearly as m= 223 The Mersenne Twister [Matsumoto
1998] passed aright, so did the KISS generator [Marsaglia 1999].

One mgjor difficulty we encountered in our investigation was computing the
distribution of ¢. D. Knuth has suggested a recursive procedure that gives exact values.
The procedure works well when n is much smaller than m but takes too long to complete
when mislarge and n is close to m. To cope with the latter cases, we compute the normal
approximation of the distribution of ¢ instead of the exact one. Such approach was
adopted in working out the statistic in the monkey tests [Marsaglia 1993]. The variance
of the statistic there is estimated using simulation, whereas the variance of ¢ here can be
computed using the exact formula we derived.

An analysis on the Knuth’s procedure for computing the distribution of cis
presented in Section 2. When mis large and n equals m, the run-time complexity of the

method is found to be O(3’2). The formulas for the mean and variance of c are derived
in Section 3. The accuracy of the normal approximation to the exact distribution of cis
assessed there. In Section 4, we give the details of our pursuit in determining n subject to
maximizing the stringency. Starting from quantifying the stringency, we devise the
maximum variance criterion, and explain how to reach the conclusion that n approaches
1.256431m asymptotically. Finally, we applied the fine tuned collision tests of various m
on many commonly known generators. The test results are presented in Section 5.

2. DISTRIBUTION OF THE NUMBER OF COLLISIONS
Consider throwing n balls randomly into m urns. The probabil ity that c collisions occurs

m(m- 1)---(m- n+c+1)| n U

inacollison testis
m" in- C%

where | . glsaSterllng number of

2 kind

i 1
defined as :ng 1, :ng 1, otherW|se| E k:nkngr:n 1E[Knuth 1997].

~

Based on arecursion derived from above formulas, D. Knuth has given an
algorithm for computing the percentiles of collisions. The function pcoll1() shown in
Figure 1 is a C implementation of the Knuth’'s agorithm that computes the cumulative
probability of ¢ collisions.

double pcoll1(int m, int n, int c¢) /* Compute the cdf of c collisions */
{ double *A, mm, cdf;

inti, j, jO, j1;

mm = m;

A = (double *) malloc((n+1) * sizeof(double));

for (j=0; j<=n; ++j) /* S1*/
Al =0
All] =1.;

0=1j1=1;

for (i=1; i<n; ++i) /* S2 */
{ j1=j1+1;
for (j=j1; j>=j0; --j)
Alil = (/mm) * A[j] + ((1.+ (1./mm))-(j/mm)) * A[j-1];
if (A[jO] < le-20) A[jO++] =0.;
if (A[j1] < le-20) A[j1--] =0;
}

if (n-c > j1) {free(A); return 0.;} /* Compute the cdf */
if (n-c < jO) {free(A); return 1.;}

cdf = A[j1];
while (n-c < j1)
cdf = cdf + A[--j1];
free(A);
return cdf;

Figure 1. A C function that computes the cdf of ¢ using the Knuth’s method.

The execution time of pcoll1() is proportional to the product of n and the number
of non-zero entriesin the array A[]. The latter is of order the square root of the variance
of c. Using MAPLE, the Taylor expansion of Formula (3.1) for the variance given in
next section are
1
24md
When n = m, the number of non-zero entriesin A[] is of order Jn. Consequently, the
3/2

5 210
@2n®m® - 12nm? - 20n°m + 48n°m- 28nm +17n” - 78n° +115n° - 54nd+ ogi‘l;'
m

run-time complexity of pcoll1() isO(n~" “). Figure 2 shows the execution times of

pcoll1() against log, n, for m= 220 Thetimes (in seconds) were measured on a

450MHz PC. When n=m?3 221, pcoll1() will take too long to complete and a more
efficient method is needed.

