
FluentPS: A Parameter Server Design with
Low-frequency Synchronization for Distributed

Deep Learning
Xin Yao, Xueyu Wu and Cho-Li Wang

Department of Computer Science
The University of Hong Kong

Hong Kong, China
Email: {xyao, xywu, clwang}@cs.hku.hk

Abstract—With pursuing high accuracy on big datasets, cur-
rent research prefers designing complex neural networks, which
need to maximize data parallelism for short training time.
Many distributed deep learning systems, such as MXNet and
Petuum, widely use parameter server framework with relaxed
synchronization models. Although these models could cost less
on each synchronization, its frequency is still high among many
workers, e.g., the soft barrier introduced by Stale Synchronous
Parallel (SSP) model. In this paper, we introduce our parameter
server design, namely FluentPS, which can reduce frequent
synchronization and optimize communication overhead in a
large-scale cluster. Different from using a single scheduler to
manage all parameters’ synchronization in some previous de-
signs, our system allows each server to independently adjust
schemes for synchronizing its parameter shard and overlaps the
push and pull processes of different servers. We also explore
two methods to improve the SSP model: (1) lazy execution of
buffered pull requests to reduce the synchronization frequency
and (2) a probability-based strategy to pause the fast worker
at a probability under SSP condition, which avoids unnecessary
waiting of fast workers. We evaluate ResNet-56 with the same
large batch size at different cluster scales. While guaranteeing
robust convergence, FluentPS gains up to 6× speedup and reduce
93.7% communication time costs than PS-Lite. The raw SSP
model causes up to 131× delayed pull requests than our improved
synchronization model, which can provide fine-tuned staleness
controls and achieve higher accuracy.

Index Terms—Parameter server, data parallelism, staleness
synchronization parallel model

I. INTRODUCTION

The rapid evolution of algorithmic advances (deeper neural
networks like ResNet [1] etc.), abundance of data (e.g., 130
million images in Mapillary Vistas Dataset [2]), and GPU
cluster can support more accurate AI products, but also require
new designs to understand this trend and meet some chal-
lenges. The famous parameter server (PS) abstraction [3–5] en-
ables to run deep learning tasks with different parallel training
algorithms, such as model parallelism [6] (STRADS [7]), data
parallelism (TensorFlow [8], MXNet [4, 9], Caffe [10]), and
the hybrid parallelism mechanism (Angel [11], Petuum [12,
13], Project Adam [14]). While most systems increase the
batch size to train models with few iterations [15], it becomes a
common practice to use data parallelism. After calculating gra-

dients on a partition of the training dataset, each worker pushes
gradients to update the global parameters on servers and pulls
the updated parameters from the servers that means to acquire
the gradients updated by other workers. The traditional PS
system designs [4, 9] deploy one centralized scheduler to
record the progress of each worker and manage the parameters
synchronization. Even in a load-balanced cluster, some worker
nodes are randomly slower than other nodes [14]. A barrier is
usually needed to synchronize their updates at the end of each
iteration. Therefore, the scheduler often executes data-parallel
algorithms in Bulk Synchronous Parallel (BSP) [16] model,
which is prone to the straggler problem [17]. This problem
causes serious concerns when the system is at a massive scale.

Significant efforts [18–20] on optimizing synchronization
have been made to address the straggler problem in large-scale
deep learning tasks, regarding learning rate schedules [21–
23] and adaptive staleness [24, 25]. Asynchronous Paral-
lel (ASP) [18] removed all barriers among workers but needed
more iterations to achieve the convergent results. Staleness
Synchronous Parallel (SSP) [20, 26, 27] allowed delayed
update and the fastest worker could not exceed the slowest
one more than a predefined staleness threshold s. In SSP
model, the soft barrier [20] appeared once a worker is not
within the specified range (i.e., the staleness threshold s) of
the current iteration, which weakened the full barrier in BSP.
However, the soft barrier still appeared frequently and became
the major limitation to hurt the performance. Furthermore,
to implement SSP, previous designs (e.g., SSPtable [13] and
PrograssTracker [28]) recorded the progress of every worker
and kept a consistent view of staleness between workers and
servers. With an increasing number of workers, the staleness
information maintenance of these old designs could cause poor
scalability and convenience loss. Chen et al. [19] proposed
to use additional backup workers and dropped the stragglers
in each iteration. Adam [21] used parameter-specific learn-
ing rates, which computed individual adaptive learning rate
for every parameter. Dynamic Synchronous Parallel Strat-
egy (DSPS) [25] adjusted the staleness threshold s at runtime.

Our paper presents FluentPS, a parameter server design
focused on reducing the synchronization frequency to achieve

fast convergence in large-scale deep learning systems. We
define conditions for controlling synchronization at the server
nodes to handle pull and push operations from workers. The
pull condition requires the server to delay the responses to the
pull requests from fast workers, which avoids intolerable errors
of returning stale parameters to achieve robust convergence
and high accuracy. When the push operations are executed,
it allows the server to conditionally (i.e., the push condition)
respond the buffered pull requests. We consider synchroniza-
tion reduction from two aspects: (1) lazy pull execution: we
delay the pull requests of some fast workers and provide them
with the updated parameters for fast and robust convergence,
and lazy pull execution could achieve 1.24× speedup than soft
barrier with the same synchronization model; (2) probabilistic
SSP model: we relax the pull condition in the SSP model and
the server is not necessarily but at a probability to block fast
workers and waits for the stragglers to catch up. SSP model
guarantees a bounded delay among workers, which sometimes
produces unnecessary waiting or misses significant gradients.
The dynamic probability adjustment in our algorithm is sensi-
tive to the staleness gap and the gradient significance, e.g., it
can scale up the probability of synchronization corresponding
to the growing staleness k and the staleness threshold s:
P(k)= 1/(1+e(s−k)). Compared with the SSP model under the
same s, our experiments of ResNet-56 on CIFAR-10 dataset
show 1.38× speedup.

To the best of our knowledge, FluentPS is also the first
attempt of unifying implementation of various synchroniza-
tion models by only specifying the pull/push conditions. At
runtime, our condition-aware methodology can adjust synchro-
nization models to improve flexibility. The main contributions
are summarized as follows:

• We offload the synchronization control from a single
scheduler on to every parameter server. It can reduce
management overhead of the centralized structure and
apply adaptive synchronization models for different pa-
rameter shards. Base on this design, we are able to
propose overlap synchronization, which reduces up to
93.7% communication time costs in previous systems.

• We introduce lazy pull execution to reduce synchroniza-
tions overheads caused by frequent soft barriers and also
guarantee robust convergence. When the server appends a
pull request from the fast worker into a buffer, the buffer
is set to be indexable via this worker’s current progress.
The server only executes the buffered pull and return its
updated parameters after the slowest worker catches up.

• We improve convergence speed and test accuracy by run-
ning a probability-based synchronization model, namely
Probabilistic Staleness Synchronous Parallel (PSSP),
which is different from using deterministic synchroniza-
tion under a bounded staleness/delay. Our algorithm can
also determine the probability in both static and dynamic
ways (e.g., sensitive to staleness and gradients). We pro-
vide theoretical analysis about the upper bounds of regret,
which proves our model can suppress the accumulated

Table I: Synchronization model supports in different parameter server
architectures.

