
 1

M-JavaMPI: A Java-MPI Binding with Process Migration Support

Ricky K. K. Ma, Cho-Li Wang, and Francis C.M. Lau

Department of Computer Science and Information Systems
The University of Hong Kong

Email: {kk1ma, clwang, fcmlau}@csis.hku.hk

Abstract

Several Java bindings to the Message Passing
Interface (MPI) software have been developed for high-
performance parallel Java-based computing with
message-passing in the past. None of them however
addressed the issue of supporting transparent Java
process migration. This paper presents a middleware,
called M-JavaMPI, that runs on top of the standard JVM
to support transparent Java process migration and
communication redirection. The middleware allows Java
processes to freely and transparently migrate between
machines to achieve load balancing and to continue
interprocess communication using MPI after migration.
In M-JavaMPI, process migration is achieved by
capturing execution context and restoring the execution
context at the Java bytecode level using the Java Virtual
Machine Debugger Interface (JVMDI). Data is captured
and restored using the object serialization mechanism.
The restorable Java-MPI API provides a unified
communication abstraction layer for post-migration
interprocess communication. Tests using a 16-node
cluster have shown that our mechanism introduces little
overhead while considerable performance gain can be
achieved through migration.

Keywords: process migration, MPI, JVMDI, message
passing, M-JavaMPI, load balancing, Java, cluster
computing, parallel computing

1. Introduction

The Message Passing Interface (MPI) is a widely
adopted communication library for parallel and
distributed computing. It provides an infrastructure for
users to build high performance distributed computing
environment using simple, high-level message-passing
primitives. It is portable, and has been implemented on
many platforms and in parallel machines. Although the
existing MPI standard specifies language bindings for
only Fortran, C and C++, there has been effort to provide
MPI also for Java [9,10,11,13,14].

Existing approaches to MPI for Java can be grouped
into two main types: (1) native MPI bindings where the

some native MPI library is called by Java programs
through Java wrappers [9,10,11], and (2) pure Java
implementations [13,14]. The native MPI binding
approach provides efficient MPI communication by
through calling native MPI methods. There may be,
however, conflicts on the use of system resources such as
signals between the MPI library and the JVM. The pure
Java implementation approach on the other hand can
provide a portable MPI implementation since the whole
MPI library is rewritten in Java, but the MPI
communication would be relatively less efficient.

To achieve high performance and robustness in
parallel Java computing in distributed environments,
process migration is an attractive feature. Such a feature
enables dynamic load distribution and balancing.
Unbalanced loading has been found to greatly affect the
performance of applications. Process migration can also
help those long-running applications by relocating them
at suitable times to prevent interruption due to system
activities or the running of other applications. It also
helps in data access locality by migrating processes closer
to the source of data.

In order to migrate a Java thread or process, essential
process context and execution state information need to
be copied from the source node to the destination node.
Java supports code mobility through platform-
independent bytecode, the customizable Java class loader,
and the object serialization mechanism [20]. The Java
language however does not provide mechanisms for
inspecting, saving and restoring Java execution context.

Work has been done on ways to capture and restore
execution context. Execution context can be captured by
inserting code into the program, which can be done
manually [17,18,21,22] or via some pre-processor
[3,4,5,6,23]. This method incurs significant overhead
during execution, even when there is no migraion.
Execution context can also be captured by extending the
JVM to make thread state accessible from Java programs.
But modification of the JVM can be difficult [1,7,8].
Execution context can also be captured by checkpointing
the whole JVM process, which requires some special
checkpoint facility [24].

We propose a cluster middleware, called M-JavaMPI
(“M” for “migration”), to be run on top of the standard
JVM to support preemptive Java process migration and

 2

location-transparent communication services. An MPI
wrapper is provided to allow Java programs to link to the
native MPI library to support efficient message passing
among distributed Java processes. Our implementation
follows a client-server message redirection model that can
avoid conflicts on the use of system resources between
the native MPI library and the JVM. The MPI component,
which is restorable, allows communication channels to be
re-constructed automatically during program execution. A
Java process can use the same communication channel to
communicate with other processes even after it has been
migrated to another cluster node. Unlike other existing
Java process migration solutions, we use the Java built-in
debugging interface, JVMDI, to capture Java process
execution state. Execution context and process state can
be captured and restored transparently. As JVMDI is a
standard interface, our approach is potentially more
portable than existing solutions and the implementation is
less complex since no modification of the JVM is
necessary.