500
400 *
[
$ 300
[%)]
£ 200
. IS
100
L 4
O ‘—.—‘ ’ ? T T 1
13 14 15 16 17 18 19 20
logo N
Figure 2. The execution time of pcoll1() versus log, n, for m= 220,

3. NORMAL APPROXIMATION

In this section, we derive an approximation to the distribution of ¢ from the occupancy
problem which concerns with the number of empty urns, e. The collision test and the
occupancy problem are indeed the two sides of a coin. The relation between eand cis
e=m-n+c

A thorough discussion on the classical occupancy problem was included in W.
Feller’ s classic book [Feller 1950]. A theorem due to von Mises states that e is
approximately Poisson distributed with the mean, | = me” ™ ™, under the conditions that
mand n arelarge and that | remains bounded. As a Poisson distribution approximates to
normal when | increases, e asymptotically follows the normal distribution with both the
mean and variance equal to | . For mand n that are not excessively large, the
approximation will be better if the variance of the normal are set to the exact variance of

e s 2,instead of | [Marsaglia1993].

The mean and variance of e can be worked out from the occupancy of the urns.
Suppose that we throw n balls randomly into murns. For i =1tom, let

11, if urniisempty;

_%O , otherwise (occupied).

The probability that aball hits a particular urn is 1/m. The probability that it missesis
1- 1/m. The probability that the urnis empty, i.e., all n balls missthe cell, is

q=(1- #)” . Moreover,
E(Xj) =aq,
Var (X;) = E(X?) - E(Xi)? =q- ¢°.

Next, consider the occupancy of two particular cells, i and j, wherei t j . The probability
that the first ball does not hit both cellsis (m-2)/m. The probability that both cells are

empty, i.e., al balls missboth cells, is r = (1- %)n.Thecovarianceof Xj and X is

Cov(Xj, X) = E(XX})- E(X)E(X])=r - g°:
Since e= X1+ Xy +---+ Xy, M = ME(X7) =mq . Furthermore,
sg:Var(X1)+---+Var(Xm)+é a Cov(Xj,Xj)
EY
=mVar(Xyq) + (m2 - m)Cov(Xq,X>2)
=m(g- g°)+(m* - m)(r - g°)
=m(g+nr - r- mg?)
Asc=e- m+ n,cisapproximately normal distributed with
M =M- Mm+n=mg- m+n, and

sczzsg:m(q+mr-r-mq2). (3.2

The closeness of the distributions of ¢ to normal is demonstrated in Figure 3. The
histograms of the exact distributions and their corresponding normal densities were
plotted together for various values of mand n. In general, the approximation becomes
better when mand n increase.

A simple C function, pcoll2(), which computes the cumulative distribution of ¢
using the normal approximation is given in Figure 4. Comparing with pcoll1(), pcoll2() is
fast but less accurate when mor nis small. We may use it to replace pcoll1() when both

mand n are larger than 2% For m3 27and n£ m, the largest absolute error in the
values returned by pcoll2() that are less than 0.05 or over 0.95 (regions possibly leading

to rgjections of hypotheses) is 0.000446. This upper limit of error occurs when m= 27,
n=2'" and c = 48404. Such accuracy is acceptable in most applications.

double pcoll2(int m, int n, int ¢)
{ double mm, q, r, mean, var;

mm = m;
g = exp(n * log(1.-1./mm));

r =exp(n * log(1.-2./mm));

mean = mm * q - mm + n;

var =mm * (q + mm*r-r-mm * q * q);

return Phi((c-mean)/sqgrt(var)); /* Phi() computes the cdf of standard normal */

Figure 4. A C function that computes the cdf of ¢ using the normal approximation.

o
N
|

[y
a1
1

3a. m=256, n = 64

Probability
o ¢
=
L

3b. m=512, n=128

3c. m=1024, n = 256

Figure 3. The exact distributions of ¢ and their normal approximations.

