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Abstract 
 

Several Java bindings to the Message Passing 
Interface (MPI) software have been developed for high-
performance parallel Java-based computing with 
message-passing in the past. None of them however 
addressed the issue of supporting transparent Java 
process migration. This paper presents a middleware, 
called M-JavaMPI, that runs on top of the standard JVM 
to support transparent Java process migration and 
communication redirection. The middleware allows Java 
processes to freely and transparently migrate between 
machines to achieve load balancing and to continue 
interprocess communication using MPI after migration. 
In M-JavaMPI, process migration is achieved by 
capturing execution context and restoring the execution 
context at the Java bytecode level using the Java Virtual 
Machine Debugger Interface (JVMDI). Data is captured 
and restored using the object serialization mechanism. 
The restorable Java-MPI API provides a unified 
communication abstraction layer for post-migration 
interprocess communication. Tests using a 16-node 
cluster have shown that our mechanism introduces little 
overhead while considerable performance gain can be 
achieved through migration. 
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1. Introduction 
 

The Message Passing Interface (MPI) is a widely 
adopted communication library for parallel and 
distributed computing. It provides an infrastructure for 
users to build high performance distributed computing 
environment using simple, high-level message-passing 
primitives. It is portable, and has been implemented on 
many platforms and in parallel machines. Although the 
existing MPI standard specifies language bindings for 
only Fortran, C and C++, there has been effort to provide 
MPI also for Java [9,10,11,13,14]. 

Existing approaches to MPI for Java can be grouped 
into two main types: (1) native MPI bindings where the 

some native MPI library is called by Java programs 
through Java wrappers [9,10,11], and (2) pure Java 
implementations [13,14]. The native MPI binding 
approach provides efficient MPI communication by 
through calling native MPI methods. There may be, 
however, conflicts on the use of system resources such as 
signals between the MPI library and the JVM. The pure 
Java implementation approach on the other hand can 
provide a portable MPI implementation since the whole 
MPI library is rewritten in Java, but the MPI 
communication would be relatively less efficient. 

To achieve high performance and robustness in 
parallel Java computing in distributed environments, 
process migration is an attractive feature. Such a feature 
enables dynamic load distribution and balancing. 
Unbalanced loading has been found to greatly affect the 
performance of applications. Process migration can also 
help those long-running applications by relocating them 
at suitable times to prevent interruption due to system 
activities or the running of other applications. It also 
helps in data access locality by migrating processes closer 
to the source of data. 

In order to migrate a Java thread or process, essential 
process context and execution state information need to 
be copied from the source node to the destination node. 
Java supports code mobility through platform-
independent bytecode, the customizable Java class loader, 
and the object serialization mechanism [20]. The Java 
language however does not provide mechanisms for 
inspecting, saving and restoring Java execution context. 

Work has been done on ways to capture and restore 
execution context. Execution context can be captured by 
inserting code into the program, which can be done 
manually [17,18,21,22] or via some pre-processor 
[3,4,5,6,23]. This method incurs significant overhead 
during execution, even when there is no migraion. 
Execution context can also be captured by extending the 
JVM to make thread state accessible from Java programs. 
But modification of the JVM can be difficult [1,7,8]. 
Execution context can also be captured by checkpointing 
the whole JVM process, which requires some special 
checkpoint facility [24]. 

We propose a cluster middleware, called M-JavaMPI 
(“M” for “migration”), to be run on top of the standard 
JVM to support preemptive Java process migration and 
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location-transparent communication services. An MPI 
wrapper is provided to allow Java programs to link to the 
native MPI library to support efficient message passing 
among distributed Java processes. Our implementation 
follows a client-server message redirection model that can 
avoid conflicts on the use of system resources between 
the native MPI library and the JVM. The MPI component, 
which is restorable, allows communication channels to be 
re-constructed automatically during program execution. A 
Java process can use the same communication channel to 
communicate with other processes even after it has been 
migrated to another cluster node. Unlike other existing 
Java process migration solutions, we use the Java built-in 
debugging interface, JVMDI, to capture Java process 
execution state. Execution context and process state can 
be captured and restored transparently. As JVMDI is a 
standard interface, our approach is potentially more 
portable than existing solutions and the implementation is 
less complex since no modification of the JVM is 
necessary. 

