
SpaceKey: Exploring Patterns in Spatial Databases
Yixiang Fang1, Reynold Cheng1, Jikun Wang1, Budiman1, Gao Cong2, Nikos Mamoulis3

1The University of Hong Kong, 2Nanyang Technological University, 3University of Ioannina
1{yxfang,ckcheng,jkwang,budiman}@cs.hku.hk, 2gaocong@ntu.edu.sg, 3nikos@cs.uoi.gr

Abstract— Spatial objects associated with keywords are preva-
lent in applications such as Google Maps and Twitter. Recently,
the topic of spatial keyword queries has received plenty of
attention. Spatial Group Keyword (SGK) search is a popular
class of queries; their goal is to find a set of objects which are
close to each other and are associated to a set of input keywords.
In this paper, we propose SpaceKey 1, a system for retrieving
and visualizing spatial objects returned by SGK queries. In
addition to existing SGK query types, SpaceKey supports a novel
query, called SPM query. An SPM query is defined by a spatial
pattern, a graph whose vertices contain keywords and its edges
are associated with distance constraints. The results are sets of
objects that match the pattern. SpaceKey allows users to perform
comparison analysis between different SGK query types. We
plan to make SpaceKey an open-source web-based platform, and
design API functions for software developers to plug other SGK
query algorithms into our system.

I. INTRODUCTION

With the prevalence of location-based services in many
real applications [1], [2], [3] such as Google Maps, Flickr,
and Twitter, spatial keyword queries have received plenty
of research interest in recent years. Spatial Group Keyword
(SGK) search [4], [5] is an important class of spatial keyword
queries. Existing query types in this class (e.g., mCK [4])
aim at finding a set of objects, which are relevant to a set of
input keywords, and whose locations are close to each other.
However, the distance constraints that user may want to specify
could be more general. For example, when a user wishes to
rent/buy a house, she may expect a school nearby, which is
close to her house but not too close (e.g., to avoid the noise
and crowd caused by school), so their distance should be less
than 1km, but larger than 0.3km. Moreover, although there
are several existing SGK query types and systems [6], [7], [8]
that support them, there is a lack of a platform for visualizing
and analyzing the query results. Thus, it is hard to compare
them systematically.

To tackle issues above, we first present the spatial pattern
matching (SPM) query, a new type of SGK queries. SPM
queries are based on the concept of spatial pattern, a graph
whose vertices contain keywords and their edges are labeled
with distance interval constraints, capturing the distance con-
straints among the objects that instantiate the vertices of
the patterns. The goal is to find all the matches (i.e., sets
of objects) that satisfy a given spatial pattern. A detailed
definition of SPM queries and evaluation algorithms can be
found in [9]. The main subject of this paper is SpaceKey, an

1We have submitted the video about SpaceKey, and the video can also be
accessed from http://i.cs.hku.hk/∼yxfang/demo.mp4

Fig. 1. User interface of SpaceKey.

online system that allows users to express various SGK queries
(including SPM query), and visualize and analyze their results,
in a simple and interactive manner.

In SpaceKey, to issue an SPM query, the user can easily
draw a spatial pattern and view the query results. Figure 1
shows the user interface of SpaceKey configured to run on a
dataset of UK Points of Interest (PoIs). The left panel shows
a spatial pattern of a house, a school, a station, and a park
with some distance intervals. Once the user clicks the “Query”
button, all the matches will be returned and the user can view
them one by one through the “Previous” and “Next” buttons.
Additionally, SpaceKey allows a query user to edit a previous
spatial pattern, which would help her to interactively compose
a new query pattern and explore the matched objects.

Besides, SpaceKey can seamlessly supports other SGK algo-
rithms. Currently, we have incorporated three additional SGK
query types: mCK [4], CoSKQ [5], [10], and minSK [11].
Thus, a user can choose which query model to use to fit
her needs. In Figure 1, a query user can issue a specific
query after clicking its type on top of the left panel. More-
over, SpaceKey provides an Application Programmer Interface
(API), which consists of a list of functions. To plug a new
SGK query type or algorithm into SpaceKey, the user only
needs to follow the API and slightly modifies the HTML
codes in the panel under the logo, and then she can easily
view the query results and compare them with other SGK
query algorithms. Furthermore, SpaceKey is an open-source
software, so application developers can customize SpaceKey to
suit their own needs.

Furthermore, our system provides a user-friendly interface

http://i.cs.hku.hk/~yxfang/demo.mp4

that enables online analysis of results returned by different
SGK queries. It can report statistics about the results returned
by different algorithms, such as the number of object sets
returned, the average pair-wise distance between objects in
each set, and the diameter of objects. These features allow
users to perform a detailed comparison between the results
output from different algorithms. Additionally, users can plug
in their own analysis functions through the API provided.

