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ABSTRACT
Data ambiguity is inherent in applications such as data integration,
location-based services, and sensor monitoring. In many situa-
tions, it is possible to “clean”, or remove, ambiguities from these
databases. For example, the GPS location of a user is inexact due
to measurement errors, but context information (e.g., what a user is
doing) can be used to reduce the imprecision of the location value.
In order to obtain a database with a higher quality, we study how
to disambiguate a database by appropriately selecting candidates
to clean. This problem is challenging because cleaning involves
a cost, is limited by a budget, may fail, and may not remove all
ambiguities. Moreover, the statistical information about how likely
database objects can be cleaned may not be precisely known. We
tackle these challenges by proposing two types of algorithms. The
first type makes use of greedy heuristics to make sensible decisions;
however, these algorithms do not make use of cleaning information
and require user input for parameters to achieve high cleaning ef-
fectiveness. We propose the Explore-Exploit (or EE) algorithm,
which gathers valuable information during the cleaning process to
determine how the remaining cleaning budget should be invested.

We also study how to fine-tune the parameters of EE in order to
achieve optimal cleaning effectiveness. Experimental evaluations
on real and synthetic datasets validate the effectiveness and effi-
ciency of our approaches.

1. INTRODUCTION
In many applications, data is often inexact or imprecise. For ex-

ample, schema matching tools such as COMA [11] can be used to
perform integration over the schemas of some flight-ticket agents’
websites. Since these matching tools typically associate an attribute
with more than one attribute from other schemas, a set of possible
prices can be associated with each flight. As another example, con-
sider a database that captures customers’ movie ratings obtained by
the fusion of IMDB movie information and ratings obtained from
the Netflix challenge [23]. In this database, a user can give a rating
to the same movie at different times. She may also input a different
name for the same movie (e.g., “Disney’s Snow White” and “Snow
White”). Additionally, the record linkage tools used for integrating
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the databases are not perfect. The customer’s rating for each movie
in the database is then not precise and appears as a set of possible
values instead. In applications that manage crime-solving-related
information, evidence data provided by witnesses (e.g., hair color,
brand of the car seen), as well as identities of true offenders, are
ambiguous [22]. In Global-Positioning Systems (GPS) [19], RFID
systems, and habitat monitoring applications [10], the positioning
devices or sensors used to collect information (e.g., location, hu-
midity, and wind speed) also have measurement error.

Due to the inexactness of these data, the quality of applications
that run upon them can be affected. A particular flight chosen from
the schema integrated using different websites may be associated
with a set of possible prices. Out of these possible prices, only
one of them is correct. If the system does not know which price
is correct, it may choose a wrong price to present to the user. In
general, less ambiguous data yield higher service quality. Data am-
biguity can be alleviated with the aid of external information. For
example, inexact movie ratings can be sanitized by hiring hourly-
paid employees who contact users for clarification. In a Location
Based Service (LBS), the positions of users may be a set of pos-
sible values. The “dirtiness” of this data can be reduced if other
“context information” is provided [16] (e.g., if it is known that a
user is currently in a meeting, then he should be located in a meet-
ing room). In another example, suppose a district police force has a
list of criminal suspects for each unsolved case. The identity of the
true offender for each case is ambiguous, since he can be any one of
the identified suspects. Through further investigation, suspects can
be proven innocent and the identity of the real offender becomes
more certain. In this paper, we study the problem of “cleaning” a
database of entities (e.g., flights, users, criminal cases) that contain
inexact information (e.g., prices, locations, suspects). In particular,
we study effective algorithms for selecting good entities to clean,
in order to obtain a less-ambiguous or higher-quality database.

We identify four aspects of data cleaning, which commonly arise
during the data disambiguation process and affect the effectiveness
of cleaning algorithms:
1. Cost. Cleaning an entity often involves a cost. Also, the number
of cleaning operations allowed may be limited by a budget. In the
movie rating database example, employees are paid hourly to make
phone calls to the movie-viewers and validate each movie-viewer’s
ratings. A cleaning cost can also be measured by the time required
to clarify the ratings. As another example, there may not be enough
police officers to examine all outstanding criminal cases, so the cost
of finding the true identity of each offender is also budget-limited.
2. Successfulness. A cleaning activity can fail to remove any am-
biguities from an entity. For example, a movie-viewer may be un-
reachable at a certain time and would require being called back
later. To solve a difficult criminal case, an officer may not be able
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to identify the true offender in a single operation.
3. Information availability. If the successful cleaning probability
of each entity is precisely known, then it is easier to prioritize the
cleaning effort (e.g., we can clean an entity with a high probability
first). However, in some situations, the probability that an entity
can be cleaned may be unknown. For example, the probability that
a police officer can remove a suspect from consideration during an
investigation may not be available. Instead, we may only know the
previous performance of the police officer. This makes it difficult
to predict whether a cleaning operation will be successful or not.
4. Incompleteness. A cleaning operation may only be able to re-
move part of the ambiguities from an entity. For example, after an
investigation on a criminal case where a few suspects were identi-
fied, a police officer may only be able to eliminate one suspect from
further consideration. In a LBS, the use of contextual information
may not be able to completely disambiguate a user’s location.

Due to the above issues, it is difficult to determine which entities
to clean. For example, if an attempt to clean an entity fails, should
a cleaning algorithm retry the same entity, believing that it will
be successful, or should the algorithm consider another candidate,
which might have a higher potential to be cleaned? The decision of
either sticking with the old entity or considering a new one is crit-
ical, since all cleaning operations are subject to a stringent budget.
Our goal is to develop algorithms that can make a “right decision”
in selecting entities to clean, which, to the best of our knowledge,
has not been considered before.

In this paper, we study two classes of cleaning algorithms. The
first algorithm type is heuristic-based, and uses some intuitive rules
to choose objects to clean. We present three algorithms in this cate-
gory. For example, in the greedy algorithm, the algorithm’s success
rate on an entity is used to estimate the probability that the said en-
tity can be cleaned. Based on the estimated probabilities and the
available budget, one or more entities are chosen. As shown exper-
imentally, these algorithms can often select a good entity to clean.

The heuristic-based algorithms have weaknesses. First, they do
not make good use of previous cleaning performance statistics.
Second, some parameter values have to be set before execution;
however, it is unclear how these parameters should be set to achieve
high cleaning effectiveness. Our experiments show that cleaning
performance is sensitive to these parameter values. Hence, we
develop an algorithm, Explore-Exploit (EE), that alleviates these
problems. EE considers two decisions: (1) explore, or select, a dif-
ferent entity to be cleaned; or (2) exploit the entity that has just been
cleaned by cleaning it again. In a movie-rating database, an em-
ployee may either select a new user to contact (explore), or make
another phone call later to the same user who did not answer the
phone (exploit). As another example, a police officer may investi-
gate (explore) a new case, or choose to investigate more on his cur-
rent case (exploit). We study how to appropriately balance the num-
ber of exploration and exploitation operations, in order to achieve
the highest cleaning effectiveness for the EE algorithm. This al-
gorithm can be executed in linear time and it can support large
databases with appropriate data structures. Moreover, EE is appli-
cable to a wide range of databases that manage ambiguous informa-
tion, e.g., uncertain [8,20,21] and probabilistic databases [2,9,17].
Our experiments on real and synthetic data illustrate that the EE
algorithm is more effective than heuristic-based algorithms in se-
lecting the best set of objects to clean.

