
Towards Payment-Bound Analysis in Cloud Systems with Task-Prediction Errors

Sheng Di1, Cho-Li Wang2, Derrick Kondo1, Guodong Han2
1INRIA, France, 2The University of Hong Kong, Hong Kong

sheng.di@inria.fr, clwang@cs.hku.hk, derrick.kondo@inria.fr, gdhan@cs.hku.hk

Abstract—In modern cloud systems, how to optimize user
service level based on virtual resources customized on demand
is a critical issue. In this paper, we comprehensively analyze
the payment bound under a cloud model with virtual machines
(VMs), by taking into account that task’s workload may be
predicted with errors. The analysis is based on an optimized
resource allocation algorithm with polynomial time complexity.
We theoretically derive the upper bound of task payment
based on a particular margin of workload prediction-error.
We also extend the payment-minimization algorithm to adapt
to the dynamic changes of host availability over time, and
perform the evaluation by a real-cluster environment with 56
VMs deployed. Experiments confirm the correctness of our
theoretical inference, and show that our payment-minimization
solution can keep 95% of user payments below 1.15 times
as large as the theoretical values of the ideal payment with
hypothetically accurate information. The ratio for the rest user
payments can be limited to about 1.5 at the worst case.

I. INTRODUCTION

Cloud computing [1] has become a new effective service
provisioning paradigm with the maximized flexibility under
user’s control. Rather than Grid computing, one key feature
of Cloud computing is its elastic resource provisioning that
allows users to customize resources on demand.

In our previous work [3], we built a Cloud resource
allocation model that aims to minimize user payment by
leveraging virtual machine (VM) technology. We proposed
a polynomial algorithm, namely MIN-Payment-OPT, which
can estimate the optimal resource allocation for tasks within
their budget requirements. Its output has been proved to
be optimal based on Karush-Kuhn-Tucker (KKT) conditions
[4]. In this paper, we further investigate the effectiveness of
users’ payments as compared to their budgets, by answering
two questions below.

• What is the bound of task payment under the Min-
Payment-OPT algorithm, provided that task workloads
are predicted with a certain margin of error?

• What are the experimental results about payments in a
VM-supported cloud environment with workload pre-
diction errors, under various levels of competitions?

Our work with consideration of prediction errors is dif-
ferent from the existing task scheduling research. Many
existing works [5], [6] assume task workload is exactly
pre-known, while the others [7], [8], [9] assume such
information is completely unknown. If the task workload
can be predicted accurately, the resource allocation issue

will actually be simplified as either convex-optimization
problem [10], [11] or combinatorial-optimization problem
[12], [13]). However, this will definitely raise a significant
gap between the research and practice. By contrast, if
task workload is assumed to be completely unknown, the
problem becomes as intractable as a black-box, which can
only be coped with via heuristics or experiences. Due to
the increasingly mature workload prediction research like
[14], task’s multi-dimensional workloads could already be
predicted in advance, yet suffering a certain margin of errors.

In this paper, we first theoretically derive the bounds of
user payments about their task executions, given a margin of
workload prediction error. Such an analysis is significant in
that payment is often one of the most important requirements
in cloud systems. In fact, if the relationship between user’s
real payment and task workload prediction errors is studied
comprehensively, user’s cost can be restricted well and they
will be more satisfied with their task executions.

There are at least two key challenges in the theoretical
analysis about payment bound. On one hand, it is critical
to build an ease-of-use (or feasible) model to suit most of
the workload prediction methods. On the other hand, it is
necessary to comprehensively study the resource allocation
scheme, so as to explore a set of intrinsic rules for deducing
the conjectured payment bounds.

In our experiment, we implement a cloud prototype with
over 56 VMs deployed. We defined a useful metric, called
Payment Extension Ratio (PER), to evaluate the user pay-
ment level, under different levels of resource competition.
Experiments show that the Min-Payment-OPT algorithm
can effectively keep 95% of user payments with erroneous
prediction information below 1.15 times as large as the
theoretical values estimated with hypothetically accurate
information. Our experiments also show PER for the rest
tasks can be limited to about 1.5 at the worst case.

The rest of the paper is organized as follows. We first
formulate the payment bound problem in Section II and
briefly introduce the Min-Payment-OPT algorithm in Section
III. In Section IV, we theoretically analyze the upper bound
of the user payment, by taking into account the possible
task workload prediction errors. In Section V, we present the
experimental results. We also extend the basic Min-Payment-
OPT algorithm to an online version, that can adapt to the
dynamically changing node’s availability states. In Section
VI, we discuss the related work. Finally, we conclude the

paper with a vision of the future work in Section VII.

II. PROBLEM FORMULATION

A. Payment Minimization Model

In our cloud model, a cloud proxy (a.k.a., server) will re-
ceive and respond to user requests (or tasks) with customized
requirements (or virtual machines). As a task is submitted, it
will be attached to an isolated VM, whose multiple resources
(e.g., CPU rate, I/O rate) will be optimally customized. Upon
its completion, the computational result will be sent to its
user and the resources will be released for new usage.

Suppose there are n computational nodes (a.k.a., ex-
ecution nodes, denoted by pi, where 1≤i≤n) in the
resource pool. For any particular task with R execu-
tion dimensions (e.g., R types of resources like CPU
rate and I/O bandwidth), we use Π to denote the
whole set of dimensions and c(pi)=(c1(pi) , c2(pi) ,· · · ,
cR(pi))T as node pi’s capacity vector. For example, a
node p1’s physical capacity vector could be denoted as
c(p1)={CPU rate=2.4Gflops,disk IO rate=1Gbps}.

