
 1 

Tuning the Collision Test for Stringency 
 

W.W. Tsang, L.C.K. Hui, K.P. Chow and C.F. Chong 
The University of Hong Kong 

Email:  tsang@csis.hku.hk  
 

 

The collision test is one of the most important statistical tests for random number 
generators. It simulates the throwing of balls randomly into urns. A problem in applying 
this test is to determine the number of urns, m, and the number of balls, n, so that the test 
is among the most stringent possible on a computer available for testing. Our studies 
showed that for a fixed m, n shall be determined subject to maximizing the variance of 
the number of collisions. With this rule, the stringency of the resulting test increases as m 
increases. And the test of 232≥m  flunked a recorded number of generators, including 
congruential generators, shift-register generators, additive generators of lags less than 40, 
subtract-with-borrow generators of lags less than 24, and a combination of a congruential 
and a shift-register generator.  
 
Key Words: Random number testing, Statistical tests, Collision test 
 

 
1. INTRODUCTION 
The collision test suggested by H. Delgas Christiansen in 1975 is among the foremost 
statistical tests for random number generators. The test simulates throwing balls 
randomly into urns. The number of urns, m, is usually a power of 2 and the destination of 
a ball is determined by m2log  bits produced by the generator being tested. When a ball 
falls into an urn that is already occupied, a collision occurs. The collision test counts the 
number of collisions, c. A random number generator fails the test if c falls outside a 
predefined interval. Let n be the number of ball thrown. The test requires m bits in RAM 
to keep track of the statuses of urns and the run-time complexity is O(n). 
 

One reason that the collision test is important is that throwing of balls is identical 
to insertions of items into a hash table and collisions are a major concern in both cases. It 
is one of a handful of statistical tests for random number generators that are highly 
recommended by D. Knuth. A comprehensive description of the test, with an example 

that throws 142=n  balls into 202=m  urns, was included in his classic book [Knuth 
1997]. Since then, the collision test with these specific values for m and n was used to test 
random number generators [Vattulainen 1995]. A problem in applying the test is whether 

142=n  is a good choice for 202=m  or not. Will the test become more stringent, i.e., 

with higher ability in rejecting bad generators, if 102=n  or 182=n ? In general, how 
shall we determine the values of m and n so that the test reaches its highest stringency on 
a computer available for testing? Can the stringency of the test be scaled up when more 
RAM and more powerful cpu become available in the future? 

 
 Our studies showed that for a fixed m, n shall be determined subject to 
maximizing c. The stringency of the test with n determined this way increases as m 
increases. This conclusion relies on a bold attempt in quantifying the stringency of a test. 



 2 

First, we chose 64 sequences of bits whose randomness is increasing. The stringency 
level of a collision test is then defined to be the number of sequences that the test flunks. 
To verify the appropriateness of the definition, we have worked out the stringency levels 
of numerous collision tests of different m and n values and have applied the tests on 
random number generators of different kinds. The results confirm that the stringency 
level so obtained does indicate a test’s general ability in rejecting bad generators.  
 

With this quantitative measurement for stringency, we found that for a fixed m, 
when n increases, the stringency level increases but eventually levels off. As additional 
effort is needed but no stringency is gained when n increases beyond a threshold, this 
threshold value is a good choice for n in the collision test. Further investigation showed 
that for a fixed m, the variance of c is a bell-shaped function of n. An interesting 
discovery is that the location of the maximum of this function coincides with the 
threshold. Thus, n shall be determined subject to maximizing the variance of c. With this 
maximum variance criterion, we found that asymptotically, n = 1.256431m. 

 
 The collision test n = 1.25m, with changeable m was implemented. As expected, 
the stringency of the test increases when m increases. A generator being examined is tried 

out with this test of m = 212 , 222 , … , up to 302 one by one. Many well-known generators 
of various kinds were flunked starting from some point on the way. Three congruential 

generators with modulus equal to 322 failed when 242≥m . Two with modulus equal to 

1231 −  sustained the tests better but nonetheless failed when 262≥m . One with 

modulus equal to 482  failed when 282≥m . Two shift-register generators [Golomb 1982] 

failed when 232≥m . The additive generators generally passed but those with lags less 
than 40 failed.  Similar results were obtained for the subtract-with-borrow generators 
[Marsaglia 1991]. The least significant bits of words generated by Super-Duper, a 

combination generator, failed as early as 232=m . The Mersenne Twister [Matsumoto 
1998] passed alright, so did the KISS generator [Marsaglia 1999].  
 

