
Contents lists available at ScienceDirect
Information Systems

Information Systems 49 (2015) 142–162
http://d
0306-43

n Corr
E-m

cskylam
ckpoon@
journal homepage: www.elsevier.com/locate/infosys
On using broadcast index for efficient execution of shortest
path continuous queries

Chun Jiang Zhu a, Kam-Yiu Lam a,n, Reynold C.K. Cheng b, Chung Keung Poon c

a Department of Computer Science, City University of Hong Kong, Hong Kong
b Department of Computer Science, University of Hong Kong, Hong Kong
c School of Computing and Information Sciences, Caritas Institute of Higher Education, Hong Kong
a r t i c l e i n f o

Article history:
Received 5 February 2014
Received in revised form
9 December 2014
Accepted 10 December 2014

Recommended by: F. Korn

client is following the suggested shortest path to its destination. This could result in heavy
Available online 18 December 2014

Keywords:
Wireless data broadcast
Broadcast index
Road networks
Continuous queries and shortest path
searching
x.doi.org/10.1016/j.is.2014.12.005
79/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: chunjizhu2-c@my.cityu.edu.hk
@cityu.edu.hk (K.-Y. Lam), ckcheng@cs.hku.h
cihe.edu.hk (C.K. Poon).
a b s t r a c t

Various efficient indexing techniques have been proposed for formulating broadcast index
to minimize the tune-in cost at mobile clients to support shortest path search in a road
network. However, none of them is designed for shortest path continuous queries (SPCQ).
Due to frequent updates of traffic data, an SPCQ has to be invoked periodically while the

path searching cost at the client. To reduce the tune-in and path searching costs at the
clients, in this paper, we propose the progressive approach (PA) in which we apply the next
region (NR) approach together with a hierarchical network approach to formulate the local
networks at the clients for shortest path navigation. Since the shortest path may change
due to changing traffic, to minimize the path searching cost, we aim for an approximate
path including shortcuts of shortcut networks (SN) from each invocation of an SPCQ to
navigate the client to its destination step-by-step. In formulating the client local network,
higher level shortcut networks are chosen if the regions are farther away from the current
region of the client. An important property of the approximation mechanism adopted in
PA is that traffic updates may be pruned if they will not significantly affect the shortest
path information to be distributed to the clients. This can reduce the index re-generation
cost at the traffic server. Extensive performance evaluation experiments have been
conducted to investigate how PA reduces the tune-in cost from data broadcast and
path searching cost at the clients with just small delays in the arrival times to their
destinations.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With the latest advances in mobile communication and
pervasive computing technologies, the design of higher
performance location-based services has received tremen-
dous interests in recent years, e.g., Google map services and
searching nearby restaurants [7,5]. Various types of spatial
queries have been intensively studied and efficient
(C.J. Zhu),
k (R.C.K. Cheng),
algorithms have been proposed for processing spatial
queries [6,4,10,21]. One of the important types of location-
based services is the shortest path search in road navigation
[25,23,26]. In this paper, we study the shortest path searching
problem in a road networkwhere queries are submitted from
mobile clients in vehicles to inquire the shortest paths from
current locations to their specific destinations. We consider
a road network which maintains complex road connections
of a big city, e.g., Hong Kong. The roads in these cities
contain a lot of traffic lights, junctions, small single lane
roads, and roadside parking and stores. In such a road
network, it is difficult to predict the traffic conditions of
the roads and traffic jam could happen suddenly. Therefore,

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.12.005
http://dx.doi.org/10.1016/j.is.2014.12.005
http://dx.doi.org/10.1016/j.is.2014.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.12.005&domain=pdf
mailto:chunjizhu2-c@my.cityu.edu.hk
mailto:cskylam@cityu.edu.hk
mailto:ckcheng@cs.hku.hk
mailto:ckpoon@cihe.edu.hk
http://dx.doi.org/10.1016/j.is.2014.12.005

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 143
a close monitoring on the traffic has to be performed in
order to provide effective shortest path navigation.

In the road network, each road segment (a road may be
divided into several segments according to its connec-
tions) is represented by a directed edge together with a
weight to show the latest measured traffic condition of the
road segment (i.e., the estimated travel time from one end
of the road segment to the other end). It is assumed that
the road network is managed by a traffic server. It receives
measurements of traffic updates from road sensors to
refresh the weights of the road segments to reflect their
latest traffic conditions.

In processing a shortest path query, the shortest path to
the specified destination is obtained by searching the road
network to get the path with the shortest expected travel time
after considering the current traffic of the road segments.
Since the number of clients, which may submit shortest path
queries, could be large, an efficient method for processing the
shortest path queries is to use data broadcast [14,34] to push
traffic data, which contains information about the connec-
tions of the road segments as well as their weights (i.e., their
traffic conditions), to the clients to execute the queries locally.

To reduce the energy cost at the clients for getting
traffic data, a common approach adopted in data broadcast
is to prepare a broadcast index as the header of each
broadcast cycle [20,30]. The broadcast index defines the
broadcast times of traffic data in a broadcast cycle. How to
prepare the broadcast index to minimize the amount of
traffic data to be required by a client for processing its
shortest path query is an important research problem and
various efficient indexing techniques, e.g., elliptic boundary
(EB) [17], next region (NR) [17] and contraction hierarchies
(CH) [24] have been proposed. In these methods, the index
contains the shortest path information prepared by the
traffic server for the clients to obtain from the broadcast
cycle according to their current locations and destinations.

Since the shortest path to a client's destination may
change due to changes in road traffic, the shortest path query
has to be re-executed periodically until the client has arrived
its destination. For example, as shown in Fig. 1, the client
obtains a shortest path to go from current location s to its
destination d at time t (drawn in thick lines). However, when
it is at location a at time tþδ, after a number of updates to
the road segments, to ensure the current path is still the
shortest one (actually, the shortest path from b to c has
changed to the dash lines), the shortest path search has to be
re-executed. We call this kind of queries as the shortest path
continuous queries (SPCQ) as they will be re-executed until a
certain condition is satisfied, i.e., arriving the destinations or
expiring their deadlines. A typical example of SPCQ is the
ambulance services in which the arrivals of ambulances to
s
d

a

b
ct

t + δ

Fig. 1. An illustration of SPCQ.
their destinations have pre-defined deadlines and the
changes in road traffic need to be closely monitored.

Although various pre-processed indexing techniques,
e.g., NR, have been shown to be effective in reducing the
tune-in cost as well as path searching cost at mobile
clients, they are not designed for SPCQ and may not be
efficient in handling changing road traffic. A change in
traffic data may change the shortest path for a client and
the broadcast index may need to be re-generated after
traffic updates. This could result in heavy index re-
generation cost at the traffic server as well as heavy
tune-in and re-searching costs at the clients. Another
efficient technique to support shortest path searching
costs is to use the hierarchical indexing technique, e.g., HiTi
[16] and LTI [28]. In HiTi and LTI, a hierarchy of network
index is built from the road network and different levels of
the sub-networks (or called sub-graphs in [16,28]) are
selected to construct a local road network for a client to
search the shortest path to its destination. By merging
lower level sub-graphs into higher level sub-graphs, the
number of nodes in the network can be greatly reduced
resulting in lower path searching cost.

In this paper, based on the road network model intro-
duced in [17], inwhich the road network is divided into a set
of connected and non-overlapping regions, we propose the
progressive approach (PA) with the purposes of minimizing
the tune-in and path searching costs at mobile clients. Note
that the processing power of many client devices, e.g.,
smartphones, is limited, and at the same time other applica-
tions may be executing at the clients concurrently, e.g.,
receiving broadcast news. Although the clients may be able
to obtain energy supply from car chargers, minimizing the
total energy requirement is still highly preferable, since
energy conservation is always a great concern in the design
of future intelligent automobile systems, e.g., electric cars
[8,27–29]. To reduce both the tune-in and path searching
costs, similar to NR, in PA, the traffic server performs a pre-
processing to calculate a set of required regions for each
client to build its local network for path searching. To reduce
the index re-generation cost at the traffic server, update
thresholds are defined to remove some traffic updates that
will not significantly affect the current shortest path infor-
mation to be distributed to the clients. To further reduce the
number of vertices in the local networks, similar to HiTi and
LTI, in PA, the local network constructed by a client is a
simplified hierarchical network, called hierarchical shortcut
network to navigate the client to its destination. A more
detailed network will be generated from each invocation of
the SPCQwhile the client is following the suggested shortest
path to its destination until it reaches its destination or the
deadline expires.

The remaining parts of the paper are organized as follows.
In Section 2, we review the important indexing techniques
for supporting the shortest path search at mobile clients
using data broadcast. In Section 3, we introduce the system
model assumed in this paper. The performance problem of
SPCQ over a dynamic road network is illustrated with an
example in Section 4. In Section 5, we introduce the
principles of the progressive approach (PA) which consists of
two main parts: generation of shortcut network (SN) and
generation of multi-level shortcut networks (MLSN). In Section

C.J. Zhu et al. / Information Systems 49 (2015) 142–162144
6, we discuss how SN are formulated. The generation ofMLSN
and broadcast index, as well as the process logical of SPCQ at
clients and cost analysis are presented in Section 7. In Section
8, the performance evaluation of PA is reported. We conclude
the paper with a brief discussion on the future work in
Section 9.

2. Related work

Data broadcast has been shown to be an efficient
approach to distribute a large amount of data to a large
group of mobile clients through a wireless network [1,14].
To improve the efficiency in data distribution and support
the processing of different types of spatial queries, includ-
ing the shortest path queries, a number of research works
have been done on one-dimensional [13,14] and multi-
dimension indexing [32,33,22]. For example, the Hilbert
curve index (HCI) [32], designed for range queries and
KNN queries, was adopted to convert the two-dimensional
space into one-dimensional one, by using the Hilbert
space-filling curve. Then the data can be treated as one-
dimensional data and indexed by Bþ�tree to be broadcast
on the air. To reduce the waiting time for getting broadcast
data from HCI, the distributed spatial index (DSI) was
proposed by sacrificing the energy consumption issue [33].
DSI also adopts the Hilbert spacing-filling curve. The data
ordered in Hilbert values are divided into frameswith fixed
number of data and each frame contains an index table.

