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Abstract—In moving object environments, it is infeasible for the database tracking the movement of objects to store the exact

locations of objects at all times. Typically, the location of an object is known with certainty only at the time of the update. The

uncertainty in its location increases until the next update. In this environment, it is possible for queries to produce incorrect results

based upon old data. However, if the degree of uncertainty is controlled, then the error of the answers to queries can be reduced. More

generally, query answers can be augmented with probabilistic estimates of the validity of the answer. In this paper, we study the

execution of probabilistic range and nearest-neighbor queries. The imprecision in answers to queries is an inherent property of these

applications due to uncertainty in data, unlike the techniques for approximate nearest-neighbor processing that trade accuracy for

performance. Algorithms for computing these queries are presented for a generic object movement model and detailed solutions are

discussed for two common models of uncertainty in moving object databases. We study the performance of these queries through

extensive simulations.

Index Terms—Data uncertainty, probabilistic queries, range queries, nearest-neighbor queries.

�

1 INTRODUCTION

SYSTEMS for continuous monitoring or tracking of mobile
objects receive updated locations of objects as they move

in space [3], [11], [5]. Due to limitations of bandwidth and
the battery power of the mobile devices, it is infeasible for
the database to contain the exact position of each object at
each point in time. For example, if there is a time delay
between the capture of the location and its receipt at the
database, the location values received by the object may be
different from the actual location values. An inherent
property of these applications is that object locations cannot
be updated continuously. Following an update, the position
of the object is unknown until the next update is received.
Under these conditions, the data in the database is only an
estimate of the actual location at most points in time. This
inherent uncertainty affects the accuracy of the answers to
queries. Fig. 1a illustrates how a nearest-neighbor query for
point q can yield an incorrect result. Based upon the
recorded locations x0 and y0 of objects o1 and o2, the
database returns “o1” as the object closest to q. However, in
reality, the objects could have moved to positions x1 and y1
in which case “o2” is nearer.

Due to the inherent uncertainty in the data, providing

meaningful answers seems impossible. However, one can

argue that, for most moving objects, the locations of objects

cannot change drastically in a short period of time. In fact,

the degree and rate of movement of an object is often

constrained. For example, uncertainty models have been
proposed for moving object environments in order to
reduce the overhead of updates [24]. Such information can
help address the problem. Consider the above example
again. Suppose we can provide a guarantee that, at the time
the query is evaluated, o1 and o2 could be no further than
some distances d1 and d2 from their locations stored in the
database, respectively, as shown in Fig. 1b. With this
information, we can state with confidence that o1 is the
nearest neighbor of q. In general, the uncertainty of the
objects may not allow us to determine a single object as the
nearest neighbor. Instead, several objects could have the
possibility of being the nearest neighbor.

The notion of probabilistic answers to queries over
uncertain data was introduced in [24] for range queries,
where the answer consists of objects along with the
probability of each object lying in the query range. We
extend this idea to answer nearest-neighbor queries—the
answer consists of not a single object that is closest to the
object, but a set of objects, each of which have the potential
of being the nearest neighbor of the query point. In addition
to identifying these objects, the probability of each object
being the nearest neighbor can also be evaluated. The
probabilities allow the user to place appropriate confidence
in the answer as opposed to having an incorrect answer or
no answer at all. Note that, depending upon the application,
one may choose to report only the object with the highest
probability as the nearest neighbor or only those objects
whose probabilities exceed a minimum threshold.

Providing probabilistic answers to nearest-neighbor
queries is much more difficult than range queries. For
range queries, the probability for each object can be
determined independent of the other objects—it depends
only upon the query and the uncertainty of the object in
question. However, for nearest-neighbor queries, the
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interplay between objects is critical and the probability
that an object is the closest to the query is greatly
influenced by the position and uncertainty of the other
objects. In this paper, we present a novel technique for
providing probabilistic guarantees to answers of nearest-
neighbor queries. As an overview, our algorithm first
eliminates all the objects that have no chance of being the
nearest neighbor. Then, for every object that may be the
nearest neighbor, its probability is evaluated by summing
up the probability of being the nearest neighbor for all its
possible locations. Our solution is generic since it makes
no assumption about the nature of movement or
uncertainty model used to limit updates from objects. It
can thus be applied to any practical object movement
model. We illustrate that our algorithm can be easily
applied to two of the most important classes of object
movement models.

It should be noted that, in contrast to the problem of
finding an approximate nearest neighbor wherein accuracy
is traded for efficiency, the imprecision in the query
answers is inherent in this problem. To the best of our
knowledge, the problem of inherent imprecise query
processing has only been addressed in [24], where the
discussion is limited to the the case of range queries for
objects moving in straight lines with known mean speed.
We generalize this problem for range queries with a less
constrained model of movement and also address the more
challenging problem of nearest-neighbor queries which has
not been considered earlier.

To sum up, the contributions of this paper are:

. a formal notion of probabilistic nearest-neighbor
queries,

. an algorithm for answering probabilistic nearest-
neighbor queries under a general model of
uncertainty,

. solutions to probabilistic nearest-neighbor queries
for two of the most important moving-object models,
and

. methods for efficient execution of our algorithms,
including the use of index structures and approx-
imation techniques.

The rest of this paper is organized as follows: In
Section 2, we describe a general model of uncertainty for
moving objects and the concept of probabilistic queries.
Section 3 discusses the algorithms for evaluating probabil-
istic queries under a general uncertainty model. Section 4

studies how to evaluate queries for two popular uncertainty
models: line-segment and free-moving uncertainty.
Section 5 addresses the issue of computing the answers
efficiently with the use of index structures and faster query
processing through approximation. In Section 6, we present
detailed experiment results. Section 7 discusses related
work and Section 8 concludes the paper. Special cases of the
solutions are discussed in Appendix A and Appendix B
(which can be found on the Computer Society Digital
Library at http://computer.org/tkde/archives.htm). The
analytical cost of executing probabilistic nearest-neighbor
queries is studied in Appendix C (which can be found on
the Computer Society Digital Library at http://computer.
org/tkde/archives.htm).

2 UNCERTAINTY MODEL AND PROBABILISTIC

QUERIES

In this section, we describe a model of uncertainty for
moving objects. This uncertainty model is generic in the
sense that it incorporates the paradigm of most applica-
tions. Based on this uncertainty model, we introduce the
concept of probabilistic range and nearest-neighbor queries.

Several specific models of uncertainty have been
proposed. One popular model for uncertainty is that, at
any point in time, the location of the object is within a
certain distance, d, of its last reported position. If the object
moves further than this distance, it reports its new location
and possibly alters the distance d to a new value (known to
both the object and the server) [24]. A less uncertain model
is one in which objects are constrained to move along
straight lines (which may correspond to road segments for
example). The position of the object at any time is within a
certain interval, centered at its last reported position, along
the line of movement [24]. Other models include those that
have no uncertainty [14], where the exact speed and
direction of movement are known. This model requires
updates at the server whenever the objects speed or
direction change. Another model assumes that the object
travels with known velocity along a straight line, but may
deviate from this path by a certain distance [19], [23].