The rest of the paper is as follows. Section 2 discusses the related
works. In Section 3 we describe the problem definition. In Sections
4 and 5 we present the threshold-based and the EE algorithms re-
spectively. Section 6 presents the experimental results. Section 7
concludes the paper.

2. RELATED WORK
Data cleaning. The problem of disambiguating, or cleaning, a

database raises a lot of research interest. In sensor networks, re-
searchers studied how to request, or probe data obtained from sen-
sor and data streams [6, 10, 15, 18]. Data probing can be consid-
ered as reducing data ambiguity, since the uncertainty of sensor
values stored in the system, due to time delay and measurement er-
ror, can be reduced by getting new values from the sensors. In [7],
the issues of efficiently cleaning a probabilistic database under a
stringent cleaning budget are studied. These works all assume that
a cleaning operation is always successful. Moreover, in [6, 7], a
cleaning action completely removes all ambiguities of an entity
(e.g., police always finds the actual criminal after the first inves-
tigation). These assumptions may not hold in real applications. In
this paper we study the challenging problem of cleaning a large
database in practical situations–i.e., without assuming that clean-
ing is perfect and the probability of successfully cleaning a specific
entity is known. We are not aware of any previous work that con-
siders these realistic factors during the data cleaning process.

Duplicate elimination refers to the technique of detecting and
deleting similar and inaccurate information in an “inconsistent”
database [12]. This can be regarded as a data disambiguation pro-
cess, where a database becomes cleaner after the deduplication. [1]
uses duplicate tuple merging techniques to provide possible an-
swers. In [14], integrity constraints are used for dirty data re-
moval. [4] discusses how to manage different versions of resulting
databases due to the duplicate removal process. Our proposed so-
lution can potentially be used in this area, by 1) treating ambiguity
information as duplicates and 2) considering practical limitations
(e.g., limited budget for eliminating duplicates).

Multi-armed-bandit. The design of the EE algorithm is in-
spired by a rich vein of work related to the multi-armed-bandit
problem (bandit-problem for short), a survey of which can be found
in Appendix A. In its general form, the bandit-problem describes
a gambler at a casino with k slot machines (bandits). Each slot
machine, when played by depositing a coin, has an undisclosed
probability of giving some monetary reward. Given a limited num-
ber of coins, the gambler’s goal is to choose a sequence of ma-
chines to play, such that the highest expected amount of money can
be won [3, 5, 13]. Bandit-problem solutions typically use a sim-
ple algorithm framework and make careful decisions on whether to
continue playing the same machine, or whether to try another ma-
chine. The statistics of each machine (e.g., number of successful
plays) facilitate the making of these decisions.

There are plenty of similarities between the bandit-problem and
the cleaning problem studied here. Particularly, we can model an
ambiguous entity as a bandit. Performing a cleaning operation on
the entity is like playing a slot machine, since both actions give
“rewards”, in terms of the number of ambiguities removed and the
amount of money won, respectively. Also, both problems assume
that a limited budget is provided and the probability that a specific
entity (machine) can be successfully cleaned (played) is not known
to the algorithm. Instead, only some general information (e.g., how
well cleaning/betting operations did in the past) is known. Hence,
we adopt the framework of the bandit-problem solutions (e.g., [3])
in the high-level design of the EE algorithm. However, the bandit-
problem solutions cannot be directly adapted to solve our problem.
Given a database entity, the maximum amount of ambiguities that
can be removed from it is limited. Once all the ambiguities of an
entity are removed, that entity is completely clean, and does not
need to be considered for further cleaning. This is fundamentally
different from bandit-problems, which assume that (1) a slot ma-
chine can give unlimited rewards and (2) there are always a fixed
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number, k, of slot machines. Due to these differences, the technical
details of our solution are substantially different from the bandit-
problem solutions.

3. PRELIMINARIES
We first briefly discuss the cleaning solution framework (Sec-

tion 3.1). Then, we describe the cleaning model in Section 3.2.
Finally, we discuss an optimal solution for a special case, in Sec-
tion 3.3.

3.1 System Framework
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successful cleaning)

Effectiveness 
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Figure 1: The data cleaning framework.

Figure 1 illustrates the data cleaning framework. Given a database
that contains inexact, or erroneous, information, an ambiguity ex-
tractor derives the corresponding “ambiguity model” (Step 1). This
information is then passed to the cleaning algorithm, which de-
cides which entity to clean based on a given cleaning budget (Step
2). The decision is then conveyed to the cleaning agent, which is
responsible for performing the actual cleaning operation (Step 3).
If the selected entity can be cleaned, then its ambiguous informa-
tion is removed from the database. The effectiveness statistics of
the cleaning agent (e.g., success rate) are also used by the clean-
ing algorithm. The algorithm and the agent are repeatedly invoked
until the cleaning budget is exhausted. A cleaning report, which de-
scribes whether a cleaning operation is successful, is used to update
the effectiveness statistics.

Notice that in this framework, the components responsible for
the cleaning process are independent from the database. Next, we
examine the details of this design.

3.2 Ambiguity Model and Cleaning
The Ambiguity Model (or AM for short) is a succinct summary

of ambiguity information collected from a database. It contains a
set T of n entities (T1, T2, . . . , Tn). Each entity has a set of values,
where only one value is correct. Let ri be the number of values
in Ti (called false values) that are actually incorrect. The informa-
tion in AM can be retrieved easily from databases that store inexact
information. For example, the AM uses information from an un-
certain database of objects (e.g., NBA players, moving vehicles,
and criminal cases), where each object’s uncertain attribute (e.g.,
rebound statistics of an NBA player, location of a vehicle, criminal
suspects) is a set of possible values that can be correct [8, 20, 21].
Then, in the corresponding AM, Ti is the i-th uncertain object, and
ri is one less than the number of samples representing an uncer-
tain attribute of Ti. Generally, if Ti has m uncertain attributes (say,
Ti.aj), where aj is the j-th attribute of Tj , then an entity can be
created for each (Ti, aj) pair. As another example, consider a prob-
abilistic database [2,9,17], which contains a set of “x-tuples”. Each
x-tuple is associated with a group of tuples, which are possible rep-
resentations of an x-tuple. In this case, Ti is the i-th x-tuple, while
ri is one less than the size of the i-th x-tuple. Since we are only
interested in entities with a non-zero number of false values, we
assume that ri > 0, for every Ti. Figure 2 illustrates an example
AM, which contains five entities with their respective false values.

Entity No. of false values successful cleaning probability

T1 5 0.1
T2 3 0.4
T3 6 0.4
T4 4 0.7
T5 1 1

Figure 2: Illustrating the ambiguity model.

