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Abstract—Transaction management for mobile and ubiquitous
computing aims at providing mobile users with reliable services
in a transparent way anytime anywhere. To make such a vision a
reality, transaction processing for the mobile and ubiquitous com-
puting needs to adapt to the runtime environments dynamically.
However, most existing mobile transaction models do not consider
the context-based transaction management. In this paper, we
propose a context-aware transaction model and context-driven
coordination algorithms. They are built on an event-context-
action mechanism, enabling the transaction processing to adapt
well to dynamically changing transaction context. The simulation
results have also demonstrated that our model and algorithms can
significantly improve the successful commit ratio under unstable
context conditions.

I. INTRODUCTION

Mobile and ubiquitous computing (MUC) is a new dis-
tributed computing paradigm. Through MUC, people can get
online access to their preferred services even while moving
around, by sharing computing, communication and informa-
tion services anytime anywhere. Open MUC environment is
prone to failures caused by devices, applications, networks,
and basic services of ubiquitous systems. However, most
present researches and projects on MUC only focus on com-
munication mechanisms (e.g., new communication protocols
tailored for ubiquitous environments) and ubiquitous devices
(e.g., with more powerful functions, smaller size and less
cost)[2]. This motivates us to investigate the reliability support
for advanced ubiquitous applications.

Transaction processing has been widely used to trans-
parently guarantee system consistency in various distributed
environments. To hide the complexity of service processes
from users as much as possible, ubiquitous systems have
to dynamically adapt to changing contexts and intelligently
handle failures and recovery [6]. Therefore, the advanced
transaction management is another key technology[2] to ensure
the reliability of MUC in a transparent way. The necessity
to set up reliable MUC systems has been discussed in liter-
ature, e.g., in [10]. Furthermore, as pointed out in [2,9,10],
the traditional mobile transaction proposals are not directly
applicable to MUC transactions because MUC allows users
to move freely while enjoying preferred services anytime
anywhere[10]. Under such circumstances, nodes, data and
services that can be directly accessed keep changing with the
movement of users.

Transaction management is highly related to computing
paradigms. High mobility of MUC environments presents
severe challenges to MUC transaction management in the
following aspects.

Context-aware transaction model. Transaction context in-
cludes information from physical space, information space
and human activities. Context awareness is at the center to
enable transparent ubiquitous transaction services. Therefore,
the MUC transaction model should have the abilities to adapt
to dynamical transaction contexts, and thus it can provides
general support for various ubiquitous applications.

Context-driven dynamic transaction management. The mo-
bility of MUC users makes transaction context, e.g., network
connection and bandwidth, continuously changing. In order
to improve the successful ratio and efficiency of transactions
and to reduce users’ intervention as much as possible, trans-
action management should be aware of context changes, and
intelligently optimize the distribution and execution modes of
ubiquitous transactions.

In this paper, we investigate how to solve the above chal-
lenges. Firstly, we propose a context-aware MUC transaction
model that handles transactions in an event-context-action
manner. Then, we present the context-driven coordination al-
gorithms that achieve fast and efficient adaption for transaction
processing. Our objective is to provide a context-aware and
transparent transaction service for advanced ubiquitous appli-
cations. Distinguishing from previous work, our model and
algorithms focus on adaptively adjusting transaction execution
patterns according to current context, which significantly im-
proves successful commit ratio under unstable environments.

The remainder of this paper is organized as follows. Section
II gives a review of related work. Section III proposes a
context-aware MUC transaction model. In Section IV, we
investigate context-driven transaction coordination algorithms.
Experiments and evaluation on our model and algorithms are
reported in Section V. Finally, Section VI concludes this paper
with a discussion on our future work.

II. RELATED WORK

Existing mobile transaction models mainly focus on the
issues like network disconnection, concurrency control, repli-
cation, hand-off and restricted resources[4], paying little or no



attention to the context-awareness which has become a crucial
part of modern mobile applications.

Intermittent connection is the most serious challenges to
mobile transaction processing. To recover from node dis-
connections, CLCP [1] uses multiple coordinators to achieve
robust and failure-tolerant atomic commit. In [5], a transaction
processing framework is proposed to support frequent discon-
nections of mobile databases. The main idea is that transaction
execution can be done at both the BS (base station) and
MHs(mobile hosts). Similarly, HiCoMo(High Commit Mo-
bile)[3] keeps base tables for base transactions and aggregate
tables for HiCoMo transactions. Concurrency control is an-
other important issue for mobile transaction management. Park
et al.[7] proposed an optimistic concurrency control method
based on a random back-off technique. [8] proposes a multi-
version transaction processing approach and a deadlock-free
concurrency control mechanism based on a multi-version two-
phase locking scheme integrated with a timestamp approach.