The rest of the paper is organized as follows. In
section 2, we show an overview of the proposed
middleware. Section 3 discusses our mechanism on
saving and restoring execution state of programs. Section
4 describes the restorable MPI layer. Performance results
and evaluation are given in section 5. Related works are
presented in section 6. Finally, we conclude our work in
section 7.

2. The M-JavaMPI System Architecture

Provide MPI
interface to Java
programs

Save and restore
process. Process and
object information
are saved and
restored by using
object serialization
and exception
through JVM

Java .class files are
modified by inserting
an exception handler
in each method of
each class. The
handler is used to
restore the process
state

Used to retrieve and
restore process state

Provide restorable
MPI communication
through MPI
daemons

Support low-latency
and high-bandwidth
data communication

Java MPI program (Java bytecode)

Pre-processing layer
(insert exception handlers)

Java-MPI API Java API

Migration Layer
(Save and restore process)

JVMDI (Debugger interface)

JVM

Restorable MPI layer

Native MPI

OS

Hardware

Fig. 1. The layered design of M-JavaMPI

Fig. 1. shows the layered design of the M-JavaMPI
middleware. The middleware consists of several layers,
including the Pre-processing layer, the Java-MPI API
layer, the Migration layer, and the Restorable MPI layer.

The Pre-processing layer is used to modify the
bytecode of the Java application before the bytecode is
passed to the JVM for execution. “Restoration functions”
are inserted into the application. These functions react to
the migration layer to restore the Java stacks and resume
execution during migration. In order to avoid the
overhead due to added code during normal execution,
these functions are added as exception handlers in the
program, in the form of encapsulated “try-catch”
statements. These “try-catch” blocks will run only when a
restoration exception occurs during the restoration of
process.

As we do not want to modify the JVM, some special
treatment on the Java bytecode is needed. This includes
re-arrangement of bytecode during pre-processing and the
addition of local variables to avoid having to retrieve
operand stacks from the JVM, which is only possible by
modifiying the JVM. Details are discussed in Section 3.3.

The Java-MPI API layer provides MPI calling
interfaces to Java programs. We opted for a modular,
client-server design of a message redirection mechanism
for migrated Java processes. The Java-MPI API layer acts
as a client which sends MPI-related messaging requests to
the MPI daemon (a server) in the same node in the
Restorable MPI layer. The MPI daemon is responsible
for delivering messages on behalf of the Java process.
Communication channels are re-constructed automatically
after migration. This allows Java processes to
communicate with each other after migration as if no
migration has occurred.

The Migration layer performs two main tasks: (1) to
capture and save the execution state of the migrating
process in the source node, and to restore the execution
state of the migrated process in the destination node; (2)
to cooperate with the Restorable MPI layer to reconstruct
the communication channels of the parallel application.

 In M-JavaMPI, the granularity of migration is at the
Java source code level. That means migration can only
happen after the complete execution of all Java bytecode
corresponding to a single Java source code line, and
before the execution of the next Java source code line. If
a migration request is received in the middle of executing
a Java source code line, the migration will be delayed
until the end of execution of the current source code line.
Similarly for a migration request that is received in the
middle of the execution of a native method.

This source-code-level granularity simplifies the
design of the migration mechanism by eliminating the
need to save operand stacks which are usually non-empty
in the middle of the execution of a source line. It also
avoids the saving of machine-dependent process state
information which is present during the execution of a
native method.

One of our design goals is to avoid modifying the
JVM. The resulting system can then be as portable as any

 3

ordinary Java program. In order to achieve this goal, we
need to make use of existing Java functions for capturing
and restoring process states. In M-JavaMPI, we use the
Java built-in interface, JVMDI, to capture Java process
execution states. Potential migrating points are set at the
address of the first bytecode of any Java source line
which can be obtained from any Java classfile by using
the debugging interface. To enable this feature, we need
only to compile Java programs with the debugging option
switched on.

