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Abstract—Fault-tolerance capabilities attract increasing at-
tention from existing data processing frameworks, such as
Apache Spark. To avoid replaying costly distributed compu-
tation, like shuffle, local checkpoint and remote replication
are two popular approaches. They incur significant runtime
overhead, such as extra storage cost or network traffic. Erasure
coding is another emerging technology, which also enables data
resilience. It is perceived as capable of replacing the checkpoint
and replication mechanisms for its high storage efficiency. How-
ever, it suffers heavy network traffic due to distributing data
partitions to different locations. In this paper, we propose EC-
Shuffle with two encoding schemes and optimize the shuffle-
based operations in Spark or MapReduce-like frameworks.
Specifically, our encoding schemes concentrate on optimizing
the data traffic during the execution of shuffle operations. They
only transfer the parity chunks generated via erasure coding,
instead of a whole copy of all data chunks. EC-Shuffle also
provides a strategy, which can dynamically select the per-
shuffle biased encoding scheme according to the number of
senders and receivers in each shuffle. Our analyses indicate
that this dynamic encoding selection can minimize the total
size of parity chunks. The extensive experimental results using
BigDataBench with hundreds of mappers and reducers shows
this optimization can reduce up to 50% network traffic and
achieve up to 38% performance improvement.

Keywords-fault tolerance; distributed computation; erasure
coding

I. INTRODUCTION

As the runtime data loss becomes a fairly serious issue

in distributed computation, there are various methodologies

to support fault tolerance. Logging is one of the widely

deployed schemes [1, 2]. It appends all executed operations

to a log list at runtime and the system could recompute the

operations in this log list to recover the lost data. Some

studies suggest persisting the runtime data via two other

schemes: (1) local checkpoints: storing the data in the non-

volatile storage, like SSD and non-volatile memory [3];

(2) remote replication: duplicating the data to the remote

machines [4]. The system can directly recover the lost parts

from the backup, instead of replaying the logs. However,

both schemes need extra storage space to duplicate the

data. Existing cloud storage systems [5, 6] exploit erasure

coding [7] since it can effectively reduce storage redundancy

while achieving good durability. It splits the data into several

data chunks and encodes them to generate the parity chunks.

If data loss happens, erasure coding reconstructs the lost

data chunks by decoding the available data chunks and

parity chunks. The system can recover r lost data chunks

with r parity chunks. The encoding and decoding costs

are negligible because of increasingly powerful cores. For

instance, a single Intel Xeon E5-2650v4 CPU core can

encode data at 5.30GB/s [8] for Reed-Solomon(10,4) codes,

which is faster than a current high-end NIC with 40Gb/s

bandwidth [9]. The heavy network traffic in these schemes

raises more concerns.

Spark classifies the transformations based on different

dependencies: narrow/wide dependencies [1, 10]. There are

four common communication patterns between mappers and

reducers: Map, Aggregation, Partition, and Shuffle. Map

and Aggregation are narrow dependencies while the other

two patterns are wide dependencies. It is obvious that

some transformations (Shuffle) are more expensive than the

others (Map) because of the network traffic. Spark creates a

lineage graph [11] according to these dependency relation-

ships among RDDs (RDD is a data structure in Spark). The

system spends much time replaying a large lineage graph to

recover a small data partition. The usage of local checkpoint

and remote replication can speed up the recovery process

by providing the backup of intermediate data, instead of

replaying from the beginning. However, these schemes cause

significant runtime overhead and extra storage cost. Under

the age of “Big Data”, these disadvantages become apparent

and they shadow the benefits brought by fast recovery. Some

researchers [12, 13] use erasure coding to reduce memory

cost. Compared with remote replication, the state-of-the-

art mechanisms (e.g., FTI [12]) based on erasure coding

improve memory efficiency but fail to save data traffic in its

encoding process and decoding process. Therefore, under

potential network jam, effective mechanisms and techniques

are still needed for these serious problems with the growing

data size and communication complexity. In this paper, we

answer two questions: (1) how to reduce the network traffic

of fault-tolerance mechanisms when executing shuffle-like

operations, (2) how to minimize the total size of generated

parity chunks to optimize the runtime performance.



We propose EC-Shuffle, a new fault-tolerance mechanism

in Spark framework, to face these challenges. Firstly, EC-

Shuffle can recover the lost runtime data via decoding data

chunks and parity chunks on the surviving nodes, instead

of replaying logs from the beginning. In addition, our

mechanism only transfers the generated parity chunks via

two encoding schemes, namely, forward-coding (FC) and

backward-coding (BC). Compared with previous studies,

our schemes can remove the heavy network traffic of data

chunks. Furthermore, we observe that these two encoding

schemes exhibit different performance behaviors while exe-

cuting different shuffle operations. It is related to generating

the parity chunks, determined by the number of mappers

and reducers in each shuffle. To reduce the total size of

parity chunks, we design an adaptive selection scheme in

EC-Shuffle, which can choose a proper encoding scheme for

each shuffle operation at runtime. Our experiments of real-

life applications illustrate EC-Shuffle respectively achieves

up to 43% and 38% performance improvement (e.g., Sort)

than the replication-based and FTI-based shuffle in Spark.