One major difficulty we encountered in our investigation was computing the 
distribution of c. D. Knuth has suggested a recursive procedure that gives exact values. 
The procedure works well when n is much smaller than m but takes too long to complete 
when m is large and n is close to m. To cope with the latter cases, we compute the normal 
approximation of the distribution of c instead of the exact one. Such approach was 
adopted in working out the statistic in the monkey tests [Marsaglia 1993]. The variance 
of the statistic there is estimated using simulation, whereas the variance of c here can be 
computed using the exact formula we derived.  
 

An analysis on the Knuth’s procedure for computing the distribution of c is 
presented in Section 2. When m is large and n equals m, the run-time complexity of the 

method is found to be O( 2/3n ). The formulas for the mean and variance of c are derived 
in Section 3. The accuracy of the normal approximation to the exact distribution of c is 
assessed there. In Section 4, we give the details of our pursuit in determining n subject to 
maximizing the stringency. Starting from quantifying the stringency, we devise the 
maximum variance criterion, and explain how to reach the conclusion that n approaches 
1.256431m asymptotically.  Finally, we applied the fine tuned collision tests of various m 
on many commonly known generators. The test results are presented in Section 5.  



 3 

 
 
2.    DISTRIBUTION OF THE NUMBER OF COLLISIONS 
Consider throwing n balls randomly into m urns. The probability that c collisions occurs 

in a collision test is 








−
++−−

cn
n

m

cnmmm
n

)1()1( L
, where 








k
n

is a Sterling number of 

2nd kind  

defined as ,1  ,1
1

=








=








n
nn

 otherwise 








−
−

+






 −

=








1
11

k
n

k
n

k
k
n

 [Knuth 1997]. 

 

Based on a recursion derived from above formulas, D. Knuth has given an 
algorithm for computing the percentiles of collisions. The function pcoll1() shown in 
Figure 1 is a C implementation of the Knuth’s algorithm that computes the cumulative 
probability of c collisions.  

double pcoll1(int m, int n, int c)   /* Compute the cdf of c collisions */ 
{ double *A, mm, cdf; 

int i, j, j0, j1; 
 
mm = m; 
A = (double *) malloc( (n+1) * sizeof(double)); 
 
for (j=0; j<=n; ++j)  /* S1 */ 
 A[j] = 0.; 
A[1] = 1.; 
 
j0 = 1; j1 = 1; 
 
for (i=1; i<n; ++i)   /* S2 */ 
{ j1 = j1 + 1; 
 for (j=j1; j>=j0; --j) 
  A[j] = (j/mm) * A[j] + ((1.+ (1./mm))-(j/mm)) * A[j-1]; 
 
 if (A[j0] < 1e-20) A[j0++] = 0.; 
 if (A[j1] < 1e-20) A[j1--] = 0.; 
} 
 
if (n-c > j1) {free(A); return 0.;}  /* Compute the cdf */ 
if (n-c < j0) {free(A); return 1.;} 
 
cdf = A[j1]; 
while (n-c < j1) 
 cdf = cdf + A[--j1]; 
free(A); 
return cdf; 

} 
 

Figure 1. A C function that computes the cdf of c using the Knuth’s method. 
 



 4 

The execution time of pcoll1() is proportional to the product of n and the number 
of non-zero entries in the array A[]. The latter is of order the square root of the variance 
of c. Using MAPLE, the Taylor expansion of  Formula (3.1) for the variance given in  
next section are 









+





 −+−+−+−−

4
1

542115378417282483202122212
324

1

m
Onnnnnmmnmnnmmn

m

. 

When n = m, the number of non-zero entries in A[] is of order n . Consequently, the 

run-time complexity of pcoll1() is O( 2/3n ). Figure 2 shows the execution times of 

pcoll1()  against n2log , for 202=m .  The times (in seconds) were measured on a 

450MHz PC. When 212≥= mn , pcoll1() will take too long to complete and a more 
efficient method is needed.   

 
 
3.  NORMAL APPROXIMATION 
In this section, we derive an approximation to the distribution of c from the occupancy 
problem which concerns with the number of empty urns, e. The collision test and the 
occupancy problem are indeed the two sides of a coin. The relation between e and c is           
e = m – n + c.  
 