Synchronization Models
PS-Lite [4] BSP, ASP, Bounded delay
Bösen [5] BSP, SSP, ASP
STRADS [7] Pipelining, Prioritization1

FlexPS [28] BSP, SSP, ASP
Multiverso [29] BSP, ASP
GeePS [30] BSP, SSP, ASP

FluentPS
Flexible synchronization, e.g., BSP,

SSP, ASP, DSPS, Drop stragglers, PSSP.
1 STRADS’s synchronization strategies work only for model parallelism.

errors caused by delayed gradients on robust convergence.

II. BACKGROUND AND MOTIVATIONS

A. Parameter Server Architecture
With the ever-increasing amount of labeled data, it usu-

ally takes days and weeks to train the deep neural net-
works (DNNs) for high accuracy [14, 30]. The approach
that can accelerate the training process is to distribute the
computational workloads to multiple nodes. Most distributed
deep learning systems (e.g., TensorFlow [8], MXNet [4, 9])
are built on parameter server architecture, which provides
push/pull operations for parameter synchronization between
workers and servers. In a parameter server architecture, each
worker iteratively calculates gradients and pushes them to
servers to update the global model parameters; while a set of
servers maintain these parameters and aggregate the gradients
from all workers. With data parallelism, each worker trains a
model copy on a subset of the training data; while using model
parallelism, each worker trains a part of the model across the
whole dataset. In the hybrid parallelism approach, the training
data are partitioned and each part is assigned to a work group,
which consists of several workers. Each work group trains the
neural networks using model parallelism.

Table I shows comparisons of the key features of the state-
of-the-art parameter server architectures. PS-Lite [4] applied
a bounded delay model and its programming filters enabled
users to design the synchronization models for different deep
learning (DL) tasks. Bösen [5] supported SSP model (i.e.,
bounded staleness) when synchronizing the model parameters
between faster workers and slow workers. It developed the
SSP model via SSPtable, a table-based API, which recorded
the staleness information and invalidated outdated parameters
cached in workers. To provide flexible data parallelism control
for machine learning (ML) tasks, FlexPS [28] introduced
multi-stage abstraction. It divided one ML task into multiple
stages, mapped each stage to an individual task, and dynam-
ically adjusted parallelism degree according to the workloads
of each stage. This optimization brings the efficient execution
of an ML task with various workloads but fails to reduce
synchronization overhead for stages with high data parallelism
degree in most DL tasks. Moreover, these PS systems cannot
change different synchronization models at runtime.

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

0.1

0.2

0.3
0.4
0.5
0.6
0.7
0.8
1.0

Te
st

 A
cc

ur
ac

y
(%

)
2nodes 4nodes 8nodes 16nodes

Figure 1: The test accuracy of AlexNet on CIFAR-10 with the same
mini-batch size at different cluster scales. We run these experiments
in PMLS-Caffe [31], an open-source Bösen implementation.

B. Motivations

There are several concerns to cause overheads in parameter
synchronization and we list them below:

Limitations of current synchronization control: Previous
parameter server frameworks exploit two ways to manage the
parameter synchronization: (1) a centralized scheduler (e.g.,
PS-Lite [4]) records the progress of every worker and as-
signs one single synchronization model to each DL task, (2)
each worker decides whether to block itself by comparing
its progress with the version of parameters stored at server
nodes (e.g., SSPtable [26], Angel [11]). Since the workloads of
current DL tasks keep heavy, the data parallelism degree could
be very large. The scheduler of PS-Lite [32], which uses one
single model to control the synchronization of all parameters,
can only achieve sub-optimization for reducing synchroniza-
tion costs. On the other hand, without the scheduler, it is hard
for a worker to detect the progress of other workers and many
synchronization models (e.g, dropping stragglers) cannot be
implemented, thus these systems lack flexibility.

Scalability vs. robust convergence: Some synchronization
models (e.g., SSP [26]) need to track the progress of each
worker about updating the global model parameter. With track-
ing more workers, the overhead to maintain a consistent pa-
rameter view in SSPtable becomes significant and causes poor
scalability. For instance, we use Bösen to train AlexNet [33] on
CIFAR-10 by using different worker sizes. When running the
SSP model with the same staleness threshold, the 8-workers
and 16-workers cases show less test accuracy (see Figure 1)
than the 4-workers or 2-workers cases at the same iteration. We
also observe similar or even worse convergence loss in other
neural networks, which inhibits the benefits of large batch size.
Current large-scale deep learning systems could use hundreds
of GPUs (e.g., Facebook’s Caffe2-based system [34] scaled to
256 NVIDIA GPUs) to accelerate the computation. There is a
need to guarantee robust convergence when designing efficient
synchronization methods.

Synchronization frequency: Existing synchronization mod-
els, e.g., SSP model, usually cause high-frequent synchroniza-
tions. Regardless of the significance of parameter updates,
the soft barrier blocks the fastest worker once it exceeds the

Parameter shardParameter shardParameter shard

Data Partition

Scheduler

Worker N

…

Server node 1
SSP model

…
Worker N-1Worker 2Worker 1

Server node 2
PSSP model

Server node M
Drop stragglers model

Fluent Parameter Server

sPull(key, value, i)

Lazy Pull
Buffer

Lazy Pull
Buffer

Lazy Pull
Buffer

sPush(key, value, i)

Data Partition Data Partition Data Partition

… … … …

Lazy Pull

is the Condition-aware synchronization controller in each server node

Figure 2: System architecture overview of FluentPS.

Table II: Explanations for the notations used in this paper.

N The total number of workers is N.
M The total number of parameter server is M.
n The current worker is the n-th worker Wn.
m The current server is the m-th server.
s The predetermined staleness threshold.

wn
i , wn,m

i

wn,m
i are parameters pulled from the m-th server

and used to calculate gradients in the i-th iteration
on the n-th worker. We define wn

i = ∪M
m=1(w

n,m
i).

gn
i , gn,m

i

gn,m
i are gradients calculated in the i-th iteration

on the n-th worker and pushed to the m-th server.
We define gn

i = ∪M
m=1(g

n,m
i).

slowest worker s iterations, which creates many unnecessary
waits. Furthermore, A trade-off in responding to each pull
request is the time delay for waiting gradients updated by
slow workers and the staleness of reading parameters. For
instance, the soft barrier finishes once all workers are within a
specified range s of the current iteration and it may return stale
parameters to fast workers. Although the cost paid for each
synchronization is light, the soft barrier has two shortages:
(1) the fast worker cannot read the updated parameters, which
hurts the convergence speed; (2) since the slowest worker is
still following s−1 iterations behind the fast workers, it might
repeatedly satisfy the SSP condition and the soft barrier will
appear frequently.

III. DESIGN

A. System Overview

Compared with previous parameter server systems, our
design shows several advantages (see Figure 2): (1) condition-
aware synchronization controller: each server can adjust the
synchronization model by configuring the Push/Pull condition
and our system overlaps the synchronization processes of
different parameter shards to reduce communication time,
(2) lazy pull buffer: we execute these delayed pull requests
lazily to read the updated parameters and avoid frequent
synchronization, (3) the optimized synchronization model, i.e.,
PSSP model used in the server node 2: it relaxes the pull
condition of the SSP model to reduce the unnecessary waits of

the fast workers. Our system implementation is derived from
PS-Lite [4], a open-source parameter server system [35] used
by many famous deep learning systems, e.g., MXNet [9].