For the purpose of our discussion, the exact model of
movement of the object is not important. All that is required
is that, at the time of execution of the query, the uncertainty
information be known for each object. The uncertainty of an
object can be characterized as follows:

Definition 1. An uncertainty region of an object Oi at time t,
denoted by UiðtÞ, is a closed region such that Oi can be found
only inside this region.

Definition 2. The uncertainty probability density function
of an object Oi, denoted by fiðx; y; tÞ, is a probability density
function of Oi’s location ðx; yÞ at time t, that has a value of 0
outside UiðtÞ.

In the above definitions, we assume each object is a
point, i.e., its spatial extents are not considered. Also, since
fiðx; y; tÞ is a probability density function, it has the
property that

R
UiðtÞ fiðx; y; tÞdxdy ¼ 1. We do not limit how

the uncertainty region evolves over time or what the
probability density function of an object is inside the
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Fig. 1. (a) A nearest-neighbor query for a point q can yield false results

by using the data values stored in the database. (b) Imprecision can be

used to provide answers with guaranteed certainty.



uncertainty region. The only requirement for the probability
density function is that its value is 0 outside the uncertainty
region. A trivial probability density function is the uniform
density function, which depicts the worst-case or “most
uncertain” scenario. Usually, the scope of uncertainty is
determined by the recorded location of the moving object,
the time elapsed since its last update, and other application-
specific assumptions. For example, one may decide that the
uncertainty region of an object contains all the points within
distance ðt� tuÞ � v from its last reported position, where tu
is the time that the reported position was sent and v is the
maximum speed of the object. One can also specify that the
object location follows the Gaussian distribution inside the
uncertainty region.

Based on the above model, different types of location-
related queries, such as range queries and nearest-neighbor
queries, can be issued. The imprecision of location values
imply that some objects may satisfy a query. Therefore, it is
natural to assign a probability value to each object that
satisfies the query result. In [24], a probabilistic method for
capturing the uncertainty information in range queries is
presented. Each query returns a set of tuples in the form (O, p)
where O is the object and p is the probability that O is in the
“range query region” specified by the user. Only the tuples
where p is greater than some minimum threshold are
returned.

We now generalize their ideas with the definition of a
probabilistic range query:

Definition 3: Probabilistic Range Query (PRQ). Given a
closed region R and a set of n objects O1; O2; . . . ; On with
uncertainty regions and probability density functions at time t0,
a PRQ returns a set of tuples in the form of ðOi; piÞ, where pi is
the nonzero probability that Oi is located inside R at time t0.

A probabilistic nearest-neighbor query can be defined in
a similar manner:

Definition 4: Probabilistic Nearest-Neighbor Query
(PNNQ). For a set of n objects O1; O2; . . . ; On with
uncertainty regions and probability density functions given
at time t0, a PNNQ for a point q is a query that returns a set of
tuples of the form ðOi; piÞ, where pi is the nonzero probability
that Oi is the nearest neighbor of q at time t0.

Note that the answer to the same probabilistic query
executed at two different time instants over the same

database can be different even if no updates are received by

the database during the time between the two executions

because uncertainty regions may change over time.
We conclude this section with a simple example. In

Fig. 2, objects a; b; c; d, each with different uncertainty

regions (shaded), are being queried. Assume each object

has an even chance of being located in its uncertainty

region, i.e., faðx; y; tÞ; fbðx; y; tÞ; fcðx; y; tÞ; fdðx; y; tÞ are uni-

form density functions at any time t. A PRQ (represented

by the rectangle R) is invoked at time t0 to find out

which objects are inside R. Object a is always inside the

rectangle, so its probability value is 1. Object d is always

outside the rectangle, thus it has no chance of being

located inside R. Ubðt0Þ and Ucðt0Þ partially overlap the

query rectangle. In this example, the result of the PRQ is:

fða; 1Þ; ðb; 0:7Þ; ðc; 0:4Þg.
In the same example, a PNNQ is issued at point q at time

t0. We can see that a lot of points in Ubðt0Þ are closer to q

than points in other uncertainty regions. Moreover,

fbðx; y; tÞ is a uniform density function over Ubðt0Þ and, so,
b has a high probability of being the nearest neighbor of q.

Object d does not have any chance of being the nearest

neighbor since none of the points in Udðt0Þ is closer to q than

all other objects. For this example, the result of the PNNQ

may be: fða; 0:3Þ; ðb; 0:5Þ; ðc; 0:2Þg. We will investigate how

these probability values can be obtained in the next section.

3 EVALUATING QUERIES FOR IMPRECISE DATA

In this section, we examine how PRQ and PNNQ can be

answered under the uncertainty model described in the last

section. Although the solution to PRQ is trivial compared

with PNNQ, understanding the solution to PRQ is useful

for understanding how PNNQ is evaluated.

3.1 Evaluation of PRQ

A PRQ returns a set of tuples ðOi; piÞ, where pi is the nonzero

probability that object Oi is located in the query region R at

time t0. Let S ¼ fO1; . . . ; OjSjg be the set of all moving objects

that have to be considered by the PRQ and letX be the set of

tuples returned by the PRQ. The algorithm for evaluating the

PRQ at time t0 is described in Fig. 3, which basically

integrates the probability distribution function in the over-

lapping area of Uiðt0Þ and R to compute pi. In Section 7, we
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Fig. 2. Example of PRQ and PNNQ.



compare our method with Wolfson et al.’s approach [24] in

evaluating a PRQ.

3.2 Evaluation of PNNQ

Processing a PNNQ involves evaluating the probability of

each object being closest to a query point. Unlike the case of

PRQ, we can no longer determine the probability for an

object independent of the other objects. In this section, we

present a framework to answer PNNQ for a generic model

of uncertainty. Section 4 discusses how this solution

framework can be applied easily to two of the most

common uncertainty models in Section 4.
Recall that a PNNQ returns a set of tuples ðOi; piÞ for a

point q, where pi denotes the nonzero probability that Oi is

the nearest neighbor of q at time t0. Again, let S ¼
fO1; O2; . . . ; OjSjg be the set of objects to be considered by

q in evaluating the query and let X be the set of tuples

returned by the query. The solution presented here consists

of four steps: the projection, pruning, bounding, and evaluation

phases. The first three phases filter out any objects in the

database that have no chance of being the nearest neighbor.

The last phase, namely, the evaluation phase, is the core part

of our solution: It computes the probability of being the

nearest neighbor for each object that remains after the first

three phases:

1. Projection Phase. In this phase, the uncertainty
region of each moving object is computed based on
the uncertainty model used by the application.
Figs. 4a and 4b illustrate how this phase works.
The last recorded locations of the objects in S are
shown in Fig. 4a. The uncertainty regions “pro-
jected” onto the object space are shown in Fig. 4b.
The shapes of these uncertainty regions are deter-
mined by the uncertainty model used, the last
recorded location of Oi, the time elapsed since the
last location update, and the maximum speeds of the
objects.