Cleaning model. Let us now discuss how to model the four
aspects of data cleaning discussed in Section 1. Let C be the to-
tal number of units (budget) available for cleaning entities in T .
Each (Ti) has a successful cleaning probability (sc-probability) pi,
shown in Figure 2. A cleaning operation on Ti, clean(Ti), is suc-
cessful with probability pi. In many situations, a cleaning operation
may fail. For example, a police officer may fail to remove any in-
nocent suspect during an investigation; a GPS device may fail to
report its location due to network problems. When clean(Ti) is
performed, one cost unit is consumed, and C is reduced by one.
Furthermore, if clean(Ti) is successful, one false value is removed
from Ti and ri is decremented by one. Since not all false values are
removed in one single execution of clean(Ti), the incompleteness
factor is also modeled. Although the cleaning model considered
here does not model all scenarios, we believe that our solutions
can be extended to address other complex models (e.g., a variable
number of false values is removed, or new ambiguity information
is introduced to the entity during the disambiguation process). We
plan to study these issues in our future work.

To model the information availability aspect of data cleaning,
we assume that the cleaning algorithm does not know how likely
the cleaning agent can remove a false value from each entity (i.e.
the cleaning algorithm does not know pi). Instead, it is provided
with some statistics about the cleaning agent’s performance. A kind
of statistic used by the EE algorithm is the sc-pdf, the probability
distribution function (pdf) of sc-probabilities. The sc-pdf contains
information about how the cleaning agent performs, which can be
collected from the agent’s previous cleaning performance. For ex-
ample, Figure 3 shows the sc-pdf for Figure 2. In EE, f can be a
continuous pdf (e.g., Gaussian or uniform distribution), or an arbi-
trary histogram represented as an array of values.

0.1

pdf

0.4

0.2

0.8

0.6

1.0

0.4 0.7 1.0

pdf of sc-prob (f)

Figure 3: successful probability distribution (sc-pdf).

Effectiveness of cleaning algorithms. The algorithms that we
present next return a sequence of cleaning operations. To measure
the effectiveness of these algorithms, let A be a cleaning algorithm
and R be the total number of false values removed by A. We define
the cleaning effectiveness of A as:

ξ(A) =
E[R]

C
(1)

where E[R] is the expected number of false values removed by
A. Intuitively, the higher the value of ξ(A), the more beneficial a
cleaning operation is. We will use Equation 1 to measure and com-
pare the effectiveness of different algorithms. Table 1 summarizes
the notations used in the paper.

3.3 Solution for Known sc-probability
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Notation Meanings

C total cleaning budget
T set of n entities (T1, . . . , Tn)
ri total no. of false values of Ti

clean(Ti) cleaning operation on Ti

pi sc-probability of Ti

f sc-pdf
R no. of false values removed by cleaning algorithm

ξ(A) cleaning effectiveness of algorithm A

Table 1: Symbols used in this paper.

We conclude this section with the discussion of a simple algo-
rithm, called known-sc, that handles the situation when the sc-
probability values are known. This algorithm is used as a reference
that other algorithms, with unknown sc-probability information, are
compared with, experimentally. In known-sc, we first sort the en-
tities in descending order of sc-probabilities. Then, for each entity
in this order, we remove all their false values first, before visiting
the next entity, until the cleaning budget is exhausted.

Without stating the detailed proof, we claim that this algorithm
is optimal in effectiveness. This is because an entity with a higher
sc-probability should always be cleaned ahead the one with a lower
sc-probability, in order to maximize the expected number of false
values removed. Hence, the knowledge of sc-probabilities facili-
tate effective cleaning. However, sc-probabilities are not always
known. To address this problem, we present the heuristic-based
algorithms (Section 4) and the EE algorithm (Section 5).

4. HEURISTIC-BASED ALGORITHMS
Let us now describe three heuristic-based algorithms, Random,

Greedy, and ε-Greedy. These algorithms, as described in (Sec-
tions 4.1, 4.2, and 4.3), use simple observations to select an entity
to clean. They also provide the foundations for understanding the
more sophisticated EE algorithm.

4.1 The Random Algorithm
Our first cleaning algorithm is called Random (Appendix B).

This solution randomly chooses an entity Tj from the AM (Line
2). After clean(Tj) is executed, the budget, C, is decremented
(Line 5). The process repeats until either C becomes zero or no
more entities have false values.

The design of Random is based on the fairness principle: the
algorithm gives every entity an equal chance to be cleaned. This
can be useful in situations when it is not clear which entity will offer
a better chance to have its false values removed. The algorithm is
also simple to implement. However, Random does not consider
the fact that some entities’ false values are easier to be removed;
for these entities, it is natural to invest more cleaning effort, as
illustrated by the next algorithm.

4.2 The Greedy Algorithm
In the known-sc algorithm (Section 3.3), the sc-probability of

an entity (pi) is useful for removing false values. The main idea of
the Greedy algorithm (Appendix B) is to estimate sc-probabilities
from previous cleaning results. Entities are then selected in de-
scending order of these estimated values–i.e., the entity selection is
greedy on the estimated sc-probabilities. To illustrate, let p̂i ≈ pi,
and let ti and si be, respectively, the number of cleaning opera-
tions on Ti and the number of successful cleaning operations on
Ti. Then, p̂i = si/ti. If more than one entity has the same p̂i,
we randomly pick one among them. The entity with the largest p̂i,
which still has false values, is selected. This process is repeated
until no more budget is available, or all entities have been cleaned.

While Greedy provides a simple way of approximating pi, the

Algorithm Time cost Space cost

Random O(M · C) O(n)
Greedy O((n+ C) logn) O(n)
ε-Greedy O(Cn) O(n)

EE Initialization: O(|T |+ t̂3

δ2
) O(n)

Explore+Exploit: O(C)

Table 2: Time and space costs of cleaning algorithms.

problem is that the p̂i’s so estimated may not be statistically correct.
For instance, suppose that a first cleaning attempt on entity T1, with
p1 = 0.01, is successful. Then, p̂1 = s1 = t1 = 1. Greedy will
then assume T1 is a good candidate to clean next time, even though
p1 is actually small. Under a stringent budget, it may be better to
move on to other entities that have higher sc-probabilities. The next
algorithm provides a “quick fix” to this problem.

4.3 The ε-Greedy Algorithm
Conceptually, the ε-Greedy algorithm (Appendix B) combines

the essence of Random and Greedy, and alleviates the problem
of Greedy by allowing the entity selection process to find new
candidates. Here, we introduce a parameter ε, which is a real value
in [0, 1]. A random variable, choice ∈ [0, 1], is first generated
(Line 3). If choice < ε, a random entity is selected (Lines 4-
5). Otherwise, the entity with the highest estimated sc-probability
(p̂i) is chosen (Line 7). The process is repeated until the budget is
exhausted, or no ambiguous entity remains.

This algorithm avoids the problem of wrongly estimating sc-
probabilities, since there is some chance (controlled by ε) that an
entity is randomly chosen, so that some entity with a high cleaning
probability, which may be missed by Greedy, can still be chosen.
The main disadvantage is that ε is a user-defined parameter and set-
ting ε can be crucial to the cleaning effectiveness. Our experimental
results show that cleaning effectiveness is indeed sensitive to ε. On
the contrary, the EE algorithm, discussed in the next section, does
not require parameter tuning.