The scheduler only works for monitoring the liveness of
servers and divides the whole key space [4] into several key
ranges. Since each server is responsible for one key range,
each push/pull request may access multiple key ranges to
synchronize all parameters. In PS-Lite, the default slicing
method [4] incurs load imbalances problem because it puts
most parameters on one key range of a server. We design
Elastic Parameter Slicing (EPS) to remap the original keys of

Algorithm 1 Condition-aware methodology using lazy execu-
tion to control synchronization models

Max_Iter: total training iterations, w0: the initial parameters,
progress: current progress reported by the worker via sPush/
sPull, Vtrain: the overall training progress on this server’s sh-
ard, e.g., the progress of slowest worker, Count[i]: the number
of workers that finished pushing gradients in the i-th iteration.

Worker n = 1, 2, ..., N:

1: Initialize kv = KV::Worker(), w← w0
2: for i from 0 to Max_Iter do
3: gn

i ←step(wn
i)

4: kv.sPush(key, gn
i , i)

5: kv.wait(kv.sPull(key, &wn
i+1, i))

6: end for

Parameter Server m = 1, 2, ..., M:

1: Initialize wm← wm
0 , Vtrain← 0

2: function PULLHANDLER(keym, &wn,m
i+1, progress)

3: if PULL_con is satisfied for Vtrain then
4: *wn,m

i+1← wm

5: server.response()
6: else
7: callbacks[progress].push(
8: function LAZYPULL(keym, &wn,m

i+1)
9: *wn,m

i+1← wm

10: server.response()
11: end function)
12: end if
13: end function
14: function PUSHHANDLER(keym, gn,m

i , progress)
15: wm← wm + gn,m

i /N
16: Count[progress]←Count[progress]+1
17: if PUSH_con is satisfied for Vtrain then
18: for Pull in callbacks[Vtrain] do
19: Execute func(Pull)
20: end for
21: callbacks[Vtrain].clear()
22: Vtrain←Vtrain +1
23: end if
24: server.response()
25: end function

Table III: Equivalent implementation of flexible synchronization
models by specifying push and pull conditions in Algorithm 1.

Model Pull condition Push condition
BSP progress <Vtrain

Count[Vtrain] == N
ASP progress <Vtrain +∞

SSP
progress <Vtrain + sDSPS

Drop stragglers progress <Vtrain Count[Vtrain] == Nt

PSSP
progress <Vtrain + s
or rand(0,1)> P Count[Vtrain] == N

the parameters to new keys, which divide the model parameters
evenly on all key ranges. When the number of servers changes,
EPS can also rebalance the workloads among the alive servers.
Based on data parallelism, each worker computes the gradients
on its data partition and synchronizes parameters with param-
eter servers via sPush/sPull operations. In the same iteration,
each parameter server can choose the adaptive synchronization
model to update its parameter shard. For instance, in Figure 2,
server node 1 uses SSP model, server node 2 uses PSSP model,
and server node M uses drop stragglers model. Some notations
used in this paper are summarized in Table II.

B. Flexible Synchronization Model Control

In a large-scale distributed deep learning, N workers col-
laborate with M servers on the training process. We provide
two extended operations, sPush and sPull, for the workers
to synchronize different parameter shards with servers as
well as report their progresses. Since each server stores
only a part of the model parameters, the worker needs to
communicate with multiple servers (i.e., Wn reads wn,m

i from
the m-th server). There are several APIs to facilitate effi-
cient parameter synchronization implementation. The Setcond-
Pull function (SetcondPull(keys, f unc = PULL_con,argc,∗ ∗
argv)) specifies the pull condition (PULL_con). With proper
pull condition, the faster workers could avoid reading stale
parameters with some absent gradients. The SetcondPush func-
tion (SetcondPush(keys, f unc = PUSH_con,argc,∗ ∗ argv))
specifies the push condition (PUSH_con) that allows the server
to execute delayed pull requests. These interfaces also expose
details of the synchronization state, e.g., the progress of
fastest/slowest worker, the number of workers that have pushed
gradients in a specified iteration. The developers can create
various synchronization models with respect to these states.

As Algorithm 1 makes clear, we present the detailed execu-
tion flow on the worker side and server side, respectively. In
Table III, we give several examples of specifying the pull/push
condition to easily implement various synchronization models,
e.g., dropping slower workers [19] (all workers can enter the
next iteration after the parameter servers receive gradients
from any Nt workers) and adaptive staleness control [25].

Worker side. All worker begin from the same initial model
parameters (w0). In the i-th iteration, workern calculates the
gradients (gn

i , line 4) and sends gn
i as well as its progress (i)

to servers (line 5). It then waits for the accomplishment of

delay

0 1 2 3 4 5
Iteration

W0

W2

W1

s = 3

0 1 2 3 4 5
Iteration

W0

W2

W1 BarrierBarrier

s = 3

(a) Soft barrier: the parameters returned to W0’s pull are stale
after W2 completes the 2-th iteration (i.e., one iteration de-
layed). Frequent barriers (at the 4-th/5-th iterations) happen.

delay
Exec

WaitWait

s = 3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Iteration Iteration Iteration

W0

W2

W1

W0

W2

W1

W0

W2

W1

(b) Lazy execution: W0 reads the updated parameters with only one pause (at the 4-th
iteration). The server responds to W0’s pull after W2 completes the 2-th, 3-th, and 4-th
iterations (i.e., three iterations delayed).

Figure 3: The trade-off between the time delay of waiting for slow workers and the staleness of parameters that are returned to fast workers.
From Iteration i to Iteration i+1, each worker Wn calculates the gradients gn

i , pushes these gradients to servers and pulls the parameter wn
i+1.

The gray bar is the overall training progress (Vtrain), while the black arrow is the current progress of each worker.

1 M…

1 M…

S

A slow worker pushes g to M servers

A fast worker pulls W from M servers

Scheduler

(a) Non-overlap synchronization

…1 2 m M

1 2 m M

…

… …

A fast worker pulls W from M servers

A slow worker pushes g to M servers

… …

(b) Overlap synchronization

Figure 4: The comparison between the traditional designs and
FluentPS about synchronization among different parameter shards.

reading the parameters (wn
i+1) from servers (line 6) by telling

what version of parameters that are needed for calculating
gradients in the next iteration.

Server side. Based on the type of requests, our design
classifies the synchronization conditions into pull condition
and push condition. For each pull request to read a pa-
rameter shard, the server determines whether to return the
current parameters or delay the response. If the pull condi-
tion (PULL_con) returns false, there are not enough workers
updating their gradients to the server and the parameters
are stale. The server appends this pull request into the lazy
pull buffer (line 7-11), which is indexed by the progress of
the worker that sends this pull. After applying each push
request, the server counts the number of workers that fin-
ished pushing their gradients (line 16) and checks the push
condition (PUSH_con). If it returns true, the server has aggre-
gated enough gradients to increase Vtrain (the overall training
progress on its parameter shard) and executes all delayed pull
requests recorded in the lazy pull buffer (line 18-20).