To support snapshot queries, continuous range queries
and KNN queries, the broadcast grid index (BGI) was
introduced by Mouratidis et al. [22]. In BGI, a regular grid
is imposed on the road network to generate a number of
cells. The information (the ceil's extent, the number of
data objects inside and their coordinates) of all the cells
is organized in a certain implicit sequence for forming
the index.

All the above methods are focused on spatial queries on
Euclidean space. Kellaris and Mouratidis [17] proposed the
NR (next region) and EB (elliptic boundary) broadcast
indices for shortest path queries on road networks, in
which no Euclidean space was assumed. Both NR and EB
aim to minimize the energy cost at the clients for getting
the required road data. They divide the road network into
a set of non-overlapping regions and the server prepares
sub-sets of regions, called required regions, in which the
shortest path information can be obtained by mobile
clients at different regions to their destinations. Empiri-
cally, NR was shown to be better than EB in terms of
energy cost and response time in getting road data.

Jing et al. [15] proposed the broadcast index called
BagIndex for processing of shortest path queries. BagIndex
is based on tree decomposition, which is a tree with each
tree node, termed as a bag, containing a group of vertices.
This structure ensures that for any two vertices the
distance is preserved by a tree path between two bags
containing the two vertices. To search the shortest path, a
client just needs to capture the corresponding path of bags
in the tree decomposition. Experimentally, it was shown
that in the best case its energy cost was four times lower
than that of NR but with response time five times larger
compared with NR.
All the above methods assumed that the road network
is static, i.e., no updates to the edges. When there are
insertion or deletion of edges and changes of edge weights,
the contraction hierarchy (CH) [11,12] can deal with them
and support shortest path searching over such a dynamic
network. CH consists of two phases: a node ordering phase
and a hierarchy construction phase. In order to maintain a
correct structure of the network after updates, CH reuses
the node orders and maintains the hierarchy by only
updating the affected nodes. However, if the number of
changes is large, the number of affected nodes may
become very large. Even worse, the node orders may be
out-of-date and a new node ordering procedure may be
required after updates. In addition, although the searching
time can be very fast because of the addition of shortcuts,
CH may not be preferable in wireless data broadcast, since
it requires all the original road network and shortcuts
added to be captured by the client resulting in a large
tune-in cost.

Batz et al. [3] extended CH to TCH (time-dependent
contraction hierarchy) by carefully performing the con-
traction operations during the pre-processing, and adding
a shortcut whenever the path passing through the con-
tracted vertex is a minimum cost path for some departure
time. To achieve more energy saving in getting broadcast
data by mobile clients for shortest distance queries, Poon
and Zhu [24] designed CH (contraction hierarchy) index by
exploiting the special properties of road networks. Based
on the enhanced CH index, the CHBN index was proposed
to provide a trade-off between energy cost and response
time in getting the required data by a client via a user-
tunable parameter. It was shown to give faster response
time in getting broadcast data by clients than CHwhile still
being energy efficient.

Another approach to reduce the index generation cost
at the server is to construct a hierarchical road network to
reduce the number of vertices in the client local road
networks. In [16], HiTi was proposed for shortest path
searching with support to a dynamic road network. In HiTi,
the road network is partitioned into a set of sub-graphs
which are merged recursively to generate a HiTi hierarchy.
The current traffic data of each edge in the sub-graphs are
then computed and stored at the HiTi broadcast index.
Each client listens to the broadcast channel to obtain the
latest traffic data for building a local graph consisting of
different levels of sub-graphs according to its current
location and destination for searching the shortest path
to its destination. In formulating a local graph, the lowest
level sub-graphs are chosen for the current location of the
client and its destination, while higher level sub-graphs
are selected for those in between these two sub-graphs.
Since the local graph contains higher level sub-graphs of
the original network, its size could be much smaller than
the original road network resulting in lower path search-
ing cost. Although HiTi has shown excellent performance
at the traffic server in terms of the index generation cost,
the path searching cost could still be expensive especially
for systems where the computation power of the mobile
devices is limited. In this paper, we would like to design an
efficient index generation algorithm that can minimize
both the tune-in and path searching costs at the clients.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 145
In a recent work [28], the live traffic index (LTI) was
proposed for solving the shortest path searching problem
on a dynamic road network at mobile clients. Similar to
HiTi, LTI is a hierarchical index of a road network. In LTI, an
effective graph partitioning algorithm was proposed to
minimize the total size of the sub-graphs for formulating
the local road networks at the clients and a combinatorial
optimization was provided for reducing the search space
for the shortest paths. With LTI, a client can perform
shortest path computation by only retrieving a portion of
the entire index that has updated edge values. It was
shown that LTI gave improved performance as compared
with both CH and HiTi in terms of lower tune-in time for
getting traffic data at the mobile clients, and lower the
Fig. 2. The model of a road network system.

Table 1
Frequently used symbols and their definitions.

Symbol Definition

ei The ith directed edge in the road
ri The ith road segment represented
di The traffic data object for road se
wi The estimated time to complete r
si The sensor that measures the traf
Ci The ith mobile client
SPCQi SPCQ issued by client Ci
cpi Current location of client Ci
desti Destination of SPCQi

begini Begin time of SPCQi

endi End time of SPCQi

Ti Time duration of SPCQi

Rij The jth region at level i of region
ri The number of regions/higher lev
Si The ith shortcut
W(P) The total sum of travel time wj fo

SN ðRi
jÞ The shortcut network of region Rij

MLSN (Ri;Rj) The multi-level shortcut network
MLSNC (Ri ;Rj) The multi-level shortcut network

children ðRi
jÞ The set of Ri�1 whose grouping re

parent ðRi
jÞ The Riþ1 such that Ri

jAchildrenðRi

sibling ðRi
jÞ childrenðparentðRiÞÞ\Ri

j in a region
tithres The update threshold for level i
Adj(G) The size of road network G in an
Dij(G) The average number of edges trav

BorðRiÞ The number of border vertices in

RNC Client road network for shortest p
maintenance cost of the network hierarchy at the traffic
server.

3. System model: the road network system

The systemmodel of the road network system is shown
in Fig. 2. It consists of six main components: a traffic
server, a traffic database, a road network, a broadcast
server, a set of mobile clients and a set of data sources.
Table 1 summarizes the definitions of the set of symbols
that are frequently used in the paper.

It is assumed that each directed edge ei in the road
network represents a road segment ri in the service area
(e.g., the physical road area covered by the road network)
and is associated with a weight wi to indicate the esti-
mated travel time (or simply called “the travel time” in the
rest of the paper) to complete the road segment ri from
one end to the other end following the direction of the
road segment. The information (e.g., its location, length,
connections, etc.) of each road segment ri together with
its weight wi are recorded in a traffic data object di
maintained in the traffic database at the traffic server.
To simplify the discussion, it is assumed that there is only
one powerful traffic server in the system.

Following the assumption in [17], the road network is
partitioned into a set of connected and non-overlapping
regions (by kd-tree partitioning) and each region consists
of a group of connected road segments. To simplify the
discussion, we assume that the regions are square in shape
and have the same dimension represented by the edge
length.
network
by edge ei

gment ri
oad segment ri
fic for road segment ri

tree (Rj implies i¼1, and Ri refer to region(s) at level i)
el regions at level i (r implies i¼1)

r each road segment rj on path P

at the traffic server for region pair (Ri ;Rj)
at mobile clients for region pair (Ri ;Rj)

sulting in Rij in a region tree
þ1Þ in a region tree

tree

adjacency list representation
ersed during a Dijkstra search in G
Ri

ath search at clients

Index Network Data

Entry for di Entry for dj

...

Data object dj Data object di

...

Fig. 3. Broadcast cycle.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162146
A data source si measures the traffic condition for a
road segment ri periodically and generates traffic updates
to be submitted to the traffic server for refreshing the
value of the corresponding data object di, i.e., the new
travel time wi for ri. Note that although installing traffic
sensors on the roads is still not popular due to heavy
installation and operation costs, the real-time traffic of a
road can easily be estimated according to the movements
of a group of vehicles, e.g., the bus and taxi systems, on the
road. Since the real-time locations of vehicles can be
obtained from their GPS devices, they can measure their
travel times on the road segments in real-time and
calculate the new traffic data for the road segments to be
reported to the traffic server.

The clients are moving entities in the road network. A
client Ci may submit a shortest path continuous query,
SPCQi, to ask for going from its current location cpi to its
destination desti. Both cpi and desti are assumed to be
defined in terms of one end of a road segment to simplify
the discussion. It is assumed that each client is equipped
with a positioning device, e.g., GPS, which can accurately
determine its location at current time. Each SPCQi is
associated with a time duration (Ti) starting from its
generation time and is formally defined as follows:

SPCQiðcpi; desti; begini; endiÞ
Once an SPCQi is submitted, it will stay at Ci and be

executed periodically from its begin time ðbeginiÞ to end
time (endi) which is defined to be its begin time plus the
time period Ti, e.g. (endi ¼ beginiþTi) before Ci arrives its
destination, desti. Ti is a pre-defined system parameter. For
simplicity, we assume that SPCQi is invoked for execution
when Ci is approaching a new region before arriving its
destination.

The broadcast server is responsible for broadcast of
traffic data to the clients through a broadcast channel. In
data broadcast, the traffic server selects the traffic data from
the traffic database and puts them into a broadcast buffer.
The broadcast server, which directly connects to the traffic
server, obtains the data from the broadcast buffer and then
broadcasts the data one by one according to a defined
broadcast schedule. It is assumed that a simple flat broadcast
disk is adopted in data broadcast, i.e., each broadcast cycle
consists of all the data maintained at the traffic server [1].
Once the broadcast server finishes a broadcast cycle, it will
redefine the next broadcast schedule.

Each broadcast cycle consists of two parts as shown in
Fig. 3. The first part is the broadcast index in which the
locations (e.g., the broadcast times) of the data in the
broadcast cycle are defined. Following [17], a pre-
processed indexing technique is adopted to prepare the
broadcast index in which the path information for clients
at different regions to their destination regions are
included in the index. With the index, each client may
only need to capture a sub-set of traffic data for perform-
ing shortest path search, e.g., required regions in NR.

The second part of the broadcast cycle, called network
data part, is the values of traffic data indicating the
connections of the road segments and their weights. In
order to reduce the energy cost for getting traffic data from
the broadcast channel, a client first reads the broadcast
index. After identifying the broadcast times of its required
data as specified in the broadcast index, it will switch to
doze mode of operation to conserve energy and wake up
just before the broadcast of its required data.