Table 2 summarizes the time and the space complexities of the
heuristic-based algorithms. Their derivation details can be found in
Appendix B. With appropriate data structures (e.g., use of arrays
and priority queues), these algorithms are efficient and require only
a small amount of memory.

5. THE EXPLORE-EXPLOIT ALGORITHM
We now present the Explore-Exploit (EE) algorithm. We first

discuss a general framework in Section 5.1. Then, Section 5.2 pro-
poses the EE algorithm under this framework. In Section 5.3 we
explain how to adjust parameters for EE to achieve optimal effec-
tiveness. We discuss a practical way of adjusting these parameters
in Section 5.4. In Section 5.5 we discuss a way to enhance EE.

5.1 Solution Framework
Let us now present a solution framework, which generalizes the

EE algorithm.We establish some theoretical results about this frame-
work, which will be used to develop EE. This study also facilitates
future development of other algorithms with a similar structure.

Algorithm 1 Framework(AM T , Budget C)

1: while C > 0 do
2: randomly choose an entity Ti where ri > 0
3: explore(Ti, C) // Quit if C = 0
4: if C > 0 and condition for running exploit is satisfied

then
5: exploit(Ti, C) // Quit if C = 0
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Notation Description

γi no. false tuples removed from Ti in 1 round of Framework

χi cleaning cost on Ti in 1 round of Framework

Γ E[γi]

E[χi]
; approximation of ξ(Framework)

t, t̂ Exploration frequency and its maximum value

q, q̂ Exploitation threshold and its approximation

δ Precision used in numerical integration

(tmax, qmax) (t, q) that maximizes ξ(EE)

Table 3: Notations used in the EE algorithm.

As we can see from Framework (Algorithm 1), during each
iteration an entity Ti, which still has false values, is chosen ran-
domly (Line 2). Then, an explore procedure is applied on Ti, which
performs some number of cleaning operations on Ti, in order to
get information about how likely Ti’s false values can be removed
(Line 3). If there is still some budget left, and the algorithm con-
siders it worthy to invest more effort on Ti, an exploit procedure
is performed, where more cleaning operations are performed on Ti

(Lines 4-5). The whole process is repeated until the budget is ex-
hausted. Notice that explore and exploit may be stopped while they
are being run (if there is not enough budget to complete the two
operations). We say that Ti is fully visited, if explore and exploit
are completely executed on Ti during an iteration without being
interrupted due to the lack of budget.

The exact details of explore and exploit depend on the specific
algorithm (e.g., EE). We also remark that a similar scheme is also
used in solving the multi-armed-bandit problem [3]. Table 3 dis-
plays the symbols used in this section.

Cleaning effectiveness. We now present some theoretical re-
sults about Framework, which enables its cleaning effectiveness
(Equation 1) to be estimated. Suppose after the execution of Algo-
rithm 1, exactly k entities have been fully visited. Let Rk be the
total number of false values removed from these k entities, and Ck

be the total cleaning effort invested on them. Then, we have the
following lemma.

LEMMA 1. lim
C→∞

ξ(Framework) = lim
k→∞

E[Rk
Ck

]

Lemma 1 tells us that the cleaning effectiveness of Framework
(i.e., ξ(Framework)) can be expressed in terms of Rk and Ck. The
proof is based on the fact that the (k + 1)-th entity cannot be fully
visited before the budget is exhausted, so the number of ambiguities
that can be removed from Tk+1 is small. The details of the proof
can be found in Appendix C. We then present the following result:

LEMMA 2. Let γi be the total number of false values removed
from Ti after it has been fully visited. Also, let χi be the sum of
cleaning costs required for removing these false values. Then,

lim
C→∞

ξ(Framework) =
E[γi]

E[χi]
(2)

Essentially, Lemma 2 states that the effectiveness of Framework
is simply an expression of the expected values of γi and χi (i.e.,
E[γi] and E[χi]). The proof is based on the observation that γi and
χi are independent variables, and that Rk and Ck can be expressed
as functions of γi’s and χi’s. By using the law of large numbers
and Lemma 1, the lemma can be proved. The details are described
in Appendix C.

Now, Let Γ(Framework) be the constant
E[γi]
E[χi]

, the effectiveness

of the Framework. For the sake of convenience, we use Γ to
represent Γ(Framework). The following equation can then be used
to estimate ξ(Framework):

ξ(Framework) ≈ Γ (3)

We will also use Equation 3 to decide the optimal parameter values
of EE, as discussed next.

5.2 The EE Algorithm
The EE algorithm is a specialization of Framework. The main

phases of EE, as detailed in Algorithm 2, include:
1. Initialization. The values of two parameters, namely the ex-
ploration frequency (t) and the exploitation threshold (q), are com-
puted. The exploration frequency is the number of times an entity
is cleaned during exploration, while the exploitation threshold con-
trols whether exploitation on an entity is executed. The values of t
and q are set in a way such that the cleaning effectiveness of EE is
optimized, as detailed in Section 5.3.
2. Exploration. This corresponds to explore(Ti, C) in Framework.
Here, a randomly chosen entity Tj is cleaned t times. We also col-
lect some statistics: m (the number of false values removed for Ti

so far) and d (the number of times that clean(Tj) is executed) (Lines
8-12). After cleaning is completed in this phase, we compute the
approximate sc-probability p̂i of Ti, as m/t (Line 15).
3. Exploitation. This corresponds to exploit(Ti, C) in Framework.
First, p̂i is tested if it is larger than q, the exploitation threshold
(Line 17). If this is false, Ti will not be considered anymore (Line
23). Otherwise, clean(Ti) is repeatedly executed, until either no
budget is available, or all the false values have been removed (i.e.,
ri = 0) (Lines 18-21).

Algorithm 2 EE(AM T , Budget C, sc-pdf f )

1: [1. Initialization]
2: Find (t, q) such that Γ(T, f, t, q) is maximized
3: while C > 0 do
4: randomly choose an entity Ti, where ri > 0
5: [2. Exploration Phase (Lines 6-15)]
6: m← 0, d← 0
7: while C > 0 ∧ d < t ∧ ri > 0 do
8: if clean(Ti) is successful then
9: ri ← ri − 1

10: m← m+ 1
11: C ← C − 1
12: d← d+ 1
13: if C = 0 then
14: Quit
15: p̂i ← m/t
16: [3. Exploitation Phase (Lines 17-23)]
17: if p̂i ≥ q then
18: while C > 0 ∧ ri > 0 do
19: if clean(Ti) is successful then
20: ri ← ri − 1
21: C ← C − 1
22: else
23: Do not consider Ti anymore

Next, we examine how to optimally set the values of the param-
eters (t, q) of EE.