Any task is denoted as ti, where 1≤i≤m, and m
refers to the total number of submitted tasks. Each task
has a multi-dimensional workload vector, denoted by
l(ti)=(l1(ti),l2(ti),· · · , lR(ti))T , which needs to be fin-
ished before the task’s deadline. We denote the resource
vector allocated to ti as r(ti) = (r1(ti), r2(ti), · · · ,
rR(ti))T , where rk(ti) (k=1,2,· · · ,R) refers to the re-
source fraction on the kth dimension isolated for the task’s
execution. Node pi’s availability vector (denoted a(pi))
along the multiple dimensions is calculated by c(pj) −∑

ti running on pj
r(ti). In the above example about node

p1, if it is running two VMs that are allocated with half
of the total physical resources, its availability vector a(p1)
is equal to {CPU rate=1.2Gflops,disk IO rate=0.5Gbps}.
For simplicity, we denote task ti’s execution time (a.k.a.,
execution length) as Equation (1) (an affine transformation
of
∑R

i=1
lk
rk

), where θ denotes a constant coefficient. Such a
definition specifies a defacto broad set of applications each
with multiple execution dimensions. One typical example is
a single job with multiple sequentially interdependent tasks
or some program with distinct execution phases each relying
on independent compute resources (then θ = 1).

T (ti) = θ
∑R

k=1

lk(ti)

rk(ti)
, where θ ∈ [

max(lk
rk
)∑R

k=1
lk
rk

, 1] (1)

For any cloud system, the resources provisioned are
usually set with a price vector denoted as b(pi)=(b1(pi),
b2(pi), · · · , bR(pi))T along R dimensions. bk(pi) (1≤k≤R)
denotes the per-time-unit price of the kth dimension on pi.
Each task ti is set with a deadline (denoted D(ti)) for its
execution and the payment is expected to be minimized.

Any task will be executed on one VM with user-reserved
resources and the payment is calculated based on the
customized resource (a.k.a., pay-by-reserve policy). A real

cloud system that uses this policy is Haizea [16]. Adopting
such a pricing policy is due to the fact that the efficiency
of many applications relies on multiple resources but it is
non-trivial to precisely evaluate the exact amount of their
consumption separately on individual resources. Moreover,
quite a few users prefer to reserving resources for tolerating
usage burst and guaranteeing their service levels.

Task’s total payment will be calculated via Equation (2),
where ps refers to the task ti’s execution node. The mean
price (i.e., 1

Rb(ps)T · r(ti)) will be used as the pricing unit
over time, for computing user’s payment. Such a design
can be consistent with our pay-by-reserve model, and also
prevent payment cost from being too high when their appli-
cations’ execution cannot overlap at different dimensions.

P (r(ti)) =
1

R
b(ps)T · r(ti) · T (ti) (2)

In the paper, we will omit some redundant notations ti and
pi if thus would not cause ambiguity. For instance, lk(ti),
r(ti), bk(pi), a(pi) and D(ti) may be substituted by lk, r,
bk, a, and D respectively, in the following text.

The payment minimization problem could be summarized
as the following convex optimization format: for any task
ti with its workload vector l(ti), given a set of candidate
execution nodes (ps, s=1,2,· · · ,n), how to select ps and
split resource such that ti’s payment (i.e., Equation (2)) is
minimized, subject to the constraints (3) and (4).

min P (r(ti))
s.t. T (ti) ≤ D(ti) (3)

r(ti) ≼ a(ps) (4)

We proposed a polynomial algorithm - Algorithm 1
(a.k.a., Min-Payment-OPT) to solve the above problem,
which has been proved optimal in our previous work [3].

B. Payment Bounding Problem

Although Algorithm 1’s output has been proved optimal,
such a result relies on a strong condition, i.e., task’s work-
load vector should be predicted accurately. In order to adapt
to erroneous workload prediction, we define the margin of
workload prediction error as follows.

Definition 1: Suppose a task ti’s real workload vector is
l(ti), while its workload vector used by our algorithm is
l′(ti) subject to Inequality (5), where α and β are the lower
bound and upper bound of the margin of the prediction
error specified by users based on experiences or particular
workload prediction methods such as [14], [17], [18].

α ≤ l′k(ti)

lk(ti)
≤ β, k = 1, 2, · · ·R (5)

We give an example to illustrate the above definition.
Suppose a task ti’s real workloads are always in [0.125,
1], and the workload vector l′(ti) used by Algorithm 1
will be set based on the task’s historical execution records.
Specifically, each element l′k(ti) (k = 1, 2, · · ·R) will be

set to 0.25 if the corresponding true workload fluctuates
in [0.125, 0.5] and set to 0.75 if the true workload ranges
within (0.5, 1]. Then, we could get Inequality (6) below,
since α=0.125

0.25 =0.5 and β= 0.5
0.25=2.

0.5 ≤ l′k(ti)
lk(ti)

≤ 2, k = 1, 2, · · ·R (6)

Using the inaccurate prediction l′(ti) to run the Algorithm
1, it is obvious that ti’s real payment may be skewed more
or less from its theoretical value estimated with accurate
workload l(ti). Hence, a critical question is what the pay-
ment bound will get when using l′(ti), compared to its ideal
value calculated with the accurate workload l(ti).