After obtaining all its required traffic data, the client
constructs a local road network and then invokes its SPCQ
to search the shortest path from its current location using
a shortest searching algorithm, e.g., the Dijkstra algorithm.
Then, the client will follow the obtained shortest path
which consists of a sequence of directed edges to be
navigated to its destination. It is assumed that the clients
have limited energy and computation power. Therefore,
minimizing the tune-in cost for getting road data from
data broadcast and the path searching cost for each
invocation of SPCQ are the main performance concerns in
this study.

While traffic data are being broadcast to the clients,
traffic updates may arrive at the traffic server for refresh-
ing the current values of the traffic data in the traffic
database. If an SPCQ accesses to outdated traffic data for
path searching, the obtained shortest path could be
incorrect. In order to maintain the consistency of the set
of traffic data, it is assumed that the installations of
updates arrived during a broadcast cycle are deferred until
the end of the broadcast cycle [19,31]. How to improve the
data freshness to the clients with the uses of different
update models and broadcast scheduling algorithms are
important future works.
4. The problems and motivation examples

In this section, we discuss the navigation problems in
processing an SPCQ on a road network. In the example, we
use NR, which has been shown to be one of the best pre-
processed indexing method to reduce the costs at the
clients, to illustrate the traffic update problem on the
shortest path search and re-generation of broadcast index.
Note that NR generates sets of required regions for clients
at different regions to perform shortest path search to
obtain the paths to their destinations. As shown in Fig. 4,
the road network is divided into non-overlapping regions
and each region has a set of border vertices represented by
black circles as shown in Fig. 4(a). A border vertex is a
vertex that has at least one neighbor lying in a different
region. A border vertex entering into a region is called an
in-vertex while a border vertex moving out a region is
called an out-vertex. For each region pair (called begin
region and end region), the traffic server generates a set of
required regions, e.g., the gray blocks in Fig. 4(a). Then, a
client gets the traffic data of its required regions according

Fig. 4. Examples of required regions in NR. (a) Before the updates. (b) After the updates.

s
te1

e2
en-1

en

a

b
ei

ei+1

f

e3 en-2

c g

en-3

Fig. 5. An illustration of the navigation problems in SPCQ with traffic
updates.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 147
to the information maintained in the broadcast index to
calculate the shortest path from its current location to its
destination.

4.1. Problem 1: frequent index re-generation at traffic server

Updating the traffic data could affect the set of required
regions for each pair of regions. For example, due to traffic
updates, the shortest path for going from region R1 to
region R16 shown in Fig. 4(a) changes to the one shown in
Fig. 4(b). Therefore, the sets of required regions have to be
re-calculated. Although the values for the index associated
with R1, R6, R11 and R16 remain the same as they are
required regions before and after the updates, for indices
of the remaining regions, the required regions are differ-
ent. After a new set of required regions is identified for a
region pair, the broadcast index has to be re-generated
accordingly. Note that the shortest path information for all
the region pairs has to be recomputed after each batch and
the resulted re-computation cost can be expensive if the
number of regions is large.

4.2. Problem 2: changes in the shortest path

Another serious performance problem of NR and other
similar shortest path searching techniques when they are
applied for SPCQ in navigation on a road network is the
heavy re-calculation cost at the clients and many of them
may not be necessary since the road traffics are changing.
Note that even with NR, the searching cost for the shortest
path over the sub-graph generated from the required
regions could still be expensive as the clients have limited
processing capabilities, especially when the destinations
are far away from their current locations.

For example, as shown in Fig. 5, the client is currently at
location s and moving towards destination t. Based on the
current road traffic, the shortest path obtained at location s
is a set of edges in the road network, e1; e2;…; en (drawn in
thick lines). When the client arrives location a, a new
shortest path is obtained to direct the client to move
through location c to location f and then location g (in dash
lines), instead through the previous route en�3, en�2, and
en�1. Since the client is still at location a, the change in the
shortest path actually does not affect its current move-
ment and further changes in the path may occur later due
to changes in road traffic. On the other hand, the cost for
the computation could be expensive if the distance
between the current location and the destination is large.
Note that although various prediction techniques have
been proposed to estimate the future traffic of roads, it is
still an open problem to obtain high accuracy in road
traffic prediction for the road networks of big cities which
have heavy traffic. Although extending the period for re-
execution of SPCQ may be able to reduce the computation
cost of the queries at the clients, this could seriously
increase the probability of delaying the arrival times of
the clients to destinations. Even worse, a client may be
“blocked” within a road segment if it keeps following the
current outdated path due to some “unexpected traffic”
jam, e.g., off-loading of goods from a vehicle and traffic
accident.

5. Progressive approach (PA)

In this paper, we propose the progressive approach (PA)
for execution of SPCQ at mobile clients. The main perfor-
mance goal of PA is to minimize the tune-in and path
searching costs at the clients without seriously delaying
their arrival times to destinations. In PA, to reduce the path
searching cost at the clients, similar to NR, a pre-processing
is performed at the traffic server to define a set of required

C.J. Zhu et al. / Information Systems 49 (2015) 142–162148
regions for a client to build its local graph. In addition, a
hierarchical indexing technique is adopted by the clients to
monitor the shortest paths in their local graphs. As shown in
the previous example, many road segments in the latter
parts of the current shortest path may not be used by the
clients due to changing paths. Therefore, in PA, higher levels
of connections, called shortcuts, are defined for connecting
locations which are farther away from the current location
of a client to reduce the searching cost. A shortcut consists of
one or several road segments showing the shortest travel
time between an out-vertex and an in-vertex of the regions
in the road network. In Section 6, we will give a detail
discussion on shortcuts.

As shown in Fig. 6, the main idea of the approximation
technique adopted in PA is that it progressively generates
the shortest path information from each invocation of an
SPCQ to direct the client to the destination step-by-step
while it is following the suggested path to the destination.
In each invocation, the returned shortest path consists of
the road segments of the current region of the client as
well as different levels of shortcuts showing the shortest
distances to the destination region. The road segment of
the current region is used to determine the current move-
ment of the client while a higher level shortcut is provided
for going to a vertex which is farther away from its current
region. A more detailed path to the destination will be
generated when the client is approaching the destination.

Fig. 7 summarizes the six main steps of PA. The details
of the steps will be discussed in Sections 6 and 7.
1.
Fig
The regions in the road network are first organized into
a hierarchy, called a region tree, and then the border
vertices in each region in the hierarchy are connected
directly by shortcuts. The network formed by the
shortcuts in a region is called a shortcut network (SN)
of the region.
2.
 From the hierarchy of SN formed from the regions in
t1

t2

t3

t4

t5

Current Place DestinationShortcut

. 6. An illustration of the main idea of the progressive approach (PA).

Traffic Server

Client

(1) (2) (3)

Road
Network

Region Tree
and SN

Broadcast
Index

Multi-level
SN (MLSN)

Fig. 7. The main ste
the region tree, we formulate a multi-level shortcut
network (MLSN) for each pair of regions (begin region
and end region) in the original road network. In an
MLSN, different levels of SN are selected according to
their locations in the region tree.
3.
 A shortest path search is performed on each MLSN to
prune the set of SN in which the shortest path will not
pass through. The pruned MLSN is used to generate a
client MLSN, MLSNC, after considering the distance from
the current region of the client.
4.
 The broadcast index is generated according to MLSNC to
include the shortest path information for clients going
at different regions to their destinations. The broadcast
index and the network data including SN ofMLSNC form
the broadcast cycle.
5.
 The clients obtain the broadcast index, which contains
the broadcast times of SN of their MLSNC, and then they
capture the corresponding SN according to the infor-
mation maintained in the broadcast index.
6.
 According to the SN in its MLSNC, a client road network
(RNC) is constructed and a shortest path search is
performed on the client road network to obtain the
shortest path information for the client to go to its
destination.

In addition to minimizing the searching cost at clients,
another important property of PA is that it is easily
extended to reduce the index re-generation cost at the
traffic server by defining an update threshold for each level
of SN to prune out “unimportant traffic updates”. These are
the updates that will not “significantly” affect the current
shortest path information to be distributed to the clients.
Note that an SN is a consolidated network formed by
merging road segments. The shortcuts in an SN may
contain higher errors on the path length especially for
the shortcuts at higher level SN. The pruning mechanism
will be discussed in Section 6.

6. Shortcut networks (SN)

6.1. Region tree

The first step of PA is to merge neighboring regions in
the road network into higher level regions to form a region
tree as shown in Fig. 8. In the region tree, each leaf node is
a region R (or R1 for level 1) and each inner node at level i
with i41 is a higher level region Ri. We use ri to denote
(4)
MLSN for
Clients
(MLSNC)

Broadcast
Cycle

MLSNC
RNC reconstruction
and SP searching

Broadcast Channel
(5)

(6)

ps in PA.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 149
the number of regions/higher level regions at level i. Let
children(Ri) be the set of Ri�1 merged under Ri, and
reversely, parent(Ri) be Riþ1 such that RiAchildrenðRiþ1Þ.
Sibling(Ri) is defined to be childrenðparentðRiÞÞ\Ri.

It is assumed that the number of child nodes under an
inner node (called the branching factor), i.e., the number of
Ri to be grouped under Riþ1, in a region tree is a pre-
defined system parameter. Since the focus of this paper is
on how to efficiently process SPCQ instead to find an
optimal way to organize the regions into higher level
regions to maximize the system performance, we will
leave this as an important future work. For simplicity, we
assume that the branching factor at each level is the same.

Fig. 8 shows an example of a region tree with 4 levels.
Note that the regions at the same level may be connected
through border vertices as shown in Fig. 8 according to the
connections of the road segments in the original road
network. In addition, as shown in Fig. 8, for each level, an
update threshold is defined to determine under which
condition an update should be installed or be pruned in
maintaining the SN of the regions at the level. The values
of the update thresholds at higher levels are larger since
the uncertainties of the weights of the shortcuts for a
higher level region are usually greater, i.e., due to a larger
road network to be represented by the SN.
6.2. Generations of SN

In order to simplify the road network, i.e., to reduce the
number of vertices and edges, shortcuts are created for each
region at different levels of the region tree. A shortcut is a
directed edge with a weight to indicate the travel time
between two border vertices of a region/higher level region
instead of showing how to go from one road segment to
another road segment within a region.
R1
1 R2

1 R3
1 R4

1 R5
1 R6

1 R7
1 R8

1

R1
2 R2

2 R3
2 R4

2

R1
3 R2

3

R1
4

R9
1 R1

1
0 R1

1
1 R1

1
2

R5
2 R6

2

R3
3

t1
thresh=1

t2
thresh=2

t3
thresh=3

Fig. 8. An illustration of region tree.