In summary, our system incorporates a novel query, called
SPM query. Moreover, it enables a clear visualization of the d-
ifferences among different SGK query algorithm, which could
work as a tool for users to pick the right solution. In addition,
SpaceKey provides a list of API functions, which facilitates
installation and testing of new SGK solutions. Our system
will be valuable to users who are interested in SGK solutions
(e.g. database and GIS researchers, application developers),
and work as a demo for corporations that are interested to
implement related functions.

The rest of the paper is organized as follows. In Section II,
we review related work and position SpaceKey in it. In
Section III, we introduce the SPM query. Section IV describes
the framework of SpaceKey. In Section V, we explain how we
are going to demonstrate SpaceKey.

II. RELATED WORK AND NOVELTY

A. SGK Queries

There are two types of SGK queries in the literature. The
first type of queries takes as arguments a set of keywords
and returns a group of objects [4], [11] that are close to each
other, and which are related to the set of query keywords.
A representative query is the m-closest keyword (mCK)
query [4], which finds a group of objects that collectively
contain all the m query keywords, and the maximum distance
between any two objects returned is minimized. Its variants
include minSK [11] which minimizes a different distance cost
function. The second type (e.g., [5], [10]) takes as input the
location where the query is issued, and a set of keywords. A
list of objects is returned, each of which is near to the query
location and is relevant to the keywords. A presentative query
type is CoSKQ [5], [10]. A more detailed discussion of these
SGK queries can be found from [9].

B. Systems for Spatial Keyword Queries

Cao et al. [6] present SWORS, a spatial web object re-
trieval system for retrieving objects satisfying spatial keyword
queries. In [7], a web-based service, called GroupFinder,
which is able to return top-k groups of PoIs according to a
scoring function, is proposed. Chen et al. [8] developed SOPS,
an application for providing spatial-keyword publish/subscribe
service over a stream of geotextual objects. In [12], a system
called RISE for region search and exploration on spatial
objects is proposed. Chen et al. [13] developed the YASK
system for answering why-not questions posed in response to
answers to spatial keyword top-k queries.

Although these systems perform well in particular scenarios,
there is a lack of tools for integrating various SGK algorithms

as well as performing comparison analysis. Moreover, these
systems cannot support SPM queries and it is not clear how
to plug new SGK queries into these systems. To tackle these
issues, we develop the SpaceKey system.

III. THE SPM QUERY

We consider a database D of spatial objects (or objects for
brevity). Each object o∈D has 2D coordinates (ox, oy), and
is associated with a set, doc(o), of keywords. We say that the
object o matches with a keyword w, if w ∈ doc(o). Now we
formally introduce the spatial pattern and SPM query.

Definition 1 (spatial pattern). A spatial pattern P is a simple
graph (V , E) of n vertices {v1, v2, · · · , vn} and m edges,
and the following constraints hold:
• Each vertex vi ∈ V has a set of keywords wi;
• Each edge (vi, vj) ∈ E has a distance interval [li,j , ui,j],

where li,j (ui,j) is the lower (respectively upper) bound
of distances between two matching objects in D;

• Each edge (vi, vj) ∈ E is associated with one of the
signs: (1) vi→vj; (2) vi←vj; (3) vi↔vj; and (4) vi–vj .

The meanings of these signs on the edges are as follows.
• vi→vj [vi excludes vj]: No object with keyword wj in D
should have a distance less than li,j from ok.
• vi←vj [vj excludes vi]: No object with keyword wi in D
should have a distance less than li,j from ol.
• vi↔vj [mutual exclusion]: No object with keyword wi in D
should have a distance less than li,j from ok, and the distance
of any object with keyword wj in D should be at least li,j
away from ol.
• vi–vj [mutual inclusion]: The occurrence of any object
(other than ok and ol) with keywords wi and wj in D with
distance shorter than li,j is allowed.

Suppose a user wishes to retrieve two objects (say, os and
ot) such that: (1) os and ot have keywords house and school
respectively; (2) the distance of os from ot is between 0.3km
and 1.0km; and (3) there does not exist any object with
keyword school, which is less than 0.3km from os. Then, these
requirements can be expressed as an edge house→school with
distance interval [0.3, 1.0] (km), as shown in Figure 2(b).

We say that, two objects ok and ol constitute an e-match of
(vi, vj), if ok and ol match with wi and wj respectively, and
they satisfy the distance constraints of (vi, vj). Based on the
concept of e-match, we define the match as follows.

Definition 2 (match). Given a spatial pattern P and a set
S of objects, S is a match of P if (1) for each edge of P ,
there is an e-match in S; and (2) there does not exist any
proper subset S′ of S such that for each edge of P , there is
an e-match in S′.