2. Pruning Phase. Consider two uncertainty regions
U1ðt0Þ and U2ðt0Þ. If the shortest distance of U1ðt0Þ to
q is greater than the longest distance of U2ðt0Þ to q,
we can immediately conclude that O1 is not an
answer to the PNNQ: Even if O2 is at the location
farthest from q in U2ðt0Þ, O1 cannot be closer than O2

to q. Based on this observation, we can eliminate
objects from S by the algorithm shown in Fig. 5. The

key to this algorithm is to find f , the minimum of the
longest distances of the uncertainty regions from q,
and eliminate any object with shortest distance to q
larger than f . In Section 5.1, we examine a method
adopted from the nearest-neighbor search algorithm
[17] to find f efficiently.

After this phase, S contains the (possibly fewer)
objects which must be considered by q. This is the
minimal set of objects which must be considered by
the query since any of them could be the nearest
neighbor of q. Fig. 4b illustrates how this phase
removes objects that are irrelevant to q from S.

3. Bounding Phase. For each element in S, there is no
need to examine all portions in the uncertainty region.
We only have to look at the regions that are located no
farther than f from q. We do this conceptually by
drawing a bounding circle C of radius f , centered at q.
Any portion of the uncertainty region outside C can
be ignored. Figs. 4c and 4d illustrate the result of this
phase.

The phases we have just described essentially
reduce the number of objects to be evaluated, and
derive an upper bound on the range of possible
location values, based on the uncertainty regions of
the objects and the position of q. We are now ready
to present the details of the most important part of
our solution—the evaluation phase. We will present
the algorithm first before explaining how it works.

4. Evaluation Phase. Based on S and the bounding
circle C, our aim is to calculate, for each object in S,
the probability that it is the nearest neighbor of q.
The solution is based on the fact that the probability of
an object o being the nearest neighbor with distance r to q
is given by the probability of o being at distance r to q
times the probability that every other object is at a
distance of r or larger from q. Let CqðrÞ denote a circle
with center q and radius r. Let PiðrÞ be the
probability that Oi is located inside CqðrÞ and
priðrÞ be the probability density function of r such
that Oi is located at the boundary of CqðrÞ. Fig. 6
presents the algorithm for this phase.

In order to handle zero uncertainty, i.e., Uiðt0Þ is
the recorded location of Oi, a special procedure
has to be inserted to this algorithm. To simplify
discussions, we assume nonzero uncertainty
throughout the paper. Appendix A (which can be
found on the Computer Society Digital Library at
http://computer.org/tkde/archives.htm) discusses
in detail how to handle zero uncertainty.

3.2.1 Evaluation of PiðrÞ and priðrÞ
As introduced before, PiðrÞ is the probability that Oi is
located inside the circle CqðrÞ (with center q and radius r).
The computation of PiðrÞ is shown in Fig. 7.

If r < ni, we are assured that CqðrÞ cannot cover any part
of Uiðt0Þ, so Oi cannot lie inside CqðrÞ and PiðrÞ equals 0
(Step 1). On the other hand, if r > fi, then we can be certain
that CqðrÞ covers all parts of Uiðt0Þ, i.e., Oi must be inside
CqðrÞ and PiðrÞ equals 1 (Step 2). Steps 3 and 4 returns a
nonzero PiðrÞ value.
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Fig. 3. PRQ Algorithm.



The evaluation phase needs to compute priðrÞ, the

probability density function of r where Oi lies on an

infinitesimally narrow ring of radius r centered at q. If PiðrÞ
is a differentiable function, then priðrÞ is the derivative of

PiðrÞ. Note that priðrÞ is undefined at t0 if Uiðt0Þ is a point

(i.e., zero uncertainty) because PiðrÞ becomes a step

function and the derivative of PiðrÞ is undefined at t0.

These subtle details are discussed in Appendix A (which

can be found on the Computer Society Digital Library at

http://computer.org/tkde/archives.htm).

3.2.2 Evaluation of pi
We can now explain how pi is computed. Let ProbðrÞ
denote the probability density function that Oi lies on the

boundary of CqðrÞ and is the nearest neighbor of q. Then, (1)

illustrates the structure of our solution:

pi ¼
Z f

ni

ProbðrÞ dr: ð1Þ

Equation (1) computes the sum of the probability that Oi is

the nearest neighbor over all locations inside Uiðt0Þ. Recall
that ni represents the shortest distance of Uiðt0Þ from q,

while f is the radius of the bounding circle, beyond which

we do not need to consider. Equation (1) expands CqðrÞ
with radius ni to f . Therefore, each point in Uiðt0Þ must lie

on some circular ring of width dr, center q, and radius r,

where r 2 ½ni; f�. Essentially, we consider all the points in

Uiðt0Þ that are equidistant from q and evaluate the chance

that they are nearest to q.
For each ring, the event that Oi is the nearest neighbor of

q occurs when: 1) Oi lies on the ring and 2) Oi is the nearest

neighbor of q. Assuming that these two events are

independent, we can rewrite (1) in terms of priðrÞ and

PkðrÞ (where k 6¼ i):

pi ¼
Z f

ni

ProbðOi lies on the boundary of CqðrÞÞ

� Probðother objects lie outside CqðrÞÞ dr
ð2Þ

¼
Z f

ni

piðrÞ �
YjSj

k¼1^k 6¼i

ð1� PkðrÞÞ dr: ð3Þ

Observe that each 1� PkðrÞ term registers the probability

that object Ok (where k 6¼ i) lies at a distance greater than r.
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Fig. 4. An example of a PNNQ processing: (a) Locations of objects, (b) uncertainty regions and distances from q, (c) bounding circle, and (d) bounded

regions.

Fig. 5. Algorithm for the pruning phase.



3.2.3 Efficient Computation of pi
We can improve the computation time of (3). Note that

PkðrÞ has a value of 0 if r � nk. This means when r � nk,
1� PkðrÞ is always 1 and Ok has no effect on the
computation of pi. Instead of always considering jSj � 1

objects in the
Q

term of (3) throughout [ni; f], we may

actually consider fewer objects in some ranges of values.
First, we sort the objects according to their shortest
distances (ni) from q. Next, the integration interval [ni; f]
is broken down into a number of intervals with end points
defined by ni. The probability of an object being the nearest

neighbor of q is then evaluated for each interval in a manner
similar to (3), except that we only consider the objects with
nonzero PkðrÞ. The sum of the probabilities for these
intervals is pi. The final equation for pi is:

pi ¼
XjSj
j¼i

Z njþ1

nj

priðrÞ �
Yj

k¼1^k6¼i

ð1� PkðrÞÞ dr: ð4Þ

Here, we let njSjþ1 be f for notational convenience. Instead
of considering jSj � 1 objects in the

Q
term, (4) only

handles j� 1 objects in interval ½nj; nj þ 1�.
Equation (4) is implemented in our evaluation phase.

Step 2 sorts the objects in S in ascending order of near
distances. Step 3 assigns the value of f to njSjþ1. Step 4
executes (4) once for every object Oi in S and puts the tuples

ðOi; piÞ into X, which is returned in Step 5.

Example. Fig. 8a shows five objects O1; . . . ; O5, captured
after the bounding phase with uncertainty regions.