R1

R3

R2

R4

R1

R3

a b

c

3

46

Fig. 9. Examples of the road network and SN. (a) Origina
We first convert each lowest level region (a level 1
region) in the region tree to be an SN (also called level 1
SN) by directly creating a shortcut between an in-vertex
and an out-vertex of the region to indicate the shortest
path between the two vertices. The weight (WðSiÞ) of a
shortcut (Si) is the sum of the total travel time (wi) of each
road segment (ri) on the shortest path connecting the two
vertices. In a special case, a shortcut can be a road segment
if it is exactly the shortest path.

For example, Fig. 9(a) is the original road networks of
R1;…;R4, i.e., Or(R1

i) of iAf1;2;3;4g. The in/out-vertices are
represented by black circles while the starting and ending
points of road segments are represented by white circles.
Between the vertices, solid lines are the road segments in the
original road network and dash lines are shortcuts. Fig. 9(b)
shows the examples SN for the lowest regions R1i , SN(Ri) of
iAf1;2;3;4g, figured in each square. Note that in an SN, a
shortcut is created between two vertices only if the distance
between them is the shortest. Otherwise, the number of
shortcuts in the region could be large and the SN for the
region could be complex. For example, SN(R1) in Fig. 9(b)
contains three shortcuts. The shortcut (a,c) is required
because it can shorten the distance between a and c from
7 to 6. If the shortest path is 7, (a,c) could be removed.

After creating an SN for each lowest level region, we
create SN for higher level regions. Let ⋃1r ir rSNðRiÞ be the
union of the SN for each region in the set fR1;…;Rrg which
are the regions at the same levels. The construction of SN for
a higher level region can be conducted on the union of SN for
its children in the region tree, instead of on the original road
network, as the union of SN is usually simplified. For
example, Fig. 9(b) is ⋃1r ir4SNðRiÞ, the SN formed by the
union of SN(Ri) with iAf1;2;3;4g, and Fig. 9(c) is the SN for
the two level 2 regions, figured in each square.

Fig. 10 shows examples of SN for the regions at different
levels of the region tree shown in Fig. 8. Note that in the
figure, in each region, only the border vertices are shown
to make the figure easier to read.

6.3. Maintenance of SN
Algorithm 1. Maintaining SN (updates of road segments).
l netw
1:
 Map all updates into their corresponding regions R;

2:
 Let C ¼ fRjjRj have updatesg and P ¼∅;

3:
 i¼1;

4:
 while Ca∅ and i is not the root level do

5:
 for each Rij in C do
R2

R4

R12

R22

ork. (b) ⋃1r ir4SNðRiÞ. (c) SNðR2
1Þ [SNðR2

2Þ.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162150
6:
 if i¼ ¼ 1 then
R2
1 R5

1 R6
1 R9

1
7:

R1

1 R1
1
0

Calculate the new shortest paths SP between border
vertices in Or(Rj);
8:
 else

9:
 Calculate the new shortest paths SP between border

vertices in ⋃Ri� 1
k A childrenðRi

j ÞSNðR
i�1
k Þ;
10:
 end if
R3
1 R1

1
2
R4

1 R7
1 R8

1 R1
1
1
11:
 Set update flag F¼ false;
12:
 for each possible in/out vertex pair do
2
13:
 if there is a shortcut SC in SN(Rij) then

2 R3 2
14:
 if SP contains no border vertex then
 R1 R5
15:
 if jWðSPÞ�WðSCÞj4tithres then
16:
 Delete SC and add a new shortcut for SP.

17:
 F¼true.

18:
 end if
2 2

19:
 else
R2 2 R6
20:
 Delete the shortcut SC.

R4
21:
 end if
22:
 else if SP contains no border vertex

23:
 Add a new shortcut for SP.

24:
 F¼true.

25:
 end if
R3 R3 R3
26:
 end for

1 2 3
27:
 if F ¼ ¼ true then
28:
 Add parent(Rij) into P.

29:
 end if

30:
 end for
Fig. 10. The shortcut networks for the region tree shown in Fig. 8.
31:
 C¼P and P ¼∅;
(a) ⋃ 1 SNðR1Þ. (b) ⋃ 2 SNðR2Þ. (c) ⋃ 3 SNðR3Þ.
32:
 iþþ;

1r jr r j 1r jr r j 1r jr r j
33:
 end while
In addition to simplifying the road network, another
important goal of SN is to reduce the number of traffic
updates to be installed for each region including the
regions at higher levels. Updating a region may affect the
shortest path between two regions, and require re-
generation of the broadcast index.

We adopt a bottom-up approach for installing the traffic
updates into the regions, as defined in Algorithm 1. Note
that the updates are installed after the finish of a broadcast
cycle and they are the updates arrived during the broad-
cast cycle. To install the updates, firstly, all the updates are
mapped to their corresponding regions at the lowest level,
R1j (Line 1). Then, the traffic server performs the shortest
path search on the original road network of a region R1j
after including the new updates for the region to obtain a
new shortest path between the in/out-vertex of R1j (Line 7).
Then, for each in/out-vertex pair of R1j , if there is a shortcut
connecting them and the total weight (i.e., travel time) of
the new path connecting the two vertices is not smaller or
larger than the weight of the current shortcut connecting
them by the update threshold t1thres for the level, i.e., level 1,
we will keep the current shortcut and the updates for the
region will be pruned as they do not significantly change
the weight of the shortcut connecting the two vertices.
Otherwise, we replace the current shortcut by the new
shortcut after installing the update for connecting the two
vertices (Line 16). If there is a shortcut between the two
vertices but there is another border vertex on the new
path, we can simply delete the current shortcut (Line 20),
because it will not shorten the distance between the two
vertices. If currently there is no shortcut connecting the
two vertices, we will first check whether a shortcut is
needed after installing the updates (Line 22) and add the
shortcut if needed (Line 23). That is to check whether the
new shortcut shortens the distance between the two
vertices in SN(R1j). In implementation, an equivalent way
is to check if the new shortest path to be represented by
the shortcut contains another border vertex. If it contains
another border vertex, the shortcut will not shorten the
distance between the vertices in the SN. This finishes the
updates of the set of SN at the lowest level, i.e.,
⋃1r jr r1SNðR1

j Þ.
If after installing all the updates to SN for the lowest

level regions, ⋃1r jr r1SNðR1
j Þ does not change, i.e., the set

of shortcuts remains the same, the update process will be
stopped and the index will not need to be regenerated as
there are no changes in the shortest paths for the regions.
Otherwise, we go to maintain the SN for higher level
regions, i.e., ⋃1r jr ri SNðRi

jÞ for i41 and update their SN.
The updates of higher level SN are similar to the lowest
level except that the shortest path search is performed in
⋃Ri� 1

k A childrenðRi
jÞSNðR

i�1
k Þ (Line 9), instead of Or(Rij), since

the former one is simpler.
An example of maintaining SN is illustrated in Fig. 11.

Fig. 11(a) is the original road network Or(R1
5) of R1

5 and
Fig. 11(b) is the corresponding shortcut network SN(R1

5)
shown in Fig. 10. The shortcut (c,j) in SN(R1

5) in Fig. 11(b)
represents the shortest path 〈c; g; j〉. Suppose there is an
update to change the travel time of edge (g,j) from 2 to 4.
The new shortest path between them is still 〈c; g; j〉 after
the update but with total time of 7. Since the difference in
travel time of the new shortest path and the original
path is larger than t1thres ¼ 1, we go on to process it in

⋃R1
k A childrenðR2

3ÞSNðR
1
k Þ as in Fig. 11(c). Because the update of

(c,j) from 5 to 7 does not change any shortest path

between in/out-vertices of R2
3, SN(R

2
3) remains the same

R5
1

a b c

d
e f g

h i j

2 2

3

2

1 2

2 2 3 3
3

3 3 3

2 2

2 4

R5
1

a c

j

4

5 7

a c

j

4

7

k l6

m n4

5 5

7

R3
2

a c4 k l6

n

5

2

2

2

9

h 4

7

5

h 4

5

7

R5
1

h 10

5

7

R6
1

Fig. 11. Maintaining shortcut network example. (a) OrðR1
5Þ. (b) SNðR1

5Þ. (c)
⋃R1

k A childrenðR2
3 ÞSNðR

1
k Þ. (d) SNðR2

3Þ.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 151
as shown in Fig. 11(d). Then, the update of SN is completed
and will not be propagated to higher level regions and SN.

7. Multi-level shortcut networks (MLSN)

7.1. Generation of MLSN

7.1.1. MLSN for traffic server
After creating different levels of SN from the regions in

the region tree, we generate the multi-level shortcut
networks (MLSN) by merging the different levels of SN at
the traffic server for clients moving from different regions
to their destination regions (called begin region and end
region, respectively). The MLSN for a pair of regions is
generated by considering the positions of the begin region
and end region in the region tree.

Consider all the lowest level SN, SN of the begin region
and end region are selected first for the path searching.
Other lowest level SN can be replaced by higher level SN, if
the regions of the lowest level are children of the higher
level region. The replacement is recursively applied until a
higher level region that due to further replacement would
contain the begin region or end region as a descendant,
leading to an overlapping. Overlapping of SN could enlarge
the size of a MLSN. Note that a higher level SN covers a
larger area and is simpler compared with the original road
network. The resulting MLSN is a simplified network of the
entire road network.
Denoted by MLSNðR1
s ;R

1
t Þ the MLSN for the pair of regions

ðR1
s ;R

1
t Þ. Given a pair of regions ðR1

s ;R
1
t Þ, Algorithm 2 shows

how to generate MLSNðR1
s ;R

1
t Þ from the region tree. In

Algorithm 2, it first finds the lowest common ancestor Lca
of R1s and R1t in the region tree (Line 2). Then, for each Ri on
the path from R1s (R1t , respectively) to Lca, it merges the SN of
the sibling of Ri intoMLSNðR1

s ;R
1
t Þ if it is not on the path from

R1t (R1s) to Lca (Lines 4–9). Finally, for each Ri on the path from
Lca to the root, it adds the SN of the sibling of Ri into
MLSNðR1

s ;R
1
t Þ (Lines 11–14).

