
Journal of Parallel and Distributed Computing 133 (2019) 51–62

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Efficient low-latency packet processing using On-GPU Thread-Data
Remapping
Huanxin Lin ∗, Cho-Li Wang
Department of Computer Science, The University of Hong Kong, Hong Kong

h i g h l i g h t s

• On-GPU Thread-Data Remapping accelerates routing without relying on CPU.
• Without CPU processing, packets are transferred with lower latency.
• Frequent synchronization in loops impairs GPU memory latency hiding.

a r t i c l e i n f o

Article history:
Received 31 July 2018
Received in revised form 23 May 2019
Accepted 18 June 2019
Available online xxxx

Keywords:
Packet processing
Software router
GPU control flow divergence
SIMD

a b s t r a c t

Graphics processing units are widely-used for packet processing acceleration in both physical and
virtual networks. However, real-life packets come in highly-divergent sizes, causing severe GPU control
flow divergence. Previous solutions rely on CPU preprocessing to reduce divergence, but it forbids
the more efficient NIC–GPU packet streaming as packet batches have to stop completely at host
machine. To fully utilize both GPU and PCIe resources, we propose Blink as a GPU modular software
router. Instead of CPU pre-processing, the Blink router uses On-GPU Thread-Data Remapping to reduce
divergence, and our novel Cross-Iteration Thread Event Signaling mechanism filters unnecessary inter-
thread synchronization, doubling the performance gain achieved by traditional solution. Serving as a
TCP/IP router with Deep Packet Inspection (DPI) firewall, Blink can sustain processing throughput of
31.5 GBit/s over a PCIe bandwidth of 32 GBit/s. Given a certain bandwidth, Blink reduces processing
latency at least by half compared with other works.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

As the Internet of things comes into being, the demand for
computer networks with higher speed and complexity is getting
stronger. On the other hand, the demand for rich router func-
tionality also grows from basic routing and forwarding to traffic
reduction [3], security [4], etc. Apart from physical networks,
virtual networks also require efficient packet processing that
gives throughputs of at least 10 Gbit/s without putting much
computation burden on the hosting server [25].

Given the massive parallel nature of packet processing, the
need for advanced networks drives rapid development of
GPU-accelerated routing [17,22,25,27]. The GPU platform is well-
known for energy efficiency, and has been successful in accom-
modating a wide range of packet processing tasks, which includes
both memory-intensive tasks like IP-lookup [10] and compute-
intensive tasks like encryption [11]. GPU processing has been
incorporated into commercial routers as feature [16,24].

∗ Corresponding author.
E-mail addresses: hxlin@cs.hku.hk (H. Lin), clwang@cs.hku.hk (C.-L. Wang).

However, at least two issues hinder GPU from further acceler-
ating packet processing. First, real-life packets come in divergent
sizes, which decelerates size-sensitive tasks on GPU [11,26]. In
a network traffic trace captured by the equinix-sanjose monitor
under CAIDA [5], maximum packet size is 1518 bytes, but the
average is only 606 bytes. Each packet is inspected by a GPU
thread with a loop on packet size, and all threads may have
to compute max-size looping workload due to SIMD execution.
Such significant control flow divergence accounts for the 60%
computation wastage [8,27]. Second, both network interface card
(NIC) and GPU are connected to host CPU via the PCIe bus. In
existing solutions, network packets received from the NIC are
first copied by CPU to GPU’s DMA buffer, and then transferred to
GPU for processing. Instead of being transferred in a pipelining
fashion, packet batches come to a full stop at the main memory
of host machine. Data flow between the two PCIe-connected
devices is thus explicitly broken into NIC-host transfer and host-
GPU transfer. With a two-phase transfer, per-packet processing
latency is increased and the CPU involvement may become the
bottleneck [14,27].

Previous solutions are stuck in a dilemma created by the
two issues. On one hand, control flow divergence forces certain

https://doi.org/10.1016/j.jpdc.2019.06.009
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.06.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.06.009&domain=pdf
mailto:hxlin@cs.hku.hk
mailto:clwang@cs.hku.hk
https://doi.org/10.1016/j.jpdc.2019.06.009

52 H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62

processing operations to rely on CPU computation [12,17,22]. In
a more recent work by Vasiliadis et al. [27] where more GPU
processing is employed, divergence reduction still requires CPU
preprocessing: packets are first grouped into batches based on
a few size ranges, and then further radix-sorted on GPU. Their
method is a compromise to the fact that it may take forever to
gather a same-size-packet batch which is large enough to fully
occupy GPU computation resources. The number of radix bits has
to be configured optimally to achieve a balance between sorting
overhead and residual divergence. On the other hand, it is CPU
computation that limits throughput and increases processing la-
tency. Host-GPU transfer is postponed until CPU finishes its work,
otherwise direct device-to-device transfer can be implemented in
various ways [14,20]. In fact, Vasiliadis et al. proposed to let NIC
and GPU share the same DMA buffer so that packets are streamed
on the fly between devices, but they have to deactivate this
feature when CPU preprocessing is necessary. To the best of our
knowledge, other existing GPU-accelerated routing solutions also
involve CPU as the transfer middleman. As a result, performance
of current solutions is limited by either control flow divergence
or two-phase packet transfer. There is a need for GPU-runtime
divergence solution without CPU preprocessing.

Proposed recently, On-GPU Thread-Data Remapping (TDR) [15]
is a promising candidate for resolving the dilemma, but some
design challenges still remain. On-GPU TDR allows threads to
exchange data sets and thus the work states during kernel ex-
ecution, so it can be utilized to regroup threads that are still in
the loop into fewer running wavefronts (OpenCL term) at GPU-
runtime. However, since threads do not exit the loop in every
iteration, each round of TDR may not always provide performance
gain. What is worse, it introduces inter-wavefront synchroniza-
tion, and frequent synchronization weakens GPU-native latency
hiding as runnable wavefronts are blocked until peers catch
up. Besides TDR orchestration, non-coalesced memory access is
another major issue that has not been addressed. Extra memory
transactions are needed as threads access cache lines scattered
in different packets, which are unfortunately stored in the slow
global memory. The access slowdown becomes more severe in
the case of full-packet inspection.

Considering all the above issues, we propose Blink as a soft-
ware router that provides efficient low-latency packet processing.
Instead of reducing divergence with CPU preprocessing, we apply
On-GPU TDR and design a mechanism to trigger TDR only when it
is beneficial. Packets are batched and processed on a first-come-
first-serve basis, and a prefetching scheme that makes use of
shared memory is incorporated to reduce memory overhead.

The contributions of this work are:

• We propose Blink as a GPU modular software router, that
fully adopts pure-GPU packet processing and implements
direct NIC–GPU packet streaming. Established processing
pipeline sustains throughput close to total PCIe bandwidth
and maintains stable low latency.