III. BASIC MIN-PAYMENT-OPT ALGORITHM

In this section, we briefly introduce the Min-Payment-
OPT in Algorithm 1. CO-STEP(Γ,C) is a key function
(defined in Definition 2) to get the convex-optimal solution
with unbounded resource assumption. The whole algorithm
repeatedly tune the convex-optimal solutions computed by
CO-STEP(Γ,C), until getting a viable solution compatible
with the conditions (3) and (4).

Algorithm 1 BASIC MIN-PAYMENT-OPT ALGORITHM

Input: deadline D(ti); Output: execution node ps, optimal resource r∗(ti)
1: for (each candidate node ps) do
2: Γ = Π, C = D(ti), r∗ = ∅ (empty set);
3: repeat
4: r(∗)Γ (ti, ps) = CO-STEP(Γ,C); /*Compute optimal r on Γ*/
5: Ω = {dk|dk∈ Γ & r

(∗)
k (ti, ps)>ak(ps)}; /*select elements

violating constraint (4)*/
6: Γ = Γ\Ω; /*Γ takes away Ω*/
7: C = C − θ

∑
dk∈Ω

lk
ak

; /*Update C*/
8: r∗(ti, ps) = r∗(ti, ps)∪{r∗k = ak(ps) | dk∈Ω & ak(ps) is dk’s

upper bound};
9: until (Ω = ∅);

10: r∗(ti, ps) = r∗(ti, ps) ∪ r(∗)Γ (ti, ps);
11: end for
12: Select the smallest P (ti) by traversing the candidate solution set;
13: Output the selected node ps and resource allocation r∗(ti, ps);

Definition 2: For any task ti, based on a subset Γ(⊆Π),
CO-STEP(Γ, C) is defined as the convex optimal solution
to minimizing P (rΓ(ti)) subject to the single constraint (7).
C denotes a constant (e.g., deadline) and rΓ(ti) denotes the
amounts of resources in Γ gained by ti, where dj is the
corresponding dimension of lj and bj .

T (ti) = θ
∑

dj∈Γ

lj
rj

≤ C (7)

The output of CO-STEP(Γ, C) is denoted as r(∗)Γ (ti, ps)

=(r(∗)1 (ti),r
(∗)
2 (ti),· · · ,r(∗)|Γ|(ti))

T . The value of r
(∗)
k (ti), as

shown below, has been proved optimal in our previous work
[3].

r
(∗)
k (ti) =

(
θ
C

∑
dj∈Γ

√
ljbj

)√
lk
bk

(8)

IV. THEORETICAL ANALYSIS OF PAYMENT BOUND

In this section, we will derive an upper bound with
respect to the user payment for the case with unbounded
resource capacity, and an approximated upper bound for
the case with bounded resource capacity. We denote P ∗

E

as the payment output of Algorithm 1 with an inaccurate
workload prediction and denote P ∗

I as the ideal payment
output performed by the algorithm with accurate workload
vector. Their corresponding resource vectors are denoted as
r∗E and r∗I respectively. Hence, our objective is to determine
the upper bound of P∗

E

P∗
I

, a.k.a., payment approximation ratio.
Theorem 1: Given a task ti with a predefined deadline

D(ti), a candidate execution node ps with unbounded avail-
able resource vector and a bounded price vector b(ps), and
a skewed workload vector l′(ti) subject to Inequality (5),
then under the resource allocation r(∗)E , the bound of ti’s
payment conforms to Inequality (9). (Note r(∗) is defined
as the ideal optimal resource vector calculated based on
unbounded resource capacity (as shown in Formula (8)),
so r(∗)I and r(∗)E denote the values of r(∗) calculated under
accurate and inaccurate workload prediction respectively)

P
(∗)
E (ti) ≤

√
β

α
· P (∗)

I (ti) (9)

Proof:

P
(∗)
I = 1

R

(
R∑

k=1

bkr
(∗)
Ik

)
·
(
θ

R∑
k=1

lk
r
(∗)
Ik

)
= 1

R

(
R∑

k=1

bk

(
θ
D

R∑
i=1

√
libi

)√
lk
bk

)
·

θ R∑
k=1

lk(
θ
D

R∑
i=1

√
libi

)√
lk
bk


= 1

R · θ
D

(
R∑
i=1

√
libi

)(
R∑

k=1

√
lkbk

)
·D ·

R∑
k=1

√
lkbk

R∑
i=1

√
libi

= 1
Rθ

(
R∑
i=1

√
libi

)2

P
(∗)
E = 1

R ·
(

R∑
k=1

bkr
(∗)
Ek

)
·
(
θ

R∑
k=1

lk
r
(∗)
Ek

)
= 1

R

(
R∑

k=1

bk

(
θ
D

R∑
i=1

√
l′ibi

)√
l′k
bk

)
·

θ R∑
k=1

lk(
θ
D

R∑
i=1

√
l′ibi

)√
l′
k

bk


= 1

R · θ
D

(
R∑
i=1

√
l′ibi

)2

·D ·

R∑
k=1

lk

√
bk
l′
k

R∑
i=1

√
l′ibi

= 1
Rθ

(
R∑
i=1

√
l′ibi

)
·

R∑
k=1

lk
√

bk
l′k

≤ θ
R

(
R∑
i=1

√
βlibi

)
·

R∑
k=1

lk

√
bk
αlk

=
√

β
α · θ

R

(
R∑
i=1

√
libi

)2
=
√

β
αP

(∗)
I

We could get the above conclusion with the assumption,
unbounded resource capacity. However, under the situation
with bounded resource capacities, we cannot derive such
a neat conclusion as Inequality (9), so that the ratio of

inaccurate-workload based output to the accurate-workload
based output is subject to a constant upper bound. In
Theorem 2, we still successfully derive an approximation
upper bound by considering bounded available resources,
despite the upper bound being not only determined by a
constant ratio, but also related to a supplement.