Algorithm 2. Generating MLSN for traffic server.

Input: a region pair ðRs;Rt Þ
Output: MLSNðRs;Rt Þ

1:
 Let Cs¼Rs, Ct¼Rt;

2:
 Let Lca¼ LCAðRs;Rt Þ;

3:
 MLSNðRs;Rt Þ ¼ fRs;Rtg;

4:
 while CsaLca. do

5:
 For each RkAsiblingðCsÞ\Ct , merge SNðRkÞ into MLSNðRs;Rt Þ.

6:
 For each RkAsiblingðCt Þ\Cs , merge SNðRkÞ into MLSNðRs;Rt Þ.

7:
 Cs ¼ parentðCsÞ.

8:
 Ct ¼ parentðCt Þ.

9:
 end while

10:
 Let C¼Lca;

11:
 while CaRoot do

12:
 For each RkAsiblingðCÞ, merge SNðRkÞ into MLSNðRs;Rt Þ.

13:
 C ¼ parentðCÞ.

14:
 end while

15:
 return MLSNðRs;Rt Þ;
For example, in Fig. 12(a),MLSNðR1
2;R

1
11Þ ¼ SNðR1

1Þ [SNðR1
2Þ

[SNðR2
2Þ [SNðR3

2Þ [SNðR2
5Þ [SNðR1

11Þ [SNðR1
12Þ, where SN

of higher level region R2
2 are used to replace the lowest level

regions R1
3 and R1

4 while R1
5;R

1
6;R

1
7 and R1

8 are simplified to SN
of region R3

2 at a higher level. For region pair of ðR1
3;R

1
4Þ,

MLSNðR1
3;R

1
4Þ ¼ SNðR2

1Þ [SNðR1
3Þ [SNðR1

4Þ [SNðR3
2Þ [SNðR3

3Þ
as shown in Fig. 12(b). Note that SN(R3

2)and SN(R3
3) are still

required to ensure the correctness of the shortest path.

7.1.2. MLSN for clients (MLSNC)
After creating the MLSN for each pair of regions in the

original network, the traffic server searches the shortest
path in each MLSN. Then, the traffic server prunes out
those SN not on the shortest path from each MLSN. The
remaining SN forms the pruned MLSN.

Given a pruned MLSN for a region pair, we select SN
from different levels to generate the client multi-level
shortcut network, MLSNC, for the region pair after con-
sidering the distance from the current region of the client
as defined in terms of the number of lowest level regions.
The original road network Or(R) is selected for the current
region R of the client as the client needs to have the detail
road information in navigation to the out-vertex of the
region. SN for higher level regions are selected for regions
closer to the end region.

Denoted byMLSNCðRs;RtÞ the client multi-level shortcut
network MLSNC for region pair ðRs;RtÞ. As in example in
Fig. 12(a), the traffic server obtains the shortest path which
does not pass through R1

1;R
2
5 and R1

12. Therefore, the
corresponding SN will be pruned. The pruned MLSN is
SNðR1

2Þ [SNðR2
2Þ [SNðR3

2Þ [SNðR1
11Þ, colored in gray. After

considering the distance from the current region R1
2,

C.J. Zhu et al. / Information Systems 49 (2015) 142–162152
MLSNCðR1;R11Þ is formulated as OrðR1
2Þ [SNðR2

2Þ [SNðR3
2Þ [

SNðR3
3Þ as shown in Fig. 13(a). In Fig. 12(b), the traffic server

finds that the shortest path only passes through fR1
3;R

1
4g

whose SN are colored, and then the traffic server generates
MLSNCðR3;R4Þ ¼OrðR1

3Þ [SNðR1
4Þ, as shown in Fig. 13(b).

Note that MLSNC may not contain the road segment of
the destination. It may only contain the border vertices of
the region/higher level region containing the road seg-
ment of the destination. Therefore, the client, after captur-
ing the corresponding MLSNC (encoded in the broadcast
index in Section 7.2) and reconstructing its own local road
network, the client road network RNC, will perform the
shortest path search to find a path leading to the nearest
border vertex of destination region. The detailed path to
the destination road segment will be determined when
the client arrives its destination region.
7.2. Generation of broadcast index

After constructing MLSNC for each pair of regions, the
traffic server formulates the broadcast index. A broadcast
cycle starts with the generated broadcast index, followed
by network data, as illustrated in Fig. 14. The index consists
R1
1 R2

1

R1
1

1
R1

1
2R2

2

R5
2

R2
3

R3
1

R4
1

R2
3 R3

3

R1
2

Fig. 12. An example of searching the shortcut network. (a) MLSNðR1
2 ;R

1
11Þ.

(b) MLSNðR1
3 ;R

1
4Þ.

R2
1

R2
2

R2
3

R3
1

R4
1

R3
3

Fig. 13. MLSNC for the example in Fig. 12. (a) MLSNC ðR1
2;R

1
11Þ.

(b) MLSNC ðR1
3;R

1
4Þ.
of a kd-tree partitioning information and a table. The kd-
tree partitioning information includes the values adopted
in the partitioning and can be used to map a location to
the region containing it. The table specifies, for each pair of
regions ðRs;RtÞ, the components (SN or Or) of MLSNCðRs;RtÞ
and the broadcast schedule (times) for each of them.

We adopt the common arrangement of placing the broad-
cast index at the beginning of a broadcast cycle, different
from the (1,m)-interleaving or variant proposed in NR (i.e., the
index for each region is different and placed in front of the
region's data). Unlike the shortest path query to be executed
for once, the access latency for broadcast data is not a critical
performance measure in processing SPCQ as the client has
already obtained a path to follow. The main delay for move-
ment is the latency for the first set of path information.

The network data consists of the SN of different level
regions and the original network Or of the lowest level
regions. Different organizations of them in a broadcast cycle
may have different performances in practice under different
workloads. It is not the focus of this paper to study how to
schedule the broadcast data to achieve the maximum per-
formance, e.g., minimizing the waiting time for getting all
traffic data by a client. For simplicity, we assume the use of
the flat broadcast disk to formulate the broadcast schedule
and broadcast the SN and Or in a pre-ordered traversal order
of the region tree. For each traversed higher level region, its
SN is placed in the cycle while for each traversed lowest level
region, both SN and Or are included in the broadcast cycle.
For example, as in Fig. 14, the broadcast sequence of the
network data is SN(R3

1), SN(R
2
1), SN(R

1
1), Or(R

1
1), SN(R

1
2), Or(R

1
2),

etc. for the region tree shown in Fig. 8.

7.3. Processing of SPCQ at clients

The execution of an SPCQ at a mobile client is summarized
in Algorithm 3. Each query Qiðcpi; desti; begini; endiÞ issued by
client Ci will be executed during the time period from begini to
endi if Ci has not arrived the destination desti as in Line 1. In
each invocation, Ci first reads the next index in the broadcast
cycle from its first tune-in to the broadcast channel, and
obtains MLSNC according to its current location cpi and
destination desti. Then all the SN in MLSNC will be captured
by Ci according to the broadcast schedule defined in the
broadcast index. After that, a client road network RNC is
constructed by Ci and a shortest path search is performed
on RNC with cpi and desti to obtain a path P. Then, Ci follows P
until it is approaching a new region or desti. Then another
invocation of the SPCQ will be performed or the query is
terminated if it has arrived desti or the current time equals to
endi.

Algorithm 3. Query algorithm at client.

Input: Query Qiðcpi ; desti; submiti; endiÞ
Output: Client Ci arrives desti before endi or current time¼endi

1:
 while Ci does not arrive desti or the time is before endi do

2:
 Client Ci receives the next index from the broadcast cycle;

3:
 Based on the current location cpi and desti, Ci retrieves the

MLSNC.

4:
 According to the broadcast time of each SN in MLSNC, Ci sleeps

until the SN is broadcast. This process continues until all SN in
MLSNC are captured.
5:
 Ci constructs client road network RNC and performs shortest
path search on RNC to obtain a path P.

SN(R1
2) ...SN(R1

3) SN(R1
1) Or(R1

1) SN(R2
1) Or(R2

1) SN(R2
2)

Index Network Data

Entry for (Ri,Rj)

...

Kd-tree
part. info.

Fig. 14. An illustration of broadcast cycle organization in PA.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 153
6:
 Ci follows P until it is approaching a new region or has arrived
desti or current time¼endi.
7:
 end while
7.4. Cost analysis

In this section, we give the cost analysis of PA as
compared with NR and HiTi. In the analysis, we concen-
trate on the following two performance measures:
1.
 The index re-generation cost at the traffic server. In NR
and PA, the shortest path computation is the dominat-
ing cost in generating the broadcast index. In the
analysis, to simplify the discussion, we assume to use
the Dijkstra algorithm for searching the shortest path.
More advanced algorithms may accelerate them in path
searching. The cost of the searching algorithm is
quantified by the search space, i.e., the number of
settled vertices and the sum of degrees of settled
vertices (i.e., the number of relaxed edges).
2.
 The broadcast cycle size, including the index size and
the size of network data. A larger broadcast cycle
implies longer waiting time to get the required data
and more network bandwidth to be consumed for data
broadcast.

Let Adj(G) be the size of the original road network G in
an adjacency list representation, which is a suitable linear
function of the number of vertices and edges in G. Let Dij
(G) be the average number of edges traversed (or called
“relaxed edges” in the rest of the paper) during a Dijkstra
search in G. Let BorðRiÞ be the number of border vertices
in Ri.

The index re-generation cost of PA is

∑
1r jr r

BorðOrðRjÞÞnDijðOrðRjÞÞ

þ ∑
2r ir l

∑
1r jr ri

Borð⋃Ri� 1
k A childrenðRi

jÞSNðR
i�1
k ÞÞ

nDijð⋃Ri� 1
k A childrenðRi

jÞSNðR
i�1
k ÞÞ

þ ∑
1r ir r

∑
ð1r jr r4 ja iÞ

BorðOrðRiÞÞnDijðMLSNðRi;RjÞÞ;

where the first two terms are the costs for maintaining the
SN in the lowest level, and higher levels, respectively. The
last term is the cost of searching the MLSN for pruning out
the SN that are not on the shortest path.