• To reduce loop-carried divergence, we propose Cross-
Iteration Thread-Event Signaling (CITES) as a mechanism that
optimizes On-GPU TDR in loops. CITES orchestrates On-GPU
TDR with atomic flags, and protects GPU native latency hid-
ing from the harm of frequent unnecessary synchronization.

• To reduce memory overhead, we propose a memory
prefetching scheme for the packet access pattern. Without
decreasing GPU occupancy, packets are prefetched from
global memory to shared memory using coalesced accesses.
To avoid explicit synchronization, prefetching is hidden in
parallel with normal processing.

Evaluation is conducted on an NVIDIA GTX 980 GPU. For
size-sensitive operations on the CAIDA traffic trace, On-GPU TDR

achieves a speedup of 1.2, while CITES further boosts it to 1.9. The
final achieved speedup is 2.1 with memory prefetching scheme
activated, exceeding the highest speedup of 1.4 in previous work
[27]. For TCP/IP router with DPI firewall, which is also evaluated
in two other works [22,27], module capsuling effectively squeezes
away 8% of processing time. When the GPU is connected to NIC
via 32 Gbit/s PCIe bandwidth, a throughput of 31.5 Gbit/s is
reached for the above-mentioned router, reducing latency at least
by half compared with the other works.

The remainder of this paper is organized as follows. Section 2
provides background information and features motivation exper-
iments. Section 3 shows design and implementation correspond-
ing to each objective. Section 4 evaluates Blink and compares with
two other works. Finally, Section 5 is related work, and last comes
conclusion.

2. Background and motivation

This section reviews the basics of GPU computing and packet
processing. Our motivation experiments show that control flow
divergence is the key obstacle for GPU-accelerated routing.

2.1. GPU control flow divergence

GPU platform features the Single Instruction Multiple Data
execution model. Hardware compute cores are grouped into
Streaming Multiprocessors (SM, NVIDIA term). Instructions are
issued to each SM and then executed by every member core, so
that high parallelism is achieved with low energy consumption.

OpenCL [21] is the GPU programming model used in this work,
and here is a brief introduction. Codes to be executed by GPU
are called kernels, which are written in a syntax similar to the C
language. Kernels are launched to GPU and executed by threads,
or work-items, in the specified problem space. Work-items are
grouped into wavefronts, and wavefront members are scheduled
onto the SM together to execute the kernel codes in lockstep.

GPU has the following three-tier memory hierarchy.

Private memory. Each work-item possesses a piece of the fastest
exclusive private memory.

Shared memory. Each workgroup has shared memory that can be
accessed and synchronized by its members.

Global memory. The largest and slowest piece of memory is
global memory, which can be accessed by all work-items.

In GPGPU development, control flow divergence is a well-
known cause for performance loss. It occurs when threads in a
wavefront go on different execution paths at conditional state-
ments. Since wavefront members must execute the same instruc-
tion at any time, every work-item executes all the paths but only
keeps the results corresponding to its path. Such computation
wastage lowers parallelism and efficiency, until normal execution
resumes at the convergence point right after the conditional
statements. In fact, control flow divergence can be divided into
two categories and we stick to the definitions below.

• Branch divergence happens at branch statements. Each wave-
front needs to execute all branch paths taken by its member
threads. An if-else branch can halve computation
efficiency, and nested branches can cause performance loss
exponentially.

• Loop divergence happens in loops. Every loop has a looping
condition that determines whether a thread enters the next
iteration. Threads that exit the loop earlier cannot proceed
with execution until all peers in the same wavefront exit and
reach the convergence point right after the loop. Thus, each
wavefront runs the loop for the largest number of iterations
needed by its members, resulting in computation wastage.

H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62 53

Table 1
CFE of modules while processing the CAIDA trace.
Module Divergence Type CFE

Classifier Branch 95.7%
IPLookup Branch 95.9%
IDSMatcher Loop 39.5%

Control flow efficiency (CFE) is a metric for severeness of
control flow divergence, and we utilize it to quantify the diver-
gence in packet processing. By definition, CFE is the percentage
of executed thread instructions that are not masked off due
to either branch divergence or loop divergence. It equals 100%
when execution is non-divergent. In the next subsection, we will
introduce common packet processing practices and measure their
CFE.

2.2. Packet processing on GPU

Network packets come from various protocols and layers, but
processing operations share similar elements. Common router se-
tups are comprised of some or all of the following representative
processing modules.

• Classifier provides the most basic routing utilities: packet
decoding, classification and fast operations such as TTL
decrement. This module alone serves as an SDN-like switch.

• IPLookup implements the forwarding rules. With the addi-
tion of this module, a basic TCP/IP router is built.

• IDSMatcher checks whether the packet payload matches
any intrusion–detection signature. This module adds a DPI
firewall, which enhances the router up to the practical stan-
dard [22].

All these modules are implemented and demonstrated in both
previous GPU modular routers, Snap [22] and GASPP [27]. Packets
are gathered into batches to undergo processing by corresponding
GPU threads. Both routers report high efficiency for the first two
modules, but disagree on the last one.

The different computation efficiency for IDSMatcher is caused
by the different evaluation settings. As a matter of fact, both
routers implement the Aho–Corasick algorithm [2] that has a
loop on packet size, but Snap uses fixed-size packets for evalu-
ation. On the other hand, GASPP uses the real-life CAIDA trace
for evaluation and gets challenged by severe loop divergence in
IDSMatcher.

As part of the motivation experiment, we implement all three
modules and test them with the CAIDA trace. We measure the
CFE on NVIDIA GTX 980, as shown in Table 1. The low CFE of
39.5% reveals severe loop divergence in IDSMatcher, indicating
that execution time is at least doubled. Given that IDSMatcher
is one order of magnitude more time-consuming than the other
two modules, loop divergence is a significant bottleneck for GPU
packet processing.

Optimizations are proposed in GASPP to reduce loop diver-
gence, but the peak achieved speedup is only 1.4 for the same
trace. Packets are first grouped into different batches by CPU
based on a few size ranges. After packets are transferred onto
GPU, radix sort is used to generate a thread-packet redirec-
tion array, which incurs both computation and I/O overheads. It
is difficult to predict which number of radix bits achieves the
best balance between sorting overhead and residual divergence.
A trade-off is thus formed between performance gain and low
overhead, putting a limit on the speedup.

We aim to design a lightweight loop divergence solution with-
out relying on CPU. Besides IDSMatcher, encryption is also a

family of size-sensitive tasks, which can be even more compute-
intensive. However, there is still not a standard practice regard-
ing connectionless integrity and data origin authentication on
GPU [27]. In this work, we thus focus on IDSMatcher and the loop
divergence issue that all size-sensitive tasks are subject to. Our
techniques can be applied on the extended modules in the future.

2.3. Apply on-GPU TDR on loop divergence

Aiming to bypass CPU as transfer middleman, we turn to
the new technique of On-GPU Thread-Data Remapping [15] for
solution. It has proved effective in branch divergence reduction,
where threads in the same wavefront are remapped to work
states corresponding to the same execution path.