Compared with FTI [12], EC-Shuffle achieves 32% and 18%

performance improvement for a single shuffle operation and

the whole job in PageRank. Our main contributions are:

• EC-based Fault-tolerance Mechanisms: Different

from exploiting erasure coding in storage systems,

shuffle-like operations have frequent data transforma-

tion among nodes. With this feature, we propose

two optimized encoding schemes, forward-coding and

backward-coding, to provide fault tolerance support for

these operations. Our schemes hide most data traffic of

erasure coding in executing these operations and the

overhead is reduced to be generating and transferring

the parity chunks. Compared with traditional stud-

ies (e.g., FTI [12]), it can save much more bandwidth

with the same cost of memory.

• Dynamic Encoding Selection: We find there is a fur-

ther trade-off between forward-coding and backward-

coding. We design a dynamic encoding selection, which

can determine the better encoding scheme on a per-

shuffle operation basis, to minimize the generated parity

chunks at runtime according to the numbers of senders

and receivers. The prototype of these core functions is

implemented in Spark, for supporting the reliability of

distributed computation on a large cluster.

II. MOTIVATIONS

A. Shuffle Mechanism in Spark

In Figure 1, we show the procedure of a shuffle operation

in Spark. With the wide dependencies, each mapper splits its

data into different blocks (4 blocks in the example). Then, it

calls ShuffleWriter to persist these blocks by storing them to

local hard disk. After entering the next stage, each reducer

calls ShuffleReader to fetch the local blocks (read from disk)
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Figure 1: Shuffle process with four mappers and four reducers
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(a) Encoding process
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(b) Decoding process

Figure 2: Two processes of erasure coding (k=4, r=2)

and remote blocks (network traffic). Finally, each reducer

deserializes these blocks to get a key/value iterator.

When some nodes are unavailable, Spark starts the re-

covery process and continues to execute the job. We assume

Node C crashes (the block with a red cross mark in Fig-

ure 1). To resume the local block (the block with a question

mark), it needs to replay the operations in the RDD lineage

graph and regenerate the data at Node C. As for the remote

blocks fetched from other nodes, the system can copy them

from the checkpoints on the surviving nodes (the red lines).

Therefore, the system only replays logs to recover parts of

the lost data (i.e., the local block), instead of regenerating all

intermediate data. Although checkpoints avoid re-execution

of a whole job, it is still costly when the lineage graph

is very large or contains many expensive operations. Spark

also provides other schemes. After a shuffle, the user can call

the persist function. With different storage levels, the system

can duplicate the data to different locations and the system

can instantly recover the lost data from its replication.

B. Erasure Coding

Erasure coding become widely used due to its high

memory efficiency [6], such as f4 storage system [5] and

HDFS [14, 15]. Facebook [16] has saved multiple petabytes

of storage space by employing Reed-Solomon (RS) codes

instead of replication in their data warehouse cluster. In the

Encoding phase (Figure 2(a)), erasure coding divides the

data into k data chunks and uses RS codes to generate r

parity chunks. When some nodes are unavailable, erasure

coding collects any k of (k+r) chunks and reconstructs the

original data (Figure 2(b)). Erasure coding greatly improves

memory efficiency by recovering the lost data with the help

of parity chunks.

Fault Tolerance Interface (FTI)) [12] is a recent study to

use the erasure encoding technique in distributed compu-
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Figure 3: Runtime overhead of FTI (k=4, r=2)

tation. FTI [12] partitions the system in groups of k pro-

cesses (k data chunks). Each group independently generates

r parity chunks by encoding the data from k processes.

FTI chooses the highest fault tolerance level (i.e., r=k), but

the case that k data chunks are simultaneously unavailable

is rare. Therefore, we assume r � k in our analyses: FTI

is memory-efficient (r parity chunks), while the network

traffic (the total size of k+r-1 chunks) is heavy. In Figure 3,

we show an example of FTI when executing shuffle-based

operations. All data chunks (k chunks) are sent to one

node (Node E), where the system produces all (r) parity

chunks, then this node keeps one parity chunk and sends

others (r-1 chunks) to different nodes.

This research proposes EC-Shuffle to provide a non-trivial

fault tolerance mechanism for shuffle-like operations. We list

the main difference between FTI and EC-Shuffle: (1) FTI

generates the parity in each group (fixed k processes), while

EC-Shuffle encodes the runtime data in a dynamic man-

ner (decided by the number of mappers and reducers in each

shuffle), (2) FTI produces the parity chunks after gathering k

data chunks at one node. Forward-coding finishes the encod-

ing process on each sender independently, while backward-

coding generates the parity chunks on each receiver after

the execution of shuffle operations; both of them only send

these parity chunks to different nodes. Therefore, EC-Shuffle

can hide the network traffic of k data chunks in FTI via

using forward-coding and backward-coding. EC-Shuffle also

provides a dynamic selection to choose the proper encoding

scheme for each shuffle operation. It can minimize the total

size of generated parity chunks.