In comparison, the index re-generation cost of HiTi is
the maintenance cost of the SN in the hierarchy and HiTi
does not need to perform the computation for pruning
unnecessary SN. Formally, it is

∑
1r jr r

BorðOrðRjÞÞnDijðOrðRjÞÞ

þ ∑
2r ir l

∑
1r jr ri

Borð⋃Ri� 1
k A childrenðRi

jÞSNðR
i�1
k ÞÞ

nDijð⋃Ri� 1
k A childrenðRi

jÞSNðR
i�1
k ÞÞ:

For NR, the index re-generation cost is

∑
1r ir r

∑
ð1r jr r4 ja iÞ

BorðOrðRiÞÞnDijðGÞ:

Compared with the cost of NR, DijðMLSNðRi;RjÞÞ in PA
should be smaller than Dij(G) in NR since MLSNðRi;RjÞ has
a smaller size than G. However, PA requires an additional
cost for maintaining the SN. It leaves to Section 8 to see
which one has lower index re-generation cost as a whole.

The broadcast cycle size of PA is

rþrnrnReqPAðGÞþAdjðGÞþ ∑
1r ir l

∑
1r jr ri

AdjðSNðRi
jÞÞ;

where the first two terms are the index size and the last
two terms are the size of network data. The first term is for
the kd-tree partitioning information of the road network
(linear w.r.t. the number of regions), while the second
term is the size of the table indicating MLSN C for each pair
of regions. ReqPA(G) is the average number of SN of regions
or higher level regions in MLSNC over the total number of
region pairs. Because ReqPAðGÞrr, the index size is in the
order of r3. The last two terms are the size of the origi-
nal network and the total size of different levels of SN,
respectively.

For NR, the broadcast cycle size is

rþrnrnReqNRðGÞþAdjðGÞ;
where the first two terms are the index size. The second
term is the size of the table storing the required regions for
each pair of regions. ReqNR(G) is the average number of
required regions over the total number of region pairs in
NR. The last term is the size of network data, which is the
size of the original network. As ReqNRðGÞor, the index size
is in the order of r3. However, ReqNR(G) is expected to be
greater than ReqPA(G) as the required regions in NR are all
lowest level regions.

In general, the network data size of PA is greater
compared with NR since different levels of SN are included
in a broadcast cycle while the network data of NR contains
the original road network only. However, the index size of
PA is usually less than that of NR, since MLSNC in PA has
smaller cardinalities compared with the total number of
required regions in NR. (The SN of higher level regions may

Table 2
Details of different data sets.

Name Description # Vertices # Edges Size (in KB)

NY New York City 264,346 733,846 5291
BAY San Francisco Bay Area 321,270 800,172 6027

Table 3
Parameter settings and baseline values.

Parameters Baseline settings

Lowest level regions r 16, 64, 128, 256
Regions merged in a higher level region p 2, 4
Update range of edge weight I [0,1000]
Updates N 100,000
Queries Q 100
Query distance threshold d 2,000,000
Update threshold for the lowest level t 0
Update threshold base m 2

Fig. 15. Size of client road network RNC.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162154
correspond to multiple lowest level regions.) As will be
shown in Section 8.1, the difference of the index size
between PA and NR is greater when the number of regions
r is larger because of more levels. This could make the
broadcast cycle size of PA to be smaller than that of NR as
shown in our experimental results in Section 8.1.

The broadcast cycle size of HiTi is

rþrnrnReqHiTiþAdjðGÞþ ∑
1r ir l

∑
1r jr ri

AdjðSNðRi
jÞÞ;

which is similar to PA. r is still required because it adopts
the same partitioning method as PA. ReqHiTi represents the
average number of SN received for each pair of regions.
The value can be obtained from the hierarchy and
ReqHiTior.

8. Performance evaluation

The experiments were conducted on a 64-bit machine
equipped with Intel Core i7-2600 3.4 GHz CPU and 4 GB
main memory. The underlying software platform was Gcc
4.5.1 compiler on OpenSuse 11.4 OS. We used the real road
network of North America (downloadable from http://www.
dis.uniroma1.it/challenge9/) as the input data set. The details
of the data set are referred to Table 2, with BAY as the
default network for the experiments. BAY consists of
approximately 300 K vertices and 800 K edges. In the
implementation, the original road network was essentially
in an adjacency list representation and each vertex was
assigned 8 Bytes for the vertex identifier and number of
incident edges. Each undirected edge was assigned 9 Bytes
for the target vertex of an edge, edge weight and edge
direction. Two directed edges with the same end vertices
and the same weight were merged into an undirected edge,
and stored only at the adjacency list of one vertex.

We compared PA with NR, HiTi and CH. They were
extended for processing of SPCQ. The number of lowest
level regions r in PA and HiTi was the same as the number
of regions in NR. The experiments were repeated with
different values of r, e.g., r¼16, 64, 128 and 256. For PA and
HiTi, in each level, the number of regions merging into a
higher level region p was set to be 2 and repeated with
p¼4. For the parameter settings of CH, we use the
aggressive variant defined in [11,12]. In PA, the SPCQ was
invoked when a client was approaching a new region as
the road connections of the new region needed to be
acquired. To be consistent, we made NR, HiTi and CH to
invoke the SPCQ at the same time. After obtaining a new
path, the client followed the path step by step to its
destination. It was assumed that all the clients could arrive
their destinations before the deadlines of their SPCQ.

To simulate the changes in traffic, we randomly selected an
edge in the original road network and increased or decreased
its weight by a random value within an interval I ¼ ½0;1000�.
If the weight became a negative value after the update, we
simply set it to be zero. After the updates of traffic at the end
of a broadcast cycle, the traffic server re-generated the
broadcast index.

We defined the update threshold for pruning traffic
updates by two parameters t and m, from which the
update threshold for a specific level i was calculated as
tithres ¼ tnmi�1. In the first set of experiments, we set t¼0
and m¼2 to disable the pruning mechanism. The study on
the effects of update thresholds on the performance of PA
will be discussed in Section 8.4.
8.1. Comparison amongst PA, HiTi, CH and NR

In addition to the performance measures introduced in
Section 7.4, we also measured the following four metrics in
the experiments:
1.
 The average actual size of client road network RNC for
each invocation of an SPCQ. This affects the tune-in cost
for getting traffic data from the broadcast cycle (mea-
sured by tuning time), and the memory requirement at
the clients for building the local graphs.
2.
 The path searching cost at a client for executing an
SPCQ, measured by the average search space of the
client road network RNC.
3.
 The average travel time ratio of a client to reach the

http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 155
destination. The travel time ratio of PA is defined as the
total travel time of a client under PA minus the total travel
time of the client under NR divided by the total travel time
Fig. 16. Searching time at clients (in ms).

Fig. 17. Details of RNC. (a) # of ver

Fig. 18. Search space at clients. (a) # of settle
of the client under NR. Note that the travel times under NR,
HiTi and CH are the same since they obtain the exact path
to the destination in each invocation of SPCQ. An important
tradeoff of PA for minimizing the searching cost at the
clients is longer travel time to destination since the path
obtained is a “higher level” path containing shortcuts to
the destinations' regions or higher level regions instead of
a direct shortest path consisting of road segments to
destination.
4.
 The average number of path changes obtained from re-
execution of an SPCQ. This is an important indicator in
practice, and a small number of path changed invoca-
tions that give a different path is preferable.
The performance results to be reported in below were
obtained by averaging over Q¼100 randomly generated SPCQ,
with distances from cp to dest at the begin time of the query
to be larger than a pre-defined threshold d¼ 2;000;000, i.e.,
the starting location of a client is far away from its destination.
In the experiments, we varied the values for r and p, and
fixing I¼ ½0;1000� and N¼100,000 for clarity. The baseline
parameter settings are summarized in Table 3.
tices. (b) # of edges.

d vertices. (b) # of relaxed edges.

Fig. 19. Search space at traffic server. (a) # of settled vertices. (b) # of relaxed edges.

Fig. 20. Size of broadcast cycle and its each part (in KB).

Fig. 21. Travel time to destination (ratio of PA/NR minus 1).

C.J. Zhu et al. / Information Systems 49 (2015) 142–162156
Fig. 15 shows the average size of RNC of one invocation
of an SPCQ, normalized to be percentages over the total
size of the original road network. As shown in Fig. 15, the
three methods (PA, NR and HiTi) can effectively reduce the
size of traffic data required by a client for building its client
road network to a small portion of the original road
network, while CH requires the whole structure consisting
of the original road network and the shortcuts added to be
received by the client. Therefore, CH has a very large size of
RNC. For the three methods, consistent with our expecta-
tion, the size of RNC of PA is much smaller than that of NR
and is also consistently smaller than that of HiTi. For all the
settings of p and r, the size of RNC of PA is just about 25% of
NR and 50% of HiTi on average. When r increases from 16
to 256, the sizes of RNC of PA, HiTi and NR become smaller
due to the finer partitioning while different values of r do
not show any significant impacts to the performance of PA
and HiTi. Since the index received by a client is small and
negligible compared with the total network data that
constitutes RNC, the tuning time in each invocation of an
SPCQ can be measured by the size of RNC. A smaller size of
RNC implies a smaller tuning time at the clients. Therefore,
PA is more energy efficient for capturing broadcast data
compared with NR and HiTi while CH have heavy tune-in
cost.

As shown in Fig. 17, although HiTi can effectively reduce
the number of vertices in RNC, the reduction in number of
edges in RNC is smaller resulting in a dense network with a
small set of vertices. RNC of NR remains a sparse network
as it is a portion of the original road network which is
mostly sparse. As shown in Fig. 17, by using the pre-
processing and approximation techniques, both the num-
ber of vertices and edges in RNC of PA are smaller
compared with that of NR and HiTi.