The rest of the paper is organized as follows. In 
section 2, we show an overview of the proposed 
middleware. Section 3 discusses our mechanism on 
saving and restoring execution state of programs. Section 
4 describes the restorable MPI layer. Performance results 
and evaluation are given in section 5. Related works are 
presented in section 6. Finally, we conclude our work in 
section 7. 

 
2.  The M-JavaMPI System Architecture 
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Fig. 1. The layered design of M-JavaMPI 
 

Fig. 1. shows the layered design of the M-JavaMPI 
middleware. The middleware consists of several layers, 
including the Pre-processing layer, the Java-MPI API 
layer, the Migration layer, and the Restorable MPI layer. 

The Pre-processing layer is used to modify the 
bytecode of the Java application before the bytecode is 
passed to the JVM for execution. “Restoration functions” 
are inserted into the application. These functions react to 
the migration layer to restore the Java stacks and resume 
execution during migration. In order to avoid the 
overhead due to added code during normal execution, 
these functions are added as exception handlers in the 
program, in the form of encapsulated “try-catch” 
statements. These “try-catch” blocks will run only when a 
restoration exception occurs during the restoration of 
process. 

As we do not want to modify the JVM, some special 
treatment on the Java bytecode is needed. This includes 
re-arrangement of bytecode during pre-processing and the 
addition of local variables to avoid having to retrieve 
operand stacks from the JVM, which is only possible by 
modifiying the JVM. Details are discussed in Section 3.3. 

The Java-MPI API layer provides MPI calling 
interfaces to Java programs. We opted for a modular, 
client-server design of a message redirection mechanism 
for migrated Java processes. The Java-MPI API layer acts 
as a client which sends MPI-related messaging requests to 
the MPI daemon (a server) in the same node in the 
Restorable MPI layer. The MPI daemon is responsible 
for delivering messages on behalf of the Java process. 
Communication channels are re-constructed automatically 
after migration. This allows Java processes to 
communicate with each other after migration as if no 
migration has occurred. 

The Migration layer performs two main tasks: (1) to 
capture and save the execution state of the migrating 
process in the source node, and to restore the execution 
state of the migrated process in the destination node; (2) 
to cooperate with the Restorable MPI layer to reconstruct 
the communication channels of the parallel application. 

 In M-JavaMPI, the granularity of migration is at the 
Java source code level. That means migration can only 
happen after the complete execution of all Java bytecode 
corresponding to a single Java source code line, and 
before the execution of the next Java source code line. If 
a migration request is received in the middle of executing 
a Java source code line, the migration will be delayed 
until the end of execution of the current source code line. 
Similarly for a migration request that is received in the 
middle of the execution of a native method. 

This source-code-level granularity simplifies the 
design of the migration mechanism by eliminating the 
need to save operand stacks which are usually non-empty 
in the middle of the execution of a source line. It also 
avoids the saving of machine-dependent process state 
information which is present during the execution of a 
native method. 

One of our design goals is to avoid modifying the 
JVM. The resulting system can then be as portable as any 
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ordinary Java program. In order to achieve this goal, we 
need to make use of existing Java functions for capturing 
and restoring process states. In M-JavaMPI, we use the 
Java built-in interface, JVMDI, to capture Java process 
execution states. Potential migrating points are set at the 
address of the first bytecode of any Java source line 
which can be obtained from any Java classfile by using 
the debugging interface. To enable this feature, we need 
only to compile Java programs with the debugging option 
switched on. 

 
3. Process State Capturing and Restoring 
 

Java has provided portable bytecode and dynamic 
class loading to allow Java programs to be executed in 
different platforms. Besides, Java offers the object 
serialization mechanism which can store objects in a 
portable format. This allows objects to be saved and 
restored across different platforms. Java however does 
not provide functions for saving and restoring process 
states. In this section, we discuss our approach to 
capturing and restoring Java process state information. 
 
3.1. Java Virtual Machine Debugger Interface  

 
The Java Virtual Machine Debugger Interface 

(JVMDI) [19] is a native interface available for the JVM 
since Java 2, and is used typically by debuggers. It 
defines the standard services that a JVM must provide for 
debugging. There are ways to inspect the state and to 
control the execution of applications. Using JVMDI, we 
can obtain the runtime information of threads, stack 
frames, local variables, classes, objects, and methods. In 
addition, JVMDI can be used to control threads, to set 
local variables, and to receive notifications of events such 
as method exit/entry and frame pop-up. JVMDI is called 
by the JVMDI client running in the same virtual machine 
as the application program being debugged. The 
application runs continuously if no debugging requests 
have been issued.  