C. Lazy Pull Execution

In Section III-B, the pull condition (server, line 3) requires
the server to delay the response to this pull (we call it delayed
pull request, DPR) from the fast worker and ensures the
accuracy of convergence, while the push condition (server, line
17) determines how lazy to answer the delayed pull requests.
In our algorithm, lazy execution uses progress (transferred
via sPull) as the index (server, line 7) of the lazy pull
buffer that records these DPRs, while the soft barrier uses
Vtrain. In Figure 3, we illustrate the trade-off between the

Report
progress

Push Pull ACK
ACK

S

W0
W1

M servers

(a) Non-overlap synchronization: the Push process and the Pull process
are isolated by reporting progress (dash line) to the scheduler.

Pull & progress
Push & progress

…

ACK
ACK

S

W0
W1

M servers

(b) Overlap synchronization: the Push process and the Pull process are
overlapped. The progress of each worker is sent to servers.

Figure 5: The time-line diagram of two synchronizations: A pull (in
gray) from a fast worker and A push (in black) from a slow worker.
The thick line means it transfers the gradients/parameters; the fine
line means it carries little data; the dotted line only appears in Non-
overlap synchronization for reporting the progress to the scheduler.

time delay of responding to each DPR and the staleness of
parameters returned to this DPR when s equals 3. Before the
slowest worker W2 pushes g2

1, the fast worker W0 cannot pull
w0

4 because g2
1, g2

2, and g2
3 are absent: (1) soft barrier (see

Figure 3(a)): after one iteration delay and g2
1 is updated

to servers, the barrier finishes and W0 reads w0
4 without g2

2
and g2

3 (i.e., stale parameters), which could harm the robust
convergence, (2) lazy execution (see Figure 3(b)): W0 needs to
wait until g2

1, g2
2, and g2

3 are pushed to the servers (i.e., three
iterations delay) and it can read the updated parameters.

D. Overlap Synchronization

Except for being more flexible, our system can reduce com-
munication time via overlapping the push and pull processes.
In non-overlap synchronization [4, 19, 32], the scheduler
controls the parameter synchronization and it behaves like a

global barrier (the ‘S’ in Figure 4(a)). It does not allow the
fast workers [32] to send pull requests (see Figure 5(a)) until
the slowest worker update all parameter shards. In FluentPS,
the parameter synchronization models are independently con-
trolled on different servers, instead of the single scheduler.
As shown in Figure 4(b), once the slowest worker pushes its
gradients to one server node, this server can immediately send
its updated parameter shard to the fast workers, instead of
waiting for the slowest worker to update other M-1 param-
eter shards. Compared with non-overlap synchronization in
traditional designs (e.g., PS-Lite), our experiments show that
overlap synchronization in FluentPS could cut down on the
communication time by up to 93.7% in the case of using EPS
to balance the workloads on the servers.

E. Probabilistic SSP Model

The motivation of the SSP model is to expect the randomly
slow workers can catch up with the faster workers in the
following few iterations, instead of synchronizing all work-
ers in each iteration. There are two aspects to evaluate the
efficiency of the SSP model: (1) synchronization frequency:
how many DPRs are stored in the lazy pull buffer during
training, (2) delayed gradients: how many gradients from the
slow workers are missing for the servers to respond a pull.
As a fundamental trade-off, the SSP model allows users to
pre-determine a staleness threshold s that balances between
the synchronization frequency and delayed gradients. A high
staleness threshold can reduce the number of DPRs but some
gradients may be seriously delayed; while a low threshold
can guarantee timely parameter updates at the cost of extra
synchronization overhead.

In this section, we propose Probabilistic Staleness Syn-
chronous Parallel (PSSP) model, which relaxes the pull con-
dition in SSP. Even the worker is s iterations faster than the
slowest one, it will be blocked at a probability (P) before
entering the next iteration. We further dynamically adjust this
probability for different workers.

1) Constant PSSP model: The idea of constant PSSP is
simple. We introduce a constant probability P ∈ [0,1]: the
progress gap is less than s, P equals 0; while the progress
gap equals or is larger than s, P is c (c is a constant in this
paper and c ∈ [0,1]) Especially, P equals 0, it becomes ASP
model, while it reduces to SSP model if P is 1.

Theoretical Analysis. Similar to the proof of convergence
bounds in SSP model, we focus on stochastic gradient de-
scent (SGD) in this paper. Since different workers at different
iterations have their own parameters (i.e., T = Max_Iter ∗N),
we collect them in a parameter sequence W = {w1,w2, ...,wT }.
As SGD searches w∗ to minimize the cost function f (w), R[W]
is the bound of the regret:

R[W] := f (w)− f (w∗), where f (w) :=
1
T

T

∑
t=1

ft(wt),wt ∈W

Proposition 1: (SSPSGD [26]). Under the following condi-
tions: (1) ft(wt) are L-Lipschitz functions, which are convex
for any w and ||∇ ft(wt)|| ≤ L for some positive constant

L; (2) For any w1, w2 ∈ W and some positive constant F ,
D(w1||w2)= 1

2 ||w1−w2||2 ≤ F2. Qirong Ho et al. [26] showed
the bound of the regret, where N is the number of workers
and s is the staleness threshold:

R[W](s,N)≤ 4FL

√
2(s+1)N

T
(1)

Theorem 1: (Constant PSSP-SGD). For each wi ∈W , we
assume the progress gap between the worker pulls wi and the
slowest worker is si. We define S = {s1,s2, ...,sT } and S′ =
{si : si ≥ s && si ∈ S}. Based on description of constant PSSP,
it can behave like the SSP model whose staleness threshold is
si (si ≥ s) at a probability of c∗ (1−c)si−s. We can derive the

bound of regret is R[W]≤ 1
|S′| ∑si∈S′ 4FL

√
2(si+1)N

T , where the
percentage of si appearing in S′ is c∗ (1− c)si−s:

R[W](s,N,c)≤
∞

∑
i=s

c∗ (1− c)i−s ∗4FL

√
2(i+1)N

T

=
4cFL
(1− c)s

√
2N
T

∞

∑
i=s

(1− c)i ∗
√

i+1

(2)

To attain the upper bound of A=∑
∞
i=s(1−c)i ∗

√
i+1, we have:

A2 = (
∞

∑
i=s

xi ∗
√

i+1)2, where x = 1− c

≤ (
∞

∑
i=s

xi)∗ (
∞

∑
i=s

xi ∗ (i+1)), from Cauchy inequality [36]

≤ (
∞

∑
i=s

xi)∗ (
∞

∑
i=s

(xi+1)′) = lim
n→∞

[
xs− xs+n

1− x
∗ (xs+1− xs+n+1

1− x
)′]

≤ xs

1− x
∗ (xs+1

1− x
)′ =

x2s(s− s∗ x+1)
(1− x)3

Under the same conditions of SSPSGD, the upper bound of
Equation 2 can be expressed as:

R[W](s,N,c)≤ 4cFL
(1− c)s

√
2N
T

√
x2s(s− s∗ x+1)

(1− x)3 , where x = 1− c

= 4FL

√
2(c∗ s+1)N

c∗T
= 4FL

√
2(s+ 1

c)N
T

(3)
Equation 1 and Equation 3 shows the regret’s expectations

of constant PSSP-SGD (s, c) and SSP-SGD (s′=s+ 1
c -1) could

have the same upper bound: 4FL
√

2(s+ 1
c)N

T . As we will
show in Section IV-B4, although the bounded regrets are
equal, constant PSSP-SGD (with s, c) causes less frequency
of synchronization: reduce up to 97.1% DPRs and 28.5%
synchronization costs than SSP-SGD (with s′). Actually, the
constant PSSP-SGD is more general than SSP-SGD and can
provide fine-tuned staleness controls: s+ 1

c -1 can be any non-
negative real number while s′ is only a non-negative integer.