A thorough discussion on the classical occupancy problem was included in W. 
Feller’s classic book [Feller 1950]. A theorem due to von Mises states that e is 
approximately Poisson distributed with the mean, λ = mnme /− , under the conditions that 
m and n are large and that λ remains bounded. As a Poisson distribution approximates to 
normal when λ increases, e asymptotically follows the normal distribution with both the 
mean and variance equal to λ. For m and n that are not excessively large, the 
approximation will be better if the variance of the normal are set to the exact variance of 
e, 2

eσ , instead of λ [Marsaglia 1993].   
 

The mean and variance of e can be worked out from the occupancy of the urns. 
Suppose that we throw n balls randomly into m urns. For i = 1 to m, let  

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

T
im

es
 (

S
ec

.)

 
n2log  

Figure 2.  The execution time of pcoll1() versus n2log , for 202=m . 



 5 





=
.(occupied) otherwise , 0

      empty; is urn  if  , 1 i
X i   

The probability that a ball hits a particular urn is 1/m. The probability that it misses is    
m/11− . The probability that the urn is empty, i.e., all n balls miss the cell, is 

n
m

q )1( 1−=  . Moreover,  

.)()()(

,)(
222 qqXEXEXVar

qXE

iii

i

−=−=

=
 

Next, consider the occupancy of two particular cells, i and j, where i ≠ j . The probability 
that the first ball does not hit both cells is (m-2)/m. The probability that both cells are 

empty, i.e., all balls miss both cells, is n
m

r )1( 2−= . The covariance of ji XX  and  is  

2)()()(),( qrXEXEXXEXXCov jijiji −=−= .  

Since mXXXe +++= L21 , mqXmEe == )( 1µ . Furthermore,  

)(

))(()(

),()()(

),()()(

2

222
21

2
1

1
2

mqrmrqm

qrmmqqm

XXCovmmXmVar

XXCovXVarXVar
i ij

jime

−−+=

−−+−=

−+=

+++= ∑ ∑
≠

Lσ

  

As c = e − m + n, c is approximately normal distributed with  

(3.1)                                       . )(

and  , 
22

e
2 mqrmrqm

nmmqnm

c

ec

−−+==

+−=+−=

σσ

µµ
  

The closeness of the distributions of c to normal is demonstrated in Figure 3. The 
histograms of the exact distributions and their corresponding normal densities were 
plotted together for various values of m and n. In general, the approximation becomes 
better when m and n increase.  
 
 A simple C function, pcoll2(), which computes the cumulative distribution of c 
using the normal approximation is given in Figure 4. Comparing with pcoll1(), pcoll2() is 
fast but less accurate when m or n is small. We may use it to replace pcoll1() when both 

m and n are larger than 162 . For 172≥m and mn ≤ , the largest absolute error in the 
values returned by pcoll2() that are less than 0.05 or over 0.95 (regions possibly leading 

to rejections of hypotheses) is 0.000446. This upper limit of error occurs when 172=m , 
172=n  and c = 48404. Such accuracy is acceptable in most applications. 



 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  HOW MANY BALLS SHALL BE THROWN 
One interesting problem of the collision test is for a fixed number of urns, how many 
balls shall be thrown. Throwing excessively too few balls is not likely to have collisions 
at all. On the other hand, throwing too many balls takes longer to complete but does not 
necessarily lead to more stringent test. So, what will be a good choice for n? As the 
collision test is used to examine random number generators, we will like to choose n such 
that the test has the highest ability in rejecting bad generators. This problem was tackled 

double pcoll2(int m, int n, int c) 
{ double mm, q, r, mean, var; 
 
 mm = m; 
 q = exp(n * log(1.-1./mm)); 
 r = exp(n * log(1.-2./mm)); 
 mean = mm * q - mm + n; 
 var = mm * (q + mm*r - r - mm * q * q); 
 return Phi( (c-mean)/sqrt( var));         /* Phi() computes the cdf of standard normal */ 
} 
 

Figure 4. A C function that computes the cdf of c using the normal approximation. 

3 a .   m = 2 5 6 ,  n  =  6 4  

0

0.05

0.1

0 .15

0.2

P
ro

b
ab

ili
ty

3b.  m=512, n=128

0

0.05

0.1

0.15

 

3c.  m=1024, n = 256

0

0.01

0.02

0.03

0.04

0.05

Figure 3. The exact distributions of c and their normal approximations. 