Transaction management in ubiquitous environments needs
to detect transaction context, such as connectivity and network
bandwidth, and then flexibly decides how to coordinate sub-
transactions. It has not achieved by existing proposals. This
paper is motivated to solve this key issue, especially on the
adaptive transaction model and coordination algorithms.

III. CONTEXT-AWARE TRANSACTION MODEL

A. Context of MUC Transactions

The significant difference between MUC and traditional mo-
bile computing is that MUC frees users from the complexity
of service processes as much as possible by automatically
collecting context and adaptively adjusting execution policies.
So context awareness is a prerequisite to the MUC transaction
processing.

Transaction context includes information from physical
space, information space, and human activities related to
transaction processing. More specifically, MUC transactions
mainly concerns on the following context.
• Wireless network(WN), with attributes connectivity, band-

width, delay, losing ratio, cost and stability
• Mobile device(WD), with attributes computing capacity,

available memory, available battery, available data,
available cache and security

• Location, with attributes longitude and latitude
• User, with attributes profile, purpose and requirements
• Time, with attributes start time and ending time.

B. Context-Aware Transaction Model

A context-aware transaction model for ubiquitous environ-
ments can be formulated by the following definition.

Definition 1 (MUCT). An MUC transaction (MUCT) is a 6-
tuple MUCT = (T,CT, ECA, D, TS, FS), where:

T={Ti |16i6n} and CT={CTi |16i6n} are the set of
subtransactions in an MUCT and the set of compensating
transactions for the subtransactions, respectively, in which
n is the number of the subtransactions in an MUCT. Each

TABLE I
TRANSACTION STATE DESCRIPTION.

Symbol State Description
I initiation transaction does not start to execute
E executing transaction is executing and has not committed
S submitted transaction has successfully committed
F failed transaction has failed to commit and been

rollbacked to the previous state
C compensating compensating transaction is being executed

subtransaction Ti (Ti∈T) can associate at least one compen-
sating transaction CTi such that CTi can semantically undo
the affects of Ti submitted previously.

ECA=<ECAi |16i6n> is the list of ECA (event-context-
action) rule descriptors, where ECAi is the rule descriptor of
the subtransaction Ti. ECAi has higher priority than ECAi+1.

Each ECAi=<Ei, Ci, Ai> is also a list of 3-tuple: event,
context and corresponding action, which describe multiple
context-based execution policies for the subtransaction Ti, and
are described as follows.
• Ei={Eij}: a set of events that occur during the execution

of Ti.
• Ci={Cik}: a set of context associated with a subtransac-

tion Ti. We also take Ci as the conditions that must be
met for the execution of Ti. Ci covers five dimensions:
WN, MD, Location, User, and Time as described in the
last subsection. Note that Ci changes dynamically.

• Ai={Ail}: a set of corresponding actions. For example, a
user wants to reserve flight tickets from traveling agent A,
and the communication link is disconnected at that time.
Once such an event is detected, transaction manager may
try to connect another traveling agent B to resume the
ticket reservation.

D is a set of dependencies between Ti and Tj (Ti, Tj ∈ T).
We define two kinds of dependencies: successful submission
dependency (ls) and failed submission dependency (lf ). The
dependency TilsTj means that Tj cannot be executed until
Ti successfully commits, while Tilf Tj denotes that Tj can
start its execution only if Ti fails to commit.
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Fig. 1. State conversion diagram of MUC transactions.

TS = {S1, S2, . . . , Sn} is a set of states of all subtransac-
tions in a MUC transaction. Si, the state of subtransaction Ti,
is in one of five possible states: I, E, F, S and C (see Table I).
Each subtransaction starts with state ‘I’ and ends with state
‘S’ (if it commits successfully) or ‘F’ (if it fails to commit).
Fig.1 illustrates the state conversion.

FS is a set of acceptable final states. An MUC transaction
may have multiple proper final states that an user is ready to



accept, probably with different priorities.

C. A Case Study

In this section, we describe how to model MUC transactions
in a specific scenario. We consider a patient John, driving a car
equipped with a mobile device(MD), needs to find a hospital
in emergency. MD first queries the nearest hospital to find
whether it satisfies medical conditions (T1) for John. If the
hospital qualifies, MD sends John’ current physical status to
the hospital to prepare corresponding medical services(T2),
and then queries the public traffic information service to
discover the best path to that hospital based on current road
states(T3). If T1 fails, MD subscribes the medical service from
the Health Service Central Hospital(T4), which can provide
versatile medical services while probably being far away.

We model these activities as a MUC transaction such that
T={T1, T2, T3, T4} and CT={φ, CT2, φ, φ}, where CT2 is the
compensating transaction for canceling the reserved medical
services. The dependency in T is illustrated in Fig.2.
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Fig. 2. A case of MPC Transactions.