2) Dynamic PSSP model: Regardless of the progress, con-
stant PSSP-SGD treats all fast workers equally by using
one single constant probability P=c. For instance, the fastest
worker exceeds the slowest worker s1 iterations and another

8 12 16 20 24 28 32
Number of workers

0

50

100

150

200

250

300

Tr
ai

ni
ng

 T
im

e(
s/

10
0

ite
r)

Computation Costs
Communication Costs (FluentPS + EPS)
Communication Costs (FluentPS)
Communication Costs (PS-Lite)

Figure 6: Computation/Communication time comparison of using
FluentPS and PS-Lite to train ResNet-56 on CIFAR-10 (using BSP
model) with different numbers of workers.

2 4 8 16 32 64
Number of Workers

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

PMLS-Caffe
FluentPS

Figure 7: Test accuracy comparison of using PMLS-Caffe and
FluentPS to train AlexNet on CIFAR-10 (using SSP model, s=3) with
different numbers of workers at the 4000-th iteration.

fast worker exceeds the slowest worker s2 iterations, assuming
s1 � s2 > s. The probabilities of pausing these two faster
workers are the same in constant PSSP, but the fastest worker
should be blocked with a higher probability to inhibit accumu-
lated errors on robust convergence because it reads very stale
parameters. Therefore, it is sub-optimal to find a c in constant
PSSP, which cannot be well adaptive to the pull requests from
all fast workers. Dynamic PSSP calculates the probability for
each worker based on its current progress, which both reduces
synchronization overhead and ensures robust convergence.

Staleness consideration. Along with increasing the
progress gap between the current worker and the slowest
worker, it has a higher probability of pausing the current
worker to wait for the gradients’ updates from slow workers.
The probability of buffering the pull request should be scaled
up corresponding to the growth of the progress gap k and the
staleness threshold s:

P(s,k) =

{
0 If k < s,

α

1+es−k If k ≥ s.

α can be a initial threshold (i.e., a constant number) or a
function (e.g., the significance function [37] SF(gn

i ,wi)=
|gn

i |
|wi|).

Theorem 2: (Dynamic PSSP-SGD). When α is a con-
stant number, P(s,k) is monotonically increasing function
over the interval [s,∞). For each si ∈ S′, we calculate the
corresponding probability pi = P(s,si) =

α

1+es−si . We define
P = {p1, p2, ..., p|S′|}. Let pmin = minP = α

2 (i.e., si=s), and
the regret of the dynamic PSSP-SGD is tighter than that of
the constant PSSP-SGD when its constant probability equals
α

2 . Based on Equation 3, we have R[W] ≤ 4FL
√

2(s+ 2
α
)N

T .
When α is a function, the analysis should rely on the lower
bound of this function. For instance, before the cost function
reaches the local optimal solution, |gn

i | is larger than 0 and
α = SF(gn

i ,wi)> 0.

IV. EXPERIMENTS

A. Experimental Setup

Clusters setup. We evaluate the experiments on two clus-
ters: (1) Performance Test: a GPU-cluster consists of 32

Amazon Elastic Compute Cloud (EC2) p2.xlarge instances
and each of them is equipped with NVIDIA Tesla K80
GPU (12 GB GPU memory), Intel Xeon E5-2686 processors
and 61 GB of RAM; they are connected via a 25 Gbps of
aggregate network bandwidth. (2) Scalability Test: a CPU-
cluster consists of 64 machines and each of them is equipped
with two 4-cores Intel CPUs, 16GB DDR3 memory and 1Gbps
Ethernet; they are connected via a 10 Gbps of aggregate
network bandwidth. We further extend the number of workers
to 128 by using Kubernetes in this cluster.

System setup. Each machine installs 64-bit Ubuntu 18.04
LTS and GPU instances use CUDA 10.0 and cuDNN toolkit
7.5. Without loss of generality [30, 37], we run one worker
on each node of the CPU-cluster (a Caffe [10] process is one
worker) and the GPU-cluster (a NVcaffe [38] process is one
worker). In each cluster, we exploit different parameter server
frameworks to update parameters with workers: FluentPS, PS-
Lite [35] and PMLS-Caffe [31]. We use Layer-wise Adaptive
Rate Scaling (LARS) [39] to support the large-batch training.

Models and datasets Our experiments use two datasets
and two models. The first dataset for image classification,
namely CIFAR-10 [40], consists of 60000 32x32 color images
in 10 different classes, 50000 training images, and 10000 test
images. The second dataset is CIFAR-100 [40] with “fine”
labels, which has 100 classes and each class contains 500
training images and 100 testing images. To train these datasets,
we respectively use AlexNet [33] and ResNet-56 [1] to achieve
76.5% accuracy and 93.2% accuracy on the CIFAR-10 test set,
while 43.8% accuracy and 69.2% on the CIFAR-100 test set.

B. Performance Evaluation

1) Overlap synchronization:
In this section, we train ResNet-56 model for 64000 it-

erations on the GPU-cluster. The dataset is CIFAR-10 and
the batch size is set to be 4096. To get rid of the effects
caused by other factors, like the optimized synchronization
models, we use the BSP model among workers in these
experiments. With increasing the number of workers (N)
from 8 to 32, the computation time decreases because each
worker has fewer workloads of computation. We measure and

0 5000 10000 15000 20000 25000 30000
Time (s)

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y
(%

)

Lazy Execution
Soft Barrier

Figure 8: Test accuracy/Convergence speed comparison of
using soft barrier and lazy execution to train ResNet-56 on
CIFAR-10 with 32 workers and SSP model (s=2, totally 64000
iterations).

A C E GB D F HA C E GB D F H
Synchronization Models (s)

101

102

103

104

105

Th
e

Nu
m

be
r o

f D
PR

s

0

20

40

60

80

100

Th
e

Tr
ai

ni
ng

 T
im

e
(s

/1
00

 It
er

at
io

ns
)Lazy Execution

Soft Barrier
Training Time

Figure 9: The number of DPRs per 100 iterations when training
AlexNet on CIFAR-10: A, C, E, and G are PSSP models (s=3) with c
respectively equals 1

2 , 1
3 , 1

5 , and 1
10 ; B, D, F, H are SSP models with

s respectively equals 4, 5, 7, and 12.

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y
(%

)

ASP
SSP (s=3)
PSSP (s=3, P=0.1)
PSSP (s=3, P=0.3)
PSSP (s=3, P=0.5)
BSP

Figure 10: Accuracy vs. time for AlexNet on CIFAR-10 with 64
workers by using different synchronization models, totally 4000
iterations. PSSP (s=3, P=0.5) has the highest accuracy on testset
of CIFAR-10.