5.3 Setting Parameters of EE
The parameter values in Line 2 of EE (i.e., t and q) are crucial

to the cleaning effectiveness of EE (i.e., ξ(EE)). Specifically, t,
the exploration frequency, controls the number of cleaning actions
during exploration. The exploitation threshold, q, decides whether
exploitation for Ti can take place, so that further cleaning actions
can occur. Hence, it is important to find good values of t and q so
that ξ(EE) can be maximized.
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Recall from Lemma 2 that ξ(EE) = Γ, where Γ = E[γi]
E[χi]

. Hence,

the values of t and q should be set in a way that yields a maximum

value of
E[γi]
E[χi]

. To achieve this, suppose E[ri] is the expected num-

ber of false values per entity Ti. Notice that E[ri] can be found
by averaging the number of false values of all entities in T . Then,
the following lemma presents the expressions of E[γi] and E[χi],
which allow optimal values of t and q to be found.

LEMMA 3. E[γi] and E[χi] can be expressed as:

E[γi] =

∫ 1

0
(Pne(p)Et(p) + (1− Pne(p))E[ri])f(p)dp (4)

E[χi] =

∫ 1

0
(Pne(p) · t+ (1− Pne(p)) · E[ri]

p
)f(p)dp (5)

where Pne(p), the chance that an entity with sc-probability p is
explored but not exploited, is:

Pne(p) =

⎧⎪⎨
⎪⎩

�tq�−1∑
m=0

Ct
mpm(1− p)t−m E[ri] > �tq� − 1

1 otherwise

(6)

and Et(p), the expected number of false values removed from an
entity with sc-probability p after exploration and before exploita-
tion, is:

Et(p) = min(tp, E[ri]) (7)

PROOF. (Sketch) For Equation 4, let the number of false val-
ues removed from some entity Ti with sc-probability p be V (p).
Then, E[γi], the expected amount of false values removed, is an
integration of V (p) · f(p) over [0, 1]. To obtain V (p), we consider
two cases of Ti:

• Case 1: With probability Pne(p), Ti is only explored, but
not exploited. Then Ti has Et(p) false values removed.

• Case 2: With probability (1 − Pne(p)), Ti is both explored
and exploited. Since this entity has an expected number
E[ri] of false values, using the EE algorithm, E[ri] false
values will be removed.

Then, V (p) can be expressed in terms of E[ri], Pne(p), and Et(p).
The remaining tasks are to find Et(p) and Pne(p). We obtain
Et(p) (Equation 7) by observing that the expected number of false
values that can be removed after exploration is bounded by the min-
imum of t · p and E[ri]. For Pne(p), notice that if an entity, which
has been explored, is not exploited, the condition that p̂i ≥ q in
Line 17 should fail. Since p̂i = m/t (Line 15), we can obtain the
maximum value of m that cannot satisfy the condition in Line 17.
We then express the probability that m cleaning operations fail out
of t trials, as a binomial distribution, and use it to express Pne(p),
which results in Equation 6.

We derive Equation 5 in a similar manner. Let the amount of
cleaning effort spent on an entity Ti with sc-probability p be S(p).
Then, E[χi], the expected cleaning cost on each entity is an inte-
gration of S(p) · f(p) over [0, 1]. To obtain S(p), we consider two
cases for Ti:

• Case 1: With probability Pne(p), Ti is only explored, but
not exploited. Then Ti needs a cost of t to be cleaned.

• Case 2: With probability (1 − Pne(p)), Ti is both explored
and exploited. Notice that this entity has an expected number
E[ri] of false values. Also, on average, a number 1

p
of clean-

ing operations are needed to remove one false value from Ti.

Using EE, a cost of
E[ri]

p
is required to remove E[ri] false

values from Ti.

Hence, S(p) can be expressed in terms of E[ri] and Pne(p). By us-
ing the formula of Pne(p) (Equation 6), Equation 5 is obtained.

The detailed proof of Lemma 3 can be found in Appendix C.

By using Lemma 3, if t and q can be found such that Γ = E[γi]
E[χi]

is

optimal, then the highest effectiveness of EE is obtained. However,
it is difficult to find a closed-form formula of t and q. We next
discuss a practical method of finding t and q.

5.4 Practical derivation of parameters
We find the best pair of (t, q) by performing the following steps:

Step 1. Derive a statistical upper bound of t, denoted as t̂, which is
equal to:

t̂ =
1

E[pi]
· E[ri] (8)

Note that the expected sc-probability E[pi] of an entity Ti can be

computed by E[pi] =
∫ 1

0
pf(p)dp. Hence, 1

E[pi]
is the average

number of cleaning operations required to remove one false value
from Ti. Equation 8 depicts the expected number of cleaning op-
erations used to remove the average number of false values of an
entity.
Step 2. Let δ ∈ [0, 1] be a real-valued parameter, which is used
to approximate q. For each integer in [1, t̂], we iterate over a fixed
number �1 + 1

δ
� of real values q̂ ∈ [0, δ, 2δ, . . . , (i − 1)δ, 1], and

find the corresponding Γ, with Equation 3.
Step 3. Return the pair (tmax, qmax) that yields the highest value
of Γ.

The above procedure limits the number of (t, q) pairs that need to
be examined. Our experiments show that the value of δ do not need
to be very small, and this method can often find a close-to-optimal
value of Γ (and hence a high cleaning effectiveness for EE).

5.5 Stopping the Exploration Early
We conclude this section with the discussion of how to further

improve the effectiveness of EE. Recall that the exploitation phase
stops when the number of cleaning operations exceeds t (Line 7).
This is not always necessary. Observe that the number of cleaning
operations that fail to remove false values during exploration is d−
m. In order for this entity to be exploited, the condition in Line 17
(i.e.,m

t
≥ q) must be satisfied. This implies:

d−m

t
< 1− q (9)

Once Equation 9 is violated, we can conclude that since too many
cleaning operations fail for the entity being considered, the esti-
mated sc-probability must be too low for exploitation to go on.
Hence, there is no need to further explore this entity and it can be
discarded by EE right away. We call Equation 9 the early-stopping
condition. Notice that this condition can be applied even if the prac-
tical method discussed in Section 5.4 is used, by replacing (t, q) by
(tmax, qmax) in Equation 9. The effect of using the early-stop con-
dition in EE is examined in our experiments.

Complexity. Table 2 shows the time and space complexities of
the EE algorithm. While the time complexity of parameter initial-
ization (Phase 1) seems to be large, in practice, t̂ is small (only 20
in our experiments). Moreover, if the metadata about T is avail-
able (e.g., sc-pdf and E[ri]), initialization can be done offline. The
detailed complexity analysis can be found in Appendix B. Finally,
notice that the ambiguity model is a compact representation of the
database, which can be assumed to be stored in the main memory.
If the whole database is stored in disk, then during each explore-
exploit iteration of EE, only the information of one entity needs to
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Figure 4: Experiment Result

be retrieved from the disk. Hence, the number of I/Os required by
EE is O(n).

6. EXPERIMENTS
To validate the effectiveness and performance of our solutions,

we used a synthetic and a real dataset as ambiguity models (AMs)
in our experiments. For the synthetic dataset, the number of en-
tities, T , is 50k, and the number of false values per entity is uni-
formly distributed in [0, 19], i.e., each entity has 9.5 false values
on average. We also retrieve the AM from a probabilistic database,
which stores uncertainty about movie-viewer ratings [23]. In this
AM, an entity is a (customer,movie) pair, whereas the false values
are the customer’s possible ratings on that movie. This AM has
4,999 entities, and each entity has one false value on average.