ECA=<<E1,C1,A1>,<E2,C2,A2>,<E3,C3,A3>,<E4,C4,
A4>> describes how to adapt to the context, where
<E1,C1,A1>=<<E1,C11,A11>,<E1,C12,A12>>. Specifical-
ly, <E1,C11,A11> means that MD successfully queries the
nearest hospital if the context C11 is qualified, such as
connectivity=connected and bandwidth = high (or medium),
for the query, where E1 means that John initiates a query to
the hospital; A11 is the action that MD queries the hospital
successfully. Accordingly, if C11 is unqualified, A12 will be
executed, which means MD will contact with the Health
Service Central Hospital. <E2,C2,A2>, <E3,C3,A3> and
<E4,C4,A4> are similar.

D={T1lsT2, T2lsT3, T1lf T4, T4lsT3}. This depen-
dency D specifies that this transaction may be executed in
one of two sequences σ1={T1,T2,T3} and σ2={T1,T4,T3}.

FS={(S, S, S, -), (F, -, S, S)}, where ‘S’ and ‘F’ stand
for the successful and failed execution of the corresponding
subtransaction respectively, while ‘-’ means that the execution
state of the subtransaction does not affect the decision.

IV. CONTEXT-DRIVEN COORDINATION ALGORITHMS FOR
MUC TRANSACTIONS

A global MUC transaction T={T1,T2,. . . ,Tn} is initiated
by a mobile device (called requestor) while subtransactions
are distributed to n mobile devices (called executor). Ac-
cordingly, our context-driven coordination approach based on
the proposed MUC transaction model consists of two parts:
algorithm1 and algorithm2, which are respectively executed

by a Coordinator in a transaction requestor and n Participants
located in executors.
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Fig. 3. Coordination flow for MUC transactions.

Algorithm 1 Coordination algorithm in a requestor
Input: T={T1, T2, . . . , Tn}, CT={CT1, CT2, . . . , CTn}

ECA rules, dependency set D
Output: T execution result

1: query host Hi for executing Ti in registration center;
2: TS={I,I,. . . ,I};
3: t←T1;
4: while (TS*FS) do
5: if (an event t.Ek occurs) {
6: check corresponding context t.Ck;
7: for i=0 to RetryNum do

if (t.Ck is qualified) {
send t to Hk;
Sk=‘E’;
wait incoming message;
if (the message is SUCCESSFUL)

Sk=‘S’;
else

if (the message is FAILED)
Sk=‘F’; }

end for }
8: t D←− next subtransaction Tk;
9: if (t = φ) break;

10: end while
11: if (TS⊆FS)

globally commit T by the message CONFIRM;
12: else

compensate subtransactions committed previously
by the message CANCEL;

The global MUC transaction T is executed until its state TS
achieves one of acceptable final states or no subtransaction
exists. The order of executing subtransactions is determined
by transaction dependency D. In the case studied in last
section, for example, T4 will be immediately executed if T1

fails. The state of each subtransaction is set according to its



execution result. Finally, if one of acceptable final states has
achieved, the algorithm confirms all submitted subtransactions.
Otherwise, it requires subtransactions submitted previously to
execute their corresponding compensating transactions. We
illustrate the transaction coordination flow in Fig.3.

Algorithm 2 Coordination algorithm in executors
Input: Subtransaction Tk

Output: Execution result of Tk

1: failed:=false;
2: while (Tk does not finish and (not failed)) do
3: execute application operations in Tk;
4: if (fail to execute the operations)
5: failed:=true;
6: end while
7: if (failed)
8: send a FAILED message to the requestor;
9: else {

10: send a SUCCESSFUL message to the requestor;
11: wait incoming message;
12: if (receive a CONFIRM message)
13: report execution results to the requestor;
14: else if (receive a CANCEL message) {
15: execute Ti’s compensating transaction;
16: report Ti is cancelled; } }

The algorithm1 coordinates global MUC transactions, where
a subtransaction Ti is submitted to an execution node only
when (1) it has not been executed(i.e., Si=‘I’), (2) the corre-
sponding event occurs, and (3) its context Ci is qualified. By
the qualified context, we mean that the current context of a
transaction Ti satisfies requirements for executing Ti.

The algorithm2 actually executes individual subtransactions,
under the control of the Coordinator by interacting with
coordination messages. If a subtransaction is successfully
executed, it will be confirmed or compensated upon receiving
the message CONFIRM or CANCEL from the Coordinator,
respectively. Otherwise, it automatically rollbacks to the pre-
vious system state.

V. EXPERIMENTS AND EVALUATION

We have implemented a simulation system to evaluate the
feasibility of the proposed MUC transaction model. We have
also investigated how much the successful commit ratio of
MUC transactions is improved by using our context-driven
coordination algorithms.

A. Experiment Environment

In our system, there are 100 self-organized mobile nodes.
Each node acts as a requestor as well as an executor. More
specifically, any node can not only issue global MUC trans-
action requests but also execute sub-transactions submitted by
other nodes.