Both FTI and EC-Shuffle provides similar fault-tolerant

functions with remote replication. Their common aim is to

avoid replaying too many shuffle operations in Spark’s lin-

eage graph. Given the worst case, i.e., an error occurs during

encoding/duplicating phase before the shuffle operation is

done, it can recover from the last finished shuffle and only

redo all narrow transformations between these two shuffles.

III. DESIGN

A. System Overview

The system architecture of EC-Shuffle is shown in Fig-

ure 4. We demonstrate it as a new data shuffle mechanism
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Figure 4: EC-Shuffle in Spark with M mappers and N reducers

in Spark. It contains two components: (1) two encoding

schemes (FC and BC), (2) dynamic encoding selection.

Firstly, EC-Shuffle contains FC and BC based on erasure

coding. Erasure coding can split the data into k pieces and

generate the parity chunks before sending all chunks to

different nodes. According to the dependency of an M-to-

N shuffle (i.e., M mappers and N reducers), each mapper

partitions the data into N blocks for forward-coding to

produce r parity chunks. These parity chunks will be sent to

different nodes along with the data chunks in the execution

of shuffle. We also claim that erasure coding can encode the

data from different nodes to generate the parity chunks. The

receiver fetches M blocks (including local blocks and remote

blocks) from different mappers. With receiving these blocks

after the shuffle, backward-coding can begin the encoding

process and only distribute these parity chunks to different

nodes. We separately describe these two encoding schemes

in Section III-B and Section III-C.

Secondly, we propose a dynamic encoding selection,

which chooses an encoding scheme between FC and BC

for each shuffle. In our design, the proper encoding scheme

is decided by the number of mappers and reducers, which is

recorded in ShuffleHandle (including numMaps and Shuf-

fleDependency). In Figure 4, forward-coding is executed if

M ≤ N, while backward-coding is better to left cases.

There are also some other challenges in our design. For

example, some applications have large numbers of mappers

and reducers (e.g., MovieLensALS has 100 mappers and

200 reducers). This critical issue influences the recovery

efficiency of erasure coding because the system needs to

collect and decode many chunks to recover only one lost data

chunk. We will introduce how our implementation addresses

them in Section IV-A.




$

� � �

����	� ����	� ����	� ����	





����	�

� �

� 


��

��

�!�4�������

����

�������

����

���$4�������

���� � � � 


��

����	�

��

Figure 5: Forward-coding in sending partitions to nodes (r=2)
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Figure 6: Backward-coding in collecting partitions from nodes (r=2)

B. Forward-coding Scheme

1) Runtime of forward-coding:

Phase I - Pre-Shuffle: Each sender node (e.g., mapper)

splits the data into N pieces. Then it encodes these data

chunks to generate r parity chunks. These chunks will be

sent to different nodes and some meta information (e.g.,

the destination of receiving these chunks) is recorded. In

Figure 5, the data in Node C is split into 4 pieces (N=4).

Then, EC-Shuffle encodes four data chunks to generate two

parity chunk (r=2) locally.

Phase II - Shuffle: Each node transfers its chunks includ-

ing the parity part to their destinations. Compared with the

original shuffle procedure, the overhead is the network traffic

of r additional parity chunks. The number of parity chunks

is r, which is smaller than N. The system only transfers

this parity chunk, instead of the whole data copy in remote

replication or FTI.

Phase III - Post-Shuffle: When M is greater than one, each

receiver needs to combine the data chunks from senders.

After deserializing the combined data chunks, the system

continues to handle the next operation.

2) Recovery mechanism:

We consider two cases: (1) when all sender nodes are

surviving, we directly copy the lost data from the sender

node which has the original data. The overhead is the

network traffic of M data chunks. (2) when one sender

node is unavailable, we need the available data chunks

from the receivers, along with the corresponding parity

chunks to reconstruct the lost data. The system collects

remote data chunks again from surviving senders (M-1 data

chunks). Then, the system selects any N chunks from (N+r-

1) chunks stored at receivers, who fetch data or parity from

the unavailable sender. Finally, it decodes these chunks to

reproduce the lost data chunk. The overhead of recovery

process contains the network traffic of (N+M-1) chunks and

the negligible decoding cost.

In Figure 5, if the data in Node A or Node B or Node

D is lost, Node C re-sends the correspondent data chunk to

them. If Node C crashes, which means the sender’s data is

lost, the system recovers the Data C via decoding any four

chunks from three data chunks at Node A, Node B, Node

D, and two parity chunks at Node E and Node F.

C. Backward-coding Scheme

1) Runtime of backward-coding:

Phase I - Pre-Shuffle: Each sender partitions its data into

N chunks and decides the destination of these data chunks

based on the shuffle dependency.

Phase II - Shuffle: one data chunk from each sender node

and totally M data chunks are collected at each receiver

node. In Figure 6, Node C gets the data from Node A, B,

C, and D.

Phase III - Post-Shuffle: After collecting M data chunks

from all senders, the receiver encodes them to create r

parity chunks. Then, this node transfers these parity chunks

to different locations for fault tolerance. When r is small,

the overhead of transferring parity chunks is lighter than

transferring the whole data in remote replication. In our

example (see Figure 6), the parity chunk (r=2) is sent to

Node E and F, respectively. At the same time, the receiver

combines the data chunks for executing the next operations.