Fig. 8b shows the result after these objects have been
sorted in ascending order of ni, with the r-axis being the
distance of the object from q, and n6 equals f . The
probability pi of each object Oi being the nearest

neighbor of q is the sum of the probability that Oi is

the nearest neighbor at each point in the line interval

½ni; n6�. Using (4), pi is evaluated by considering the

subintervals in ½ni; n6�. For example, p3 is computed by

considering the objects in three subintervals: O1; O2; O3

in ½n3; n4�, O1; O2; O3; O4 in ½n4; n5�, and O1; O2; O3; O4; O5

in ½n5; n6�.

4 QUERYING WITH LINE-SEGMENT

AND FREE-MOVING UNCERTAINTY

In this section, we apply the generic PRQ and PNNQ

algorithms presented in the last section to two practical

models of uncertainty: line-segment and free-moving

uncertainty.

4.1 Line-Segment and Free-Moving Uncertainty
Models

We first discuss the two important types of uncertainty

based upon the popular models proposed in the literature

[24], [19]:

. Line-segment uncertainty. For objects that move
along straight line paths, the uncertainty at any time
is given by a line-segment. The line along which the
object is currently moving is known to the database.
The center and length of this segment is determined
by the exact model of movement used. For example,
the length of the segment may be fixed or may vary
over time based upon a maximum allowed speed of
movement.

. Free-moving uncertainty. For objects that are free to
move in any direction, the uncertainty at any time is
given by a circle. The center and radius of the circle
are determined by the last reported location and the
exact model of movement used. For example, the
radius could be fixed or may be determined by the
product of the maximum speed of the object and
time since the last update. It may also be a
predefined value evaluated by dead-reckoning
policies [24]. The center of the circle could be the
last reported location or could be determined by the
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Fig. 6. Algorithm for the evaluation phase.

Fig. 7. Computation of PiðrÞ.



last reported location, direction, and speed of
movement, and the time since the last update.

From now on, we assume that the uncertainty regions at
time tðUiðtÞÞ for object Oi are in the form of either line
segments or circles. If UiðtÞ is a line segment, then jUiðtÞj is
the length of UiðtÞ; if UiðtÞ is a circle, then jUiðtÞj is the area
of UiðtÞ. Furthermore, we assume that an object has the
same chance of being located anywhere within UiðtÞ, i.e., the
probability density function fiðx; y; tÞ of UiðtÞ is a bounded
uniform distribution:

fiðx; y; tÞ ¼
1=jUiðtÞj if ðx; yÞ 2 UiðtÞ
0 otherwise:

�

The bounded uniform distribution is important in situations

whenwe have no information about the location of the object

within the uncertainty region—the worst-case uncertainty.

The best guess is then that the object has the same chance of

being located in every point in the uncertainty region. This is

also the case when probabilistic queries are the most

useful—when querying old data under a high level of

uncertainty is prone to error. Due to its simplicity and

practicability, we will illustrate how to evaluate probabilistic

queries using uniform distribution in this section. We note

that, however, it is easy to extend our generic solution in

Section 3 to other kinds of distributions, such as the normal

distribution for dead-reckoning policies [24].
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Fig. 8. This example illustrates how the evaluation phase works. (a) Uncertainty regions of five object, and the bounding circle with center q and

radius f. (b) Oi sorted in ascending order of ni.

Fig. 9. Example of uncertainty model under the assumption that objects specify a maximum speed with each update. (a) Line-moving objects. (b) The

uncertainty regions of objects a, b. (c) Free-moving objects. (d) The uncertainty regions of objects a, b, and c.



Figs. 9a and 9c illustrate the notions of uncertainty for
these two models. For the case of line-moving objects, an
object reports its current location, line of movement, and
maximum speed, Sm. Following this location report, the
object is free to move along the reported line of movement
at any speed not exceeding the maximum reported speed.
Thus, the uncertainty of the object t seconds after the
location report is received is given by a line segment
centered at the previous reported location, of length equal
to 2Smt along the line of movement. Since the next update
from the object will provide a new location, line of
movement, and maximum speed, the uncertainty of the
objects is a line segment with length increasing from one
update until the next update is received. For the case of the
free moving object, an update reports the current location
and a maximum speed. The uncertainty region is a circle
with radius Smt that increases over time until the next
update occurs. Figs. 9b and 9b demonstrate that evaluating
a probabilistic query is equivalent to looking at the
uncertainty regions in Figs. 9a and 9c, respectively, at
time t0, when the query is issued.

In the rest of this section, we will discuss the evaluation
of probabilistic queries in line-segment and free-moving
uncertainty models. Readers are reminded that our ap-
proach is also applicable to other uncertainty models.

4.2 PRQ for Line-Segment and Free-Moving
Uncertainty

Answering a PRQ for our line-uncertainty and free-moving
uncertainty models is easy. Assume that a PRQ is evaluated
at time t0. First, notice that the probability density function
fiðx; y; t0Þ of the uncertainty region Uiðt0Þ is uniform and, so,
Oi has an equal opportunity of being located anywhere in
Uiðt0Þ. Thus, pi is simply equal to the fraction of Uiðt0Þ that
overlaps the query region R. The following two equations
derive pi for line-segment and free-moving uncertainty.
They can be used to replace Step 3(b)i of the generic PRQ
algorithm shown in Fig. 3.

Line-moving uncertainty. Since Uiðt0Þ is a straight line,

pi ¼
length of Uiðt0Þ that overlaps R

length of Uiðt0Þ
:

Free-moving uncertainty. In this case, Uiðt0Þ is a circle,

pi ¼
Area of Uiðt0Þ that overlaps R

Area of Uiðt0Þ
:

4.3 PNNQ for Line-Segment and Free-Moving
Uncertainty

Recall that the PNNQ solution presented in Section 3.2 is

generic, i.e., it can be applied to different uncertainty

models. In order to evaluate PNNQ for a particular

uncertainty model, we need to parametize the generic

solution according to the specifications of the uncertainty

model. Once all parameters are defined appropriately, the

parameterized generic PNNQ solution will correctly eval-

uate the queries for that particular model.
Suppose a PNNQ is evaluated at time t0. The parameters

that need to be found to adapt the generic PNNQ solution

to a particular uncertainty model, for every object Oi, are:

1. Uiðt0Þ and fiðx; y; t0Þ,
2. ni and fi, the shortest and longest distance of Uiðt0Þ

from q, respectively, and
3. PiðrÞ and priðrÞ.
We have already discussed what Uiðt0Þ and fiðx; y; t0Þ are

for both the line-segment and free-moving uncertainty

models. In the rest of this section, we discuss the technical

details involved in obtaining ni, fi, PiðrÞ, and priðrÞ for line-
segment and free-moving uncertainty. Also, we use dðA;BÞ
to denote the distance between two points A and B. For

clarity, we only illustrate the derivation of PiðrÞ and priðrÞ
with the assumption that q does not lie on Uiðt0Þ for any

object i. In Appendix B (which can be found on the

Computer Society Digital Library at http://computer.org/

tkde/archives.htm), we will show how to derive PiðrÞ and
priðrÞ for the case where q is inside Uiðt0Þ.