3. Process State Capturing and Restoring

Java has provided portable bytecode and dynamic
class loading to allow Java programs to be executed in
different platforms. Besides, Java offers the object
serialization mechanism which can store objects in a
portable format. This allows objects to be saved and
restored across different platforms. Java however does
not provide functions for saving and restoring process
states. In this section, we discuss our approach to
capturing and restoring Java process state information.

3.1. Java Virtual Machine Debugger Interface

The Java Virtual Machine Debugger Interface

(JVMDI) [19] is a native interface available for the JVM
since Java 2, and is used typically by debuggers. It
defines the standard services that a JVM must provide for
debugging. There are ways to inspect the state and to
control the execution of applications. Using JVMDI, we
can obtain the runtime information of threads, stack
frames, local variables, classes, objects, and methods. In
addition, JVMDI can be used to control threads, to set
local variables, and to receive notifications of events such
as method exit/entry and frame pop-up. JVMDI is called
by the JVMDI client running in the same virtual machine
as the application program being debugged. The
application runs continuously if no debugging requests
have been issued.

3.2. State Capturing using JVMDI

In M-JavaMPI, we make use of JVMDI to capture

process states. This can be done much more easily than
other existing approaches. All the actions performed by
JVMDI clients are transparent to the applications. In
addition, the capturing mechanism is all on top of an
ordinary JVM so that no modifications of the JVM are
required.

When starting JVM, a JVMDI client is started as well.
Migration is initiated and carried out by the JVMDI client.
When migration is ready to occur, the client suspends the
execution of the application. Then it sends a message to

the local MPI daemon to notify it of the migration. After
that, it inspects and saves all the Java stack frames created
by the migrating Java process. For each frame, local
variables, referenced objects, the name of the class and
the class method, and the program counter need to be
saved using object serialization. After the saving, the
captured data are sent to the destination node.

3.3. State Restoring using Exception

Although JVMDI provides enough functions for
inspecting the execution state of a program, there are not
enough functions for re-establishing the execution
context, such as the frame stack and the program counter.
We therefore resort to pre-processing to add restoration
capability to the application to interact with the migration
layer to perform restoration of parallel Java processes.

During pre-processing, bytecode is modified in two
ways: (1) bytecode rearrangement and introduction of
special local variables; (2) insertion of restoration
functions in the form of exception handlers. As data in the
operand stack are JVM-dependent and no functions are
provided by JVMDI to extract and rebuild operand stacks,
it is hard to capture and restore operand stacks. The
approach we take is to do away with the need to save
operand stacks. Our design makes sure that all operand
stacks are empty at the time of migration. This is achieved
through source-code-level granularity and bytecode
rearrangement. Note that the operand stack of the current
frame is always empty immediately after the completion
of the execution of a Java source code line. For the
operand stacks of all the frames other than the current
frame, bytecode rearrangement is performed to make
these operand stacks always empty during migration.
Consider the following statement:

y = f(x)+g(x);

When migration takes place during the evaluation of g(x),
the intermediate value, i.e., the value of f(x), is stored in
operand stack. This value needs to be captured during
migration, and restored after migration. To handle such
runtime generated intermediate values, the original Java
code is transformed so that these values are saved in some
specially created local variables, instead of the operand
stack. For this example, the original Java code line is
transformed to

tmp1 = f(x);
tmp2 = g(x);
y = tmp1+tmp2;

The above transformation involves rearrangement of the
bytecode and the creation of additional local variables.

Apart from bytecode rearrangement, restoration

 4

functions are inserted as exception handlers to cope with
the migration layer to perform restoration. Exception
handlers are inserted in each of the methods. The
exception handlers catch and react to restoration
exceptions. Inside these exception handlers, local
variables of the called methods are pre-set with the saved
information, and a “jump” command is issued to branch
to the position saved during capturing. To illustrate, here
is a program fragment before pre-processing:

public class A {
 int a;
 char b;
 …
}

After pre-processing, the program fragment becomes:

public class A {
 try {
 …
 } catch (RestorationException e) {
 a = saved value of local variable a;
 b = saved value of local variable b;
 pc = saved value of program counter when the program

is suspended
 jump to the location where the program is suspended
 }
}

In the destination node, before receiving a notification

indicating the completion of the capturing process, an
instance of the process would be created. A breakpoint is
set at the start of the main() function so that when the
instance is created, the breakpoint is caught right away.
The migration layer in the destination node will wait for
the notification of the completion of the capturing process
from the MPI daemon.