2) Recovery mechanism:

Similar to forward-coding, if all sender nodes are sur-

viving, the system can fetch data partitions from M sender

nodes. When one sender node is unavailable, it can still

recover M−1 data chunks from other senders. Since these

data chunks take part in the encoding process of backward-

coding at receiver, the system only chooses 1 of r parity

chunks to reproduce the lost data. The recover overhead

includes the network traffic of M chunks and the elapsed

time of this decoding process.

In our example (see Figure 6), if Node C is unavailable,

the system resumes some lost data chunks from Node A,

Node B, and Node D. With these three data chunks, the

system only reads the parity chunk P1 from Node E (or

P2 from Node F) to reproduce the Data C. Compared with

forward-coding, this scheme reduces the network traffic in

the recovery process.

D. Dynamic Encoding Strategy in EC-Shuffle

An M-to-N shuffle operation has M mappers and N

reducers. Each mapper sends its partitions to reducers (see
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(a) Fault tolerance interface mechanism
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(b) Forward-coding mechanism
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(c) Backward-coding mechanism

Figure 7: Three fault-tolerance mechanisms in a shuffle with four mappers and two receivers case (r=1)

Table I: Overhead comparison among five mechanisms

RR FTI FC BC EC-Shuffle

Network

traffic
r ∗M ∗X (M+r-1)*X r ∗X ∗ M

N
r ∗X r ∗X*min{ M

N
, 1}

Memory

usage
r ∗M ∗X r ∗X r ∗X ∗ M

N
r ∗X r ∗X*min{ M

N
, 1}

1. RR = remote replication. FTI = fault tolerance interface. FC =
forward-coding. BC = backward-coding.
2. r: The replication factor (in RR) or the number of parity chunks (in
other schemes). X: The size of data on each sender. M: The number of
nodes on the sender side. N: The number of nodes on the receiver side.

Figure 5), while each reducer collects partitions from

senders (see Figure 6). Therefore, both the forward-coding

and backward-coding can recover this kind of complex

operation. Since the encoding processes of forward-coding

and backward-coding happen at different phases, they may

bring different overhead even executing the same shuffle

operation. In our former discussion, the overhead of forward-

coding and backward-coding is directly related to the parity

chunks: a smaller total size of the parity chunks brings less

overhead. In EC-Shuffle, we summarize the costs in FC and

BC (see Table I) and design a dynamic strategy which can

minimize the size of parity chunks. In this section, we list

some formulas of the generated parity chunks in these two

schemes to present this strategy with the relationship of M

and N. Without loss of generality, we assume the size of the

original data at each sender is X (i.e., the total size of data

enters the shuffle is M ∗X) and the partitioned data chunks

are equal in size [17].

In the Pre-Shuffle phase of forward-coding, it encodes r

parity chunks at M nodes (senders) separately, and the data

on each sender is split into N parts. We use a formula to

calculate the size of parity data generated in forward-coding:

ParityFC(M,N,r) =
X

N
∗ r ∗M =

M

N
∗ r ∗X (1)

Likewise, backward-coding encodes r parity chunks at

each of N nodes (receivers) in Post-Shuffle phase. The data

chunks on each receiver are collected from M nodes. In a

similar approach, we derive the following expression:

ParityBC(M,N,r) =
X

N
∗ r ∗N = r ∗X (2)

Base on Equation 1 and Equation 2, we have: (1) When

M < N: Forward-coding produces smaller size of the parity

chunks than backward-coding. EC-Shuffle selects forward-

coding as the proper encoding scheme. (2) When M = N:

Forward-coding and backward-coding generate the parity

chunks in the same size at runtime, thus have competitive

overheads. (3) When M > N: Backward-coding is the better

encoding scheme because it is more memory efficient.

In Figure 7, we show an example of executing a shuffle

operation with four mappers and two reducers. Figure 7(b)

presents the forward-coding process. This process produces

four parity chunks (black blocks at Node E), which take

up 50% of the whole data size (4/8 = 50%). On the

other hand, backward-coding (see Figure 7(c)) generates two

parity chunks. It only produces the half size of parity chunks

generated in forward-coding. Compared with FTI (see Fig-

ure 7(a)), our schemes (EC-Shuffle) gains obvious benefits.

Since M>N, EC-Shuffle uses backward-coding to generate

2 parity chunks and transfers them, while FTI generates

the same parity chunks but incur much more network

traffic (total 8 data chunks, 4 times of EC-Shuffle).

Furthermore, EC-Shuffle brings a higher degree of paral-

lelism than FTI in the encoding process. In FTI, each group

executes the encoding process sequentially (P1 and P2 are

generated at Node E in Figure 7(a)). EC-Shuffle can improve

the parallelism degree of encoding process because each

mapper/reducer produces the parity chunks independently.

In our example (see Figure 7(c)), P1 is constructed at Node

B while the reducer on Node C generates P2 simultaneously.