4. HOW MANY BALLS SHALL BE THROWN

One interesting problem of the collision test is for a fixed number of urns, how many
balls shall be thrown. Throwing excessively too few ballsis not likely to have collisions
at all. On the other hand, throwing too many balls takes longer to complete but does not
necessarily lead to more stringent test. So, what will be a good choice for n? Asthe
collision test is used to examine random number generators, we will like to choose n such
that the test has the highest ability in rejecting bad generators. This problem was tackled

empirically. First, we choose 64 bit sequences whose randomnessis believed to be
increasing. To gauge the stringency of a particular collision test, we conduct the test on
the sequences one by one, from the least random to the most random. The stringent level
of the test is defined as the number of sequencesit flunks, before the first sequence that it
passes. With this quantitative measurement for the stringency, we find n which leads to
the highest stringency level.

Consider the 64-bit congruential generator due to C.E. Haynes shown in Figure 5.
Thebitsof X; is by g4y 63---by1, Where by 1 isthe least significant bit. The bitsof X,

is b g4l 63°-b2 1, @d so on so forth. The bit sequence <by > consists of the |east
significant bitsof Xy, X5, --. In general, <b, > consists of the k" least significant bit

sequencesof X1, Xo,---. It has been known that the least significant bits of congruential
generators with moduli equal to powers of 2 are not as random as the most significant bits

[Marsaglia 1984]. After all, the period of <b, > is bounded by 2" pecause the least k
significant bitsof X; only depend on the least k significant bitsof X;_4. It makes good
sense to anticipate that <by > isless random than <by 1>, for k = 1 to 63. Now, if a
collision test rejects the sequences <b;>,<b,>,...,<by > but not <by 1>, we say that its
stringency level isk.

X1 = 6364136223 846793005 ~ X; + 428856369 mod 254

X1 b164 b163 by b12 b11

Xz © bpes bpez - b2z b2 by

X3 1 bgesa bgeg -+ bgz by by

Xi b|64 bigs o big b bi1
<X > <bgs > <bgz> - <bg> <by> <by>
Figure 5. The bit sequences extracted from a 64-bit congruential generator.

We had applied the collision test of m=2%%and n=2'* to the<b, >'s. The

resulting number of collisions obtained in testing each bit sequence was converted to a
uniform random number, U, using pcoll1(). The test flunks a sequence when U < 0.001 or
U > 0.999. The outputs are shown in Figure 6. According to our definition, the stringency
level of the collision test is 15.

U<b 1>...<b 8> 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
U <b 9>...<b16>| 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 O.0432
U <b17>...<b24>| 0.0759 0.7699 0.9111 0.1663 0.8415 0.9956 O0.1663 0. 1902
U <b25>. .. <b32>| 0.4052 0.9956 0.0352 0.6168 0.1663 0.7956 O0.6824 O0.5825
U <b33>. .. <b40>| 0.3045 0.7424 0.8195 0.2439 0.1902 0.6502 O0.6502 O0.9111
U <b4l>. ..<bd8>| 0.7424 0.6168 0.7131 0.4761 0.6502 0.0902 O0.0432 0. 4052
U <b49>. .. <b56>| 0.0526 0. 6168 0.5474 0.2161 0.8415 0.8616 O0.1443 0.5474
U <b57>...<b64>| 0.7956 0.8799 0.5474 0.5825 0.7699 0.5118 0.1663 O0.5474
The discrimnating power is 15

Figure 6. The outcome of applying the collision test of m=22°and n=2" to <b, >'s.

As atypical example, the stringency levels of the collision tests of m= 2%
against various n values are shown as barsin Figure 7. The stringency increases as n

increases until n=22°. Thereafter, the stringency remains more or less constant. To
understand such behavior, we superimposed the curve of the variances of ¢ corresponding
to the collision tests in the bar chart (with different scale in vertical axis). When nisvery
small, c tends to zero with small variance. Such atest can hardly tell whether a generator
isgood or bad and its stringency islow. When n increases, the variance increases, and the

Stringecny Level

10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28
log, N
Figure 7. The discriminating powers and variances of monkey tests of m=

220

stringency increases too. Our explanation is that large variance of ¢ provides more room
for abad generator to be bias and therefore leads to higher chance of flunking the
generator. As the variance drops when n increases beyond the abscissa of the maximum
variance, n,,, we anticipated that the stringency drops aong. Thisis however not the
case—the stringency remains at the high level and forms a plateau. It is due to the fact
that some urns remain empty no matter how many balls have been thrown.