By default, for both datasets, the sc-pdf is a uniform distribution.
The value of ε for the ε−Greedy is 0.5, while the value of δ that
we used to find tmax and qmax in EE is 0.001. For the synthetic
dataset, the default budget is 10K, and for the real dataset, the bud-
get is 5K. Unless stated otherwise, the results for the EE algorithm
that uses the early-stopping condition (Section 5.5) are presented.

All our algorithms were implemented in C++ and run on a 2.66GHz
Intel Duo PC with 2GB of memory and Windows 7. Next, we
present the results for synthetic and real datasets in Sections 6.1
and 6.2.

6.1 Results on Synthetic Data
1. Cleaning effectiveness. Figure 4(a) shows the cleaning effec-
tiveness, ξ (Equation 1), of different cleaning algorithms. The al-
gorithm known-sc, where the exact sc-probability of each en-
tity is known, is also shown for comparison. As we can see, the
effectiveness of known-sc is the highest. This is not surpris-
ing. As discussed in Section 3.3, known-sc can make use of
sc-probabilities to select the best entities to clean. However, when
exact sc-probabilities are not known, we can see that the EE al-

gorithm is the most effective over a wide range of budgets. At a
budget of 10k, for instance, EE is, respectively, 12.9%, 35.8%, and
36.4% better than ε-Greedy, Greedy, and Random. The effec-
tiveness of EE is also stable over the change of budget values. To
understand why, Figure 4(b) shows the corresponding number of
false values removed. We can see that the number of ambiguities
removed increases almost linearly with the budget, for EE. This ex-
plains the stability of EE. From now on, we focus on the cleaning
algorithms where exact sc-probabilities are not known.

We observe that heuristic-based algorithms such as Random and
Greedy are the least effective. This reflects that they cannot se-
lect the best entities. The effectiveness of ε−Greedy, on the other
hand, vary significantly: it performs close to EE with a small bud-
get, but degrades as the budget increases. For ε−Greedy to work,
the value of ε is set by the user first. In Figure 4(a), the default value
of ε is always used regardless of the budget available. Figure 4(c)
shows that the effectiveness of ε-Greedy is sensitive to the value of
ε. Hence, it is difficult to find a fixed value of ε that works well for
every budget value. EE does not suffer from this problem; in fact,
EE is stable over a wide range of budgets.

2. Effect of dataset sizes. Figure 4(d) examines the effective-
ness of cleaning algorithms under different dataset sizes (number
of entities). As we can see, EE is consistently the best over a wide
range of dataset sizes. At a size of 100k, EE is, respectively, 11.3%,
35.9%, and 35.6% better than ε-Greedy, Greedy, and Random.

3. Effect of false values. Next, Figure 4(e) shows how the
change of the average number of false values per entity affects
cleaning effectiveness. EE still performs the best. Moreover, its
effectiveness increases with the number of false values. With the
increase of the number of ambiguities, EE has more opportunity
to decide whether an entity should be cleaned during exploration
before all the false values are removed. The valuable information
collected from exploration can further be used to decide whether
the remaining false values to be handled during exploration. Thus,
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EE has higher effectiveness with more false values.
4. Effect of sc-pdf. We then examine in Figure 4(f) how the

variation of sc-pdf can affect effectiveness. Here, we use the nota-
tion normal(σ) to say that a sc-pdf has a normal distribution with
mean 0.5 and variance σ. For comparison, we also display the re-
sult for uniform sc-pdf. EE is more effective than heuristic-based
algorithms. Its effectiveness also increases with σ. Conceptually, a
larger σ indicates that it is harder to guess the actual sc-probability
value, and represents a more uncertain cleaning scenario. As we
can see, EE works particularly well under this setting. For exam-
ple, at σ = 0.3, EE is, respectively, 10.7%, 32.1%, and 33.1%
better than ε-Greedy, Greedy, and Random.

5. Other experiments on EE. Figure 4(g) shows the effect of
different combinations of the parameter values (i.e., t and q) used
by EE. Generally, for the same value of t, the effectiveness in-
creases with q. In the same figure, we also indicate the effective-
ness under tmax = 3 and qmax = 0.667, found by the approximate
method described in Section 5.4. We can see that the effectiveness
found by our method is close to the optimal value. In Figure 4(h),
we observe that the use of the early-stopping condition in the ex-
ploration phase (Section 5.5) enhances the effectiveness of EE by
an average of 22.08%.

6. Performance analysis. Next, we examine the time required
by the algorithms to decide which entities to clean. For EE, the time
for initializing the parameters t and q is 5.99 seconds on average.
We assume this to be done offline, and in the figures we present
the online time required by EE (for exploration and exploitation).
We can see from Figure 4(i) that all algorithms can be finished be-
low 10ms. They also work well for large datasets. We see that
ε-Greedy performs the worst because it has to maintain two data
structures (array and priority queue). Figure 4(j) shows that EE is
very efficient over a wide range of the number of false values.

6.2 Results on Real Data
Since most experiments on the real dataset show a similar trend

as the synthetic data, we only present the most representative ones.
7. Effectiveness vs. budget. We examine the impact of varying

the cleaning budget on effectiveness in Figure 4(k). As we can see,
the effectiveness of the heuristic-based algorithms drops with an
increase in the cleaning budget. This means they do not make good
use of the extra budget available. On the other hand, EE is stable
over different budget values, showing that EE can adapt itself to
different budget values.

8. Performance vs. budget. Finally, Figure 4(l) shows the run-
ning time required by different algorithms. Due to the presence of
a larger budget, more time is needed for all algorithms. However,
they scale well with the budget, and take less than 10ms to finish.
Moreover, we observe that EE has a low running time compared
with other algorithms.

7. CONCLUSIONS
The management of ambiguous, inexact, and uncertain databases

has become important in new and emerging applications. We study
algorithms for disambiguating these data in realistic scenarios: clean-
ing is budget-limited, exact sc-probability is not known, and clean-
ing is partially completed. We propose algorithms based on sim-
ple heuristics, as well as the more sophisticated EE algorithm. An
advantage of EE is that its parameters can be determined auto-
matically, according to the information provided by the ambigu-
ity model. Our experiments show that the effectiveness of EE is
consistently the highest among our proposed algorithms under dif-
ferent settings. Moreover, all these algorithms are simple, efficient,
and scalable to large databases.