In order to build the relation between P ∗
E and P ∗

I , we
introduce P

[∗]
E in Definition 3 which can be proved no

greater than P ∗
I later. Then, we just need to compare P ∗

E

and P
[∗]
E instead.

Definition 3: For task ti, given a subset Γ(⊆Π) where
their corresponding resource shares are already designated,
then r[∗](Γ) is defined as such a resource allocation which
minimizes the P (ti) with unbounded resource capacities.

We give an example to further describe the above
definition. Suppose there is a task with three dimen-
sions to process, and we also know its workload
l=(10Gfloatpoints, 10Gbit, 20Gbit)T , its deadline is set
to 30, and the availability vector and price vector of the
specific candidate node ps are (CPU rate=5GFlops, IO rate
= 10Gbps, NetBandwidth=2Gbps)T and (1$ps, 1$ps, 2$ps)T

respectively. Based on our initial problem formulation, the
objective is to find an optimal divisible-resource allocation
(such as (CPU = 3GFlops, IOSpeed = 4Gbps, NetBand-
width=1Gbps)T) such that the payment cost is minimized,
and Γ=∅ (empty set) in this situation.

Differently, Definition 3 takes into account the
situation that Γ ̸=Φ. That is, assuming a few resource
fractions are already designated by system, for
example, (CPU rate=2GFlops,IO rate=3.5Gbps)T , then
Γ={CPU rate, IO rate}, and r[∗](Γ) is the resource
allocation (such as (CPU rate=2GFlops, IO rate=3.5Gbps,
NetBandwidth=1.5Gbps)T) of minimizing P [∗](Γ) subject
to the above information.

We denote P [∗](ti) the task ti’s payment cost when using
the resource allocation r[∗](Γ) onto the task. It is obvious
that Inequality (10) must hold, and we can also derive the
resource allocation vector as Equation (11) in Lemma 1 for
any dk /∈Γ. Note that for any dk∈Γ, rk’s value is already
specified priori.

P [∗](ti) ≤ P ∗(ti) (10)

r
[∗]
Ik =

θ
∑

di /∈Γ

√
libi

D − θ
∑

di∈Γ

li
ri

√
lk
bk

(11)

Lemma 1: For task ti, given a subset Γ(⊆Π) where their
corresponding resource shares are already designated, then
r[∗](Γ) can be calculated using the Formula (11), where r

[∗]
Ik

is referred to the kth element of r[∗](Γ).
Proof: Based on Equation (2), we could get Equation

(12), under the assumption that Γ contains all the resource

amounts that are already specified.

P
[∗]
I (r(ti)) = 1

R · T [∗](ti) · (
∑

dk∈Γ

bkrk +
∑

dk /∈Γ

bkr
[∗]
Ik)

where T [∗](ti) =
∑

dk∈Γ

lk
rk

+
∑

dk /∈Γ

lk
r[∗]Ik

(12)

According to the Definition 3, we know that r[∗]Ik (∀dk /∈
Γ) is computed using convex optimization with unbounded
resource capacities, thus, T [∗] = D. Then, we can get the
Lagrangian function as Equation (13) for P [∗]

I (ti), where λ
is its Lagrangian multiplier.

F3(r)=D
R (
∑

dk∈Γ

bkrk+
∑

dk /∈Γ

bkr
[∗]
Ik)+λ(

∑
dk∈Γ

lk
rk
+
∑

dk /∈Γ

lk
r
[∗]
Ik

−D)

(13)
Let ∂F3(r)

∂rk
=D

R bk+λ
(

−lk
r2k

)
=0 (∀dk /∈ Γ), we can derive

Equation (14).

rj : rk =

√
lj
bj

:

√
lk
bk

,∀dj , dk ∈ Γ (14)

By combining Equation (12), Equation (14), and T [∗] = D,
we can finally derive Equation (11).

Theorem 2: Given a task ti with a predefined deadline
D(ti), a candidate node ps with bounded available resource
vector a(ps) and price vector b(ps), and a skewed workload
vector l′(ti) subject to Inequality (5), then ti’s payment
under resource allocation r∗E conforms to Inequality (15),
where η=

∑|Ω|
i=1

lk
ak

, µ=
∑|Ω|

i=1 biai, and Ω denotes the set of
resource dimensions accumulated by Line 5 of Algorithm
1.

P ∗
E ≤ 1

α
· D

D
β − θη

P
[∗]
I +

µD

αR
(15)

Proof: Let Ω denote the resource dimension set accu-
mulated by the line 5 of Algorithm 1, that is, ∀di ∈ Ω,
r∗Ei = ai. We denote r

[∗]
I (Ω) (abbreviated as r

[∗]
I) the

optimal resource allocation calculated in terms of Definition
3, subject to the condition that ∀di ∈ Ω ri = r∗i . T

[∗]
I

(short for T
[∗]
I (Ω)) and P

[∗]
I (short for P

[∗]
I (Ω)) denote the

corresponding execution time and payment cost respectively.
We can write P ∗

E and P
[∗]
I as Equation (16) and Equation

(17) respectively.