4.3.1 Parametizing Generic PNNQ Solution

for Line-Segment Uncertainty

Let xin be the endpoint of the line-segment uncertainty

Uiðt0Þwith a shorter distance from q, and let this distance be

din. Let xil be the end point (before the bounding phase) of

the line-segment uncertainty with a longer distance from q,

and let this distance be dil. These parameters are illustrated

in Fig. 10a.

Obtaining ni and fi. When q does not lie on Uiðt0Þ, niðt0Þ
is equal to either 1) the perpendicular distance between

Uiðt0Þ and q (Fig. 10a) or 2) the distance between one of the

end points and Uiðt0Þ (Fig. 11a). In the former case,

0 < ni < din; in the latter, 0 < ni ¼ din. If q lies on Uiðt0Þ,
then ni ¼ 0. In any case, fi ¼ dil.
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Fig. 10. An example of Case 1 (ni < din) Line-Segment Uncertainty. (b) Intersection by CqðrÞ with radius r, centered at q, such that ni � r � din.

(c) Intersection by CqðrÞ with radius r, centered at q, such that din < r < dil.



Obtaining PiðrÞ and priðrÞ. Assume that q does not lie on

Uiðt0Þ, i.e., ni 6¼ 0 (Appendix B (which can be found on the

Computer Society Digital Library at http://computer.org/

tkde/archives.htm) discusses PiðrÞ for ni ¼ 0.). There are

two cases to consider: ni < din and ni ¼ din. In both cases,

since fiðx; y; t0Þ is a uniform probability density function,

PiðrÞ is given by:

Length of Uiðt0Þ inside CqðrÞ
Length of Uiðt0Þ

:

Case 1: ni < din. Fig. 10a illustrates this case. PiðrÞ has the
following characteristics:

. When r < ni, Uiðt0Þ is not contained in CqðrÞ. Hence,
PiðrÞ ¼ 0.

. When ni � r � din, the length of the line-segment

uncertainty intersected by CqðrÞ is 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � n2

i

p
, as

shown in Fig. 10b. Thus,

PiðrÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � n2

i

p
dðxin; xilÞ

:

. When din < r < dil, as illustrated by Fig. 10c,

PiðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � n2

i

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2in � n2

i

p
dðxin; xilÞ

:

. When r � dil, the line-segment uncertainty of Oi is

covered entirely by CqðrÞ. This implies Oi is ensured

to be inside CqðrÞ and, thus, PiðrÞ equals to 1.

Case 2: ni ¼ din. Let the perpendicular distance between q

and Uiðt0Þ be l. An example of this case is shown in Fig. 11a.

. When r < din, Uiðt0Þ is not contained in CqðrÞ. Hence,
PiðrÞ ¼ 0.

. When din � r � dil, as shown in Fig. 11b,

PiðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � l2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2in � l2

p
dðxin; xilÞ

:

. When r > dil, the line-segment uncertainty of Oi is

covered entirely by CqðrÞ. As shown in Fig. 11c, Oi is

sure to be inside CqðrÞ and, thus, PiðrÞ equals to 1.

We now summarize PiðrÞ of both cases. We also give the

the equation of priðrÞ, which are the derivatives of PiðrÞ.

Case 1 (ni < din):

PiðrÞ ¼

0 r < ni

2
ffiffiffiffiffiffiffiffiffi
r2�n2

i

p
dðxin;xilÞ ni � r � dinffiffiffiffiffiffiffiffiffi
r2�n2

i

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
d2in�n2

i

p
dðxin;xilÞ din < r < dil

1 otherwise

8>>>>><
>>>>>:

priðrÞ ¼

0 r < ni or r � dil
2rffiffiffiffiffiffiffiffiffi

r2�n2
i

p
dðxin;xilÞ

ni � r � din

rffiffiffiffiffiffiffiffiffi
r2�n2

i

p
dðxin;xilÞ

din < r < dil:

8>><
>>:

Case 2 (ni ¼ din):

PiðrÞ ¼
0 r < dinffiffiffiffiffiffiffiffi
r2�l2

p
�

ffiffiffiffiffiffiffiffiffiffi
d2in�l2

p
dðxin;xilÞ din � r � dil

1 otherwise

8><
>:

priðrÞ ¼
0 r < din or r > dil

rffiffiffiffiffiffiffiffi
r2�l2

p
dðxin;xilÞ

din � r � dil:

(

4.3.2 Parametizing Generic PNNQ Solution

for Free-Moving Uncertainty

Let LiðtuÞ be the latest recorded location of Oi in the

database at time tu. At time t0 > tu, the uncertainty region

Uiðt0Þ is given by a circle with center LiðtuÞ and radius Ri,

where Ri ¼ Siðt0 � tuÞ and Si is the maximum speed of

object Oi. Let di ¼ dðq; LiðtuÞÞ. These parameters are

illustrated in Fig. 12a.
Obtaining ni and fi. Depending on the relative positions

of q and Uiðt0Þ, there are two scenarios:
Case 1: q is outside Uiðt0Þ. From Fig. 12a, we see that ni

and fi can be obtained by considering the intersections of

Uiðt0Þ and the line joining q and LiðtuÞ.
Case 2: q is inside Uiðt0Þ. This situation is illustrated in

Fig. 12b. Since object Oi can be anywhere in Uiðt0Þ, the

closest possible location of Oi to q is when Oi coincides with

q. ni ¼ 0 in this case.
Obtaining PiðrÞ and priðrÞ. The key to derive PiðrÞ is to

observe that if an object Oi is located inside the CqðrÞ, it
must be situated in the overlapping region of the circles

CqðrÞ and Uiðt0Þ. Since fiðx; y; t0Þ is a uniform probability

density function, we can deduce that:

PiðrÞ ¼
Overlapping area of CqðrÞ and Uiðt0Þ

Area of Uiðt0Þ
: ð5Þ
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Fig. 11. An example of Case 2 ( ni ¼ din) Line-Segment Uncertainty. (b) Intersection by CqðrÞ with radius r, centered at q, such that din � r � dil.

(c) Intersection by CqðrÞ with radius r, centered at q, such that r > dil.



The problem of finding PiðrÞ is therefore reduced to the

problem of finding the overlapping area of CqðrÞ and Uiðt0Þ.
As discussed earlier, the lengths of ni and fi depend on

whether q is inside or outside Uiðt0Þ. This results in different

overlapping area equations. Here, we only present the

derivation of PiðrÞ by assuming q is located outside Uiðt0Þ. A
discussion of the derivation of PiðrÞ when q is inside Uiðt0Þ
can be found in Appendix B (which can be found on the

Computer Society Digital Library at http://computer.org/

tkde/archives.htm).
Fig. 13 shows the overlapping area of CqðrÞ and Uiðt0Þ

when q is outside Uiðt0Þ. By cosine rule,

� ¼ arccos
di

2 þ r2 �R2
i

2dir
and � ¼ arccos

di
2 þR2

i � r2

2diRi
:

The overlapping area can then be evaluated as follows:

1

2
r2ð2�Þ � 1

2
r2 sinð2�Þ

� �
þ 1

2
R2

i ð2�Þ �
1

2
R2

i sinð2�Þ
� �

ð6Þ

¼ r2 �� 1

2
sinð2�Þ

� �
þR2

i �� 1

2
sinð2�Þ

� �
: ð7Þ

Since the area of Uiðt0Þ is �R2
i , by (5) and (7), we have

PiðrÞ ¼
0 r < ni
r2

�R2
i

�� 1
2 sinð2�Þ

� �
þ 1

� �� 1
2 sinð2�Þ

� �
ni � r � fi

1 otherwise:

8<
:

The probability density function, priðrÞ, is the derivative
of PiðrÞ:

priðrÞ ¼
0 r<ni or r>fi
2r

�R2
i

��1
2 sinð2�Þð Þþr2�0

�R2
i

1�cosð2�Þð Þþ�0
� ð1�cosð2�ÞÞ ni � r � fi;

(

where �0 ¼ d�
dr ¼ 1

2di sin �

d2i�R2
i

r2
� 1

� �
, and �0 ¼ d�

dr ¼ r
diRi sin�

.