In general cases, we compare these fault tolerance mech-

anisms (e.g., remote replication, FTI) in Table I. Equation 3

shows that EC-Shuffle always produces a minimum size of

parity chunks (no more than r ∗X in FTI) and reduces data

traffic for any M and N.

r ∗X ∗min{
M

N
,1} ≤ r ∗X ≤ r ∗M ∗X (3)

This dynamic selection in EC-Shuffle works based on the



Table II: Software specification

Software Version Software Version

OS Ubuntu 18.04 Intel isa-l 2.19

Kernel 4.15.0-22 Java 1.8.0_191

GCC 7.3.0 Hadoop 2.7.5

Maven 3.5.2 Spark 2.3.0

Yasm 1.3.0.0 BigDataBench 4.0

relationship of M and N. In many previous systems [1], the

number of senders and the number of receivers can be deter-

mined before executing distributed operations. For instance,

in Spark, M and N are passed to ShuffleManager compo-

nent (recorded in ShuffleDependency). In the overview (see

Figure 4), we show how Spark decides which scheme is

used. When executing operations with wide dependencies,

each mapper calls forward-coding scheme if M is no larger

than N, or each reducer exploits backward-coding.

IV. EC-SHUFFLE IN SPARK

There are many open source erasure coding libraries, such

as Jerasure [18]. We exploit Intelligent Storage Acceleration

Library (ISA-L) [8] from Intel to implement this system.

ISA-L is used in Hadoop 3.x [14], which contains a collec-

tion of optimized storage methods including CRC, RAID,

compression and so on. The performance report [8] shows

the single core throughput of erasure coding can achieve 12.7

GB/s. We provide a comprehensive performance evaluation

of EC-Shuffle based on BigDataBench [19], a Big Data

benchmark suite.

A. EC-Shuffle Manager Plugin for Spark

We deploy the pluggable shuffle system in Spark. The

users only need to specify the shuffle manager when using

EC-Shuffle (similar to SparkRDMA [20]). We also imple-

ment an RSCoder via JNI (Java Native Interface). It enables

EC-Shuffle to call the ISA-L library to speed up the encoding

process on Inter-chips. As discussed in Section III-A, we

face some technical issues when we implement EC-Shuffle:

1) Large numbers of mappers and reducers in the shuffle:

In some jobs (e.g., MovieLensALS), both M and N are

very large. In EC-Shuffle, the system encodes N (or M) data

chunks and generates the parity chunks. It brings overhead

because the system needs to decode a large number of

chunks to recover one single lost data chunk. Facebook

introduces an improved erasure coding scheme, namely

fLRC [21], to settle the repair problem. It encodes a subset

of the data chunks (we assume the number of data chunks

in this subset is k). Once a data chunk from this subset is

lost, the system only needs to fetch data chunks and parity

chunks of the subset to recover it. Likewise, we use a slicing

method to divide the large numbers of data chunks at every

mapper/reducer into groups. Each group contains no more

than k data chunks and encodes its data chunks to generate

the parity chunks independently.

2) Data Chunks in Different Sizes:

When encoding k data chunks to generate the parity

chunks, the system faces another problem: all data chunks

should be in the same size. In real applications, those data

chunks are usually different in sizes (i.e., load imbalance).

FTI solves this issue by dividing these data chunks into 4KB

blocks. However, in Spark, this solution brings significant

overhead (e.g., metadata) to manage these blocks. We find

the data chunk whose size is the largest among k data

chunks. Then, we append an array of zero-valued bytes to

each data chunk. This scheme formats all data chunks and

they can be the same in size before the encoding process.

We report how this issue makes a difference between our

analyses in Table I and evaluation results.

B. Environment Setup

The testbed, which is used to evaluate BigDataBench [19],

contains 64 nodes and each node is equipped with 2 quad-

core (Intel Xeon E5540 @ 2.53GHz), 8GB or 16GB DDR3

memory, and 250GB RPM SATA hard disk. These machines

connect to 1000Mb/s Ethernet network and the whole Spark

cluster runs 200 containers. Table II shows the environment

and software we used to implement our system.

C. Big Data Workloads

In Table III, we show a summary of the wide transfor-

mations used in popular distributed applications discussed

below. Our experiments exploit the datasets from some

famous companies (see the BigDataBench handbook [19]).

Search Engine. We run two workloads in this domain:

Sort and PageRank. Sort uses the same Wikipedia entries

generated by BigDataBench tools with “lda_wiki1w” model.

In this dataset, we have 80 files and each file has around

8,000 lines. Sort is based on sortByKey to sort the lines

in all text files. The dataset of PageRank is the information

of Google web graph. In this graph, there are 2,097,152

nodes and 9,928,630 edges. Different from Sort, it executes

one reduceByKey in each iteration. We set the number of

iterations equals 10.

Social Network. KMeans is a widely used clustering

algorithm. It is done after some iterations and divides vector

points into k groups. Each vector point belongs to its cluster

with the minimum mean value. In our experiment, it uses

the social network from Facebook, which has 69,000,000

vector points. Each vector point has nine features (nine

elements in one vector). Similar to PageRank, the number

of reduceByKey used in KMeans equals the number of

iterations (4 iterations in KMeans). We set the number of

centers equals 32.