When the notification is received by the MPI daemon,
the MPI daemon will send a notification message to the
migration layer. Then the migration layer will throw a
Restoration Exception to the newly created instance of the
process. The exception is caught by the Restoration
Exception Handler where local variables of the method
are restored to the saved values. A “branch” command is
then performed to jump to the last executed location of
the current frame. This action is repeated for each frame
of the program until the last frame is re-established. Then
the program will execute again from the last executed
position.

4. Restorable MPI Communication

4.1. Client-Server Message Redirection Model

The Restorable MPI layer is based on a client-server

model. This layer consists of MPI daemons and a Java-
MPI communication API for Java programs. The Java-
MPI communication API is the interface for parallel Java
processes to send requests to MPI daemons. An MPI
daemon runs on each node of the cluster to support
message passing between distributed Java processes. The
MPI daemon is responsible for sending messages and
receiving messages on behalf of the calling Java program
in the same node. The Java program and the MPI daemon
in the same node communicate through shared memory
and semaphores.

In order to provide efficient MPI communication,
communication between nodes is done using the native
MPI library. Instead of linking the Java program directly
with the native MPI library, the native MPI library is
linked by the MPI daemon such that MPI communication
is used exclusively by MPI daemons in different nodes
for their communication. This approach requires no
modification of the existing MPI library.

4.2. Process Migration in Action

migration layer
(source node)

MPI daemon
(source node)

MPI daemon
(destination node)

migration client
(destination node)

suspend user
process

migration request
 migration info.

an instance is
started

capture
process

state
buffered
messagescaptured

process data

captured
process data

captured
process data

restoration
completes

LEGENDS Events

Messages

JVM and
process quit

restoration
starts

Fig. 2. Process migration steps in M-JavaMPI

Fig. 2. illustrates the steps involved in process

migration. Initially, MPI daemons are started on all the
nodes of the cluster. The MPI daemon in a node covered
by the running parallel program will be responsible for all
the MPI communication of its MPI client. MPI daemons
on the idle nodes will wait for migration requests from
MPI daemons of other nodes. Message forwarding will be
performed through cooperation of the MPI daemons if a
Java client has been migrated.

When a migration starts to occur, the migration layer at
the source node suspends the execution of the Java

 5

process. It then sends a migration request to its local MPI
daemon. Then, it starts capturing the execution state of
the migrating process. Captured execution state is saved
in a “dump file” in the file server. After that, the
migrating process and the JVM, including the migration
layer, in the source node stop running. Only the MPI
daemon continues to run.

The MPI daemon waits for any migration requests, if
any, from other MPI daemons, and forwards messages to
the migrated process. Message sequences are used to keep
messages in order. Message forwarding will only serve
those messages that were sent before the migration
occurred and have not been received by the migrated
process. After migration, when all “old” messages have
been received, new messages are sent directly from the
source node to the destination node according to the
mapping table which kept the actual locations of the
nodes. No forwarding will take place afterwards. That
means no residue dependency will be introduced by the
communication.

5. Performance Evaluation

Execution of a parallel program can be divided into

two parts: computation and communication. The
introduction of our middleware may have an impact on
the performance of both the computation and
communication parts. The computation part could be
affected by the state-capturing and state-restoring actions
and the use of JVMDI, while the communication part
could be affected by the restorable MPI communication
mechanism. We evaluated the performance of our Java
MPI API, and the state-capturing and restoring
mechanism. We also carried out benchmark testing using
several Java application programs. We divided our
evaluation into three parts: evaluation of the performance
of the restorable MPI layer, evaluation of the performance
of the state-capturing and restoring mechanism, and
evaluation of the performance of the system as a whole.

The experiments were conducted on a 16-node cluster.
Each node is a 300MHz Pentium II PC with 128MB of
memory, running Linux 2.2.14 with Sun JDK 1.3.0. The
nodes are connected by a 100Mb/s fast Ethernet switch.
All Java programs were executed in interpreted mode.

5.1. Java MPI API

 A pingpong test was conducted to study the

communication performance of the restorable MPI
communication layer. In this test, messages of various
sizes were sent back and forth between processes. To
ensure that anomalies in message timings were minimized,
the pingpong was repeated 64 times for each message size.