From the above empirical results, we should choose n @n,, since additional effort

is needed but no stringency is gained when n increases beyond n,, . But what isthe value
of n, ? Using the numerical methods in Maple, we found that n, =1.25643088m,

1.25643119m and 1.25643121m for m=2%, 22% and 2%°respectively. Thus, we
suggest to choose n equal to &1.256431m{ in the collision test for m3 22°.

Figure 8. shown the stringency levelsof collision tests of n = &1.256431md
against m. As expected, the stringency generally increases when mincreases. The run-
time complexity of the test is O(m) and the RAM required is m bits.

40

2 30 [|

_I __——

> _

s 20 u

[@)]

£

? 10 -+ -
0

219 220 221 222 223 224 225 226 227 228

Figure 8. The discriminating power of various collision tests of n = 1.256431m.

5. THE DISCRIMINATING POWER

A C function which conducts the collision test of n = 1.256431m was implemented
(available at http://www.csis.hku.hk/~tsang/). The number of urns, m, is a changeable
parameter and is restricted to powers of two. To test a 32-hit random number generator,
we first decide which bit sequence, <l >, defined in Section 4, that is going to be
examined. In general, the most significant bit sequence (MSB), <bs, >, isat least as
random as the other bit sequences. A failure of MSB implies the failure of most of the
other sequences. On the other hand, the least significant bit sequence (LSB), <b;>, is
most vulnerable. All other sequences are likely to pass the test if even the LSB passesit.
For a given sequence, we conduct the test with m=2', fori = 21, 22, ..., upto 30. A
sufficiently random sequence will pass all the 20 rounds of the test and we will mark a
“Passed” in Table 1. A sequence with deficiencies will typically pass for the first few
rounds and than keep failing for the rest. The index of the test, i =log, m, that the
generator startsto fail is recorded.

The first three generatorsin Table 1 are congruential generators of modulus equal

to 2%2. The multiplier of the first one was suggested by G. Marsaglia[Marsaglia 1972]
and that of the second one was suggested by M. Lavaux and F. Janssens. Their behaviors
against the collision tests are smilar. The LSB has a period of only two and is |east
random. The MSB is better blended but nonetheless was flunked by the collision tests of

m3 2%%. The 4" oneis a 48-bit generator of the same kind and its MSB failed when

m3 22 The5"and the 6" one are 31-bit congruential generators of modulus not equal
to powers of 2 [Fishman 1986, Lewis 1969]. The randomness of the LSB is about the
same as that of the MSB. They sustained the collision test better and only broke down

when m3 228 The 7" generator is provided by Microsoft Visual C++ and its MSB failed

thetest of m3 2%*. The manual does not mention what kind of generator it is. From the
execution time it takes and the changes of randomness in the bit sequences, we guess that

it isacongruential generator of modulus equal to 232,

The randomness of their LSB and MSB are roughly the same. Their MSBs failed when

The 8" and the 9" are 31-bit and 32-hit shift-register generators [Marsaglia 1983)].

m3 224, The 10" is an additive generator devised by G.J. Mitchell and D.P. Moore. That

its LSB passed implies that the generator passed. The 11" is another additive generator

with smaller lags. 1ts LSB marginally failed when m= 2?8 Thelesson is: do not use any
lags less than those of the 10™. The 12" is described as a nonlinear additive feedback
random number generator in the manual. It passed the test.

The 13" and 14" are examples of subtract-with-borrow generators. The
generators of this new class generally pass the collision test unless the lags are less than

25 or s0. The 15" was suggested by Makoto Matsumoto and Takuji Nishimura

[Matsumoto 1998]. It keeps 624 words and is backed with strong theory. It passed the

tests as expected.