Machine Learning. Many machine learning studies rely

on vector/matrix multiplication [22], such as classifications.



Table III: Target distributed applications in our experiments

Workload Dataset Key Operations used in Spark (# of mappers, # of reducers)1

Sort Wikipedia Entries sortByKey * 1 (96, 96)

MatrixMultiply 2D Matrix: Z2000∗2000 reduceByKey * 1 (200, 200)

PageRank Google Web Graph reduceByKey * (# of iterations) (4, 8)

KMeans Facebook Social Network reduceByKey * (# of iterations) (100, 100)

MovieLensALS Movielens 20m Dataset {groupByKey, join} * (# of iterations) (100, 200)

SVMWithSGD Pascal Large-Scale Challenge {foldByKey2} * (# of iterations) (54, 6)
1 We only record the number of mappers and reducers of these key operations used in these workloads.
2 In each iteration, the number of foldByKey is decided by the multi-level treeAggregate.

Figure 8: Completion time of multiple stages (different colors) in different workloads without task failures (MovieLensALS and
SVMWithSGD have over 100 stages and we do not show every stage of them in this figure).

We evaluate the multiplication of two 2D matrices (the size

of each matrix is 2000*2000) and two ML workloads.

MovieLensALS is a recommendation application based

on the Alternating Least Squares (ALS) algorithm. It works

with 20 million ratings from 138,000 users on 27,000

movies, collected by MovieLens [23]. In the runtime of

MovieLensALS, we observe that M is 100 and N is 200 in

some shuffle operations. Stochastic gradient descent SGD is

another useful algorithm in data mining. It can minimize an

objective function within several iterations. SVMWithSGD

is to solve a Support Vector Machines (SVM) optimization

problem with SGD. We deploy the dataset provided by

Pascal Large-Scale Challenge [24] (Alpha version).

D. Performance Evaluation

In our experiment, we compare four cases: (1) Spark

with SortShuffle: Spark persists intermediate blocks of map-

pers to on-disk files during each shuffle. (2) Spark with

Persist (persist(StorageLevel.MEMORY_ONLY_2)): Spark

replicates each RDD partition on two locations after each

shuffle. (3) Spark with FTI: we implement the idea of

FTI in Spark via ISA-L, which is discussed at Sec-

tion II-B. One group has k mappers and k=min{M,10}. (4)

Spark with EC-Shuffle: Spark with EC-Shuffle mechanism,

while k=min{max{M, N}, 10} (see our discussion in Sec-

tion IV-A1). We also compare the performance of (3) and

(4) under different reliability levels (i.e., with larger r, it can

gain higher reliability).

1) Runtime Optimization (r=1):

In Figure 8, we evaluate the completion time of detailed

stages. Overall, EC-Shuffle can achieve up to 1.38x speedup

than FTI. Compared with saving local checkpoints for each

block in native implementation, it also gains competitive

performance and sometimes is even faster (e.g., Sort and

MatrixMultiply). An application benefits from EC-Shuffle

should have the following feature: (1) there is heavy data

traffic between mappers and reducers in a shuffle-based

operation (e.g., Sort), (2) it contains many shuffle-based

operations (e.g., PageRank). In some iterations, the com-

puting process is also very costly, which takes up a large

part of the completion time. For example, EC-Shuffle could

save 45% network traffic (around 9.8GB shuffled data) than

FTI in MatrixMultiply, but only achieves 8.8% performance

improvement for this whole job.

In Figure 9, we show both network traffic and extra

memory costs (e.g., replications, parity chunks) in our

distributed applications. It explains how network traffic

reduction actually improves the performance of these real-

life applications. In all applications, EC-Shuffle can re-

duce network traffic, varied from 24% to 50%, compared

with traditional schemes (Spark with Persist, Spark with

FTI). In most cases (except for KMeans), FTI produces



(a) sortByKey in Sort (M=96, N=96) (b) reduceByKey in MatrixMultiply (M=200, N=200) (c) reduceByKey in PageRank (M=4, N=8)

(d) reduceByKey in KMeans (M=100, N=100) (e) groupByKey in MovieLensALS (M=100, N=200) (f) foldByKey in SVMWithSGD (M=54, N=6)

Figure 9: Network traffic and extra memory cost of the shuffle operations in different workloads

a larger size of parity chunks than EC-Shuffle, e.g., 50%

and 38% parity reduction in PageRank and MatrixMultiply,

respectively. However, there are also some limitations in our

implementation: (1) Erasure coding performs not well on

encoding data chunks in small size: although both KMeans

and SVMWithSGD also have large numbers of iteration,

they only have a few shuffled data in each iteration, thus they

do not have obvious speedup, (2) Load balance: whether the

workloads are balanced or not will cause difference memory

costs. FTI has similar problems (see Section IV-A2).

We make several conclusions from Figure 8 and Figure 9:

(1) with EC-Shuffle, the network-intensive workloads (i.e.,

more shuffle-based operations) has more performance im-

provement than the computing-intensive workloads, (2) if

the workload is load balanced, the total size of parity chunks

in EC-Shuffle is no more than FTI; if the workload is load

imbalanced, sometimes EC-Shuffle still saves extra memory

space than FTI via using dynamic encoding strategy (e.g.,

M<N), (3) EC-Shuffle outperforms FTI (or replications) by

saving 24-50 percent data traffic and it also avoids writing

data to hard disks when checkpointing in native Spark.