0 2500 5000 7500 10000 12500 15000 17500
Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y
(%

)

ASP
SSP (s=3)
PSSP (s=3, P=0.1)
PSSP (s=3, P=0.3)
PSSP (s=3, P=0.5)
BSP

Figure 11: Accuracy vs. time for AlexNet on CIFAR-10 with 128
workers by using different synchronization models, totally 4000
iterations. PSSP (s=3, P=0.3) has the highest accuracy on testset
of CIFAR-10. On top of our CPU cluster with Kubernetes v1.14.1,
we launch a cluster of 128 instances and each runs one Caffe worker.

compare the results of three experiments in Figure 6: (1) PS-
Lite (non-overlap synchronization): the communication time
costs increased dynamically to dominate the total training
time; (2) FluentPS (overlap synchronization): it can be up to
4.26× faster than PS-Lite and can reduce 86% communication
time costs in non-overlap synchronization. (3) FluentPS with
EPS, which balances the workloads of 8 servers: it can further
achieve up to 1.42× speedup than FluentPS and reduce 55%
communication time. In addition, overlap synchronization will
not bring stale weights issue.

2) Scalability:
With 64-nodes CPU-cluster, We train AlexNet on CIFAR-

10 dataset and the batch size is set to be 6400. Figure 7
shows the test accuracy of PMLS-Caffe and FluentPS after
4000 iterations. As we discussed in Section II-B, SSPtable in
PMLS-Caffe could cause serious convergence loss when the
number of workers becomes large, e.g., the test accuracy is

less than 20% when N is larger than 8. The test accuracies
of FluentPS are respectively 2.0% (on a 2-node cluster) and
11.2% (on a 4-node cluster) higher than those of PMLS-
Caffe. When the cluster size increases to 64, FluentPS can
still achieve 75.9%-76.7% accuracy on the CIFAR-10 test
set, which is much higher than the accuracy (12.7%-19%)
trained by PMLS-Caffe. This proves FluentPS is more scalable
than SSPtable to support large deep learning systems with
guaranteeing high accuracy.

3) Lazy execution vs. soft barrier:
In this section, we use different execution models to handle

DPRs when training ResNet-56 on CIFAR-10. Figure 8 shows
the test accuracy per 1000 iterations and the maximum number
of iterations is set to be 64000. The synchronization model
among 32 workers is SSP and s is set to be 2. Executing
DPRs via lazy execution could be 1.21× faster than the soft
barrier. Since the fast worker can read updated parameters

Table IV: Comparison among ASP (P=0), SSP (P=1), constant PSSP (P=0.1, 0.3, 0.5) and dynamic PSSP model. These models respectively
use soft barrier and lazy execution and we show the average time and the number of DPRs per 100 iterations and the finial test accuracy.

Soft barrier Lazy Execution
DNN P 0 0.1 0.3 0.5 1 Dynamic 0.1 0.3 0.5 1 Dynamic

AlexNet
on

CIFAR-10

Time 45.85 52.95 56.67 58.71 80.77 72.55 58.85 60.96 63.89 64.62 62.44
Acc 0.759 0.760 0.759 0.765 0.764 0.762 0.756 0.756 0.762 0.758 0.765
DPRs 0 23.65 126.1 350.3 4002 2670 24.80 112.5 254.0 336.8 190.4

AlexNet
on

CIFAR-100

Time 48.84 51.00 54.38 57.59 78.68 71.81 56.83 59.43 61.97 62.48 65.73
Acc 0.429 0.429 0.426 0.430 0.432 0.438 0.430 0.431 0.434 0.434 0.437
DPRs 0 19.01 102.3 379.3 3834 2724 20.44 114.1 275.6 331.0 717.8

ResNet-56
on

CIFAR-10

Time 37.94 41.91 43.51 44.61 46.57 46.76 38.63 38.40 38.45 39.16 37.94
Acc 0.925 0.926 0.928 0.924 0.924 0.929 0.930 0.932 0.929 0.931 0.930
DPRs 0 906.4 3979 7462 15160 4539 40.28 32.46 56.77 115.1 49.62

ResNet-56
on

CIFAR-100

Time 37.07 42.02 46.99 47.27 48.79 45.83 37.64 37.88 37.07 37.31 37.57
Acc 0.685 0.687 0.689 0.688 0.686 0.688 0.688 0.690 0.692 0.689 0.689
DPRs 0 1085 5995 9993 21289 4092 32.91 82.31 83.56 77.50 26.48

* AlexNet is tested on our 64-node CPU Cluster (1 server and 64 workers, s=3); ResNet-56 is evaluated on the 32-nodes AWS GPU Cluster (8 servers
and 32 workers, s=2).

in lazy execution, it shows more robust convergence. Lazy
execution could convergence faster than soft barrier, e.g.,
synchronization with lazy execution has much higher accuracy
from 16500s to 23500s in Figure 8.

As shown by the striped bars in Figure 9, we further evaluate
the performance of training AlexNet with different staleness
thresholds (4, 5, 7 and 12) in the SSP model. Compared with
soft barrier, lazy execution can achieve up to 1.24× speedup
by saving up to 97.1% DPRs during synchronization.

4) PSSP model:
In Section III-E1, we prove that the regret’s expectations

of PSSP-SGD (s, c) and SSP-SGD (s′) have the same upper
bound under some specified condition: s′=s+ 1

c -1. Therefore,
we design four groups of experiments (i.e., A and B, C
and D, E and F, G and H) via controlling s, c, and s′.
The synchronization models in each group could share the
same upper bound of regret. Figure 9 shows the PSSP model
outperforms SSP by reducing up to 97.1% DPRs and 28.5%
training time, i.e., model G vs. model H when using soft
barrier. Under the premise of optimization brought by lazy
execution, the PSSP can still save 70.7% DPRs in the SSP
model. PSSP model with soft barrier sometimes has shorter
execution time than lazy execution because PSSP can also
decrease the number of DPRs and soft barrier needs fewer
delayed iterations to execute each DPR.

In Figure 10, we compare BSP, SSP, ASP with PSSP (c
equals 0.1, 0.3, 0.5 respectively) by measuring the parameters
convergence progress of AlexNet on CIFAR-10. Although the
ASP model is the fastest one to finish 4000 iterations, its test
accuracy is the lowest among all models, which is around
1% lower than PSSP model (P=0.5). On the other side, the
test accuracy of SSP model is close to PSSP model, while
PSSP is 1.38× faster than the SSP model. We are further
able to double the number of workers with 8 server nodes in
Figure 11 by deploying Kubernetes to create a cluster of 128
container instances on our CPU clusters. In this case, PSSP

model (P=0.3 or P=0.5) can achieve 3.9% higher test accuracy
than the ASP model. Compared Figure 10 with Figure 11, we
found the PSSP model shows its advantages of guaranteeing
better test accuracy when increasing the number of workers.

Table IV presents extensive experimental results by eval-
uating different CNNs. Compared with shallow neural net-
works (e.g., AlexNet), lazy execution and PSSP model could
cooperate better in training deeper neural networks like
ResNet-56. The dynamic PSSP model relies on the config-
uration of α , which guarantees a high test accuracy or causes
few DPRs among all models.