 
3.2. State Capturing using JVMDI 

 
In M-JavaMPI, we make use of JVMDI to capture 

process states. This can be done much more easily than 
other existing approaches. All the actions performed by 
JVMDI clients are transparent to the applications. In 
addition, the capturing mechanism is all on top of an 
ordinary JVM so that no modifications of the JVM are 
required. 

When starting JVM, a JVMDI client is started as well. 
Migration is initiated and carried out by the JVMDI client. 
When migration is ready to occur, the client suspends the 
execution of the application. Then it sends a message to 

the local MPI daemon to notify it of the migration. After 
that, it inspects and saves all the Java stack frames created 
by the migrating Java process. For each frame, local 
variables, referenced objects, the name of the class and 
the class method, and the program counter need to be 
saved using object serialization. After the saving, the 
captured data are sent to the destination node. 

 
3.3. State Restoring using Exception 
 

Although JVMDI provides enough functions for 
inspecting the execution state of a program, there are not 
enough functions for re-establishing the execution 
context, such as the frame stack and the program counter. 
We therefore resort to pre-processing to add restoration 
capability to the application to interact with the migration 
layer to perform restoration of parallel Java processes. 

During pre-processing, bytecode is modified in two 
ways: (1) bytecode rearrangement and introduction of 
special local variables; (2) insertion of restoration 
functions in the form of exception handlers. As data in the 
operand stack are JVM-dependent and no functions are 
provided by JVMDI to extract and rebuild operand stacks, 
it is hard to capture and restore operand stacks. The 
approach we take is to do away with the need to save 
operand stacks. Our design makes sure that all operand 
stacks are empty at the time of migration. This is achieved 
through source-code-level granularity and bytecode 
rearrangement. Note that the operand stack of the current 
frame is always empty immediately after the completion 
of the execution of a Java source code line. For the 
operand stacks of all the frames other than the current 
frame, bytecode rearrangement is performed to make 
these operand stacks always empty during migration. 
Consider the following statement: 

 
y = f(x)+g(x); 
 

When migration takes place during the evaluation of g(x), 
the intermediate value, i.e., the value of f(x), is stored in 
operand stack. This value needs to be captured during 
migration, and restored after migration. To handle such 
runtime generated intermediate values, the original Java 
code is transformed so that these values are saved in some 
specially created local variables, instead of the operand 
stack. For this example, the original Java code line is 
transformed to 
 

tmp1 = f(x); 
tmp2 = g(x); 
y = tmp1+tmp2; 

 
The above transformation involves rearrangement of the 
bytecode and the creation of additional local variables.  

Apart from bytecode rearrangement, restoration 
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functions are inserted as exception handlers to cope with 
the migration layer to perform restoration. Exception 
handlers are inserted in each of the methods. The 
exception handlers catch and react to restoration 
exceptions. Inside these exception handlers, local 
variables of the called methods are pre-set with the saved 
information, and a “jump” command is issued to branch 
to the position saved during capturing. To illustrate, here 
is a program fragment before pre-processing: 
 

public class A { 
   int a; 
   char b; 
   … 
} 
 
After pre-processing, the program fragment becomes: 
 
public class A { 
   try { 
      … 
   } catch (RestorationException e) { 
      a = saved value of local variable a; 
      b = saved value of local variable b; 
      pc = saved value of program counter when the program 

is suspended 
      jump to the location where the program is suspended 
  } 
} 

 
In the destination node, before receiving a notification 

indicating the completion of the capturing process, an 
instance of the process would be created. A breakpoint is 
set at the start of the main() function so that when the 
instance is created, the breakpoint is caught right away. 
The migration layer in the destination node will wait for 
the notification of the completion of the capturing process 
from the MPI daemon.  