Id Random Number Generators/ Bit sequences Outcome
L1 Xy =(69069 X; +1)mod2%2, MsB 24
2| X4 =(1664525 X; +1)mod2%2, MSB 24
3 | rand() in C Library of SunOS 5.7, 32-bit congruential, MSB 24
4 | mrand48() in C Lib of SUNOS 5.7, X, = (273673163E58 X; +138 mod 28, MSB 28
S| X4 =62089911° X; mod(23! - 1), MSB 26
61 X.,,=16807" X, mod(2%! - 1), MSB 26
7 | rand() in C Library of Microsoft Visual C++, MSB 24
8| X'=X; A LeftShift(X;,18); X1 = X'ARightShift(X',13), 31-hit, MSB 23
9| X'=X; A LeftShift(X; 17); X;,1 = X'’ARightShift(X'.15), 32-bit, MSB 24

101 . =X, g5+ X;_ 4 mod 232, LSB Passed

1 X =X 39+ X;_14mod2%2, LSB 28

12 | random() in C Library of SunOS5.7, LSB Passed

13 Xi = Xi_1g - Xi. »5 - borrowmod 232, subtract-with-borrow, LSB, Passed

14 Xi = Xj.20 - Xj. 23 - borrowmod 232 subtract-with-borrow, LSB 27

15 | Mersenne Twister, LSB Passed

16 | Super-Duper, LSB 23

17 | super-Duper, 13" significant bit, <by3> Passed

18 | KISS, LSB Passed

Table 1. The testing results of many common random number generators

The generator tested in the16™ and 17" rows is Super-Duper in the McGill

Random Number Package which was implemented by G. Marsagliainthe 70’s. It

10

combines the outputs of thel® and the 9" generator and it has been noted that the least
significant bits were not very random [Marsaglia 1984]. We found that the L SB failed the

test atm=223and so did <b,>, <by>, ..., up to <by,> at larger m's. Starting from
<b, 3>, all the higher order bit sequences passed. The name of the KISS generator in the

18" row stands for Keep it Smple Stupid. 1t was implemented and disseminated through
Internet by G. Marsagliain January 1999. It combines a congruential, a shift-register and
a multiply-with-carry generators and made a clear-cut pass.

6. REFERENCES
Feller, W., 1950, An Introduction to Probability Theory and its Applications, Vol. 1.,
John Wiley & Sons.

Fishman, G. S., and Moore 11, L. R., 1986, An exhaustive analysis of multiplicative
congruential random number generators with modulus 2°1.1, 9AM J. i, Sat. Compui.
7, 24-45,

Golomb, S. W., 1982, Shift Register Sequences, Rev. ed., Aegean Park Press.

Knuth, D. E., 1997, The Art of Computer Programming, Vol. 2, 3%d., Addison-Wesley.

Marsaglia, G., 1972, The structure of linear congruential sequences, Applications of
Number Theory to Numerical Analysis, Z. K. Zaremba, ed., New York: Academic Press,
249-285.

Marsaglia, G., 1983, Random number generation, Encyclopedia of Computer Science and
Engineering, 2™ ed., Van Nostrand Reinhold.

Marsaglia, G., 1984, A current View of Random Number Generators, Keynote Address,
Computer Science and Statistics; 16™ Symposium on the Interface, Atlanta.

Marsaglia, G., and Zaman, A., 1991, A new class of random number generators, The
Annals of Applied Probability 1, No. 3, 462-480.

Marsaglia, G., and Zaman, A., 1993, Monkey tests for random number generators,
Computers and Mathematics with Applications 26, 9, 1-10.

Marsaglia, G., 1999, Random numbers for C: End, at last, sci.stat.math Web discussion,
January 21.

Matsumoto, M., and Nishimura, T., 1998, Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput.
Smul. 8 No. 1, 3-30.

Vattulainen, Kankaala, K., Saarinen, J., and Ala-Nissila, T., 1995, A comparative study
of some pseudorandom number generators, Computer Physics Communications 86, 209-
226.

11