V. RELATED WORK

A. Previous Parameter Servers

Most parameter servers [4, 11, 13] supported multiple
synchronization models but they could only assign one model
for executing one training task. FluentPS can adjust parameter
synchronization model at runtime via controlling the push/pull
conditions. To support synchronization models like SSP, Bösen
used SSPtable [13], which is based on a convenient shared-
memory model which invalid the outdated parameter entries
cached at workers. Although the shared-memory model made
it easy to program the distributed version of DL programs,
it encountered serious scalability concern and might cause
convergence loss. Our design adopts message passing and each
worker reports its progress to servers and each server could
synchronize its own parameter shard independently.

FlexRR [41] could control the workloads assigned to dif-
ferent workers based on their gradients calculation speed. For
instance, the fast worker can help the slow worker to execute
some parts of its work, instead of waiting for them to catch up.
In their experiments, the authors admitted work reassignment
could cause potential overhead when shifted workloads from
stragglers. FlexPS [28] introduced a multi-stage method to
split a whole task according to its dynamic workloads, such
as SGD with growing batch size in ML applications. For each

stage of the task, it assigned the data parallelism degree to
provide the trade-off between the computation time and the
communication time. Different from common ML programs,
our system targets large-scale DL systems, which have heavy
workloads at every stage. Therefore, they still need very high
data parallelism to minimize the per-iteration costs and the
synchronization overhead among many workers still remains.

FluentPS also applies several approaches to improve the
efficiency of PS, including overlap synchronization to reduce
the communication time costs and lazy execution to do a trade-
off between the short waiting time of replying to a DPR and
robust convergence.

B. Synchronization Models in DL Research

BSP, ASP, and SSP. Bulk Synchronous Parallel (BSP) [16]
blocked all workers to enter the next iteration until the slowest
workers finished pushing its gradient to the parameter server.
BSP was widely used in exiting PS systems, however, it
suffered from the straggler problem which inhibits the training
speed. Different from BSP, Asynchronous Parallel (ASP) [18]
did not pause any faster workers to wait for the stragglers.
Therefore, ASP had a higher training speed than BSP, but
it could cause unexpected errors and the test accuracy might
drop. Staleness Synchronous Parallel (SSP) [26] allowed de-
layed updates but the fastest worker could not exceed the
slowest one more than a staleness threshold s. SSP provided
a trade-off between BSP and ASP, which paused the faster
workers if the progress gap among workers is no less than
s. Especially, s = 0 means any worker need to wait for the
others to finish the current iteration, SSP turns to be BSP;
while s = ∞, SSP reduces to ASP.

There are many strategies to optimize SSP models with
regard to learning rate schedules [21–23] and adaptive
staleness [24, 25]. Dynamic Synchronous Parallel Strat-
egy (DSPS) [25] monitored the performance of worker nodes
to dynamically adjust the staleness threshold during the train-
ing process and therefore improved SSP. Probabilistic Syn-
chronous Parallel (PSP) [42] was the first work to introduce
probabilistic control in synchronization models, which effec-
tively improved both training speed and scalability of systems.
It created a boolean decision on whether or not to pass the
synchronization barrier by sampling primitive, which derived
a probability based on an estimation of all workers having
pushed its gradients, e.g., a 10-node sample was taken from a
cluster with 100s of nodes. However, the gradient significance
from worker nodes are different, and we cannot treat them
equally. The convergence loss will happen if the sampling
workers have less gradient significance and their gradients are
applied to the global parameters, while the delayed gradient
updates in other workers are important but these workers are
still regarded as finishing synchronization. Different from PSP,
PSSP bases the probability calculation on the progress gap
between workers and the gradients significance, which more
adapt to synchronizing parameters in different training phases.

Others Synchronization Models. Some synchronization
models focused on dropping the stragglers [19] and configur-

ing the push/pull frequency of each worker [3]. To develop fast
training and reduce frequency synchronization across datacen-
ters, Gaia [37] introduced the significant filter to eliminate the
network traffic of insignificant gradients when synchronizing
parameter replicas across datacenters while still guaranteeing
the correctness of convergence. It summarized that over 95%
of updates produce insignificant gradient (e.g., less than 1%
modification to the parameter value) and these gradients gen-
erated from several iterations can be aggregated and are not
necessary to iteratively synchronized to the server of remote
datacenters. SpecSync [43] was on top of ASP and SSP models
and it allowed each worker to speculates about the recent
updates from other workers. To synchronize some necessary
updates, the worker needs to abort the calculation of current
gradients and pull updated parameters from servers. Similarly,
PSSP model can also determine the probability based on the
quality of parameters but avoid the computation aborts in
SpecSync model. Furthermore, the centralized scheduler was
a bottleneck because it received the notifications from all
workers after their push operations and implemented the logic
of SpecSync on behalf of each worker. Our design offloads the
synchronization model controls from the centralized scheduler
on to server nodes, which can distribute the management over-
head and overlap the gradients push processes and parameter
push processes between workers and different server nodes.

VI. CONCLUSION

Along with increasing scales, there are many concerns
in distributed deep learning: (1) previous parameter servers
could cause significant communication overhead and con-
vergence loss, (2) frequent synchronization happens when
running existing synchronization models. Our paper proposes
FluentPS, which introduces low-frequency but high efficient
synchronization and provides several methods to optimize the
communication costs. Some key findings are listed below:
• FluentPS uses overlap synchronization to reduce the

waiting time in communication costs and EPS to balance
the workload of servers. It achieves up to 6x speedup and
reduces 93.7% communication costs than PS-Lite.

• Lazy pull execution returns the updated parameters to
fast workers and guarantees robust convergence. It also
achieves up to 1.24x speedup by bridging the progress
gap among workers to reduce synchronization frequency.

• Under the SSP condition, FluentPS exploits PSSP model
to pause the fast worker at a probability, which can be
flexibly determined. It outperforms the SSP model by
gaining 1.38x speedup and 3.9% higher test accuracy.

• FluentPS can well support large-scale distributed deep
learning system because more workers will not cause
convergence loss like PMLS-Caffe.

ACKNOWLEDGMENT

This research is supported by Hong Kong RGC grant
106160098 and AWS Cloud Credits for Research. We thank
our shepherd and four anonymous reviewers for their sugges-
tions, which help improve the quality of this paper.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016, pp. 770–
778.

[2] G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, “The
mapillary vistas dataset for semantic understanding of street
scenes,” in 2017 IEEE International Conference on Computer
Vision (ICCV), Oct 2017, pp. 5000–5009.

[3] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y.
Ng, “Large scale distributed deep networks,” in Proceedings
of the 25th International Conference on Neural Information
Processing Systems - Volume 1, ser. NIPS’12. USA: Curran
Associates Inc., 2012, pp. 1223–1231.

[4] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling
distributed machine learning with the parameter server,” in
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). USENIX Association, 2014, pp.
583–598.

[5] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger,
P. B. Gibbons, G. A. Gibson, and E. P. Xing, “Managed
communication and consistency for fast data-parallel iterative
analytics,” in Proceedings of the Sixth ACM Symposium on
Cloud Computing, ser. SoCC ’15. New York, NY, USA: ACM,
2015, pp. 381–394.

[6] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and
E. P. Xing, “On model parallelization and scheduling strategies
for distributed machine learning,” in Proceedings of the 27th
International Conference on Neural Information Processing
Systems - Volume 2, ser. NIPS’14. Cambridge, MA, USA:
MIT Press, 2014, pp. 2834–2842.