When the notification is received by the MPI daemon, 
the MPI daemon will send a notification message to the 
migration layer. Then the migration layer will throw a 
Restoration Exception to the newly created instance of the 
process. The exception is caught by the Restoration 
Exception Handler where local variables of the method 
are restored to the saved values. A “branch” command is 
then performed to jump to the last executed location of 
the current frame. This action is repeated for each frame 
of the program until the last frame is re-established. Then 
the program will execute again from the last executed 
position.  

 
4. Restorable MPI Communication 

 
4.1. Client-Server Message Redirection Model  
 

The Restorable MPI layer is based on a client-server 

model. This layer consists of MPI daemons and a Java-
MPI communication API for Java programs. The Java-
MPI communication API is the interface for parallel Java 
processes to send requests to MPI daemons. An MPI 
daemon runs on each node of the cluster to support 
message passing between distributed Java processes. The 
MPI daemon is responsible for sending messages and 
receiving messages on behalf of the calling Java program 
in the same node. The Java program and the MPI daemon 
in the same node communicate through shared memory 
and semaphores. 

In order to provide efficient MPI communication, 
communication between nodes is done using the native 
MPI library. Instead of linking the Java program directly 
with the native MPI library, the native MPI library is 
linked by the MPI daemon such that MPI communication 
is used exclusively by MPI daemons in different nodes 
for their communication. This approach requires no 
modification of the existing MPI library. 

 
4.2. Process Migration in Action 
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Fig. 2. Process migration steps in M-JavaMPI 
 
Fig. 2. illustrates the steps involved in process 

migration. Initially, MPI daemons are started on all the 
nodes of the cluster. The MPI daemon in a node covered 
by the running parallel program will be responsible for all 
the MPI communication of its MPI client. MPI daemons 
on the idle nodes will wait for migration requests from 
MPI daemons of other nodes. Message forwarding will be 
performed through cooperation of the MPI daemons if a 
Java client has been migrated.  

When a migration starts to occur, the migration layer at 
the source node suspends the execution of the Java 
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process. It then sends a migration request to its local MPI 
daemon. Then, it starts capturing the execution state of 
the migrating process. Captured execution state is saved 
in a “dump file” in the file server. After that, the 
migrating process and the JVM, including the migration 
layer, in the source node stop running. Only the MPI 
daemon continues to run.  

The MPI daemon waits for any migration requests, if 
any, from other MPI daemons, and forwards messages to 
the migrated process. Message sequences are used to keep 
messages in order. Message forwarding will only serve 
those messages that were sent before the migration 
occurred and have not been received by the migrated 
process. After migration, when all “old” messages have 
been received, new messages are sent directly from the 
source node to the destination node according to the 
mapping table which kept the actual locations of the 
nodes. No forwarding will take place afterwards. That 
means no residue dependency will be introduced by the 
communication.  

 
5. Performance Evaluation 

 
Execution of a parallel program can be divided into 

two parts: computation and communication. The 
introduction of our middleware may have an impact on 
the  performance of both the computation and 
communication parts. The computation part could be 
affected by the state-capturing and state-restoring actions 
and the use of JVMDI, while the communication part 
could be affected by the restorable MPI communication 
mechanism. We evaluated the performance of our Java 
MPI API, and the state-capturing and restoring 
mechanism. We also carried out benchmark testing using 
several Java application programs. We divided our 
evaluation into three parts: evaluation of the performance 
of the restorable MPI layer, evaluation of the performance 
of the state-capturing and restoring mechanism, and 
evaluation of the performance of the system as a whole.  

The experiments were conducted on a 16-node cluster. 
Each node is a 300MHz Pentium II PC with 128MB of 
memory, running Linux 2.2.14 with Sun JDK 1.3.0. The 
nodes are connected by a 100Mb/s fast Ethernet switch. 
All Java programs were executed in interpreted mode. 