P ∗
E =

1

R
· T ∗

E · (
∑|Ω|

i=1
biai +

∑|Ω|

i=1
bir

∗
Ei) (16)

P
[∗]
I =

1

R
· T [∗]

I · (
∑|Ω|

i=1
bir

∗
Ii +

∑R

i=|Ω|+1
bir

[∗]
Ii) (17)

Via Equation (11), we can get the following derivations.

R
P∗

E

T∗
E
−

|Ω|∑
i=1

biai =
R∑

i=|Ω|+1

bir
∗
Ei

=
R∑

k=|Ω|+1

bk·θ
D−θ

∑|Ω|
i=1

l′
i

ai

(
R∑

i=|Ω|+1

√
bil′i

)√
l′k
bk

= θ

D−θ
∑|Ω|

i=1

l′
k

ak

(
R∑

i=|Ω|+1

√
bil′i

)2

(18)

R
P

[∗]
I

D −
|Ω|∑
i=1

bir
∗
Ii =

R∑
i=|Ω|+1

bir
[∗]
Ii

=
R∑

k=|Ω|+1

bk·θ
D−θ

∑|Ω|
i=1

li
r∗
Ii

(
R∑

i=|Ω|+1

√
bili

)√
lk
bk

= θ

D−θ
∑|Ω|

i=1
li
r∗
Ii

(
R∑

i=|Ω|+1

√
bili

)2

(19)

We can derive Ineq. (20) based on the above equations.

R
P∗

E

T∗
E
−

|Ω|∑
i=1

biai

R
P

[∗]
I

D −
|Ω|∑
i=1

bir∗Ii

≤
D − θ

|Ω|∑
i=1

li
r∗Ii

D − θ
|Ω|∑
i=1

l′k
ak

β (20)

Finally, based on Inequality (20),
∑|Ω|

i=1
li
r∗Ii

>0 and In-
equality (5), we can derive the conclusion as follows:

P ∗
E ≤ 1

R ·T ∗
E ·

 |Ω|∑
i=1

biai + β
D−θ

|Ω|∑
i=1

li
r∗
Ii

D−θ
|Ω|∑
i=1

l′
k

ak

·(RP
[∗]
I

D −
|Ω|∑
i=1

bir
∗
Ii)


≤ D

αR ·

 |Ω|∑
i=1

biai + β D−0

D−θ
|Ω|∑
i=1

βlk
ak

· (RP
[∗]
I

D − 0)


= D

αR ·

 |Ω|∑
i=1

biai +
βR

D−θ
|Ω|∑
i=1

βlk
ak

P
[∗]
I


= 1

α · D

D
β −θ

|Ω|∑
i=1

lk
ak

P
[∗]
I + D

αR

|Ω|∑
i=1

biai

= 1
α · D

D
β −θη

P
[∗]
I + µD

αR

V. EXPERIMENTAL ANALYSIS OF PAYMENT BOUND

In this section, we first extend the basic optimal algorithm
(Algorithm 1) to adapt to a dynamic situation, by taking into
account the dynamic changes of resource states and possibly
erroneous workload prediction. Then, we evaluate such
an improved algorithm on a close-to-real cloud prototype
deployed with 56 virtual machines, and intensively analyze
the experimental results about payment bound.

A. Dynamic Min-Payment-OPT Algorithm

In the dynamic situation, we allow each task to own
a series of inter-dependent subtasks, and the succeeding
subtasks cannot be started unless its preceding subtask is
finished. Each subtask could be considered a web service
(a.k.a., service) developed and deployed by a third part
(say another developer). The execution efficiency and the
payment of each task are closely related to the availability
of the hosts on which its subtasks would run and the
prices that their owners assigned. In addition, since there
are strict dependency relation among the subtasks, we extend
our algorithm to dynamically make the resource allocation
decision for any subtask whenever its preceding one is

just finished, such that each allocation could be with more
accurate real-time information. In order to conform to our
previous problem formulation, each subtask is assumed to
be a CPU-intensive service thus θ will be set to 1 here. The
pseudo-code of the extended dynamic version of our optimal
algorithm is shown below.

Algorithm 2 DYNAMIC MIN-PAYMENT-OPT ALGORITHM

Input: deadline D(ti), ti’s subtask set Π(ti);
Output: Dynamically execute Π(ti) with minimized payment cost;
1: D′ = α ·D(ti); /*Use a tuned deadline*/
2: for (each subtask stj ∈ Π(ti) in order, j=1,2,· · · ,|Π(ti)|) do
3: Γ = Π(ti), C = D′, r∗ = ∅ (empty set);
4: Retrieve current resource states a = {a(p1), a(p2), · · · , a(pn)};
5: r(∗)Γ = CO-STEP(Γ,C); /*Compute optimal r based on Γ*/
6: if (r(∗)Γj > max(a)) then
7: r∗Γj = max(a); /*r∗Γj denotes optimal allocation of stj*/
8: else
9: r∗Γj = r

(∗)
Γj ;

10: end if
11: Select execution node pe such that a(pe)≥r

(∗)
Γj and no other node

po satisfies r(∗)Γj ≤a(po)<a(pe); /*to maintain system availability.*/
12: Γ = Γ\stj ; /*Γ takes away stj*/
13: C = C − T (stj); /*Update C by cutting stj ’s time (≈ l(stj)

r∗Γj
).*/

14: Start executing stj on pe;
15: Sleep until stj is completed;
16: end for

At the beginning of the algorithm, the deadline will be
set to D′=α·D(ti) before performing the CO-STEP oper-
ation, where α is the lower bound of the estimation ratio
according to Inequality (5). After that, the subtasks of the
user task will be executed one by one until all of them are
completed. Everytime a subtask is finished, its succeeding
task will be triggered and our algorithm will allocate the
most appropriate resource share to it by performing the CO-
STEP operation. max(a) denotes the maximum value among
the elements of the set a. When the resource share to be
allocated is determined (through line 5 ∼ 10), the qualified
node whose availability is closest to the resource demand
will be selected as the execution node (line 11), for keeping
high availability for the tasks with large resource demand.