In the case of loop divergence, looping condition can be viewed
as a two-path branch that is computed in every iteration. One
path is to exit the loop and stay idle until all peers in the
wavefront finish. The other is to stay in the loop, and the path
length is at least one iteration.

As shown in Fig. 1, our TDR strategy is to gather exiting
threads. Each time a thread is ready to exit the loop, its work state
is remapped to the remaining thread with the largest ID, so that
the latter thread exits the loop instead. Consequently, wavefronts
of idle threads are filled up as soon as possible, and they can
proceed with post-loop computation without being dragged due
to loop divergence.

Since threads may exit the loop in any iteration, we first
make a naive attempt to perform On-GPU TDR in every iteration,
applying the Head-or-Tail algorithm [15] in the IDSMatcher loop.
As a result, per-iteration TDR more than doubles CFE to 96.1%,
almost totally eliminating computation wastage due to loop di-
vergence. However, the execution time is only reduced by 20%,
suggesting that per-iteration TDR does not only affect instruction
computation.

2.4. Problem of per-iteration TDR: GPU scheduling

After investigation, we believe the huge gap between CFE and
throughput improvement is caused by the fact that the syn-
chronization required by On-GPU TDR impairs flexibility of GPU
wavefront scheduling.

GPU latency hiding relies on instant context switching be-
tween wavefronts, which is important because memory accesses
can cost hundreds of cycles [9]. Usually tens of wavefronts are
scheduled onto the same SM, and a fixed number of wavefronts
occupy the compute cores at a time. A wavefront keeps executing
until it encounters a memory miss. With negligible delay, one
wavefront in the ready status is scheduled to execute. Therefore,
memory accesses are hidden by overlapping with execution of
other wavefronts. Fewer accesses are needed in total because
newly brought-in memory segments may contain data requested
by multiple wavefronts.

Given such a scheduling policy, wavefronts are naturally exe-
cuting in different iterations, but per-iteration TDR breaks native
scheduling and thus weakens latency hiding. On-GPU TDR im-
poses synchronization on threads in order for them to exchange
data correctly. In GPU architecture, wavefront synchronization is
implemented as a barrier function. Wavefronts are blocked at the
function until all peers reach the barrier. In per-iteration TDR,
one barrier function is put into each iteration, which may block
wavefronts even in the ready status. As a result, fewer wavefronts
can be scheduled to execute when memory miss occurs.

Fig. 2 shows a simplified example to illustrate the way that
per-iteration synchronization weakens latency hiding. Suppose a
memory read by either W1 or W2 brings in data that support two
iterations of execution by both wavefronts. In normal execution,

54 H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62

Fig. 1. An example of three wavefronts executing a thread-divergent loop without and with On-GPU TDR.

Fig. 2. Effect of per-iteration synchronization on the scheduling of two wavefronts (W1 and W2). A read by either wavefront brings in data for two iterations.

H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62 55

when one wavefront issues memory read, the other wavefront is
scheduled instantly and benefits from the hidden read as well. For
per-iteration synchronization, however, wavefronts are stopped
by barrier when they could have continued further to trigger the
next read.

2.5. Design objectives

To fully utilize the power of GPU for packet processing, our
solution is designed to address the following issues.

Loop divergence. Per-iteration synchronization or TDR is useful
for loop-carried regular branch divergence, but it is not suit-
able for solving loop divergence. Threads do not exit the loop
in every iteration, so some synchronization brings nothing but
performance loss. It can be remedied by only conducting TDR
when at least one thread is about to exit. However, the required
inter-thread communication should also be achieved without
synchronization.

Non-coalesced global memory access. Each GPU wavefront needs
to access cache lines scattered across different packets. Previous
solutions use fixed-size frames to contain packets, which fur-
ther increases memory transactions due to unused bytes in the
frames. Apart from preserving latency hiding while applying On-
GPU TDR, it is also critical to prevent such slow accesses from
becoming the bottleneck.

Module interconnectivity. On-GPU TDR provides in-kernel loop
divergence reduction, which does not require explicit storage of
global information like a thread-packet redirection array. There-
fore, intermediate result I/O between modules and kernel
relaunch can be further reduced. On the other hand, threads
terminated in an earlier module leave holes in wavefronts, which
becomes a new source of divergence to be taken care of.

NIC–GPU packet streaming. To achieve lowest processing latency,
packets should be streamed between NIC and GPU on the fly.
Statistics on packet sizes can be collected during packet batching
to facilitate the processing on GPU. As data are transferred in
4-KB pages, memory overheads should be gathered in a page with
access-efficient layout.

3. Design and implementation

This section presents details of design and implementation
corresponding to each objective.

3.1. System overview

Fig. 3 shows the system overview. In this work, the packet data
flow is orchestrated by a modified netmap module [18], and the
processing is all conducted on GPU.

Incoming packets are gathered by netmap on a first-come-
first-serve basis and streamed to GPU as a batch, minimizing
the processing latency. During the batching process, netmap also
collects information to be put into the batch header, which is used
later for loop divergence reduction and memory prefetching. The
header contents will be explained in Section 3.5.

Required memory is also minimized as packets are stored
consecutively, unlike the fixed-frame design in previous solu-
tions [22,27]. This design is critical for memory prefetching as
well as efficient transfer, and details will be given also in
Section 3.5.

With a configurable number of packets, each transferred batch
triggers one-stop GPU processing. Processed batches are trans-
ferred back to netmap, and NIC takes care of final transmission
of the packets. Detailed approaches to each design objective are
presented in following subsections.

3.2. Cross-iteration thread-event signaling (CITES)

We propose CITES as a mechanism that signals all other
threads in a workgroup when a specified event happens to one
of them. For inter-thread communication, it uses atomically-
managed flags instead of synchronization, and thus preserves
GPU latency hiding.

When CITES is applied in the loop divergence scenario, wave-
fronts are allowed to execute at own paces as usual, with cross-
iteration TDR and synchronization happening upon the
exit-signal from any thread. As a matter of fact, cross-iteration
TDR is not only feasible but also correct. If there is an iterator
variable, it can be treated as a normal private memory variable,
and exchanged as part of the work states. It is true that the
iterator may become uneven within a wavefront, but it does not
give rise to divergence because the threads are still sharing the
same program counter value and executing the same instructions.

As shown in Listing 1, the codes of CITES and TDR are ap-
pended to the end of a given loop body. CITES utilizes the key-
word continue to skip unnecessary computation on two
occasions.

The first is when the number of alive threads has reduced
to a threshold (Line 7), which is derived from the batch header.
In general cases, threshold should be the larger value between
the number of max-size packets and the wavefront size (32 for
NVIDIA). On one hand, when the remaining packets are all of the
same size, loop divergence becomes negligible. Meanwhile, no
matter how threads are shuffled within the last wavefront, they
have to wait for the thread with the most iterations.