The shortest path searching cost for one invocation of
an SPCQ depends on the search space. As shown in Fig. 18,
PA significantly outperforms both NR and HiTi in reducing
the path searching cost. On average, PA settles vertices
with only 7% of NR and 30% of HiTi, and relaxed about 40%
edges of NR and 60% of HiTi. This could be a big reduction
in energy cost for the periodic executions of SPCQ at the
clients. We observe that a coarser grouping of regions

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 157
(p¼4 compared with p¼2) lowers the search space at the
clients. Consistent with the results shown in Fig. 18, the
searching time of PA for finding the shortest path at the
clients is also smaller than that of both HiTi and NR as
shown in Fig 16. Although the search space and searching
time of PA at the clients are greater than that of CH, the
Fig. 23. The performance measures for data set NY. (The experiments for N
d¼500,000. Each time the client reaches a new region, N¼50,000 updates are g
(b) Travel time to destination. (c) Search space at clients (# of settled vertices

Fig. 22. Percentage of path changes (# path changes/# invocations).
total energy cost of PA can be lower since the tune-in cost
of CH is prohibitively large as shown in Fig. 15.

Fig. 19 summarizes the number of settled vertices and
relaxed edges under different settings at the traffic server
for generating the broadcast index. As shown in Fig. 19a
and b, both numbers of settled vertices and relaxed edges
of PA are much smaller than that of NR. This is a bit
surprise since PA needs additional cost for constructing
and maintaining the different levels of SN. On average, PA
settles two orders of magnitude fewer vertices, and
relaxed one order of magnitude fewer edges, compared
with NR. Note that in the last two settings, the time to
collect the statistics for NR exceeds 15 h, and thus be
omitted. Recall the cost analysis in Section 7.4, we confirm
in here that DijðMLSNðRi;RjÞÞ is much smaller than Dij(G).
Even with two additional terms (in Section 7.4), PA still
beats NR in terms of index re-generation cost. However,
compared with HiTi, both PA and NR require more index
re-generation cost because both of them need to perform
pre-processing to reduce the set of regions for a client to
build its local road network RNC. This is the tradeoff for
smaller size of RNC at clients achieved from PA. CH has a
slightly larger search space than HiTi among all settings.

It should be noted that we use the classic Dijkstra
algorithm in our cost analysis and experimental studies for
easy comparisons. More advanced algorithms [9,2] can
Y are obtained over Q¼100 random queries with distance larger than
enerated with update range I¼ ½0;500�.) (a) Size of client road network RNC.
). (d) Search space at clients (# of relaxed edges).

Fig. 24. The performance measures for more updates in BAY. (a) Size of client road network RNC. (b) Travel time to destination. (c) # of settled vertices.
(d) # of relaxed edges.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162158
speedup the Dijkstra algorithm by three orders of magni-
tude in terms of search time, by including a pre-processing
procedure. Even taking the cost of pre-processing into
consideration, the total cost of the shortest path search can
be greatly smaller than that of the Dijkstra algorithm.
Another important observation is that the computation in
PA includes lots of many-to-many shortest path searches
for which there should have more efficient algorithms [18].
We leave the investigations of more efficient implementa-
tions at the server as an important future work.

In Fig. 20, we give the broadcast cycle size of the four
methods (PA, HiTi, CH and NR). Each broadcast cycle consists
of two parts: the broadcast index and network data. Each
column in Fig. 20 corresponds to the total size of one
broadcast cycle. As shown in Fig. 20, the size of network
data of PA is larger than that of NR as it contains different
levels of SNwhile NR only contains the original road network.
However, the increase in the network data is not great, at
most 2 times of the road network in the range we tested. The
size of network data of PA is similar to that of HiTi as both of
them use hierarchical index. As can be observed in Fig. 20, it
is interesting to see that the index size of HiTi is larger than
that of PA under all settings, which implies ReqHiTi4ReqPAðGÞ
in the cost analysis (Section 7.4). This reflects that the pruning
mechanism and approximation technique in PA can effec-
tively reduce the number of SN inMLSNC. Consistent with our
expectation, ReqNR(G) is greater than ReqPA(G). By using SN of
higher level regions in MLSNC instead of the lowest level
regions, the index size of PA could be greatly smaller than
that of NR. This is especially obvious when r is large. When
r¼256, the increase in index data in NR makes it comparable
to the size of network data, leading to a larger broadcast cycle
size compared with PA, as shown in Fig. 20. For CH, the
broadcast cycle size remains similar under different settings,
because different values for r and p only affect when the SPCQ
is invoked instead of the cycle size.

As shown in Fig. 21, by using PA, the travel time is
slightly longer than NR, HiTi and CH by 5% on average. It is
because PA only computes the shortest path containing
different levels of shortcuts to the destination while NR,
HiTi and CH calculate the exact path to the destination, and
therefore, they have the same travel time. The slight
increase in travel time in PA is the trading cost for the
great reduction in tune-in and path searching costs at the

Fig. 25. The performance measures for shorter path in BAY. (a) Size of client road network RNC. (b) Travel time to destination. (c) Search space at clients
(# of settled vertices). (d) Search space at clients (# of relaxed edges).

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 159
clients. Another important observation is that the travel
time of PA is smaller when p¼2 than p¼4. It is because the
finer grouping makes the path to the destination region
more accurate. However, the expense is larger network
data as can be seen in Fig. 20.

To study the effectiveness of the shortest path search,
we also measured the average number of path changes in
an SPCQ for PA, NR, HiTi and CH under the same traffic
updates. As can be seen in Fig. 22, on average, only 20% of
the invocations of PA will have a different path compared
with the path obtained in the previous invocation, while
50% of NR's, HiTi's or CH's invocations give a different path.
This is consistent with our expectation as PA uses higher
level shortcuts and ignores lower level detail changes. The
greater number of path changes confirms our belief that
using higher level shortcut networks for regions farther
away from the current region of the client can effectively
monitor the shortest path. NR, HiTi and CH have similar
performance in number of path changes since all of them
calculate the exact path to destination.

When the underlying data set is NY, the relative
performance of the four methods remains similar to that
of BAY. We show the size of RNC of some selected settings
in Fig. 23a. Consistent with BAY, the size of client road
network, RNC of PA is significantly smaller than that of NR,
HiTi and CH. When the number of regions increases from
16 to 128, smaller size of RNC is received by the clients for
all methods except CH. The travel time of PA is also not
affected seriously as shown in Fig. 23b, with at most 8.8%
larger than that of NR and HiTi.

Since the tune-in cost of CH, i.e., the size of client road
network RNC, is much greater than the other three meth-
ods, in the remaining experiments, we only compare the
performances of PA, HiTi and NR.

8.2. Effects of update range

In this set of experiment, more updates are generated in
each broadcast cycle (N¼ 1;000;000) and different values of
update range (e.g., I ¼ 500;1000;2000;3000;4000;5000) are
used to test their effects on the performances of PA, HiTi and
NR. As shown in Fig. 24, consistent with the results presented
in Section 8.1, the size of client road network and the number
of vertices and edges in it under PA are significantly lower
than that under HiTi and NR. The absolute values of the metric
are similar for different values of range of update and the
delay in arrival time in PA is smaller, e.g., around 2.5%, when
the number of regions is greater.

Fig. 26. Update pruned percentage and travel time for r¼64 (a) and 128 (b); p¼2.

Fig. 27. The performance measures for more updates in BAY with update prunes (t¼200). (a) Size of client road network RNC. (b) Update pruned
percentage and travel time. (c) # of settled vertices. (d) # of relaxed edges.

C.J. Zhu et al. / Information Systems 49 (2015) 142–162160
8.3. Effects of shorter path

Fig. 25 shows the performance results of the three
methods when the value for d is set to be 200,000, i.e., the
distance between the start point and destination has to be
equal to or greater than 200,000. Consistent with previous
performance results, PA gives the smallest size of RNC by a
client for the shortest path search compared with both NR
and HiTi. The tradeoff is longer travel time to destination. We
observe that the absolute values are quite similar to the

C.J. Zhu et al. / Information Systems 49 (2015) 142–162 161
previous results. This implies that the average size of net-
work data required for an invocation is similar regardless of
the query distance. The index re-generation cost of PA is still
lower than that of NR and is greater than that of HiTi.

8.4. Effects of update threshold

To study the effects of update threshold on the perfor-
mance of PA, different values of the update thresholds
were tested. The pruning ability was measured by the
number of traffic updates that were pruned without
affecting the shortest path, divided by the total number
of updates that change the weights.

We conducted the experiments by varying the values
of t, while fixing r¼64, p¼2, I ¼ ½0;1000�, N¼100,000 and
m¼2. Fig. 26 shows the results when different update
thresholds were used. As expected, a loose threshold of
t¼500 can prune a large portion (60%) of the updates,
while a tighter threshold t¼50 and t¼100 only prune
20% and 30%'s updates, respectively. It is interesting to
see that except for very large values, the travel times to
destinations remain similar even after pruning the
updates using different values of update threshold. Thus,
we may choose a loose threshold, e.g., t¼200 for a lower
index re-generation cost without seriously affecting the
travel times to destinations. The experiments were
repeated for r¼128 while other settings remained the
same. The results are referred to Fig. 26b. Consistent with
previous settings, a loose threshold t¼200 can prune
large portion of updates, while the travel times are not
affected by strong pruning.

Fig. 27 shows the results when the update range is
varied and t¼200. Similar to the results shown in Fig. 24,
the tune-in and path searching costs at the clients are
lower in PA compared with that in HiTi and NR. Compared
with the results in Fig. 24, the absolute values of each
metric only differ slightly when t is set to be 200. There-
fore, we may impose the update prune threshold for lower
index generation cost. Another observation is that the
percentages of update pruned decrease with an increase
of update range as shown in Fig. 27b. It is because with a
larger value of I, the update threshold induced by t¼200
becomes relatively smaller and can only prune a smaller
portion of updates. Therefore, we may set a larger t to
prune more updates when update range I is larger to aim
for a lower index generation cost.