Compared to Algorithm 1, the key changes of Algorithm
2 is the value of the deadline used (line 1) and when
to determine the resource allocated to the subtasks to be
executed (line 6∼15). With a little stricter deadline, the
Algorithm 2 could strictly confine the task’s execution time
before its deadline even though the task’s execution property
were predicted imprecisely. By dynamically determining the
resource share for any subtask only if its previous subtasks
are all completed, the adaptability to the changes of resource
states will get much higher in Algorithm 2. In addition to
these two features, we could further improve the robustness
of the algorithm by introducing a queueing policy. Note that
for Algorithm 2, once all physical resources are already
allocated, the newly arrival subtasks cannot be executed
immediately until more resources are released. In other
words, they will be failed if there are no any queuing policy

to buffer/queue the subtasks temporally. On this point, we
just need to make a minor revision to Algorithm 2: before
performing line 5, if a is empty or max(a) is smaller
than the subtask’s least requirement, the subtask will be
queued temporally to avoid direct failure of the task. In
the next section, we will evaluate the Algorithm 2 with
such a queuing policy in a real cluster environment. On the
other hand, if a subtask is allocated with a suboptimal CPU
capacity (i.e., r∗i < r

(∗)
i) due to the limited available resource

states when it was scheduled, it is viable to further improve
the resource allocation (say further minimizing the payment
cost) by dynamically increasing its allocated resources based
on the newly released resources over time. To implement this
function, a new observer thread is needed to periodically
check all hosts’ real-time states and all running subtasks’
allocated resource will be tuned from time to time to reach
their theoretical optimal amount as closely as possible.

B. Experimental Setting

We implement a composite cloud service prototype that
can help solving any dense-matrix problems. Matrix compu-
tation serves as such a fundamental domain in mathematics,
that quite a few Grid services [19], cloud services [20], and
web services [21] have been developed to suit ease-of-use
demands for researchers on linear-algebras.

We implement a cloud service prototype that can help
solving any complex matrix problem that contains a series
of nested matrix computations. In our experiment, we use
8 physical nodes behind a cluster, and each node owns 2
quad-core Xeon CPU E5540 (i.e. 8 processors per node)
and 16GB memory size. There are 56 VM-images (centos
5.2) maintained by Network File System (NFS), so 56 VMs
(7 VMs per node) were generated at the bootstrap. XEN 4.0
[15] serves as the hypervisor on each node and dynamically
allocates various CPU rates to the VMs at run-time Through
XEN’s credit scheduler [22].

We make use of ParallelColt [23] to perform the matrix
computation. ParallelColt [23] is such a library that can
effectively calculate complex matrix-operations like matrix-
matrix multiply, in parallel via multiple threads. In our
benchmark, we simulate a large number of user requests,
each of which is composed of 3∼15 subtasks. Each subtask
is constructed by one of three typical matrix-operations (i.e.,
matrix-multiply, matrix-power, and QR-matrix-solving(least-
square)) with various parameters assigned. That is, each
request contains many subtasks that are randomly selected
from the above three types. We evaluate our algorithm under
different competitive situations with various number (1∼40)
of tasks submitted simultaneously, thus there are 40 cases
for each experiment and 820 tasks in total as observed.

Each user request (denoted as task ti) is assigned with
a deadline, a random value in [18 ·T1(ti),T1(ti)], where
T1(ti) means the estimated execution time when running
ti on one core. Based on our experiment, the three matrix

operations on one core cost from 1 second to 1206 seconds,
which means a heterogenous workload state. In addition, we
observe that the lower bound of the workload predicted is
always 0.7 times as high as the real workload calculated
after its execution. Hence, in the experiment, the value of α
will be set to 0.7 or 1, to evaluate the performance between
with and without a tuned deadline.

C. Experimental Results

We first characterize the Payment Extension Ratio (PER),
when using the user-expected deadline in the dynamic Min-
Payment-OPT algorithm. That is, in the Algorithm 2, α
will be set to 1 at the first line (i.e., D′=D(ti)). Figure
1 shows the PER values in the 40 cases with 1 - 40
tasks submitted respectively. We can clearly observe that
in the situation with relatively low resource competition
(e.g., with less than 15 tasks submitted), the maximum
values of PER always stay around 1.1 times as large as
their theoretically optimal values. With increasing number of
competitive tasks submitted, the PER’s maximum values will
increase accordingly, up to about 1.25 in most of cases. The
mean value of PER is always kept around 1.05, regardless
of the resource competition status. This means that a large
majority of task payments are already minimized to be close
to their theoretically optimal values.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40

P
a

y
m

e
n

t
E

x
te

n
s
io

n
 R

a
ti
o

Number of Tasks

Average Level
Lowest Level (Best)
Highest Level (Worst)

Figure 1. Payment Extension Ratio (α=1, i.e., D′=D)