Listing 1: Example Codes of CITES

1 ...
2 __local int exit_flag;
3 ...
4 while(loop_condition){
5 IDSMatcher(&loop_condition);
6
7 if(noOfAliveThreads() <= THRESHOLD)
8 continue;
9

10 if(!loop_condition)
11 atomic_inc(&exit_flag);
12
13 if(atomic_add(&exit_flag ,0) == 0)
14 continue;
15
16 barrier();
17 reset(&exit_flag);
18 on_GPU_TDR();
19 }

The second is when no thread has signaled that it is leaving
the loop. Each thread first checks whether it needs to leave, and
raises the flag if yes (Line 11). Then at Line 13, each thread
accesses the most updated flag by atomically adding 0 to it. If the
flag is unset, TDR is skipped. In this part CITES can benefit from
warp-aggregated atomics [1], but it is only supported for CUDA.

With CITES, synchronization and TDR happen only when the
flag is raised. Alive threads execute until they are blocked by the
barrier function at Line 16, and then the flag will be reset (Line
17).

In Blink, CITES is used in the IDSMatcher module to condense
alive threads into fewer wavefronts. Nonetheless, it is also useful
for solving general loop-carried branch divergence. For example,
there must be a rarely-taken path for a branch that is not di-
vergent in every iteration. We can treat taking that path as an
event, and use CITES to track its occurrence and then orchestrate
On-GPU TDR in a similar fashion.

56 H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62

Fig. 3. System Overview of Blink.

3.3. Memory prefetching

To improve memory performance, we use one wavefront in
each workgroup to prefetch some packets from global memory
to shared memory with coalesced accesses. Acceleration comes
from the fact that coalesced accesses improve locality and that
shared memory is a much faster storage medium than global
memory. This technique is useful for processing modules that
require packet payload traversal.

Our consecutive packet storage layout increases effectiveness
of memory prefetching. In previous solutions, packets are con-
tained in fixed frames (e.g. 1536 bytes in [27]). Valid data are thus
scattered sparsely in the global memory, so even coalesced global
memory accesses cannot improve locality by much. In Blink,
however, packets are stored consecutively, and the batch header
lists the cut-off number for packets to be prefetched, which we
denote as N. The first N packets assigned to each workgroup are
prefetched into shared memory, and will be consumed by threads
with intra-workgroup ID smaller than N before and after each
round of TDR.

N should first be limited by the shared memory size, as exces-
sive usage leads to drop in GPU occupancy and thus significant
slowdown. In recent NVIDIA architectures, each SM has 96 KB of
shared memory and hosts up to 64 wavefronts. When workgroup
size is 256 as in this work, each workgroup can use 12 KB. With
the average packet size of 606 bytes, each workgroup can prefetch
20 packets on average.

Such an average number inspired us to further limit N to
be no larger than wavefront size (32), so that prefetching can
be performed by only the first wavefront correctly. It assures
that the prefetcher and consumer threads are all from the same
wavefront, so that an initial synchronization is not necessary.
In parallel with the prefetching, the other wavefronts perform
packet processing normally instead of waiting idly due to barrier
function. Since On-GPU TDR comes with synchronization, threads
remapped to ID smaller than N can also access prefetched packets
in shared memory correctly.

The actual N for each workgroup is determined and recorded
during packet batching. A counter that restarts for every 256
(workgroup size) packets is utilized to accumulate the total packet
size for the workgroup. Once the counter exceeds occupancy
threshold or 32 packets have arrived, N is determined and written
into a batch header array together with the accumulated size.

With these designs, memory prefetching is hidden in the
normal packet processing, which improves memory performance
with coalesced accesses and faster storage.

3.4. Module capsuling

In this work, packet processing modules are implemented us-
ing module capsuling mechanism to remove intermediate result
storage and to safeguard efficiency and correctness.

Overall, interconnectivity between modules is improved due
to On-GPU TDR. In face of control flow divergence, previous

work has to keep modules separated. When threads finish early
due to rules like TTL expiration, the following module must be
re-launched so that alive threads are not mixed with finished
threads in wavefronts. The new thread-data mapping has to be
stored into global memory like the thread-packet redirection
array in GASPP. However, On-GPU TDR takes effect during kernel
execution, and thus allows modules to be combined while also
reducing divergence.

To remove overheads in kernel launching and intermediate
result I/O, modules are capsuled in two dimensions.

3.4.1. Data dimension
Memory resource contention is relieved as modules are gen-

erated into a single kernel. Previous intermediate result storage
in between module kernels consumes global memory, and the
slow access lowers processing throughput. Now, however, private
memory variables are reused in different modules, and the infor-
mation they carry is passed through modules with much smaller
cost.

For example, the Classifier module is responsible for packet
decoding. With module capsuling, later modules do not need to
read information from global memory. Classifier is also simplified
to perform minimum decoding for its own purpose, because later
modules can easily pick up the progress to further decode, which
enhances the extensibility of modular routers.

On the other hand, Classifier also benefits frommodule capsul-
ing. As Classifier only looks at packet headers, memory prefetch-
ing brings no merit to the standalone module. With module
capsuling, global memory accesses are more condensed, and
memory optimizations take effect on all modules.

3.4.2. Control flow dimension
Computation efficiency decreases due to control flow diver-

gence across modules. As mentioned earlier, processing can end
early due to rules like TTL decrement. Snap points out that it is
wasteful to spawn threads in later modules for such packets, but
it is even worse not to because of management overheads [22].
However, alive threads can be capsuled into fewer wavefronts,
and thus allows threads to terminate processing at any module.

Control flow flexibility is especially critical for divergent mod-
ules like IDSMatcher. Threads that are terminated in earlier mod-
ules cannot revive to join synchronization or TDR, which may
undermine the efficiency and correctness of the loop divergence
reduction mechanism.

Module capsuling saves resources in both dimensions, maxi-
mizing the efficiency of GPU packet processing.

3.5. NIC–GPU packet streaming

Bypassing the middleman role of CPU, our pipelining design
implements packet streaming between NIC and GPU, and further
eliminates GPU idling by overlapping the two-way transfer of
incoming and processed batches.

H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62 57

Fig. 4. Ideal pipelining when processing speed matches PCIe bandwidth. Simultaneous transfer on two directions is supported by PCIe.