 7 

empirically. First, we choose 64 bit sequences whose randomness is believed to be 
increasing. To gauge the stringency of a particular collision test, we conduct the test on 
the sequences one by one, from the least random to the most random. The stringent level 
of the test is defined as the number of sequences it flunks, before the first sequence that it 
passes. With this quantitative measurement for the stringency, we find n which leads to 
the highest stringency level.  

 
Consider the 64-bit congruential generator due to C.E. Haynes shown in Figure 5. 

The bits of 1X  is 1,163,164,1 bbb L , where 1,1b  is the least significant bit. The bits of 2X  

is 1,263,264,2 bbb L , and so on so forth. The bit sequence < 1b > consists of the least 

significant bits of L,, 21 XX . In general, < kb > consists of the kth  least significant bit 
sequences of L,, 21 XX . It has been known that the least significant bits of congruential 
generators with moduli equal to powers of 2 are not as random as the most significant bits 

[Marsaglia 1984]. After all, the period of < kb > is bounded by k2 because the least k 
significant bits of iX  only depend on the least k significant bits of 1−iX . It makes good 
sense to anticipate that < kb > is less random than < 1+kb >, for k = 1 to 63. Now, if a 
collision test rejects the sequences < 1b >,< 2b >,… ,< kb > but not < 1+kb >, we say that its 
stringency level is k. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We had applied the collision test of 202=m and 142=n  to the < kb >’s. The 
resulting number of collisions obtained in testing each bit sequence was converted to a 
uniform random number, U, using pcoll1(). The test flunks a sequence when U < 0.001 or 
U > 0.999. The outputs are shown in Figure 6. According to our definition, the stringency 
level of the collision test is 15.  

 

><><><><><><

+×=+

1236364

1,2,3,63,64,

1,32,33,363,364,33

1,22,23,263,264,22

1,12,13,163,164,11

64
1

                                  

.             .               .                          .               .                   .     

.             .               .                          .               .                   .     

                                                   :       
.             .               .                          .               .                   .     

                                                 :      

                                                :      

                                                   :      

2mod4288563698467930056364136223

bbbbbX

bbbbbX

bbbbbX

bbbbbX

bbbbbX

XX

iiiiii

ii

L

L

L

L

L

 

 
Figure 5. The bit sequences extracted from a 64-bit congruential generator. 



 8 

0

5

1 0

1 5

2 0

2 5

3 0

S
tr

in
g

ec
n

y 
L

ev
el

 
                    10    11   12    13  14    15   16    17    18    19   20    21   22    23    24   25   26   27    28 

n2log  

Figure 7. The discriminating powers and variances of monkey tests of 202=m . 

 
 
 
 
 
 
 
 
 
 

As a typical example, the stringency levels of the collision tests of 202=m  
against various n values are shown as bars in Figure 7. The stringency increases as n 
increases until 202=n . Thereafter, the stringency remains more or less constant. To 
understand such behavior, we superimposed the curve of the variances of c corresponding 
to the collision tests in the bar chart (with different scale in vertical axis). When n is very 
small, c tends to zero with small variance. Such a test can hardly tell whether a generator 
is good or bad and its stringency is low. When n increases, the variance increases, and the 

stringency increases too. Our explanation is that large variance of c provides more room 
for a bad generator to be bias and therefore leads to higher chance of flunking the 
generator. As the variance drops when n increases beyond the abscissa of the maximum 
variance, vn , we anticipated that the stringency drops along. This is however not the 
case— the stringency remains at the high level and forms a plateau. It is due to the fact 
that some urns remain empty no matter how many balls have been thrown.  

From the above empirical results, we should choose vnn ≅  since additional effort 
is needed but no stringency is gained when n increases beyond vn . But what is the value 
of vn ? Using the numerical methods in Maple, we found that mnv 25643088.1= , 

m1.25643119  and m1.25643121  for 202=m , 242 , and 292 respectively. Thus, we 
suggest to choose n equal to 1.256431m  in the collision test for 202≥m . 
 

Figure 8. shown the stringency levels of  collision tests of n = 1.256431m  
against m. As expected, the stringency generally increases when m increases. The run-
time complexity of the test is O(m) and the RAM required is m bits.   