The features of node mobility are simulated by changing
link states. Let wireless links between nodes disconnect in a
probability DisconnectProb. In addition, we model the system

load in the number of concurrent MUC transactions (marked
as NumMobiTran). The MUC transactions were randomly ini-
tiated and concurrently executed in the system. Each of them
consists of two subtransactions as T={T1,T2}. Our current
experiments concentrate on how to adapt to the dynamic
network connectivity and bandwidth.

We evaluate two kinds of transactions: context-aware trans-
action (WithCA) and non-context-aware transaction (With-
outCA). For WithCA transactions, if the context of a subtrans-
action Ti is unqualified, the Coordinator in a requestor resends
Ti to other nodes for at most RetryNum (RetryNum>1) times.
On the other hand, a WithoutCA transaction is dispatched only
once so it would fail if at least one link among a requestor
and executors is unqualified. In the following experiments, we
set RetryNum=3.

B. Results and Evaluation

Because high mobility and frequent network disconnection
significantly decrease the transaction commit probability, the
successful ratio (SR) is normally used as the major perfor-
mance metrics of mobil transaction models. Therefore, we
evaluate MUC transactions through SR that is defined as a ratio
of transactions submitted successfully to total transactions
within a given period.

For each kind of MUC transactions, we conducted compre-
hensive simulations in the following various network settings.

100 150 200 250 300 350 400 450 500
10

20

30

40

50

60

70

80

90

100

Number of Concurrent Transactions

S
uc

ce
ss

fu
l R

at
io

 (%
)

 

 

WithoutCA
WithCA

Fig. 4. SR against the number of concurrent transactions.

1) The Number of Transactions: In this experiment, we
varied the number of concurrent MUC transactions from
100 to 500, where link disconnection probability is fixed
at DisconnectProb=0.1. The performance results obtained for
the two kinds of transactions WithCA and WithoutCA are
shown in Fig.4. The SR degrades for both strategies as the
transaction load increases. The reason is that higher load on
the physical resources causes heavier data conflicts. From this
figure, we can see that in the whole range of the transaction
load, WithCA always performs better than WithoutCA. This
is because WithCA may redispatch a transaction for at most
RetryNun times if previous requests failed while WithoutCA
sends a transaction request only once.

2) Disconnected Probability: When a link disconnects or
has no enough bandwidth, the nodes connected by the link
can no longer initiate transaction requests or report execution
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Fig. 5. SR against link disconnection probability.

results. Therefore, for both WithCA and WithoutCA trans-
actions, link states have significant impact on the SR. In
this experiment, we measure the transaction SR by varying
the DisconnectProb from 0.1 to 0.7 with an increment of
0.1. The performance results are shown in Fig.5, where the
number of concurrent MUC transactions in system was fixed
as NumMobiTran=50.

As we can see, the performance of the system becomes
worse for both execution strategies WithCA and WithoutCA as
the value of link disconnection probability increases. The rea-
son is that with the increase of failure probability of wireless
links, more subtransactions can not be sent to the target nodes.
However, the relative performance of WithCA to WithoutCA
is not affected by such probability of wireless link failure
because WithCA transactions would resend subtransactions to
other nodes for more options that WithoutCA transactions do
not have.
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Fig. 6. SR against the number of interaction operations in a transaction.

3) The Number of Interaction Operations: Interaction op-
erations are issued by a mobile host during its execution. As
shown in the previous example, if the query for the nearest
hospital is successful, the mobile device sends John’s current
emergency status to the hospital and queries public traffic
information service to discover the best path to that hospital
based on current road states. We can expect that the successful
ratio of MUC transactions will become worse as such interac-
tions increase duo to communication failures. In this experi-
ment, we varied the number of interaction operations in MUC
transactions from 1 to 7 with the increment of 1 to evaluate the
performance impact of the number of interaction operations.
Performance results obtained in terms of the success ratio are

provided in Fig.6, where NumInteration means the number of
interaction operations in a MUC transaction.

As the number of interaction operations increases, the
performance of WithCA gets a little bit worse because WithCA
transactions can be re-executed multiple times. By comparison,
a steeper performance degradation is observed in WithoutCA
strategy as the number of interaction operations increases. The
reason is that WithoutCA transactions are dispatched only once
so that the failure probability of these transactions is accumu-
lated with the increasing interactions among a mobile device
and ubiquitous services through unstable wireless connections.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a context-aware transaction model and
context-driven coordination algorithms. The proposed model
and algorithms can adaptively adjust transaction management
policies according to the dynamic transaction context. The
performance studies show that our proposal can significantly
improve the transaction commit ratio of MUC transactions
under unstable environments.

We are going to investigate flexible and light-weight mecha-
nisms to automatically generate compensating transactions for
MUC environments.
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