Table 2
Hardware Setups for Snap, GASPP and our work.
Solution Snap GASPP Snap*, GASPP* & Blink

GPU NVIDIA TESLA C2070 2 * NVIDIA GTX 480 NVIDIA GTX 980
GPU GFLOPS 1030 2690 4981
GPU Memory Bandwidth (GB/s) 144 354.8 224.4
GPU PCIe Bandwidth (Gbit/s) 64 128 64 / 32
CPU Intel Core i7–930 2 * Intel Xeon E5520 Intel Core i7-3820
GPU + CPU Energy Cost (W) 238 + 130 = 368 500 + 160 = 660 165 + 130 = 295
NIC 2 * Intel 82599EB, each with dual 10 GbE ports
NIC PCIe Bandwidth (Gbit/s) 64

Since packet I/O is very fast at the NIC side, matching PCIe
bandwidth with GPU throughput can realize perfect usage of all
resources. Fig. 4 depicts the ideal pipelining effect, and more
details are presented below.

Batch header and payload. As mentioned in Section 3.1, the batch
header includes information useful for CITES and memory
prefetching:

• Maximum packet size in the batch, and the number of such
packets;

• Number of packets to prefetch for each workgroup, and the
total size.

The rest of header is an important offset array. For efficient
memory access and storage, packets are 8-byte padded and then
stored consecutively. An integer array is thus needed to mark
the starting position of each packet. Actual packet size can be
decoded from the packet itself.

With this straightforward payload mechanism, each batch is
filled up as soon as possible, as opposed to the fixed-frame design
with size ranges in previous works.

Data layout on GPU. Each batch is streamed to GPU where there
are four batch slots. In the ideal scenario three slots suffice:
one is receiving a new batch, one is being processed and one
is sending out. The fourth slot is added to increase robustness.
Once a batch is accommodated, the packet processing kernel is
launched. For management simplicity, the slots are used in a
round-robin fashion. State-of-the-art GPUs have enough memory
for tens of batch slots, so the design can be easily extended for
traffic that is more unstable.

Packet dropping. Considering the low dropping rate, we agree
with GASPP that dropped packets should still be transferred back.
Otherwise a larger overhead will be incurred by multiple PCIe
transfers or data reordering. Instead of being dropped on GPU,
the packet is labeled with a negated offset in the batch header,
and will not be sent out by NIC.

Memory overhead. Blink incurs memory overhead in packet
padding and batch header. On average, each packet consumes
1.8 bytes of padding, plus 4 bytes in the offset array. Every 256
packets use 8 bytes for memory prefetching. Each batch uses 8
bytes for information on max-size packets.

Since packet batches are streamed to GPU as 4-KB memory
pages, we store header as a separate page for best memory
alignment. A full-page header can support a batch of one million
packets, while the typical batch size is thousands of packets.
Compared to the average packet size of 606 bytes, total memory
overhead is smaller than 1%, and has been deducted from the
reported throughputs.

4. Evaluation

Experiments are conducted to evaluate individual designs and
the overall efficiency.

4.1. Methodology

Hardware setups of Snap, GASPP and our platform are listed in
Table 2. As Snap is open-sourced, it is evaluated on our platform
to comply with the same divergence setting, which we denote
as Snap*. On the other hand, we implement the key features of
GASPP and evaluate it on the same platform as well, which we
denote as GASPP*. All the listed CPUs support PCIe 2.0 with each
lane providing 4 Gbit/s of bandwidth. Our GPU can be tested with
both 16-lane and 8-lane PCIe connections. Tests are conducted for
three modules implemented in OpenCL with configurations closer
to those of Snap.

• Classifier uses the ACL1_10K filter set from ClassBench [23]
as major classification rules.

• IPLookup uses a routing table dump from routeview.org, and
works on a radix tree.

• IDSMatcher uses the rules for MySQL, Apache, Webapps
and PHP from Snort [19]. Same as Snap and GASPP, our
solution implements the Aho–Corasick algorithm [2]. For
efficient memory access, packet payloads are accessed in
8-byte chunks, using the ulong data type.

With traffic generated based on the CAIDA trace [5], three
stages of evaluation are performed: IDSMatcher, all modules and
Blink. GPU-runtime performance statistics are collected using the
command-line profiler from the toolkit of CUDA 7.5 on Ubuntu
16.04.

58 H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62

Fig. 5. Performance of five IDSMatcher versions: baseline, MP (Memory Prefetching), PI (Per-Iteration TDR), CITES and CITE+MP.

Table 3
Profiled statistics per workgroup (256 threads).
Version Baseline MP PI CITES CITES+MP

Speedup 1 1.1 1.2 1.9 2.1
inst_executed 12,206 12,390 7355 5488 5556
active_cycles 65,795 63,447 50,924 48,361 47,316
active_warps 2104,205 2,078,732 654,288 656,246 649,003
L2$_misses 5774 5609 5634 5457 5305

4.2. IDSMatcher

This subsection evaluates CITES and memory prefetching on
IDSMatcher. Fig. 5 and Table 3 compare performance of five IDS-
Matcher versions: baseline, PI (Per-Iteration TDR), MP (memory
prefetching), CITES and CITES+MP. Average speedup for Version-
CITES compared with baseline is 1.9, which is much closer to the
CFE improvement than in the case of Version-PI. As expected,
memory prefetching further boosts speedup to 2.1, which exceeds
the speedup of 1.4 in GASPP. Peak throughput of IDSMatcher
module is raised to 33.8 Gbit/s.

Two metrics in Table 3 may need extra clarification. By the
definition from the profiler, active_cycles is the number of cycles
in which at least one wavefront is executing, while active_warps is
the accumulated number of executing wavefronts per cycle. The
key findings are discussed below.

Consistent throughput. All the sustained throughputs are fairly
consistent over time. Obviously batch execution helps smoothen
the total amount of computation each time, while the consistency
is also related to the common property of network traffic. As a
case in point, 38% of packets in the CAIDA trace are larger than
1 KB, which are the actual traffic payloads. In general, it is very
unlikely for consecutive hundreds of packets to all be larger than
1 KB, or to all be small handshake packets. Loop divergence thus
consistently occurs. In addition, as described in Section 3.2 our
reduction solution is smartly deactivated when the remaining
threads all correspond to same-size packets. When this feature
is taken away, the throughputs do decrease a little with more
noticeable variance, and the fluctuation is still within 1 Gbit/s.

Hidden memory prefetching. Apart from the proposed design, we
also tested a naive scheme where all the threads performmemory
prefetching and then synchronize at a barrier function. With the
same prefetch size, the number of executed instructions is un-
changed, so there is no noticeable difference in profiled counters.
However, the explicit synchronization increases 3% of execution
time on average.

Influence on CFE. When CITES is applied, CFE is improved to
98.5%. This originates from the fact that On-GPU TDR introduces
small branch divergence in itself. In Version-PI, only around 20%
of the TDR rounds are meaningful. CITES eliminates TDR rounds
where no thread is actually leaving the loop, and thus leads to
higher CFE. On the other hand, memory prefetching also leads
to different behavior for threads with IDs smaller than N, which
causes a small drop in CFE.