5 EFFICIENT QUERY PROCESSING

In this section, we address the problem of computing the
answers to a PNNQ efficiently. First, we discuss the use of
index structures for facilitating the execution of the pruning
phase. Then, we discuss how to execute the evaluation
phase in an efficient manner.

5.1 Efficient Execution of the Pruning Phase
Using VCI

The execution time for the queries is significantly affected
by the number of objects that need to be considered. With a
large database, it is impractical to evaluate each point for
answering the query—this is especially true for the nearest-
neighbor queries since, in Step 4 of the evaluation phase,
they are quadratic in the number of points considered. It is
therefore important to reduce the number of points. As with
traditional queries, indexes can be used for this purpose.

The key challenge for any indexing solution for moving
objects is efficient updating of the index as the object
locations change. Any of the index structures proposed for
moving objects can be used for efficiently processing
nearest-neighbor queries. We present details for the
Velocity-Constrained Index, which is particularly suited
for handling uncertainty of free-moving objects. We de-
scribe it only briefly here; details can be found in [16].

The only restriction imposed on the movement of objects
is that they do not exceed a certain speed. This speed could
potentially be adjusted if the object wants tomove faster than
its current maximum speed. The maximum speeds of all
objects are used in the construction of the index. The velocity
constrained index (VCI) is an R-tree-like index structure. It
differs from the R-tree in that each node has an additional
field: vmax—the maximum possible speed of movement over
all the objects that fall under that node. The index uses the
locations of objects at a given point in time, t0. Construction is
similar to the R-tree except that the velocity field is always
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Fig. 13. Intersection of CqðrÞ and Uiðt0Þ.

Fig. 12. Free-moving uncertainty. (a) q outside Uiðt0Þ and (b) q inside Uiðt0Þ.



adjusted to ensure that it is equal to the largest speed of any
object in the subtree. Upon the split of a node, the vmax entry
is simply copied to the new node. At the leaf level, the
maximum velocity of each indexed object is stored (not just
the maximum velocity of the leaf node).

As objects move, their locations are noted in the
database. However, no change is made to the VCI. When
the index is used at a later time, t, to process a query, the
actual positions of objects would be different from those
recorded in the index. Also, the minimum bounding
rectangles (MBR) of the R-tree would not contain these
new locations. However, no object under the node in
question can move faster than the maximum velocity stored
in the node. Thus, if we expand the MBR by vmaxðt� t0Þ,
then the expanded region is guaranteed to contain all the
points under this subtree. Thus, the index can be used
without being updated. A range query can be easily
performed using this structure. When the search reaches
the leaf nodes, the uncertainty of the object is used to
compute the probability that it intersects the range.

For nearest-neighbor queries, we use an algorithm
similar to the well-known algorithm proposed in [17]. The
algorithm uses two measures for each MBR to determine
whether or not to search the subtree: mindist and minmax
dist. Given a query point and an MBR of the index structure,
the mindist between the two is the minimum possible
distance between the query point and any other point in the
subtree with that MBR. The minmaxdist is the minimum
distance from the query point for which we can guarantee
that at least one point in the subtree must be at this distance
or closer. This distance is computed based upon the fact
that, for an MBR to be minimal, there must be at least one
object touching each of the edges of the MBR. When
searching for a nearest neighbor, the algorithm keeps track
of the guaranteed minimum distance from the query point.
This is given by the smallest value of minmaxdist or distance
to an actual point seen so far. Any MBR with a mindist
larger than this distance does not need to be searched
further.

This algorithm is easily adapted towork for uncertaindata
with VCI. Instead of finding the nearest object, the role of the
index is now to identify the subset of objects that could
possibly be the nearest neighbors of the query point due to
their uncertainty regions. This is exactly the set of objects that
intersect the circle centered at the query point with radius
equal to the shortestmaximumdistance from thequerypoint.
In other words, the index is used to perform the Pruning

Phase of the probabilistic nearest-neighbor query.
The search algorithm proceeds in exactly the same

fashion as the regular algorithm [17], except for the
following differences: When it reaches a leaf node, it
computes the maximum distance of each object (based
upon its uncertainty) from the query. The minimum such
value seen so far is called the pruning distance. When it
encounters an index node, it computes mindist and
minmaxdist. These two are adjusted to take into account
the fact that objects may have moved. Thus, mindist
(minmaxdist) is reduced (increased) by vmaxðt� t0Þ, where
vmax is the maximum velocity stored in the node. During the
search, each object that could possibly be closer than the

pruning distance (based upon the uncertainty in the object)
is recorded. At the end of the search, these objects are
returned as the pruned set of objects.

5.2 Efficient Execution of the Evaluation Phase

Since the query evaluation algorithms frequently employ
costly integration operations, one needs to implement them
carefully to optimize the query performance. If the algebraic
expressions of PiðrÞ and priðrÞ are simple, we can easily
evaluate integrals like those in Step 4(b)(i) of Fig. 6. We may
also replace the trigonometric terms of PiðrÞ and priðrÞ with
mathematical series such as Taylor’s series. We then
truncate the series according to the desired degree of
accuracy and handle simpler integration expressions.

In general, we have to rely on numeric integration
methods to get approximate answers. To integrate a
function fðxÞ over an integration interval ½a; b�, numeric
methods divide the area under the curve of fðxÞ into small
stripes, each with equal width �. Then,

R b

a fðxÞdx is equal to
the sum of the area of the stripes. The answer accuracy
depends on the width of the stripe �. One may therefore
use � to trade off accuracy and execution time. However,
choosing a right value of � for a query can be difficult. In
the algorithms, we evaluate integrals with end points
defined by nis. The interval width of each integral can
differ and, if � is used to control the accuracy, then all
integrals in the algorithm will employ the same value of �.
A large � value may not be accurate for a small integration
interval, while a small � may make integration using a
large interval unnecessarily slow. Thus, � should be
adaptive to the length of integration interval. For this
purpose, we define ", the inverse of the number of small
stripes used by a numeric method:

� ¼ integration interval width � " ¼ ½niþ1 � ni� � ": ð8Þ

For example, if " ¼ 0:1, then 1
0:1 ¼ 10 stripes are used by the

numeric method. If the integration interval is ½2; 4�,
� ¼ ð4� 2Þ � 0:1 ¼ 0:2. Therefore, " controls the precision
by adjusting the number of stripes and is adaptive to the
length of integration interval. We study how to choose "
experimentally in Section 6.