[7] J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A. Gib-
son, and E. P. Xing, “Strads: A distributed framework for
scheduled model parallel machine learning,” in Proceedings of
the Eleventh European Conference on Computer Systems, ser.
EuroSys ’16. New York, NY, USA: ACM, 2016, pp. 5:1–5:16.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine
learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 265–283.

[9] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems,”
CoRR, vol. abs/1512.01274, 2015.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” in Proceedings of the
22Nd ACM International Conference on Multimedia, ser. MM
’14. New York, NY, USA: ACM, 2014, pp. 675–678.

[11] J. Jiang, L. Yu, J. Jiang, Y. Liu, and B. Cui, “Angel: a new
large-scale machine learning system,” National Science Review,
vol. 5, no. 2, pp. 216–236, 2018.

[12] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng,
P. Xie, A. Kumar, and Y. Yu, “Petuum: A new platform for
distributed machine learning on big data,” IEEE Transactions
on Big Data, vol. 1, no. 2, pp. 49–67, June 2015.

[13] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,
Z. Hu, J. Wei, P. Xie, and E. P. Xing, “Poseidon: An efficient
communication architecture for distributed deep learning on
GPU clusters,” in 2017 USENIX Annual Technical Conference
(USENIX ATC 17). USENIX Association, 2017, pp. 181–193.

[14] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project adam: Building an efficient and scalable deep learning
training system,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX
Association, 2014, pp. 571–582.

[15] S. Smith, P. jan Kindermans, C. Ying, and Q. V. Le, “Don’t
decay the learning rate, increase the batch size,” 2018. [Online].
Available: https://openreview.net/pdf?id=B1Yy1BxCZ

[16] L. G. Valiant, “A bridging model for parallel computation,”
Commun. ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[17] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat, “Loose
synchronization for large-scale networked systems,” in Proceed-
ings of the Annual Conference on USENIX ’06 Annual Technical
Conference, ser. ATEC ’06. Berkeley, CA, USA: USENIX
Association, 2006, pp. 28–28.

[18] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and
A. J. Smola, “Scalable inference in latent variable models,” in
Proceedings of the Fifth ACM International Conference on Web
Search and Data Mining, ser. WSDM ’12. New York, NY,
USA: ACM, 2012, pp. 123–132.

[19] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” in International Conference on
Learning Representations Workshop Track, 2016. [Online].
Available: https://arxiv.org/abs/1604.00981

[20] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger,
G. Gibson, K. Keeton, and E. Xing, “Solving the
straggler problem with bounded staleness,” in Presented
as part of the 14th Workshop on Hot Topics in
Operating Systems. Santa Ana Pueblo, NM: USENIX,
2013. [Online]. Available: https://www.usenix.org/conference/
hotos13/solving-straggler-problem-bounded-staleness

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014.

[22] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware
distributed parameter servers,” in Proceedings of the 2017
ACM International Conference on Management of Data, ser.
SIGMOD ’17. New York, NY, USA: ACM, 2017, pp. 463–
478.

[23] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware
async-sgd for distributed deep learning,” in Proceedings of
the Twenty-Fifth International Joint Conference on Artificial
Intelligence, ser. IJCAI’16. AAAI Press, 2016, pp. 2350–2356.

[24] J. Hermans and G. Louppe, “Gradient energy matching
for distributed asynchronous gradient descent,” CoRR, vol.
abs/1805.08469, 2018.

[25] J. Zhang, H. Tu, Y. Ren, J. Wan, L. Zhou, M. Li, J. Wang,
L. Yu, C. Zhao, and L. Zhang, “A parameter communication
optimization strategy for distributed machine learning in sen-
sors,” Sensors, vol. 17, no. 10, 2017.

[26] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons,
G. A. Gibson, G. R. Ganger, and E. P. Xing, “More effective
distributed ml via a stale synchronous parallel parameter server,”
in Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 1, ser. NIPS’13.
USA: Curran Associates Inc., 2013, pp. 1223–1231.

[27] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar,
J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A.
Gibson, and E. P. Xing, “Exploiting bounded staleness
to speed up big data analytics,” in Proceedings of the
2014 USENIX Conference on USENIX Annual Technical
Conference, ser. USENIX ATC’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 37–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2643634.2643639

[28] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li, Y. Guo,
and J. Cheng, “Flexps: Flexible parallelism control in parameter
server architecture,” Proc. VLDB Endow., vol. 11, no. 5, pp.
566–579, Jan. 2018.

[29] Microsoft, “Parameter server framework for distributed machine
learning,” https://github.com/microsoft/multiverso.

[30] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing,
“Geeps: Scalable deep learning on distributed gpus with a gpu-
specialized parameter server,” in Proceedings of the Eleventh
European Conference on Computer Systems, ser. EuroSys ’16.
New York, NY, USA: ACM, 2016, pp. 4:1–4:16.

[31] sailing pmls, “Pmls-caffe: Distributed deep learning frame-
work for parallel ml system,” https://github.com/sailing-pmls/
pmls-caffe.

[32] M. Li, “Synchronized sgd in ps-lite,” https://ps-lite.readthedocs.
io/en/latest/overview.html\#synchronized-sgd.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, ser. NIPS’12.
USA: Curran Associates Inc., 2012, pp. 1097–1105. [Online].
Available: http://dl.acm.org/citation.cfm?id=2999134.2999257

[34] P. Goyal, P. Dollá, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large
minibatch sgd: Training imagenet in 1 hour,” 2017. [Online].
Available: https://arxiv.org/abs/1706.02677

[35] M. Li, “A lightweight parameter server interface,” https://github.
com/dmlc/ps-lite.

[36] H.-H. Wu and S. Wu, “Various proofs of the cauchy-
schwarz inequality,” https://rgmia.org/papers/v12e/
Cauchy-Schwarzinequality.pdf.

[37] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching LAN speeds,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
USENIX Association, 2017, pp. 629–647.

[38] borisgin, “Nvidia caffe (nvidia corporation c©2017) is an nvidia-
maintained fork of bvlc caffe tuned for nvidia gpus,” https://
github.com/borisgin/nvcaffe.git.

[39] Y. You, I. Gitman, and B. Ginsburg, “Large batch training
of convolutional networks,” 2017. [Online]. Available: https:
//arxiv.org/abs/1708.03888

[40] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” 2009. [Online]. Available: https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf

[41] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons,
G. A. Gibson, and E. P. Xing, “Addressing the straggler
problem for iterative convergent parallel ml,” in Proceedings
of the Seventh ACM Symposium on Cloud Computing, ser.
SoCC ’16. New York, NY, USA: ACM, 2016, pp. 98–
111. [Online]. Available: http://doi.acm.org.eproxy.lib.hku.hk/
10.1145/2987550.2987554

[42] L. Wang, B. Catterall, and R. Mortier, “Probabilistic
synchronous parallel,” 2017. [Online]. Available: https://arxiv.
org/abs/1709.07772

[43] C. Zhang, H. Tian, W. Wang, and F. Yan, “Stay fresh: Spec-
ulative synchronization for fast distributed machine learning,”
in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), July 2018, pp. 99–109.