2) Different reliability levels:

Unlike remote replication, increasing r in FTI only trans-

fers additional parity data and the computational overhead of

these parity chunks is light (i.e., it causes milliseconds-level

overhead to compute more parities in FTI). We compare EC-

Shuffle with FTI for different reliability levels (i.e., different

values of r). With growing r, EC-Shuffle and FTI produce

competitive parity data because M equals N. However, EC-

Shuffle can be 4.8%-6.4% faster than FTI because the data

chunks transfer still dominates the extra network traffic.

3) Recovery Overhead:

We randomly kill a container process, which is running a

task at the data node, to cause failures. In Figure 11, it shows

the normal stages and retries some stages in PageRank. Since

Spark needs to replay all iterations (11 retry stages in our

experiments) to recover the lost partition, it needs 1.32x the

completion time of the same job without failures. Different

from replaying all recorded logs, the other schemes can

instantly recover the lost data via copying from replication

or decoding the available data chunks and parity chunks.

Although the recovery process of EC-Shuffle is 20% slower

than replication, the total completion time of our scheme

still outperforms replication by 17%. We also compare

network traffic during the recovery process. Since computing

a shuffle operation leads to extra data traffic, Spark replays

all stages and incurs much significant network overhead (see

Figure 12). Spark with Persist only needs to resume the lost

data from replications, which has minimal data traffic.

E. Dynamic Encoding Strategy in EC-Shuffle (r=1)

In our experiment, we change the numbers of mappers

and reducers (24 groups) in Sort to show the parity chunks

reduction via deploying our dynamic encoding strategy.

The dataset of this experiment is a large file with more

than 80000 lines, generated by BigDataBench tools with

“lda_wiki1w” model. We present the ratio (1 : FC
FT I

: BC
FT I

)

of the generated parity data size among these schemes. This



Figure 10: Time span and extra network traffic
with different values of r in MatrixMultiply.

Figure 11: Completion time of multiple
stages in PageRank with task failure.

Figure 12: Network traffic in the recovery
process of PageRank.

Table IV: The ratio of the generated parity data size (r=1) in Sort with different numbers of mappers (M) and reducers (N)

M

FTI : FC : BC N
2 4 8 16 32 64

2 1:1.008:1.000 1:0.542:1.000 1:0.290:1.000 1:0.294:1.000 1:0.298:1.002 1:0.199:1.007

4 1:2.237:1.006 1:1.077:1.012 1:0.593:1.011 1:0.608:1.024 1:0.676:1.036 1:0.551:1.047

8 1:4.445:1.014 1:2.466:1.030 1:1.074:1.055 1:1.139:1.078 1:1.263:1.022 1:1.134:1.078

16 1:4.377:1.022 1:2.721:1.039 1:1.263:1.049 1:1.250:1.076 1:1.330:1.114 1:1.259:1.161

32 1:4.453:1.025 1:2.150:1.046 1:1.187:1.067 1:1.233:1.098 1:1.393:1.145 1:1.289:1.210

experiment indicates EC-Shuffle, using dynamic encoding

strategy, can reduce up to 80% parity data than FTI.

Table. IV shows the comparison between EC-Shuffle

and FTI: (1) FTI and backward-coding produce the parity

data in the same size (r ∗ X), (2) when M<N, forward-

coding ( M
N
∗ r ∗X) produces fewer parity data than FTI and

backward-coding. The slicing method sometimes limits the

group size (e.g., 10 in our experiment), which provides

efficient recovery at the cost of more memory space.

1) When M is less than N: Forward-coding can reduce

up to 80% parity data than FTI and backward-coding (M=2

and N=64). In this case, the group size k in forward-

coding is min{N,10} while k in FTI and backward-coding

are min{M,10}. Therefore, k in forward-coding is no less

than those in FTI and backward-coding, which explains

why forward-coding generates fewer parity data. Some other

cases, like M=8 and N=16, forward-coding performs worse

than FTI and backward-coding because each mapper divide

16 data chunks into two groups (10 + 6) and each group

generates r parity chunks based on its data chunks.

2) When M equals N: forward-coding, backward-coding,

and FTI should produce the parity chunks in the same size.

To encode these blocks, we format these data chunks (in

Section IV-A2) into the same length. FTI and EC-Shuffle

may generate parity chunks in larger sizes than our analyses

because of the load imbalance problem (i.e., data chunks/-

partitions are usually not in the same length).

3) When M is greater than N: In this case, forward-

coding usually generates more parity data ( M
N
∗ r ∗X>r ∗X)

and backward-coding performs more effectively. The result

is similar to our analysis in Section III-D. M (2, 4, 8)

is smaller than 10, each receiver in backward-coding only

produces one parity; while M is larger than 10, each receiver

has multiple groups and each group generates r parity.