Enhanced latency hiding. As expected, performance gain after
applying CITES stems from better latency hiding. Comparing
Version-PI and Version-CITES, there is no significant change in
the number of cache misses. Although the number of executed
instructions is reduced by 25% as less TDR is performed, these re-
duced instructions are lightweight ones in the sense that they do
not involve global memory access. Therefore, the reduction is not
on the computation bottleneck and does not affect active_cycles
by much. CITES enables the same amount of memory latency to
be better hidden in the same amount of active cycles, cutting the
execution time almost by half.

Relieved loop divergence. In all the versions with TDR (PI, CITES
and CITES+MP), the active_cycles metric decreases by around 25%,
while the active_warps reduces drastically by 69%. This confirms
the severeness of loop divergence in IDSMatcher. Without TDR,
alive threads are mixed with idle threads in wavefronts. Although
each wavefront requests fewer data, the total data volume is
unchanged. As a result, it becomes more likely for multiple wave-
fronts to wait for the same memory read, increasing the ratio
of active_warps over active_cycles. After all, TDR improves the
computation efficiency and thus decreases active_cycles, saving
execution time.

H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62 59

Fig. 6. Execution time for different capsuling (Cap) of IDSMatcher (IDS), IPLookup (IPL) and Classifier (CLS).

Discussion on packet batch size. As shown in Fig. 5, performance
of all five versions scales well with different batch sizes. It is also
confirmed for the other two modules.

Optimal batch size should be GPU-specific. Our GPU card has
2048 cores and allows 8192 threads to be scheduled on SM at
a time. Smaller batches cannot fill up the GPU to maintain best
latency hiding, which is why throughput of size 4 K falls a bit
short compared with other sizes.

On the other hand, larger batch means higher latency, covering
processing and round-trip transfer. In the following evaluation,
default batch size for the results is 16 K, and IDSMatcher has both
CITES and MP activated.

4.3. All modules

Results of different capsuling settings are shown in Fig. 6.
Module capsuling saves time from kernel launching and memory
I/O, and squeezes away 8% of execution time when applied on all
three modules (Cap-ALL).

As expected, major time saving comes from replacing expen-
sive global memory access with fast reuse of registers. When
capsuling is applied on the Classifier module, it spends less time
writing information into global memory, and recipient module
also spends less time reading. IPLookup makes use of more de-
coded information (e.g. IP addresses) than IDSMatcher (e.g. packet
length), so more time is saved for Cap(IPL+CLS), which is even
longer than the standalone execution time of Classifier. Thus, for
routers without DPI firewall, module capsuling can reduce 36% of
GPU processing time.

Despite the fact that no information is reused between IDS-
Matcher and IPLookup, their capsuling also provides time saving.
Part of it is the basic saving of kernel launching overhead. On the
other hand, IPLookup also benefits from the memory prefetching
scheme in IDSMatcher, as memory reading and writing is done
more condensely during single kernel execution.

4.4. Blink

Fig. 7 shows the performance of Snap*, GASPP*, Blink-64 with
GPU connected to 16 PCIe lanes (64 GBit/s), and Blink-32 with
GPU connected to 8 lanes (32 GBit/s). Blink makes full use of
PCIe capability, and achieves higher processing throughputs even
with fewer PCIe connection lanes. In both settings, Blink sus-
tains throughputs of 31.5 GBit/s for full processing (CLS+IPL+IDS).

Compared with other solutions over the same bandwidth, Blink
reduces processing latency at least by half.

Snap* corresponds to the results of Snap measured on our plat-
form. The original processing throughputs reported by Snap [22]
are close to 40 GBit/s (maximum NIC capability), but their evalu-
ation methodology is different from GASPP and our work. On the
other hand, the evaluation of GASPP* confirms the original re-
sults reported in [27], with a slightly larger per-batch processing
latency due to the change from dual-GPU setting to single-GPU,
which occupies less PCIe resources.

4.4.1. Throughput
For both Snap* and GASPP*, the processing throughputs are

much lower than NIC–GPU PCIe bandwidths. Without IDSMatcher,
GPU processing is much faster, and data transfer becomes the
bottleneck. Unused space in the fixed-size frames impairs transfer
efficiency significantly. The introduction of IDSMatcher, however,
makes GPU processing the bottleneck and limits throughput
under 21 GBit/s in both cases, despite the effort of GASPP* in loop
divergence reduction. This is because IDSMatcher processing time
is a magnitude longer than the other two modules and challenges
the computing power of GPU, which is showcased in Section 4.3.

For both Blink-64 and Blink-32, the low memory overhead
leads to a much higher PCIe utilization when IDSMatcher is not
included. Maximum NIC throughput (40 GBit/s) is reached in
the case of Blink-64. When IDSMatcher is added, the processing
throughput is 31.5 Gbit/s, which is also sustained for Blink-32.
With the extra 8 PCIe lanes, one more GPU can be added to
Blink-32 to further increase throughput easily.

4.4.2. Latency
Here latency refers to the end-to-end processing latency per

batch, from the arrival of the first packet to the outgoing of the
last one. Thus it is also the worst-case latency for any packet.
Round-trip data transfer accounts for the majority of processing
latency, especially when IDSMatcher is not included. In terms of
data transfer scheme, Snap makes use of traditional two-phase
transfer, as opposed to NIC–GPU packet streaming implemented
in Blink. GASPP* uses a hybrid scheme as a compromise to the
need for CPU preprocessing. As shown in Fig. 7(b), GASPP* sus-
tains a smaller latency than Snap. Although GASPP* adds CPU
preprocessing and extra sorting on GPU, its transfer efficiency
is higher as a gradient of frame sizes is utilized. Blink further
reduces latency by compact batching and module capsuling.

60 H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62

Fig. 7. Performance of four solutions, including two settings of Blink with different PCIe connections.

We would like to cast a closer look at the impact of IDS-
Matcher on the latency. For Snap*, IDSMatcher incurs an extra
latency of 5.7 ms, which is essentially the module execution time
before loop divergence reduction. For GASPP*, the extra latency is
5.3 ms, which is only reduced by 0.4 ms. The module execution
time is actually reduced to 4.2 ms, but the preprocessing costs
1.1 ms. For Blink, the extra latency is much smaller at 2.6 ms.
In comparison to the GASPP solution, our solution using On-GPU
TDR not only gives better speedup, but also is more suitable for
cases where latency is prioritized.

Our evaluation demonstrates that Blink can utilize PCIe band-
width to almost the fullest extent, and that Blink achieves a much
smaller processing latency given a certain NIC–GPU bandwidth.
Balancing of NIC and GPU capability as well as detailed hardware
selection is not in the scope of this paper, but a brief discussion
will be given in the next section.

5. Related work

5.1. GPU packet processing

Light has been shed on packet processing ever since the birth
of computer network. In 2000, the Click router demonstrated the
necessity of modularized routing [13]. Due to the massive par-
allel nature of packet processing, GPU quickly became a popular
accelerator for individual modules [10,11,17,25,26].