Summary of experimental results. As a summary, PA
performs consistently better than HiTi and NR both in
terms of tune-in cost and path searching cost. NR is the
worst in terms of the costs both at the clients and server.
Although the path searching cost of CH is the lowest
amongst the four methods, the size of the client road
network and tune-in cost of CH is much larger than that of
PA, HiTi and NR. For HiTi, the reduction in the number of
vertices is greater than the reduction in the number of
edges, making the path searching cost at the clients
expensive. In some settings (Fig. 18), the number of relaxed
edges in HiTi is even larger than that of NR. The index
generation cost of PA is significantly lower than that of NR
while the index generation costs of HiTi and CH are lower.
Therefore, as a conclusion, PA is more suitable than the
other three methods for the clients where minimizing the
tune-in and path searching costs are important, e.g., the
clients have limited processing power and energy supply.
9. Conclusions and future work

In this paper, we study the shortest path searching
problem at mobile clients using data broadcast to distribute
traffic information to mobile clients for execution of shortest
path continuous queries (SPCQ). Since the traffic data are
changing, periodic execution of SPCQ is required to be
performed at the clients, resulting in a heavy path searching
cost. To resolve the problem, we propose the progressive
approach (PA) with the purpose of minimizing both the
tune-in and path searching costs at the clients. In PA, the
path information to be distributed to the clients consists of
road segments of the current regions of the clients and
shortcuts from different levels of shortcut networks (SN). A
higher level SN will be chosen for a region if it is farther away
from the current region of the client. Since the local network
constructed from broadcast data by a client is a simplified
hierarchical network with smaller search space, both the
tune-in cost and path searching cost for the shortest path
can be greatly reduced. Extensive experiments have been
conducted to show the effectiveness of PA in reducing the
costs with just small increase in arrival times to destinations
as compared with NR, HiTi and CH. The performance results
show that PA gives better performance than NR at both the
traffic server and clients. Although the index generation cost
at the traffic server is higher in PA comparing with HiTi, it
gives lower tune-in and path searching costs at the clients to
make PA suitable to the clients which have limited processing
power and energy supply. An important future work is to find
an optimal organization to merge the regions into the region
tree to maximize the system performance. Finally, another
important future work is to study how to reduce the index
generation cost at the server by adopting a more efficient path
searching algorithm.

References

[1] S. Acharya, R. Alonso, M. Franklin, S. Zdonik, Broadcast disks: data
management for asymmetric communications environments, in:
Proceedings of the ACM SIGMOD Conference, 1995, pp. 199–210.

[2] J. Arz, D. Luxen, P. Sanders, Transit node routing reconsidered, in:
Proceedings of International Symposium on Experimental Algo-
rithms, 2013, pp. 55–66.

[3] G. Batz, R. Geisberger, P. Sanders, C. Vetter, Minimum time-
dependent travel times with contraction hierarchies, ACM J. Exp.
Algorithm. 18 (1.4) (2013).

[4] Y. Cai, A. Hua, G. Gao, Processing range-monitoring queries on
heterogeneous mobile objects, in: Proceedings of IEEE International
Conference on Mobile Data Management, 2004, pp. 27–38.

[5] J. Chen, R. Cheng, Efficient evaluation of imprecise location-
dependent queries, in: Proceedings of IEEE ICDE Conference, 2007,
pp. 586–595.

[6] R. Cheng, J. Chen, M. Mokbel, C. Chow, Probabilistic verifiers:
evaluating constrained nearest-neighbor queries over uncertain
data, in: Proceedings of IEEE ICDE Conference, 2008, pp. 973–982.

[7] R. Cheng, B. Kao, A. Kwan, S. Prabhakar, Y. Tu, Filtering data streams
for entity-based continuous queries, IEEE Trans. Knowl. Data Eng. 22
(2) (2010) 234–248.

[8] Y.D. Chung, S. Yoo, M.H. Kim, Energy- and latency-efficient proces-
sing of full-text searches on a wireless broadcast stream, IEEE Trans.
Knowl. Data Eng. 22 (2) (2010) 207–218.

http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref3
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref3
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref3
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref7
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref7
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref7
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref8
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref8
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref8

C.J. Zhu et al. / Information Systems 49 (2015) 142–162162
[9] D. Delling, A. Goldberg, A. Nowatzyk, R. Werneck, PHAST: hardware-
accelerated shortest path trees, J. Parallel Distrib. Comput. 73 (7)
(2013) 940–952.

[10] B. Gedik, L. Liu, Distributed processing of continuously moving
queries on moving objects in a mobile system, in: Proceedings of
Extending Database Technology, 2004, pp. 67–87.

[11] R. Geisberger, P. Sanders, D. Schultes, D. Delling, Contraction hier-
archies: faster and simpler hierarchical routing in road networks, in:
Proceedings of International Workshop on Experimental Algorithms,
2008, pp. 319–333.

[12] R. Geisberger, P. Sanders, D. Schultes, C. Vetter, Exact routing in large
road networks using contraction hierarchies, Transp. Sci. 46 (3)
(2012) 388–404.

[13] T. Imielinski, S. Viswanathan, B. Badrinath, Power efficient filtering
of data on air, in: Proceedings of Extending Database Technology,
1994, pp. 245–258.

[14] T. Imielinski, S. Viswanathan, B. Badrinath, Data on air: organization
and access, IEEE Trans. Knowl. Data Eng. 9 (3) (1997) 353–372.

[15] Y. Jing, C. Chen, W. Sun, B. Zheng, L. Liu, C. Tu, Energy-efficient
shortest path query processing on air, in: Proceedings of the ACM
GIS Conference, 2011, pp. 393–396.

[16] S. Jung, S. Pramanik, An efficient path computation model for
hierarchically structured topographical road maps, IEEE Trans.
Knowl. Data Eng. 14 (5) (2002) 1029–1046.

[17] G. Kellaris, K. Mouratidis, Shortest path computation on air indexes,
Proc. VLDB 3 (1) (2010) 747–757.

[18] S. Knopp, P. Sanders, D. Schultes, F. Schulz, D. Wagner, Computing
many-to-many shortest paths using highway hierarchies, in: Pro-
ceedings of Workshop on Algorithm Enginerring and Experiments,
2007.

[19] K.-Y. Lam, E. Chan, H. Leung, M. Au, Concurrency control strategies
for ordered data broadcast in mobile computing systems, Inf. Syst.
29 (3) (2004) 207–234.

[20] Z. Li, K. Lee, B. Zheng, W.-C. Lee, D. Lee, X. Wang, IR-tree: an efficient
index for geographic document search, IEEE Trans. Knowl. Data Eng.
23 (4) (2011) 585–599.

[21] M. Mokbel, X. Xiong, W. Aref, SINA: scalable incremental processing
of continuous queries in spatio-temporal databases, in: Proceedings
of ACM SIGMOD Conference, 2004, pp. 623–634.
[22] K. Mouratidis, S. Bakiras, D. Papadias, Continuous monitoring of
spatial queries in wireless broadcast environments, IEEE Trans. Mob.
Comput. 8 (10) (2009) 1297–1311.

[23] S. Nutanong, E. Tanin, J. Shao, R. Zhang, K. Ramamohanarao, Con-
tinuous detour queries in spatial networks, IEEE Trans. Knowl. Data
Eng. 24 (7) (2012) 1201–1215.

[24] C.K. Poon, C.J. Zhu, Energy-efficient air-indices for distance queries
on road networks, in: Proceedings of the ACM GIS Conference, 2012,
pp. 558–561.

[25] M. Qiao, H. Cheng, L. Chang, J. Yu, Approximate shortest distance
computing: a query-dependent local landmark scheme, in: Proceed-
ings of IEEE ICDE Conference, 2008, pp. 462–473.

[26] Y. Sasaki, W.-C. Lee, T. Hara, S. Nishio, On alleviating beacon over-
head in routing protocols for urban VANETs, in: Proceedings of IEEE
International Conference on Mobile Data Management, 2013,
pp. 66–76.

[27] W. Sun, Y. Qin, J. Wu, B. Zheng, Z. Zhang, P. Yu, P. Liu, J. Zhang, Air
indexing for on-demand XML data broadcast, IEEE Trans. Knowl.
Data Eng. 25 (6) (2014) 1371–1381.

[28] L.H. U, H.J. Zhao, M.L. Yiu, Y. Li, Z. Gong, Towards online shortest path
computation, IEEE Trans. Knowl. Data Eng. 26 (4) (2014) 1012–1025.

[29] A.B. Waluyo, D. Taniar, W. Rahayu, B. Srinivasan, Clustering-based
index and data broadcasting for mobile nearest neighbor query
processing, IEEE Trans. Knowl. Data Eng. 9 (4) (2013) 1964–1974.

[30] J. Xu, W.-C. Lee, X. Tang, Q. Gao, S. Li, An error-resilient and tunable
distributed indexing scheme for wireless data broadcast, IEEE Trans.
Knowl. Data Eng. 18 (3) (2006) 392–404.

[31] C. Young, G. Chiu, Efficient dissemination of transaction-consistent
data in broadcast environments, IEEE Trans. Knowl. Data Eng. 19 (3)
(2007) 384–397.

[32] B. Zheng, W.-C. Lee, D. Lee, Spatial queries in wireless broadcast
systems, Wirel. Netw. 10 (6) (2004) 723–736.

[33] B. Zheng, W.-C. Lee, K. Lee, D. Lee, M. Shao, A distributed spatial
index for error-prine wireless data broadcast, VLDB J. 18 (4) (2009)
959–986.

[34] B. Zheng, W.-C. Lee, P. Liu, D. Lee, X. Ding., Tuning on-air signatures
for balancing performance and confidentiality, IEEE Trans. Knowl.
Data Eng. 21 (12) (2009) 1783–1797.

http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref9
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref9
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref9
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref12
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref12
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref12
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref14
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref14
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref16
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref16
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref16
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref17
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref17
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref19
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref19
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref19
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref20
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref20
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref20
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref22
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref22
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref22
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref23
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref23
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref23
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref27
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref27
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref27
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref28
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref28
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref30
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref30
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref30
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref31
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref31
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref31
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref32
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref32
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref33
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref33
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref33
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref34
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref34
http://refhub.elsevier.com/S0306-4379(14)00192-6/sbref34

	On using broadcast index for efficient execution of shortest path continuous queries
	Introduction
	Related work
	System model: the road network system
	The problems and motivation examples
	Problem 1: frequent index re-generation at traffic server
	Problem 2: changes in the shortest path

	Progressive approach (PA)
	Shortcut networks (SN)
	Region tree
	Generations of SN
	Maintenance of SN

	Multi-level shortcut networks (MLSN)
	Generation of MLSN
	MLSN for traffic server
	MLSN for clients (MLSNC)

	Generation of broadcast index
	Processing of SPCQ at clients
	Cost analysis

	Performance evaluation
	Comparison amongst PA, HiTi, CH and NR
	Effects of update range
	Effects of shorter path
	Effects of update threshold

	Conclusions and future work
	References