U:<b 1>...<b 8>| 1.0000 1.0000 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000 
U:<b 9>...<b16>| 1.0000 1.0000 1.0000  1.0000  1.0000  1.0000  1.0000  0.0432 
U:<b17>...<b24>| 0.0759 0.7699 0.9111  0.1663  0.8415  0.9956  0.1663  0.1902 
U:<b25>...<b32>| 0.4052 0.9956 0.0352  0.6168  0.1663  0.7956  0.6824  0.5825 
U:<b33>...<b40>| 0.3045 0.7424 0.8195  0.2439  0.1902  0.6502  0.6502  0.9111 
U:<b41>...<b48>| 0.7424 0.6168 0.7131  0.4761  0.6502  0.0902  0.0432  0.4052 
U:<b49>...<b56>| 0.0526 0.6168 0.5474  0.2161  0.8415  0.8616  0.1443  0.5474 
U:<b57>...<b64>| 0.7956 0.8799 0.5474  0.5825  0.7699  0.5118  0.1663  0.5474 
The discriminating power is 15 

 

Figure 6. The outcome of applying the collision test of 202=m and 142=n  to < kb >’s. 



 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
5.  THE DISCRIMINATING POWER  
A C function which conducts the collision test of n = 1.256431m was implemented 
(available at http://www.csis.hku.hk/~tsang/). The number of urns, m, is a changeable 
parameter and is restricted to powers of two. To test a 32-bit random number generator, 
we first decide which bit sequence, < kb >, defined in Section 4, that is going to be 
examined. In general, the most significant bit sequence (MSB), < 32b >, is at least as 
random as the other bit sequences. A failure of MSB implies the failure of most of the 
other sequences. On the other hand, the least significant bit sequence (LSB), < 1b >, is 
most vulnerable. All other sequences are likely to pass the test if even the LSB passes it. 
For a given sequence, we conduct the test with im 2= , for i = 21, 22, … , up to 30. A 
sufficiently random sequence will pass all the 20 rounds of the test and we will mark a 
“Passed” in Table 1. A sequence with deficiencies will typically pass for the first few 
rounds and than keep failing for the rest. The index of the test, i m2log= , that the 
generator starts to fail is recorded. 
 

The first three generators in Table 1 are congruential generators of modulus equal 

to 322 . The multiplier of the first one was suggested by G. Marsaglia [Marsaglia 1972] 
and that of the second one was suggested by M. Lavaux and F. Janssens. Their behaviors 
against the collision tests are similar. The LSB has a period of only two and is least 
random. The MSB is better blended but nonetheless was flunked by the collision tests of 

242≥m . The 4th one is a 48-bit generator of the same kind and its MSB failed when 
282≥m . The 5th and  the 6th one are 31-bit congruential generators of modulus not equal 

to powers of 2 [Fishman 1986, Lewis 1969]. The randomness of the LSB is about the 
same as that of the MSB. They sustained the collision test better and only broke down 

when 262≥m . The 7th generator is provided by Microsoft Visual C++ and its MSB failed 

the test of 242≥m . The manual does not mention what kind of generator it is. From the 
execution time it takes and the changes of randomness in the bit sequences, we guess that 

it is a congruential generator of modulus equal to 322 .  

0

1 0

2 0

3 0

4 0
S

tr
in

g
en

cy
 L

ev
el

 

                              192       202        212        222       232        242       252       262        272       282    
      m 

Figure 8. The discriminating power of various collision tests of n = 1.256431m. 
 



 10

The 8th and the 9th are 31-bit and 32-bit shift-register generators [Marsaglia 1983]. 
The randomness of their LSB and MSB are roughly the same. Their MSBs failed when 

242≥m . The 10th is an additive generator devised by G.J. Mitchell and D.P. Moore. That 
its LSB passed implies that the generator passed. The 11th is another additive generator 

with smaller lags. Its LSB marginally failed when 282=m . The lesson is: do not use any 
lags less than those of the 10th. The 12th is described as a nonlinear additive feedback 
random number generator in the manual. It passed the test. 
 

 The 13th and 14th are examples of subtract-with-borrow generators. The 
generators of this new class generally pass the collision test unless the lags are less than 
25 or so. The 15th was suggested by Makoto Matsumoto and Takuji Nishimura 
[Matsumoto 1998]. It keeps 624 words and is backed with strong theory. It passed the 
tests as expected. 