In 2015, Kalia et al. [12] questioned the low resource efficiency
in GPU packet processing solutions at the time, pointing out that
GPU parallelism should be further exploited. By addressing the
loop divergence and transfer issues, GASPP [27] revitalizes GPU
as an accelerator. Our work further pinpoints the low efficiency

Table 4
Performance of different hardware for 40GbE networks (throughput maximized)
Hardware CPU GPU FPGA

Solution G-Opt
[12]

Single-GPU
Blink

Dual-GPU
Blink

AccelNet
[6]

Throughput (GBit/s) 39.8 31.5 39.6 31.0
Latency (ms) 3.1 5.5 2.1 1.1
Energy cost (Watt) 780 295 460 260

due to loop divergence, non-coalesced global memory accesses,
inter-module I/O, and two-phase packet transfer.

In Section 4, Blink has been evaluated and compared against
the other two GPU modular software routers, Snap [22] and
GASPP [27]. Snap was the pioneer to demonstrate the effective-
ness of such routers, and GASPP continued to integrate features
like stateful packet processing. Techniques proposed in this work
can also be incorporated into their solutions.

5.2. GPU vs. other hardware

Apart from GPU, two major options of packet processing hard-
ware are CPU and FPGA. Table 4 lists the performance of key
solutions for TCP/IP router with DPI firewall in 40 Gbit/s Ether-
net (40GbE) networks. All data are obtained with settings that
maximize the throughput. More details will be discussed below.

Among these hardware options, CPU provides the best pro-
gramming extensibility but incurs the highest energy cost.
G-Opt [12] is a state-of-the-art solution, which mimics the mem-
ory latency hiding mechanism of GPU to maximize the processing
throughput. On the other hand, special-purpose hardware FPGA

H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62 61

incurs the smallest energy cost and latency, but comes with the
hardest deployment and maintenance. AccelNet [6] is a feature
of Microsoft Azure that makes use of FPGA packet processing.
Its FPGA hardware supports 40GbE network, but the network
capacity of Azure VM is limited at 32 Gbit/s.

Compared with CPU and FPGA, GPU is in a balanced position,
as it is optimized for general low-cost parallel computing. How-
ever, it is throughput-oriented by nature, so the packets have to
be batched to ensure efficient processing, which leads to extra
processing latency. Blink advances both the cost effectiveness and
the processing latency of GPU modular router to the next level.
Solving the loop divergence issue strengthens the advantage in
energy efficiency over the CPU, while direct packet streaming cuts
the processing latency to be on par with the other two options.

The processing speed of Blink scales well in the dual-GPU
setting, while a trade-off between latency and energy cost is
revealed. When the energy budget is adequate, adding extra GPU
takes up more PCIe resources and lowers the latency. In this
particular case, each GPU only needs to sustain a throughput of
20 Gbit/s, allowing us to cut the batch size to 8192 packets. The
latency can be further reduced to 1.1 ms by setting batch size
to 4096, but the throughput will start to tremble due to low
GPU occupancy. After all, an optimal setting is subject to different
budgets and priorities, but the above-mentioned techniques can
be applied in different cases.

5.3. Control flow divergence

To the best of our knowledge, there are very few solutions
specifically targeting loop divergence. Nevertheless, some solu-
tions targeting branch divergence may also have effect on loop
divergence. There are two categories of divergence solutions,
namely hardware and software.

Fung et al. [7] were the first to address control flow diver-
gence, and laid the foundation for hardware approaches. They
proposed to compact threads running the same instruction into
fewer wavefronts at GPU-runtime. Hardware solutions may be
effective on loop divergence by compacting alive threads. How-
ever, the achieved divergence reduction is less flexible and thus
incomplete, as each thread is bounded by its relative position in
a wavefront due to energy considerations.

Thread-data remapping is the most widely-used software ap-
proach [28]. Apart from On-GPU TDR which is used in this work,
traditional on-CPU TDR is also relevant. In fact, GASPP has in-
explicitly applied TDR by sorting according to packet size. As
mentioned earlier, CPU preprocessing lowers packet transfer ef-
ficiency and thus limits throughput. The required mapping infor-
mation storage also introduces considerable overheads.

6. Conclusion

In this paper, we propose Blink as a GPU modular software
router for efficient low-latency packet processing. Unlike tradi-
tional GPU routers, Blink reduces loop divergence by means of
pure on-GPU techniques, allowing the full implementation of
NIC–GPU packet streaming. Therefore, Blink makes full use of
both GPU computational power and PCIe bandwidth at the same
time. Evaluation is conducted on NVIDIA GTX 980, and some key
findings are listed below.

• Our novel CITES mechanism works well with On-GPU
Thread-Data Remapping, and achieves a speedup of 1.9 on
the IDSMatcher module.

• Our memory prefetching scheme reduces non-coalesced
global memory accesses, further boosting the speedup to 2.1
for IDSMatcher.

• Module capsuling successfully reduces overhead of kernel
launching and intermediate result I/O, squeezing away 8% of
processing time serving as a TCP/IP router with DPI firewall.

• Blink sustains throughputs higher than 31.5 GBit/s with PCIe
bandwidth of 32 GBit/s, and the processing latency is much
smaller than the other works.

In the future, we will seek to incorporate stateful processing
features. We hope our techniques can benefit GPU computa-
tion not limited to packet processing, and possibly inspire new
hardware designs involving NIC and GPU.

Acknowledgment

This work was supported by Hong Kong RGC GRF [106160098].

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.06.009.

References

[1] A. Adinets, CUDA Pro Tip: Optimized filtering with warp-aggregated
atomics - <2018-04-22>, 2014, https://devblogs.nvidia.com/cuda-pro-tip-
optimized-filtering-warp-aggregated-atomics/.

[2] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic
search, Commun. ACM 18 (6) (1975) 333–340.

[3] A. Anand, A. Gupta, A. Akella, S. Seshan, S. Shenker, Packet caches on
routers: the implications of universal redundant traffic elimination, ACM
SIGCOMM Comput. Commun. Rev. 38 (4) (2008) 219–230.

[4] T. Anderson, T. Roscoe, D. Wetherall, Preventing internet denial-of-service
with capabilities, ACM SIGCOMM Comput. Commun. Rev. 34 (1) (2004)
39–44.

[5] CAIDA, The CAIDA UCSD Anonymized Internet Traces 2011 - <2018-03-
29>, 2011, URL http://www.caida.org/data/passive/passive_2011_dataset.
xml.

[6] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,
H. Angepat, V. Bhanu, A. Caulfield, E. Chung, et al., Azure accelerated
networking: SmartNICs in the public cloud, in: 15th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 18), 2018,
pp. 51–66.

[7] W.W. Fung, I. Sham, G. Yuan, T.M. Aamodt, Dynamic warp formation and
scheduling for efficient GPU control flow, in: Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society, 2007, pp. 407–420.