Another method to speed up the evaluation phase at the
expense of a lesser degree of accuracy is to reduce the
number of candidates after we obtain the circle C. For
example, we can set a threshold h and remove any
uncertainty interval whose fraction of overlap with C is
less than h.

6 PERFORMANCE STUDIES

In this section, we present our simulation results. We
discuss the experimental setup and important performance
results for PNNQ on objects with free-moving uncertainty.

6.1 Simulation Model

Table 1 summarizes parameters used in the simulation. The
locations of our moving objects follow the skewed distribu-
tiondescribed in [7], amodel commonlyused in the literature.
The data set consists of 100,000 objects—a collection of five
normal distributions, eachwith 20,000points, distributed in a
unit square. The mean values of the normal distribution are
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uniformly distributed and the standard deviation is 0.05. The
query points of the PNNQs are assumed to follow the same
distribution with standard deviation 0.1. The total number of
queries is between 100 and 500.

The model of object movement is based on the discus-
sions in [16]. The maximum velocities of objects follow the
uniform distribution with an overall maximum value of
Vmax, which is set to 0.00007. This is equivalent to an overall
maximum velocity of 250 miles an hour with the assump-
tion that the data space represents a square of size
1,000 miles [9]. Each object moves according to its current
speed and direction. When the speed is changed, an object
is assigned a slow speed with a 50 percent chance, a medium
speed with a 25 percent chance, and a fast speed with a
25 percent chance. The slow, medium, and fast classes
correspond to speeds ranging from 0 to Vmax

3 , from Vmax

3 to
2Vmax

3 , and from 2Vmax

3 to Vmax, respectively.

An object sends its location update to the server when it
moves more than a distance threshold or when the time

since its last update exceeds a time threshold. Each update

includes the time of update tupd, the object’s current location
xupd and the maximum speed vupd that the object promises

not to exceed. At time instant t > tupd, the current location of
an object is assumed to be uniformly distributed inside a

circle with radius ðt� tupdÞ � vupd and center xupd. An object

also sends an update in case it is about to leave its declared
uncertainty region. We maintain an in-memory version of

VCI index proposed in [16] for moving objects to support
the execution of the pruning phase.

6.2 Performance Results

Effect of ". Our first experiment is to study how the time

required to process a PNNQ changes with ". Recall that "

was defined in Section 5.2 for controlling the precision of a
PNNQ result. Fig. 14 shows the execution time (in seconds)

needed to process 100 PNNQs with " ranging from 0.001 to
0.01. As " increases, the precision decreases and, thus, the

query takes less time to compute. The curve drops sharply

when " increases from 0.001 to 0.003. Furthermore, when
" > 0:007, the precision of the result drops significantly due

to excessive approximation. Therefore, using a value of

0.003 for " is a good choice to balance the execution time
and precision in our experiments.

PNNQ versus NNQ_old. The next experiment examines

the quality of a PNNQ result, compared with a nearest-
neighbor query executed on recorded data in the database

(thereby referred to as NNQ_old). We have given an

example (Fig. 1) to illustrate a scenario where obsolete data
in the database produces incorrect results. When will this

happen and can PNNQ help in this situation?
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To answer these questions, suppose we also know that
the real nearest neighbor is z. This true answer, z, can be
different from the answer obtained by NNQ_old, which
only examines the recorded data in the database. However,
a PNNQ always assign a nonzero probability to z. To
measure how well a PNNQ performs when NNQ_old fails
to provide the true answer, we define a metric called
IncorrectProb, which is the probability PNNQ assigns to z
when NNQ_old fails to identify z as the true nearest
neighbor. Intuitively, if IncorrectProb is high, it indicates
PNNQ is much better than NNQ_old in finding out z; a low
IncorrectProb value implies that PNNQ also fails to identify z
as the real nearest neighbor. On the other hand, if NNQ_old
manages to find z, can PNNQ identify z successfully? Here,
we define the metric CorrectProb as the probability that
PNNQ assigns to z when NNQ_old manages to find z. If
CorrectProb is close to 1, it means PNNQ is almost as good
as a NNQ_old in finding z.

We study the effect of varying the degree of moving
object uncertainty on IncorrectProb and CorrectProb. Fig. 15
shows the graphs for the mean IncorrectProb and CorrectProb
values of queries as a function of average uncertainty. Here,
the average uncertainty refers to the mean radius of the
free-moving uncertainty region. As we can see, both curves
drop as the average uncertainty increases. This happens
because, as uncertainty increases, the cardinality of the
answer set increases, with more overlapping in the
uncertainty regions. It thus becomes harder to assign a
higher probability to a particular candidate. Another
important observation is that, under a wide range of
average uncertainty, the PNNQ assigns an average prob-
ability value between 30 and 40 percent to the real nearest
neighbor even when NNQ_old fails. When NNQ_old

succeeds, the PNNQ assigns an average probability value
from 80 to 100 percent to the real nearest neighbor. These
results reveal the fact that a PNNQ is able to identify the
true nearest neighbor with a nontrivial probability value
when the result of NNQ_old is wrong and is unlikely to
miss when NNQ_old successfully finds out the true nearest
neighbor. In critical situations where it is not allowed to
return incorrect nearest neighbor, a PNNQ stands out as a
better candidate than NNQ_old.

Analysis of PNNQ. The final set of experiments analyzes
the time components of a PNNQ. The execution time of a
PNNQ is mainly contributed by the pruning and evaluation

phases. As explained in Section 5.1, the use of the VCI can
effectively improve the time spent on the pruning phase.
This is reflected in Fig. 16, which shows the effect of the
average uncertainty on the total execution time and pruning
time. The pruning time remains relatively inert to the
increasing uncertainty. However, the total time still
increases with uncertainty. To understand why this
happens, let us look at Fig. 17 that records the percentage
of the total time spent on the pruning and evaluation
phases. As the average uncertainty increases, the fraction of
time spent on the evaluation phase increases. This is
because the size of the bounding circle increases with
uncertainty so that more objects are involved and, subse-
quently, more integrations with larger intervals have to be
handled. This time component dominates the total execu-
tion, explaining why the total time increases even when the
pruning time is small.

7 RELATED WORK

The uncertainty model described in this paper is based on
[24]. In that paper, each moving object is equipped with a
facility to detect the deviation of its actual location from the
location value in the DBMS. A threshold value, called
uncertainty, is defined in such a way that if the deviation is
larger than it, then an update of the location of that object is
sent to the DBMS. The uncertainty value depends on
various update policies proposed by the authors, as well as
the object movement behavior. An object can move on a
predefined route or move freely without following any
route. In the former case, a route is a line-spatial object and
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Fig. 16. Execution time versus uncertainty.

Fig. 17. Breakdown of execution time.

Fig. 15. Quality of PNNQ versus uncertainty.



the object’s motion is characterized by motion vectors in the
form (direction, speed). The uncertainty is a line segment on
the line representing the route. For the latter, a route does
not need to be defined and the uncertainty is a circle
bounding the possible location of the object.