Problem 1 (Spatial Pattern Matching query). Given a spatial
pattern P , SPM returns all the matches of P in D.

In Figure 2, given a spatial pattern in Figure 2(b), the
SPM query returns one match, which contains four objects
connected in solid lines, as shown in Figure 2(a).

school

house

parkstation

[0.3, 1.0]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

park

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

park

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

school

house

parkstation

[0.3, 1.0]

[0.0, 0.2][0.2, 0.4]

school

house

park

0.2 0.40.0 0.6

house cinema

park

0.0

0.2

0.4

0.6

0.8

station

hospital

school

house

park

0.2 0.40.0 0.6

house cinema

park

0.0

0.2

0.4

0.6

0.8

station

hospital

(a) Spatial object set D (b) Spatial pattern P

Fig. 2. Illustrating the SPM query.

To our best knowledge, no previous work offers a workable
solution to SPM queries. In [9], we show that the SPM
problem is NP-hard. To answer the SPM queries efficiently,
we propose two efficient algorithms. The first one follows the
steps of classical multi-way join, which generally is easy to
understand, but not efficient enough. The second one, called
MSJ, finds all the e-matches in a collective manner, and our
experimental results [9] on real large datasets show that it
performs best; therefore in SpaceKey we use MSJ.

IV. SYSTEM OVERVIEW

We illustrate the system framework of SpaceKey in Figure 3.
It adopts the browser-server model. The Browser side provides
interfaces for users to submit queries and view the query
results and statistics of them for comparison. To issue a query,
the user can simply draw a spatial pattern or input some query
keywords via the browser. Then, the query is sent to the server
for processing, after which the results will be returned and
displayed on the browser.

SPM

(algorithm: MSJ)

Comparison

Analysis

Web browser

Server

Results

(Object sets)

Queries

(E.g., keyword, location)

Google Maps

Statistics

Spatial Database

search

analyze

display

Indexing
Other SGK

Algorithms API
SPM

Query

Fig. 3. The framework of SpaceKey.

On the Server side, there are two modules, i.e., SPM Queries
and Comparison Analysis, used for answering SPM queries
online and analyzing comparison respectively. Since the SPM
query algorithms [9] rely on the IR-tree index [14], we build
the IR-tree for the objects offline in the Indexing module.

The Comparison Analysis module performs comparison
analysis for the results returned by different SGK query
algorithms, and reports their statistics (e.g., the number of
objects and the average distance between each pair of objects).
Moreover, users can easily plug their own SGK query algo-
rithms into the system, and view and compare the statistics

public interface Algorithm {
 public List<Object> search(Query query);
 public void analyze(List<Object> objs);
 public void display(List<Object> objs);
 …
}

Fig. 4. The API functions of SpaceKey.

with the help of our easy-to-use Java API functions. Some
typical API functions are discussed in Section IV-A. Currently,
in SpaceKey we have implemented three other SGK query
algorithms, which are mCK [4], CoSKQ [5], [10], and min-
SK [11]. We remark that SpaceKey employs modular design,
which may facilitate the addition of future extensions.

A. API

Our system provides a Java Interface, which consists of a
list of API functions. For public users, to plug in their own
query algorithms, they just need to implement the functions of
the interfaces with their own algorithms, and slightly modify
the web page codes. Then they can visualize and compare the
results. Figure 4 shows three typical API functions:
• search: it performs query processing of an SGK query.
• analyze: it analyzes the results of an SGK query.
• display: it generates the HTML codes for visualizing the
query results of an SGK query in the webpage.

V. DEMONSTRATION

A. Setup

We implemented the algorithms in Java and designed
the system using JavaServer Pages (JSP) technique with
the Tomcat server. We used a dataset, obtained from
www.pocketgpsworld.com, which contains PoIs (e.g., cinemas)
in UK. Each object in the dataset has several types (e.g.,
“park”) which are used as keywords of the object, and a pair of
latitude and longitude values denoting its location. The dataset
contains 182,317 objects in total and 45,317 distinct keywords.

B. Demonstration

1) SPM Queries: To issue an SPM query, a user first needs
to draw a spatial pattern. Specifically, the user can create some
vertices by dragging the icons from the bottom left panel as
depicted in Figure 1. Note that if the user wants to specify
keywords that do not appear in the bottom left panel, she can
simply edit icons by changing their keyword sets. Then, to link
two vertices, the user just needs to choose one vertex and click
the other one. Also, the user can specify the distance constraint
of an edge by double clicking it as shown in Figure 5. After
that, by clicking the “Query” button, the user submits an SPM
query. The server will process the query and show the first
match, marked with red balloons, in the map of the right panel.