[8] Y. Go, M.A. Jamshed, Y. Moon, C. Hwang, K. Park, APUNet: Revitalizing GPU
as packet processing accelerator, in: NSDI, 2017, pp. 83–96.

[9] N.G. GTX, 980: Featuring Maxwell, the most advanced GPU ever made,
White paper, NVIDIA Corporation, 2014.

[10] S. Han, K. Jang, K. Park, S. Moon, PacketShader: a GPU-accelerated software
router, ACM SIGCOMM Comput. Commun. Rev. 40 (4) (2010) 195–206.

[11] K. Jang, S. Han, S. Han, S.B. Moon, K. Park, SSLShader: Cheap SSL
acceleration with commodity processors, in: NSDI, 2011.

[12] A. Kalia, D. Zhou, M. Kaminsky, D.G. Andersen, Raising the bar for using
GPUs in software packet processing, in: NSDI, 2015, pp. 409–423.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, M.F. Kaashoek, The Click modular
router, ACM Trans. Comput. Syst. 18 (3) (2000) 263–297.

[14] J. Li, H.-W. Tseng, C. Lin, Y. Papakonstantinou, S. Swanson, Hippogriffdb:
Balancing i/o and gpu bandwidth in big data analytics, Proc. VLDB Endow.
9 (14) (2016) 1647–1658.

[15] H. Lin, C.-L. Wang, H. Liu, On-GPU thread-data remapping for branch
divergence reduction, ACM Trans. Archit. Code Opt. 15 (3) (2018) 39.

[16] B. Pfaff, J. Pettit, T. Koponen, E.J. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, et al., The Design and Implementation of
Open vSwitch, in: NSDI, vol. 15, 2015, pp. 117–130.

[17] E.G. Renart, E.Z. Zhang, B. Nath, Towards a gpu sdn controller, in: Net-
worked Systems (NetSys), 2015 International Conference and Workshops
on, IEEE, 2015, pp. 1–5.

[18] L. Rizzo, Netmap: a novel framework for fast packet I/O, in: 21st USENIX
Security Symposium (USENIX Security 12), 2012, pp. 101–112.

[19] M. Roesch, et al., Snort: Lightweight intrusion detection for networks, in:
Lisa, vol. 99, 1999, pp. 229–238.

https://doi.org/10.1016/j.jpdc.2019.06.009
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb2
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb3
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb4
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb4
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb4
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb4
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb4
http://www.caida.org/data/passive/passive_2011_dataset.xml
http://www.caida.org/data/passive/passive_2011_dataset.xml
http://www.caida.org/data/passive/passive_2011_dataset.xml
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb7
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb10
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb10
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb10
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb13
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb13
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb13
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb14
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb14
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb14
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb14
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb14
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb15
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb15
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb15
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb17
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb17

62 H. Lin and C.-L. Wang / Journal of Parallel and Distributed Computing 133 (2019) 51–62

[20] D. Rossetti, S.C. Team, GPUDIRECT: Integrating the GPU with a network
interface, in: GPU Technology Conference, 2015.

[21] J.E. Stone, D. Gohara, G. Shi, OpenCL: A parallel programming standard for
heterogeneous computing systems, Comput. Sci. Eng. 12 (3) (2010) 66–73.

[22] W. Sun, R. Ricci, Fast and flexible: parallel packet processing with GPUs
and click, in: Architectures for Networking and Communications Systems
(ANCS), 2013 ACM/IEEE Symposium on, IEEE, 2013, pp. 25–35.

[23] D.E. Taylor, J.S. Turner, Classbench: A packet classification benchmark,
IEEE/ACM Trans. Netw. 15 (3) (2007) 499–511.

[24] J. Tseng, R. Wang, J. Tsai, Y. Wang, T.-Y.C. Tai, Accelerating open vSwitch
with integrated GPU, in: Proceedings of the Workshop on Kernel-Bypass
Networks, ACM, 2017, pp. 7–12.

[25] M. Varvello, R. Laufer, F. Zhang, T. Lakshman, Multilayer packet classifica-
tion with graphics processing units, IEEE/ACM Trans. Netw. 24 (5) (2016)
2728–2741.

[26] G. Vasiliadis, S. Antonatos, M. Polychronakis, E.P. Markatos, S. Ioannidis,
Gnort: High performance network intrusion detection using graphics
processors, in: International Workshop on Recent Advances in Intrusion
Detection, Springer, 2008, pp. 116–134.

[27] G. Vasiliadis, L. Koromilas, M. Polychronakis, S. Ioannidis, Design and
implementation of a stateful network packet processing framework for
GPUs, IEEE/ACM Trans. Netw. 25 (1) (2017) 610–623.

[28] E.Z. Zhang, Y. Jiang, Z. Guo, K. Tian, X. Shen, On-the-fly elimination of
dynamic irregularities for GPU computing, ACM SIGARCH Comput. Archit.
News 39 (1) (2011) 369–380.

Huanxin Lin received his B.Eng. degree in Computer
Engineering from the University of Hong Kong in 2014.
He is currently a PhD candidate at the Department of
Computer Science of the University of Hong Kong. His
research is focused on tackling GPU control flow diver-
gence, so as to enable efficient conditional execution
on GPU. He is an advocate of GPGPU and would like
to accelerate more applications with GPU.

Professor Cho-Li Wang received his B.S. degree in
Computer Science and Information Engineering from
National Taiwan University in 1985. He obtained his
M.S. and Ph.D. degrees in Computer Engineering from
University of Southern California in 1990 and 1995
respectively. He is currently a professor at the De-
partment of Computer Science of the University of
Hong Kong. Professor Wang’s research interests include
parallel architecture, software systems for Cluster and
Grid computing, and virtualization techniques for Cloud
computing.

http://refhub.elsevier.com/S0743-7315(18)30549-5/sb21
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb21
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb21
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb22
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb22
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb22
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb22
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb22
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb23
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb23
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb23
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb24
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb24
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb24
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb24
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb24
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb25
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb26
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb27
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb27
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb27
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb27
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb27
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb28
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb28
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb28
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb28
http://refhub.elsevier.com/S0743-7315(18)30549-5/sb28

	Efficient low-latency packet processing using On-GPU Thread-Data Remapping
	Introduction
	Background and motivation
	GPU control flow divergence
	Packet processing on GPU
	Apply on-GPU TDR on loop divergence
	Problem of per-iteration TDR: GPU scheduling
	Design objectives

	Design and implementation
	System overview
	Cross-iteration thread-event signaling (CITES)
	Memory prefetching
	Module capsuling
	Data dimension
	Control flow dimension

	NIC–GPU packet streaming

	Evaluation
	Methodology
	IDSMatcher
	All modules
	Blink
	Throughput
	Latency

	Related work
	GPU packet processing
	GPU vs. other hardware
	Control flow divergence

	Conclusion
	Acknowledgment
	Declaration of competing interest
	References