Figure 2 presents the experimental results when using the
tuned deadline D′=αD (where α=0.7) in our Min-Payment-
OPT algorithm. The stricter-deadline based algorithm can
guarantee task execution length be within its user-expected
deadline, even though the task workload was predicted with
a certain error as defined in Definition 1. From Figure 2, we
observe that when there are less than 30 tasks submitted,
the maximum and mean PER is always lower than that
when α is set to 1 (as shown in Figure 1). However,
when there are over-many tasks submitted (e.g., about 35
tasks), the maximum and mean values of PER observed will
increase significantly. This is because the user payment is
proportional to task execution length as defined in Equation
(2), while some tasks’ execution lengths will be extended
inevitably because of the increasing competition level. In
addition, the average value of PER is always very close to
1, since about 95% of tasks’ PERs are smaller than 1.15 as
observed, which means majority of task payments will still
be satisfied by users with a high probability.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40

P
a

y
m

e
n

t
E

x
te

n
s
io

n
 R

a
ti
o

Number of Tasks

Average Level
Lowest Level (Best)
Highest Level (Worst)

Figure 2. Payment Extension Ratio (α=0.7, i.e., D′=αD)

We present the distribution of PER under the two al-
gorithms (with D′=D and D′=αD respectively) in Figure
3. Through Figure 3, we can clearly observe that the
original-deadline-based algorithm leads to lower payment
cost for majority of tasks. That is, the original-deadline-
based algorithm shows prominently higher adaptability to
the resource competition level. Such observations constitute
a strong foundation that may lead us to combine the two al-
gorithms together to maximize the system-wide performance
at various situations with different levels of competitions,
which could be our future work.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

P

ro
b

a
b

ili
ty

 D
is

tr
ib

u
ti
o

n

(P
e

rc
e

n
ti
le

 o
f

#
 o

f
ta

s
k
s
)

Payment Extension Ratio

Stricter-deadline-based Algorithm (D’=αD)
Original-deadline-based Algorithm (D’=D)

1.0

0.75

0.4

0.15

Figure 3. Distribution of PER

Finally, we evaluate the stability (or fairness index) of
the task payment among all tasks. Based on Jain’s work
[24], fairness index (higher value means higher fairness) is
defined as Equation (21) whose value ranges in [0,1], where
φi refers to the PER of task ti.

F (φ) =
(
∑n

i=1 φi)
2

n
∑n

i=1 φ
2
i

(21)

As observed in Figure 4, the fairness index of PER is
always kept over 0.99 for both cases under the relatively
uncompetitive situation (e.g., m≤30), and still kept about
0.95 in the case with higher competition (i.e., when m>30).
Recall that there are only 10 physical machines used for
resource provisioning in our experiment, this means that the
user payments under our Min-Payment-OPT algorithm can
be kept very stable with such a dense resource consolidation.

VI. RELATED WORK

Recently, there are many existing works (such as [12],
[7], [8], [9], [3], [25] studying the optimization problem of
resource allocation on the cloud computing model. Whereas,
none of them studied the payment bound as deeply as in this
paper, from both theoretical and experimental perspectives.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

F
a

ir
n

e
s
s
 o

f
P

E
R

Number of Tasks

D’=αD

D’=D

Figure 4. Fairness Index of PER

Most of cloud systems adopt similar models, aiming to
optimize task execution efficiency by leveraging VM tech-
nology and minimize user payment meanwhile. Li et al. [12]
proposed two online greedy scheduling methods, namely
dynamic cloud list scheduling (DCLS) and dynamic cloud
min-min scheduling (AMMS), to minimize the mean task
execution length. Similarly, Salehi et al. [7] proposed another
dynamic greedy algorithm that repeatedly tune resource
allocation at run-time based on updated information.

Artur et al. [25] propose a probabilistic model for the
optimization of monetary costs, performance, and reliabil-
ity, given user and application requirements and dynamic
conditions. Their research is based on a real instance price
traces provided by Amazon EC2 [2].

In addition to the above works that are based on expe-
riences, the cloud research performed by Mao and Marty
seems more interesting. They formulated the cloud schedul-
ing issue as an auto-scaling problem [8], [9]. That is, their
design can automatically scale the resource capacity up or
down according to the conditions users define. They consid-
ered both batch-mode jobs (embarrassing parallel job) and
workflow-mode jobs respectively. However, their research
is based on a coarse knowledge about resource (such as
the number of VM instances) and task workload (such as
the number of jobs/tasks), which will significantly limit the
optimality of their solution. Moreover, they did not provide
any bound analysis (e.g., the upper bound of payment at the
worst case) as our work.

Our previous work [3] is another related work to this pa-
per. In that work, we modeled the cloud resource allocation
issue to be a convex optimization problem, by leveraging the
divisible resource feature due to VM technology. A provable
optimal solution (called Min-Payment-OPT) is proposed,
and the upper bound of task execution length is theoretically
analyzed as compared to the user-specified deadline. Com-
pared to the previous work, we make some new contributions
in this paper: (1) we further analyze the payment bound
under such a cloud model, by assuming that task’s workload
were predicted inaccurately; (2) we extend the basic Min-
Payment-OPT algorithm to be a dynamic version, that can
adapt to the run-time resource state changes; (3) We finally
evaluate the payment bound through a close-to-real cloud
service prototype built on top of a cluster environment with
56 virtual machines.