Another important study on the issues of uncertainty in
moving-object database systems is described by Pfoser and
Jensen [13]. They introduce a framework to represent
moving objects in a relational database and describe the
error sources that occur during the sampling of positions of
objects: measurement and sampling error. Measurement
error is the result of inaccurate instruments, while sampling
error occurs because the system only captures the contin-
uous movement of an object periodically, bringing un-
certainty between two consecutive observations. The
authors point out that, in a GPS, sampling error is a more
serious problem than measurement error. Assuming the
maximum velocity of an object is known, they prove that all
possible locations of an object during the time interval
between two consecutive observations lie on an error ellipse.
A complete trajectory of any object is obtained by using
linear interpolation between two adjacent samples, i.e., a
trajectory is approximated by piecewise linear line seg-
ments. By using the error ellipse, the authors demonstrate
how to process uncertainty range queries for trajectories.

Querying trajectories over uncertain data is also consid-
ered in [23]. The uncertainty of object locations is modeled as
a 3D cylindrical body around the trajectory. The authors
argue that such an uncertainty model facilitates efficient
spatial-temporal range querying. The problem of how to
improve the speed of range query executions on trajectories
using a spatial index was studied in [14]. The work assumes
that there exist static objects, called infrastructures, that limit
the movement of moving objects. In a spatial index such as
an R-tree, a line segment is usually approximated by a
minimum bounding box. This introduces a lot of “dead-
space”—areas where the spatial index is unaware that there
is no trajectory at all. As a result, unnecessary searching may
be performed on these regions. The utilization of the
infrastructure information makes it possible to reduce the
searching effort on dead-space. If an infrastructure does not
change over time, it implies that none of the moving objects
can exist within the space occupied by the infrastructure at
any time. Therefore, a preprocessing step can be done to
discover which parts of the query window are occupied by
the infrastructure. Those parts will be chopped off from the
query window, resulting in a smaller query window size
and faster index retrieval speed.

Numerous papers have addressed the linguistic issues of
moving object database queries. A spatio-temporal query
language, called the Future Temporal Logic (FTL), has been
proposed in [19] for querying moving object databases. It is
a spatio-temporal query that allows future values of
dynamic attributes1 to be queried in a natural way. Due
to the inherent uncertain nature of object locations, the
authors define the “may” and “must” semantics for FTL:
The former semantic specified that the answer to a query
has a probability of being incorrect, while the latter one

requires the answer to be correct. The paper also describes
how to implement FTL on top of an existing relational
database. Other works on the specification of spatio-
temporal queries include Abdessalem et al.’s paper [1],
which uses Pfoser and Jensen’s uncertainty model [13] to
develop a new set of database operations for answering
queries of moving objects. They propose three semantics in
the new operations that capture uncertainty:

1. possibly semantics, in which the answer to a query
certainly contains all correct results, but may also
contain some incorrect ones,

2. surely semantics, in which the answers are subsets of
correct results, and

3. probably semantics, in which each answer has a
certain probability of being correct.

An example query is “retrieve the location of an object that
is probably 0.2 miles from a given object.” In [23], range
queries for trajectories have been proposed, with certain
quantifiers defined: 1) A trajectory sometimes or always
satisfies the range query within a time interval specified by
the user and 2) a trajectory is satisfied everywhere or
somewhere within the query region. Notice that these three
papers take a qualitative approach in the form of specifying
the uncertainty in the query by using keywords like “may”
and “surely” in the query constructs. We adopt a
quantitative presentation of the answers, i.e., probability
values to specify the answers to queries.

As far as we know, there is no work addressing a
comprehensive discussion of probabilistic methods for
specifying and processing moving-object queries as done
in this paper. In [24], Wolfson et al. discuss how to process
range queries that give probability values as answers. They
define the range query as one that finds the objects within a
region R and the answers are given by the pairs ðo; pÞ, with p
being the probability that object o is in R. They assume that
the objects move in straightline routes, with mean speed v.
The location of every object on its route is modeled as a
random variable, with a normal density function; its mean is
derived from v and the standard deviation is a function of
the uncertainty threshold. The intervals of the route that are
inside R are then found out and the probability density
function is integrated over these intervals to give the
probability p for each object o. In our paper, we do not
assume that the mean speed is known. Also, [24] only
considers objects traveling on straightline routes and assume
normal distributions, while our solutions are capable of
handling most practical uncertainty models and are not
limited to normal distributions. To the best of our knowl-
edge, we are unaware of any work that addresses the
handling of nearest-neighbor queries over uncertain data.

Recently, new types of queries for moving-object
databases have been proposed. Lazaridis et al. [10] propose
a new query type called dynamic query, which is executed
continuously by the observer as it moves in space. Since the
query results are close in nearby locations, the authors
propose techniques for reducing disk I/O.

The problems of indexing and efficient access of spatio-
temporal objects have been addressed in [2], [9], [6], [20],
[22]. The issues of dynamic attributes indexing were
discussed in [18], [21]. A spatial index for trajectories has

CHENG ET AL.: QUERYING IMPRECISE DATA IN MOVING OBJECT ENVIRONMENTS 1125

1. Dynamic attributes are database attributes that have their values
change over time, even if there is no explicit update to the database.



been developed in [14], [15]. In [12], [17], the use of spatial
indexes for execution of nearest-neighbor queries is dis-
cussed. The processing of nearest-neighbor queries in a
moving-object environment is discussed in [8]. Song and
Roussopoulos [20] investigate how to execute k-nearest
neighbor queries for moving query point efficiently.

8 CONCLUSIONS

In this paper, we studied the execution of probabilistic
range and nearest-neighbor queries over uncertain data for
moving objects. We define a generic model of uncertainty,
and then present algorithms for computing these queries for
this model. We further illustrate how this solution can be
applied to two common models of uncertainty in moving
object databases: line-segment and free-moving uncertainty.
We studied evaluation of these queries that allow a trade off
between execution time and accuracy. The use of indexes
for efficient execution of approximate queries over large
collections of moving objects is also presented. Our
experiments illustrate the effectiveness of probabilistic
nearest-neighbor queries over traditional nearest neighbor
queries. To the best of our knowledge, with the exception of
[24], which addresses probabilistic range queries for objects
moving in straight lines with fixed speed, there is no work
on probabilistic queries over uncertain data. We address the
problem of range queries as well as the more complicated
nearest-neighbor queries under a more relaxed model.

There are several interesting avenues for future work.
One important research direction is to optimize the time
spent on the evaluation phase. An extension is to study how
to answer other probabilistic queries like k-nearest neighbor
queries and reverse nearest-neighbor queries. Another
problem is to answer continuous probabilistic queries over
imprecise data efficiently. One important issue is to define
the quality metrics for probabilistic queries—how reliable
are the results returned by probabilistic queries if we do not
know the true results to the queries? Finally, a moving-
object database model discussed in this paper belongs to a
vast class of sensor-based applications, where sensors are
responsible to monitor constantly-changing attributes (e.g.,
temperature, locations of moving objects). Database read-
ings in these applications are imprecise and it will be
interesting to extend the algorithms developed in this paper
to apply to such an environment.
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