 
5.1. Java MPI API 

 
 A pingpong test was conducted to study the 

communication performance of the restorable MPI 
communication layer. In this test, messages of various 
sizes were sent back and forth between processes. To 
ensure that anomalies in message timings were minimized, 
the pingpong was repeated 64 times for each message size. 
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Fig. 3.  Performance comparisons of using different 
communication mechanisms 

 
Fig. 3. shows the communication bandwidth attained 

for different message sizes using different communication 
interfaces. The bandwidths of using the native MPI 
library with a C program, and direct Java-MPI binding 
with a Java program were also measured for comparison. 
Among the different communication mechanisms, the 
performance of the native MPI is the best, with a 
bandwidth of 10.5 Mbytes/s, followed by the performance 
of direct Java-MPI binding, with a bandwidth of 9.2 
Mbytes/s. The peak bandwidth of communication using 
our restorable MPI layer is 7.6 Mbytes/s, which is 17% 
less than the direct binding. 
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Fig.4. Comparisons of latencies for small messages using 

different communication mechanisms 
 
Fig. 4 compares the latencies of communication for 

small messages. The minimum latency of the native MPI 
and the direct Java-MPI binding are 0.2ms and 0.23ms 
respectively. The minimum latency of the restorable MPI 
mechanism is 0.26ms. 
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5.2 State-capturing and State-restoring 
 
The migration cost equals to the sum of time spent in 

capturing state in the source node, the time spent in 
restoring state in the destination node, and the time spent 
in starting the JVM and loading the program in the 
destination node. The time spent in capturing state can be 
further divided into two parts: time spent in capturing the 
objects and time spent in capturing the frames. Similarly, 
the time spent in restoring state can be further divided 
into two parts: time spent in restoring the objects and time 
spent in restoring the frames. The times spent in capturing 
and restoring both objects and frames are shown in 
Figures 4 and 5 respectively. 
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Fig.5. Time spent in capturing and restoring objects 

 
Fig. 5 shows the time needed in capturing and 

restoring objects of different sizes. In this test, objects 
that were used are arrays of integers. The data size of an 
integer is 4 bytes. The minimum overheads in capturing 
and restoring objects are 54 and 1 ms respectively. The 
capturing time is about 0.7 µs/bytes and the restoring time 
is about 0.5 µs/bytes. 
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Fig.6. Time spent in capturing and restoring frames 

 
Fig.6 shows the time needed in capturing and 

restoring frames. In this test, no local variables were 
defined in each frame. Hence, the measured time is the 
minimum overhead in capturing and restoring different 
number of frames. 

  
5.3. Application Performance 

 
Four parallel applications were used for evaluating the 

system. These were PI calculation, recursive ray-tracing, 
NAS integer sort and parallel SOR. The PI calculation 
and recursive ray-tracing programs are computationally 
intensive. The NAS integer sort and the parallel SOR are 
both computationally and communication intensive. 

 
5.3.1. Overhead of M-JavaMPI 
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Fig. 7. Time spent in calculating PI and ray-tracing (of 
640×480 pixels) using different numbers of nodes with and 

without the migration layer 
  

We first ran the programs in an evenly loaded 
environment to evaluate the overhead of the middleware 
during normal execution (i.e., no migration). Fig. 7 shows 
the time spent in the PI calculation and the ray-tracing 
program using different numbers of nodes with and 
without migration layer. In the figure, the two curves 
showing the time spent in the PI calculation with and 
without migration layer overlap with each other. The two 
curves showing the time spent in the ray-tracing program 
with and without the migration layer also overlap with 
each other. These results indicate that if there is no 
migration, the execution time of parallel Java applications 
is not affected at all by the presence of M-JavaMPI. The 
migration layer did not introduce any noticeable overhead 
in the execution of the tested Java applications. 
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Time used (sec) in 
environment without 
M-JavaMPI 

Time used (sec) in 
environment with M-
JavaMPI 

Overhead 
introduced by M-
JavaMPI (in %) 

Problem 
size  
(no. of 
integers) Total Comp Comm Total Comp Comm Total Comm 
Class S: 
65536 

0.023 0.009 0.014 0.026 0.009 0.017 13% 21% 

Class 
W:1048576 

0.393 0.182 0.212 0.424 0.182 0.242 7.8% 14% 

Class A: 
8388608 

3.206 1.545 1.66 3.387 1.546 1.840 5.6% 11% 

Table 1. Time spent in NAS program in different environments 
 

Table 1. shows the comparison of the performance of 
the NAS program with M-JavaMPI enabled and disabled. 
Two nodes were used for this test.  

From the breakdown of the execution time, it can be 
seen that there is no noticeable overhead introduced in the 
computation part; while in the communication part, an 
overhead of about 10-20% was induced. 
 