We plan to extend our solutions to support other environments
where the data disambiguation process is not perfect. For instance,
it is interesting to address the case when an entity has some ambi-
guities again after it has been cleaned (e.g., a sensor value becomes
outdated after it has been probed from sensor sources). We will
also study scenarios where the number of false positives that can
be removed, as well as the cleaning cost, vary across different en-
tities. As mentioned in Section 5, EE is only a specific algorithm
under a general multi-armed-bandit algorithm framework. We plan
to examine other variants of EE that also fit under this framework.
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APPENDIX
A. A SURVEY OF MULTI-ARMED BANDIT

PROBLEMS
The multi-armed bandit problem [2] is a kind of sequential task

scheduling problem. In multi-armed bandit problems, we are pre-
sented with a gambler, who needs to maximize the sum of rewards
from a slot machine, which is also called a one-armed bandit. The
slot machine in multi-armed bandit problems has multiple levers,
independent of each other, that the gambler may choose to pull.
Each lever (arm) of the bandit has an associated probability distri-
bution (unknown to the gambler) of giving a reward. Furthermore,
the gambler has a fixed budget limiting the number of times that he
can pull any arm of the bandit. The goal of a multi-armed bandit
problem is to develop a sequence of pulls that the gambler should
follow, in order to maximize the rewards obtained by playing the
bandit. We now present a brief survey of the works in this area.
Please refer to Section D for references cited in this section.

The classic multi-armed bandit problem, as stated above, is shown
to have an optimal policy [6]. The optimal policy for the classic
multi-armed bandit problem is an “index-based policy”. For each
arm of the bandit, the value known as the Gittins index is calcu-
lated from a function of the arm’s current state and the expected
reward that the arm will yield. That is, the Gittins index measures
the maximum obtainable reward for a given arm. As such, the op-
timal policy is for the gambler to select the lever that currently has
the highest Gittins index value.

The classic multi-armed bandit problem assumes that the bandit
has a constant set of k arms. In the arm-acquiring bandits variation
[10], new arms are added to the bandit over time. The Gittins index
based policy was shown to still be optimal in this variation [10].

Further extensions to the classic multi-armed bandit problem
have received much interest over the years. One such extension
was the proposal of the restless bandit problem [11]. In the clas-
sical multi-armed bandit model, the lever that is pulled will expe-
rience a change in its state. The restless bandit problem extends
the classical multi-armed bandit problem to allow all arms of the
bandit to change their respective states even when the arm was not
selected to be pulled. Papadimitriou and Tsitsiklis [8] showed that
finding an optimal scheduling policy to the restless bandit problem
is PSPACE-hard.

Another variation on the multi-armed bandit problem is one where
the bandit has dependent arms [7]. In this variation of the classic
problem, certain arms of the bandit generate similar rewards. The
dependent armed bandit problem inherently forms groups of arms
with similar behavior. Pandey et al. [7] showed that an optimal
policy exists to solve the dependent armed bandit problem.

Chakrabarti et al. proposed a variation modeling mortal ban-
dits [4]. Mortal bandits are bandits with arms that have a specific
lifetime after which they are unavailable to the gambler. When
an arm becomes unavailable, a new arm will be made available in
place of the one that has just expired. As such, there is a constant
set of k arms available to the gambler, some of which the gambler
may not have pulled before – these are the arms that replace ex-
pired arms. The mortal bandit problem is shown to have an optimal
policy [4].

Other variations to the classic multi-armed bandit problem in-
clude Brownian restless bandits [9], sleeping bandits [3, 5], and
bandits with metric switching costs [1]. Brownian restless bandits
are similar to restless bandits. However, Brownian bandits evolve
at a rate following Brownian motion. As such, Brownian bandits
evolve at a rate that is less wildly random than restless bandits [11].
Sleeping bandits are similar to mortal bandits. Contrasting with

mortal bandits, where arms expire, sleeping bandits have arms that
will periodically be unavailable, only to be available again at a later
time. Finally, bandits with metric switching costs [1] impose a
penalty when the gambler chooses to pull a different arm than the
one that was last pulled.

B. COMPLEXITY ANALYSIS AND PSEU-
DOCODES

We now describe the time and space complexities of the cleaning
algorithms.

• Random (Section 4, Algorithm 3): the pseudocode of Random
is shown in Algorithm 3. We first put all entity IDs randomly
into a sized-n array, in O(n) time. During each iteration,
when Line 2 is executed, a random value m is retrieved from
[0, n]. The m-th entity ID is then retrieved from the array
and cleaned, in O(1) time. If this entity has no false val-
ues, another random number is generated, for a fixed number
M (say, M = 1000) times, or until an entity with non-zero
number of false values is found. If after M times, no entities
with non-zero number of false values are found, the algorithm
quits. During each iteration, and the budget C will be reduced
by one. Thus, the time complexity is O(M ·C), and the space
required to store the array is O(n).

• Greedy (Section 4, Algorithm 4): the pseudocode of Greedy
is shown in Algorithm 4. We use a priority queue structure
(which is a heap) to maintain the approximate sc-probability
values (i.e., p̂i). First, we insert n pairs of (Ti, pi) into the
structure, which can be done in O(n log n) time. When Line
3 is executed, the entity with the highest sc-probability (say,
Tm) is removed the structure, in O(log n) time. After clean-
ing, sc-probability is updated, if Tm still has some false val-
ues, it is reinserted to the structure, in O(log n) time. Hence,
the time complexity is O((n+C) log n), and the space com-
plexity is O(n).

• ε−Greedy (Section 4, Algorithm 5): the pseudocode of ε−Greedy
is shown in Algorithm 5. Since this algorithm is a “hybrid”
form of Random and Greedy, we use the data structures of
Random and Greedy to support Lines 5 and 7 with slight
modifications. If an entity has no more false values, then the
entity is marked “invalid” in the priority queue (by a linear
scan in O(n) time). Later when this invalid entity is popped
from the priority queue, it is ignored. At each iteration, a
random selection (Line 5) costs O(1), while a greedy selec-
tion (Line 7) involves O(2 log n). Since there are at most
one entity with false values that can be removed in one it-
eration, at most O(n) time is needed to remove an entity
from the priority queue. Hence, the cost of each iteration is
O(max(1, 2 log n) + n) = O(n). Since there are C itera-
tions, the total time cost is O(Cn). The space cost of storing
the array and the priority queue is O(n) +O(n) = O(n).

• EE (Section 5, Algorithm 2): Let us first consider the ini-
tialization cost of parameter values (t̂, q̂) (Line 2), using the
method discussed in Section 5.4. We first find E[ri] by scan-
ning the entities in T , in O(|T |) times. Then, we iterate vari-
able t ∈ [1, t̂], where t̂ can be found by Equation 8. For each
t, we compute the value of Γ for every q̂ ∈ [0, δ, 2δ, . . . , (i−
1)δ, 1]. Thus, a number t̂

δ
of Γ values will be considered.

We then use Lemma 3 to numerically evaluate Γ, using a nu-
merical integration of precision δ (i.e., a sum of 1

δ
integration

function values). Moreover, each Pne(p) value needs t̂2 time
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to complete. Hence, computing Γ requires O( t̂
2

δ
) time. The

overall initialization cost is O(|T |+ t̂3

δ2
).

For the exploration and exploitation phases (Lines 3-23), no-
tice that each operation takes constant time. Moreover, at
most C cleaning operations can be performed. Therefore, this
takes O(C) time to complete. Similar to Random, an array
is used to support the random selection of entities, with a size
of O(n).