 
 

Id Random Number Generators / Bit sequences Outcome 

1 32
1 2mod)169069( +×=+ ii XX , MSB  24 

2 32
1 2mod)11664525( +×=+ ii XX , MSB  24 

3 rand() in C Library of SunOS 5.7, 32-bit congruential, MSB 24 

4 mrand48() in C Lib of SunOS 5.7, 48
1 2mod)1385582736731631( +×=+ ii XX , MSB 28 

5 )12mod(62089911 31
1 −×=+ ii XX , MSB  26 

6 )12mod(16807 31
1 −×=+ ii XX , MSB  26 

7 rand() in C Library  of Microsoft Visual C++, MSB 24 

8 )13,'('  );18,(' 1 XRightShiftXXXLeftShiftXX iii ⊕=⊕= + , 31-bit, MSB  23 

9 )15,'('  );17,(' 1 XRightShiftXXXLeftShiftXX iii ⊕=⊕= + , 32-bit, MSB  24 

10 32
2455 2mod−− += iii XXX , LSB  Passed 

11 32
1439 2mod−− += iii XXX , LSB 28 

12 random() in C Library of SunOS 5.7, LSB Passed 

13 32
2518 2modborrowXXX iii −−= −− , subtract-with-borrow, LSB,  Passed 

14 32
2320 2modborrowXXX iii −−= −− , subtract-with-borrow, LSB 27 

15 Mersenne Twister, LSB Passed 

16 Super-Duper, LSB 23 

17 Super-Duper, 13th significant bit, < 13b >  Passed 

18 KISS, LSB Passed 

 

Table 1. The testing results of many common random number generators 
 
 The generator tested in the16th and 17th  rows is Super-Duper in the McGill 
Random Number Package which was implemented by G. Marsaglia in the 70’s.  It 



 11

combines the outputs of the1st and the 9th generator and it has been noted that the least 
significant bits were not very random [Marsaglia 1984]. We found that the LSB failed the 

test at 232=m and so did < 2b >, < 3b >, … , up to < 12b > at larger m’s. Starting from 
< 13b >, all the higher order bit sequences passed. The name of the KISS generator in the 
18th row stands for Keep it Simple Stupid.  It was implemented and disseminated through 
Internet by G. Marsaglia in January 1999. It combines a congruential, a shift-register and 
a multiply-with-carry generators and made a clear-cut pass.  
 
 
6.  REFERENCES 
Feller, W., 1950, An Introduction to Probability Theory and its Applications, Vol. 1., 
John Wiley & Sons. 
 

Fishman, G. S., and Moore III, L. R., 1986, An exhaustive analysis of multiplicative 
congruential random number generators with modulus 1231 − , SIAM J. Sci. Stat. Comput. 
7, 24-45. 
 

Golomb, S. W., 1982, Shift Register Sequences, Rev. ed., Aegean Park Press. 
 

Knuth, D. E., 1997, The Art of Computer Programming, Vol. 2, 3rd ed., Addison-Wesley. 
 

Lewis, Goodman, and Miller, 1969, ?????, IBM Systems J. 8, 136-146. 
 

Marsaglia, G., 1972, The structure of linear congruential sequences, Applications of 
Number Theory to Numerical Analysis, Z. K. Zaremba, ed., New York:  Academic Press, 
249-285. 
 

Marsaglia, G., 1983, Random number generation, Encyclopedia of Computer Science and 
Engineering, 2nd ed., Van Nostrand Reinhold. 
 

Marsaglia, G., 1984, A current View of Random Number Generators, Keynote Address, 
Computer Science and Statistics: 16th Symposium on the Interface, Atlanta. 
 

Marsaglia, G., and Zaman, A., 1991, A new class of random number generators, The 
Annals of Applied Probability 1, No. 3, 462-480. 
 

Marsaglia, G., and Zaman, A., 1993, Monkey tests for random number generators, 
Computers and Mathematics with Applications 26, 9, 1-10. 
 

Marsaglia, G., 1999, Random numbers for C: End, at last, sci.stat.math Web discussion, 
January 21. 
 

Matsumoto, M., and Nishimura, T., 1998, Mersenne twister: A 623-dimensionally 
equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. 
Simul. 8, No. 1, 3-30. 
 

Vattulainen, Kankaala, K., Saarinen, J., and Ala-Nissila, T., 1995, A comparative study 
of some pseudorandom number generators, Computer Physics Communications 86, 209-
226. 
 
 