V. RELATED WORK

A. General Fault Tolerance Techniques

Lineage. Tachyon [25], which is currently named Alluxio,

utilized the lineage mechanism [1, 2] to provide fault tol-

erance. The system recorded the operations applied on an

object in the runtime as the history trace. Once the object

is lost, the system could backtrack these historical records

to find its parent object. Then, the system replayed all op-

erations on this parent object to recover the lost object. The

lineage-based recovery mechanism in Spark [1] was similar

to the recovery mechanism used within a computation (job)

in MapReduce [26] and Dryad [27], which tracked depen-

dencies among a Directed Acyclic Graph (DAG) of tasks.

To replay an operation with wide dependencies, the system

needs to collect the data partitions from several nodes. The

lineage mechanism could not guarantee the required data still

exists. In the worst case, the system replayed all operations

on each node. Therefore, after each shuffle, Spark applied

local checkpoint to store the immediate shuffle outputs.

Checkpoint. The checkpoint technique [28, 29] can store

runtime data to disk and resume them when the system

needs them for recovery. The system could easily acquire

the data persisted at surviving nodes and only replayed

logs to recover the data stored on the failed node. MPICH-

V [29] proposed the uncoordinated checkpointing tech-

nique, which meant each node or process can take its own

checkpoint when it is most convenient. On the other hand,

LAM/MPI [28] pointed out several disadvantages in unco-

ordinated checkpointing, including the domino effect [30].



In the coordinated checkpointing technique, each process

always restarted from its most recent checkpoint and get rid

of the domino effect. Both LAM/MPI and Spark strongly

supported coordinated checkpointing, which simplified re-

covery from failure and minimized storage overhead.

Replication. Remote replication [31] was a widely used

scheme in the distributed systems. Instead of storing the

data in local non-volatile storage, it copies the data to other

nodes. With the mirror data, the system can instantly recover

the lost data. However, when the system synchronizes the

replication frequently, it causes much runtime overhead, e.g.,

network traffic. CORFU [32] combined this technique with

the logging mechanism to optimize the performance.

B. Erasure Coding Techniques

FTI. FTI [12] was the most related study, which exploited

erasure coding technology in distributed computation. It

gathered data blocks from k processes and generated r parity

chunks. The static coding method sometimes only achieves

sub-optimization of saving the storage space. Furthermore,

it was still costly to transfer all data blocks to one node for

encoding parity chunks. EC-Shuffle focuses on addressing

these serious concerns of FTI (discussed in Section II-B).

Many optimized erasure coding schemes, such as mLRC

[33] from Window Azure and fLRC [21] from Facebook,

aimed at reducing the network traffic in the recovery via

encoding a subset of the data chunks. Once losing a data

chunk, the system primarily finds the subset to which it

belongs. Then, it decodes the generated parity chunk and the

other data chunks in this subset, instead of all data chunks,

to reconstruct the lost data chunk. Thus, the network traffic

in their recovery processes is reduced. They focus on in-

memory storage systems with timely recovery but suffer

the network traffic issues at runtime. Carousel codes [34]

is another improved maximum distance separable (MDS)

coding scheme, which can improve the data parallelism of

MapReduce job by embedding the original data into more

blocks and running more map tasks.

EC-Shuffle avoids data chunks transfer, does not concern

itself with which erasure coding techniques are used. With a

better coding scheme, EC-Shuffle may speed up the encod-

ing/decoding process (e.g., XOR codes [35]) or the recovery

process (e.g., slicing methods in our implementation).

VI. CONCLUSION

With the rapid growth of shuffled data, it is necessary

to explore new methodology that can provide fault tol-

erance guarantee with light-weight network traffic. This

paper proposes EC-Shuffle, exploiting erasure coding as a

fault tolerance mechanism for high-performance and reliable

distributed computation. In runtime, EC-Shuffle presents an

efficient strategy to dynamically choose the proper encoding

scheme between forward-coding and backward-coding. Dur-

ing the recovery process, EC-Shuffle can instantly recover

the lost data via the decoding process, instead of replaying

the large lineage graph. Some key findings are listed below:

• EC-Shuffle only transfers the generated parity chunks

to provide fault-tolerance. Compared with collecting all

data chunks in FTI, it reduces the network traffic.

• EC-Shuffle evaluates BigDataBench with hundreds of

mappers and reducers and it can reduce up to 50%

network traffic and achieve up to 38% performance

improvement than FTI.

• Our analyses, including formulas and tables, indicate

EC-Shuffle with dynamic encoding strategies can gen-

erate the minimum size of parity chunks than existing

state-of-the-art mechanism. It outperforms FTI by re-

ducing up to 80% of the total size of the parity chunks.

There are still some limitations in this work: (1) the extra

costs of aligning the data chunks in different sizes, (2)

erasure coding performs not efficient for encoding small data

chunks. In the future, it can design a better erasure coding

scheme, which can encode the data chunks in different sizes

without appending an array of zero-valued bytes. Some

other works, such as Riffle [36], introduce how to merge

the fragmented intermediate shuffle outputs into large block

files. It is also a challenge to improve EC-Shuffle with

the adaptive coding in HACFS [15], which can optimize

the uncoordinated checkpointing technique in streaming

computing frameworks (e.g., Flink).
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