Algorithm 3 Random (AM T , Budget C)

1: while C > 0 ∧ ∃j where rj > 0 do
2: Randomly select Tj where rj > 0
3: if clean(Tj) is successful then
4: rj ← rj − 1
5: C ← C − 1

Algorithm 4 Greedy (AM T , Budget C)

1: ∀i ∈ [1, n], si = 0, ti = 0, p̂i = 0
2: while C > 0 ∧ ∃j where rj > 0 do
3: Find Tj where rj > 0 and p̂j is the highest
4: if clean(Tj) is successful then
5: rj ← rj − 1
6: sj ← sj + 1
7: tj ← tj + 1
8: p̂j ← sj/tj
9: C ← C − 1

Algorithm 5 ε-Greedy (AM T , Budget C, Threshold ε)

1: ∀i ∈ [1, n], si = 0, ti = 0, p̂i = 0
2: while C > 0 ∧ ∃j where rj > 0 do
3: choice← uniform(0,1)
4: if choice < ε then
5: Randomly select Tj where rj > 0
6: else
7: Find Tj where rj > 0 and p̂j is the highest
8: if clean(Tj) is successful then
9: rj ← rj − 1

10: sj ← sj + 1
11: tj ← tj + 1
12: p̂j ← sj/tj
13: C ← C − 1

C. PROOFS FOR LEMMAS IN SECTION 5
Here we present the correctness proofs of the lemmas used in

Section 5.

C.1 Lemma 1 Proof
Since exactly k entities are fully visited, let us assume that there

remains some non-zero budget for the (k+1)-th entity to be cleaned
(the proof can easily handle the case when no budget is available
for the (k + 1)-entity). Without loss of generality, we name these
entities T1, T2, . . . , Tk+1, in ascending order of the time they are
chosen to clean. Since entity Tk+1 is not fully visited, some of
explore(Tk+1) and exploit(Tk+1) fails to finish before C is ex-
hausted.

Let γi be the total number of false values removed from explore(Ti)
and exploit(Ti). Also, let χi be the sum of cleaning costs required

by explore(Ti) and exploit(Ti). Since Rk is the total number
of false values removed from these k entities, and Ck is the total
cleaning effort invested on them, we have:

Rk =

k∑
i=1

γi (10)

Ck =

k∑
i=1

χi (11)

We can then express R and C using Equations 10 and 11, as fol-
lows:

R = Rk + γk+1 (12)

C = Ck + χk+1 (13)

Recall from Equation 1 that ξ(Framework) = E[R]
C

. Since C

is a constant, ξ(Framework) is equal to E[R
C
]. Moreover, using

Equations 12 and 13, we have:

lim
C→∞

R

C
= lim

k→∞
Rk + γk+1

Ck + χk+1
(14)

= lim
k→∞

Rk/Ck + γk+1/Ck

1 + χk+1/Ck
(15)

As discussed, since there is not enough budget for Tk+1 to be
fully visited, γk+1 and χk+1 would be small compared with Ck,
which tends to∞. Hence, both Rk/Ck and χk+1/Ck vanish, and

Equation 15 becomes lim
k→∞

Rk
Ck

. Thus,

lim
C→∞

ξ(Framework) = lim
k→∞

Rk

Ck

and the lemma is proved.

C.2 Lemma 2 Proof
Notice that γi and χi are random variables. Also, the variables

γi (i = 1, . . . , n) are independent of each other. Similarly, the
random variables χi (i = 1, . . . , n) are also independent of each

other. Recall from Equations 10 and 11 that Rk =
k∑

i=1

γi, and

Ck =
k∑

i=1

χi. Then, by using law of large numbers, we have:

∀δ > 0, ∃K such that ∀k > K,

Prob[|Rk/k − E[γi]| < δ] = 1 (16)

Prob[|Ck/k − E[χi]| < δ] = 1 (17)

where E[γi] and E[χi] are the expected values of γi and χi.
From Equations 16 and 17, we can state that ∀ε > 0, ∃K such that
∀k > K,

Prob[|Rk/Ck − E[γi]/E[χi]| < O(δ)] = 1 (18)

Using the definition of limit and expected values, from Equation 18
we obtain the following result:

lim
k→∞

E[Rk/Ck] = E[γi]/E[χi] (19)

By using Lemma 1, we prove the correctness of the lemma.

C.3 Lemma 3 Proof
For Equation 4, let the number of false values removed from an

entity Ti with sc-probability p be V (p). Then, E[γi], the expected
amount of false values removed, is:

E[γi] =

∫ 1

0

V (p) · f(p)dp (20)
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To obtain V (p), we consider two cases for Ti:

• Case 1: With probability Pne(p), Ti is only explored, but not
exploited. Then Ti has Et(p) false values removed.

• Case 2: With probability (1 − Pne(p)), Ti is both explored
and exploited. Since this entity has an expected number E[ri]
of false values, using the EE algorithm, E[ri] false values will
be removed.

Hence,

V (p) = Pne(p) · Et(p) + (1− Pne)(p) · E[ri] (21)

The rest of the proof is to obtain Et(p) and Pne(p). For Et(p), no-
tice that after exploration, t cleaning operations have been applied
on Ti. Since Ti has a sc-probability of p, the expected number of
false values that can be removed is bounded by the minimum of tp
and E[ri]. Hence, Equation 7 holds.

To obtain Pne(p), we observe that if an entity, which has been
explored, is not exploited, the condition that p̂i ≥ q in Step 17
should fail. Since p̂i = m/t (Step 15), we have:

m ≤ �tq� − 1 (22)

Since m is the number of false values removed, m ≤ E[ri]. There
are two cases to consider:

• Case 1: E[ri] ≤ �tq� − 1. Then, Equation 22 holds, and
there is no chance for an exploitation to occur. In other words,
Pne(p) = 1.

• Case 2: E[ri] > �tq� − 1. Since t cleaning operations is
performed during exploration, we can model this as t inde-
pendent trials, with success probability p. Then, the proba-
bility that m cleaning operations fail out of t trials is a bi-
nomial distribution: Ct

mpm(1 − p)t−m. Moreover, Pne(p)
is the probability that Equation 22 occurs, which is equal to
�tq�−1∑
m=0

Ct
mpm(1− p)t−m. Hence, Equation 6 holds.

Hence, based on Equations 20 and 21, we conclude that Equation 4
is correct.

To prove the correctness of Equation 5, let the amount of clean-
ing effort spent on an entity Ti with sc-probability p be S(p). Then,
E[χi], the expected cleaning cost on each entity is:

E[χi] =

∫ 1

0

S(p) · f(p)dp (23)

To obtain S(p), we consider two cases for Ti:

• Case 1: With probability Pne(p), Ti is only explored, but not
exploited. Then Ti needs a cost of t to be cleaned.

• Case 2: With probability (1 − Pne(p)), Ti is both explored
and exploited. Notice this entity has an expected number
E[ri] of false values. Also, on average, a number 1

p
of clean-

ing operations are needed to remove one false value from Ti.

Using the EE algorithm, a cost of
E[ri]

p
is required to remove

E[ri] false values from Ti.

Hence,

S(p) = Pne(p) · t+ (1− Pne)(p) · E[ri]

p
(24)

By using Equations 6, 23, and 24, Equation 5 is proved.
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