2) Other SGK Query Algorithms: In SpaceKey, we have
implemented three other SGK query algorithms, i.e., mCK,
minSK, and CoSKQ. To issue a SGK query, a user first needs
to click its name at the top of the left panel, and then the
interface of query parameters will appear in the left panel.
For an mCK or a minSK query, a user only needs to specify
some keywords, while the CoSKQ query takes a location with

Fig. 5. Editing a spatial pattern.

Fig. 6. The user interface of the mCK query.

a set of keywords as its input. Figure 6 shows the user interface
of the mCK query. We skip the interface of minSK since it
is almost the same with that of mCK. For the CoSKQ query,
its input contains a set of keywords, and a query location. To
input the location, a user can click any location on the map
and its latitude and longitude will be recorded in the input
boxes automatically. After clicking the “Query” button, the
query results will be displayed on the map. Figure 7 depicts
the query interface, where the query location is also marked.

Fig. 7. The user interface of the CoSKQ query.

3) Comparison Analysis: Our system allows users to com-
pare the query results returned by different SGK queries in
terms of various statistics, including the number of matched
object sets, average pairwise distance, diameter and so on.
By clicking the “Compare” button, a user can step into the
pop-up window to perform comparison analysis. As shown in
Figures 8 and 9, a user first needs to select the algorithms to
execute and compare, then specifies the query keywords (and
locations), and finally clicks “Compare”. After that, a statistics
table will appear, showing various statistics mentioned above.
In addition, the user can click the names of the SGK queries
in the bottom to view the results in the map instantly.

Fig. 8. The user interface for comparison analysis.

Fig. 9. The results of comparison analysis.

ACKNOWLEDGMENTS

Reynold Cheng, Yixiang Fang, Jikun Wang, and Budiman
were supported by the Research Grants Council of Hong
Kong (RGC Projects HKU 17229116 and 17205115) and the
University of Hong Kong (Projects 104004572, 102009508
,104004129). Nikos Mamoulis has received funding from
the European Unions Horizon 2020 research and innovation
programme under grant agreement No 657347.

REFERENCES

[1] Y. Fang et al, “Scalable algorithms for nearest-neighbor joins on big
trajectory data,” TKDE, vol. 28, no. 3, pp. 785–800, 2016.

[2] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for
large attributed graphs,” PVLDB, vol. 9, no. 12, pp. 1233–1244, 2016.

[3] Y. Fang et al, “Effective community search over large spatial graphs,”
PVLDB, vol. 10, no. 6, pp. 709–720, 2017.

[4] T. Guo, X. Cao, and G. Cong, “Efficient algorithms for answering the
m-closest keywords query,” in SIGMOD. ACM, 2015, pp. 405–418.

[5] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial
keyword querying,” in SIGMOD. ACM, 2011, pp. 373–384.

[6] X. Cao et al., “Swors: A system for the efficient retrieval of relevant
spatial web objects,” in PVLDB, vol. 5, no. 12, 2012, pp. 1914–1917.

[7] K. S. Bøgh, A. Skovsgaard, and C. S. Jensen, “Groupfinder: A new
approach to top-k point-of-interest group retrieval,” PVLDB, 2013.

[8] L. Chen, Y. Cui, C. Gao, and X. Cao, “Sops: A system for efficient
processing of spatial-keyword publish/subscribe.” in PVLDB, 2014.

[9] Y. Fang et al, “On spatial pattern matching,” http://i.cs.hku.hk/∼yxfang/
spm.pdf, Under review in ICDE 2018.

[10] C. Long, R. C. W. Wong, K. Wang, and A. W. C. Fu, “Collective spatial
keyword queries: A distance owner-driven approach.” in SIGMOD, 2013.

[11] D. Choi, J. Pei, and X. Lin, “Finding the minimum spatial keyword
cover,” in ICDE. IEEE, 2016, pp. 685–696.

[12] K. Feng, K. Zhao, Y. Liu, and G. Cong, “A system for region search
and exploration.” in PVLDB, vol. 9, no. 13, 2016, pp. 1549–1552.

[13] L. Chen, J. Xu, J. Christian, and Y. Li, “Yask: A why-not question
answering engine for spatial keyword query services.” in PVLDB, 2016.

[14] D. Wu et al., “Joint top-k spatial keyword query processing,” TKDE,
vol. 24, no. 10, pp. 1889–1903, 2012.

http://i.cs.hku.hk/~yxfang/spm.pdf
http://i.cs.hku.hk/~yxfang/spm.pdf

	Introduction
	Related Work and Novelty
	SGK Queries
	Systems for Spatial Keyword Queries

	The SPM Query
	System Overview
	API

	Demonstration
	Setup
	Demonstration
	SPM Queries
	Other SGK Query Algorithms
	Comparison Analysis

	References