Execution time of SOR

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9
no. of nodes

ex
ec

ut
io

n 
tim

e 
(s

ec
)

SOR (w/o migration layer) SOR (w/ migration layer)

 
Fig. 8. Time spent in executing SOR using different numbers of 

nodes with and without migration layer 
 

Fig.8 shows the time spent in executing the SOR 
application using different numbers of nodes with and 
without the migration layer respectively. The two curves 
showing the time spent in SOR with and without the 
migration layer nearly overlap exactly with each other. 
This shows that the migration layer does not introduce 
any noticeable overhead. 
 
5.3.2. Cost of Migration 
 

Applications 
Average migration 

time 

PI 2 

Ray-tracing 3 

NAS 2 
SOR 3 

Table 2. Time spent in migration for different applications. 

 
Table 2 shows the time spent in migration for different 

applications. A large part of the migration time was spent 
in starting the JVM and loading the program in the 
destination node. 

Take the SOR program as an example. The execution 
of the program was repeated using six nodes in an 
unevenly loaded environment with one of the nodes 
executing a computationally intensive program. With no 
migration, the execution time of the program was 319s. 
The execution of the program was repeated then in the 
same environment. This time, however, shortly after the 
program had started, the process in the heavily loaded 
node was migrated to an idle node. The execution time 
came out to be 180s. This shows that considerable 
performance gain can be achieved by using the migration 
facility of our system. 
 
6. Related Work 
 

There are systems, such as JESSICA [1], Ara [6], and 
among others [5,7], that provide state-capturing and 
restoring of Java programs. These systems, however, need 
to modify the JVM. This makes the system not portable 
across existing Java platforms. 

Some work [4,23] has been done to allow state-
capturing and restoring via pre-processing of bytecode. 
Our approach is different from theirs in that M-JavaMPI 
uses pre-processing only to add code for state-restoring 
but not for capturing execution state. Besides, in their 
approaches, code is added to change the original program 
flow in order to do state-capturing and restoring. This 
could translate into considerable amount of overhead 
during runtime. In our approach, code is inserted as 
exception handlers which will only be executed during 
restoring. Some researchers have used exception throwing 
facility [3,8]. Their approach is to use exception handlers 
to capture process states whereas we use them for state-
restoring. 

For providing Java bindings for MPI, several research 
projects [9,10,11,12,13,14] have been conducted in the 
past. All of them however did not provide any restorable 
message-passing communication to the applications. 
Among them, mpiJava [11] and JavaMPI [9] use direct 
binding of Java programs and MPI library. We use a 
client-server redirection model instead to avoid the 
instability of such a binding due to conflicts on the use of 
system resources. Moreover, our Java-MPI layer is “MPI-
implementation-independent,” which makes our system 
more portable. 

 
7. Conclusion 

 
We presented the design and implementation of a 

middleware for parallel computing using Java with 



 8

process migration and post-migration message redirection. 
With process migration, parallel processes can be 
migrated between machines for load-balancing. Execution 
states are captured by using JVMDI and restored using 
exception handlers. A restorable MPI component is 
introduced to provide restorable message-passing 
communication for migrated processes.  

As JVMDI is a standard interface, our approach is 
potentially more portable and suitable for a heterogeneous 
environment. The implementation is less complex since 
there is no need to modify the JVM. Pre-processing is 
done to allow exceptions to be used to restore processes 
with no significant penalty inflicted on normal executions 
that require no migration. 

The JVMDI-based approach is very handy in capturing 
execution contexts, which allows the migration 
mechanism to be implemented as middleware without any 
modification of the JVM. Various performance tests have 
been conducted, with results showing that our 
middleware approach to support dynamic Java process 
migration is practical. 

Message-passing program differ from other shared-
memory programs in that each process typically has one 
thread, whereas in a shared-memory program, each 
process can have more than one thread. Therefore, in our 
current implementation, only processes with one thread 
are considered. Work is now underway to extend the 
mechanism to support processes with multiple threads. 

Our future plan is to incorporate our cluster 
monitoring system, called ClusterProbe [25], with M-
JavaMPI to support runtime workload detection.  A load 
balancing module will be developed to assist M-JavaMPI 
in achieving dynamic load balancing. A similar approach 
to that used in supporting message redirection in M-
JavaMPI can be used in the future for handling post-
migration I/O operations. 
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