VII. CONCLUSION AND FUTURE WORK

In this paper, we comprehensively analyzed the bound of
user payment, for a payment minimization resource alloca-
tion algorithm in cloud systems. The research contribution
is two-fold. (1) We theoretically derive the upper bound of
user payment, in the situation where the task workload were
predicted with errors. To our best knowledge, this is the first
attempt in analyzing the payment bound in the context of
cloud computing. (2) We rigorously evaluate the bounds of
practical payment through a close-to-real cloud prototype,
deployed with 56 VMs and XEN 4.0 hypervisor. Experi-
ments confirm that our payment-minimization algorithm can
keep 95% of users’ payments below 1.15 times as large as
the theoretically optimal values, and the payment extension
ratio for the rest user payments is about 1.5 at the worst case.
At present, we are completing ease-of-use interfaces based
on our prototype. In the future work, we will study how
to tolerate task/node failure events with checkpoint/restart
mechanism based our theories on resource allocation.

ACKNOWLEDGMENTS

This work was made by the ANR project Clouds@home
(ANR-09-JCJC-0056-01), and also in part by a Hong Kong
UGC Special Equipment Grant (SEG HKU09).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the clouds: A berkeley
view of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb
2009.

[2] Amazon elastic compute cloud: on line at
http://aws.amazon.com/ec2/.

[3] S. Di and C.-L. Wang, “Error-tolerant resource allocation and
payment minimization for cloud system,” in Transactions on
Parallel and Distributed Systems (TPDS), Special Issue, 2012.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2009.

[5] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud:
Utility-oriented federation of cloud computing environments
for scaling of application services.” in 10th International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP’10), 2010, pp. 13–31.

[6] F. Chang, J. Ren, and R. Viswanathan, “Optimal resource
allocation in clouds,” in IEEE International Conference on
Cloud Computing (CloudCom’10), pp. 418–425, 2010.

[7] M. A. Salehi and R. Buyya, “Adapting market-oriented
scheduling policies for cloud computing,” in ICA3PP (1),
2010, pp. 351–362.

[8] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with
deadline and budget constraints,” in Proceedings of the 11th
IEEE/ACM International Conference on Grid Computing
(GRID2010), 2010, pp. 41–48.

[9] M. Mao and M. Humphrey, “Auto-scaling to minimize cost
and meet application deadlines in cloud workflows,” in Pro-
ceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC
’11), New York, NY, USA: ACM, 2011, pp. 49:1–49:12.

[10] H. Goudarzi, M. Ghasemazar, and M. Pedram, “Sla-based op-
timization of power and migration cost in cloud computing,”
in The 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid’12), 2012.

[11] L. S. Bird and J. B. Smith, “Pacora: Performance aware
convex optimization for resource allocation,” in in HotPar
’11: 3rd USENIX Workshop on Hot Topics in Parallelisation
(Poster Session), 2011.

[12] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu,
“Online optimization for scheduling preemptable tasks on iaas
cloud systems,” Journal of Parallel Distributed Computing,
pp. 666–677, 2012.

[13] S. Di, C.-L. Wang, L. Cheng, and L. Chen, “Social-optimized
win-win resource allocation for self-organizing cloud,” in
International Conference on Cloud and Service Computing
(CSC’11), 2011, pp. 251–258.

[14] L. Huang, J. Jia, B. Yu, B.G. Chun, P. Maniatis, and M. Naik,
“Predicting Execution Time of Computer Programs Using
Sparse Polynomial Regression,” in Proceedings of 24th In-
ternational Conference on Neural Information Processing
Systems (NIPS’10). 2010, pp. 1–9.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art
of virtualization,” in Proceedings of the nineteenth ACM
symposium on Operating systems principles (SOSP’03), New
York, NY, USA: ACM, 2003, pp. 164–177.

[16] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T. Foster,
“Virtual infrastructure management in private and hybrid
clouds,” IEEE Internet Computing, vol. 13, no. 5, pp. 14–
22, 2009.

[17] Y. Wu, K. Hwang, Y. Yuan, and W. Zheng, “Adaptive work-
load prediction of grid performance in confidence windows,”
Parallel and Distributed Systems, IEEE Transactions on,
vol. 21, no. 7, pp. 925 –938, july 2010.

[18] Q. Zhang, , J. L. Hellerstein, and R. Boutaba, “Character-
izing task usage shapes in google’s compute clusters,” in
Large Scale Distributed Systems and Middleware Workshop
(LADIS’11), 2011.

[19] E. Agullo, C. Coti, J. Dongarra, T. Herault, and J. Langou,
“QR Factorization of Tall and Skinny Matrices in a Grid
Computing Environment,” in Proceedings of the 24th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’10), 2010, pp. 1–11.

[20] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda,
and Z. Zhang, “MadLINQ: large-scale distributed matrix
computation for the cloud”, in Proceedings of the 7th ACM
european conference on Computer Systems (EuroSys’12),
2012, pp. 197–210.

[21] P. Benner, R. Mayo, E. Quintana-Ortł, G. Quintana-Ortł,
“Enhanced Services for Remote Model Reduction of Large-
Scale Dense Linear Systems”, in Applied Parallel Computing,
2006, pp. 329–338.

[22] Xen-credit-scheduler:
http://wiki.xensource.com/xenwiki/creditscheduler.

[23] P. Wendykier and J. G. Nagy, “Parallel colt: A high-
performance java library for scientific computing and image
processing,” ACM Trans. Math. Softw., vol. 37, pp. 31:1–
31:22, September 2010.

[24] R. K. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Simulation and Modelling, John Wiley & Sons, April 1991.

[25] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for
cloud computing under sla constraints,” in Proceedings of the
2010 IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems
(MASCOTS’10), Washington, DC, USA, 2010, pp. 257–266.