Bandwidth of using different communication
mechanisms

0
2
4
6
8

10
12

1 2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4
32

76
8
65

53
6

13
10

72

message size (byte)

ba
nd

w
id

th
 (M

by
te

/s
)

native MPI direct Java-MPI binding migratable Java-MPI

Fig. 3. Performance comparisons of using different
communication mechanisms

Fig. 3. shows the communication bandwidth attained

for different message sizes using different communication
interfaces. The bandwidths of using the native MPI
library with a C program, and direct Java-MPI binding
with a Java program were also measured for comparison.
Among the different communication mechanisms, the
performance of the native MPI is the best, with a
bandwidth of 10.5 Mbytes/s, followed by the performance
of direct Java-MPI binding, with a bandwidth of 9.2
Mbytes/s. The peak bandwidth of communication using
our restorable MPI layer is 7.6 Mbytes/s, which is 17%
less than the direct binding.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

message size (byte)

la
te

nc
y(

s)

native MPI direct Java-MPI binding migratable Java-MPI

Fig.4. Comparisons of latencies for small messages using

different communication mechanisms

Fig. 4 compares the latencies of communication for

small messages. The minimum latency of the native MPI
and the direct Java-MPI binding are 0.2ms and 0.23ms
respectively. The minimum latency of the restorable MPI
mechanism is 0.26ms.

 6

5.2 State-capturing and State-restoring

The migration cost equals to the sum of time spent in

capturing state in the source node, the time spent in
restoring state in the destination node, and the time spent
in starting the JVM and loading the program in the
destination node. The time spent in capturing state can be
further divided into two parts: time spent in capturing the
objects and time spent in capturing the frames. Similarly,
the time spent in restoring state can be further divided
into two parts: time spent in restoring the objects and time
spent in restoring the frames. The times spent in capturing
and restoring both objects and frames are shown in
Figures 4 and 5 respectively.

Time required for capturing and restoring objects

1

10

100

1000

10000

0 10 100 1000 10K 100K 1000K
data size (# of integers)

tim
e

sp
en

t (
m

s)

capturing time restoring time

Fig.5. Time spent in capturing and restoring objects

Fig. 5 shows the time needed in capturing and

restoring objects of different sizes. In this test, objects
that were used are arrays of integers. The data size of an
integer is 4 bytes. The minimum overheads in capturing
and restoring objects are 54 and 1 ms respectively. The
capturing time is about 0.7 µs/bytes and the restoring time
is about 0.5 µs/bytes.

Time required for capturing and restoring frame
stacks

0
500

1000
1500
2000
2500
3000
3500

0 100 200 300 400 500 600
number of frames

tim
e

sp
en

t (
m

s)

capture time (ms) restore time (ms)

Fig.6. Time spent in capturing and restoring frames

Fig.6 shows the time needed in capturing and

restoring frames. In this test, no local variables were
defined in each frame. Hence, the measured time is the
minimum overhead in capturing and restoring different
number of frames.

5.3. Application Performance

Four parallel applications were used for evaluating the

system. These were PI calculation, recursive ray-tracing,
NAS integer sort and parallel SOR. The PI calculation
and recursive ray-tracing programs are computationally
intensive. The NAS integer sort and the parallel SOR are
both computationally and communication intensive.

5.3.1. Overhead of M-JavaMPI

Execution time of PI calculation and Ray-tracing

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9
no. of nodes

ex
ec

ut
io

n
tim

e
(s

ec
)

PI (w/o migration layer) ray-tracing (w/o migration layer)

PI (w/ migration layer) ray-tracing (w/ migration layer)

Fig. 7. Time spent in calculating PI and ray-tracing (of
640×480 pixels) using different numbers of nodes with and

without the migration layer

We first ran the programs in an evenly loaded
environment to evaluate the overhead of the middleware
during normal execution (i.e., no migration). Fig. 7 shows
the time spent in the PI calculation and the ray-tracing
program using different numbers of nodes with and
without migration layer. In the figure, the two curves
showing the time spent in the PI calculation with and
without migration layer overlap with each other. The two
curves showing the time spent in the ray-tracing program
with and without the migration layer also overlap with
each other. These results indicate that if there is no
migration, the execution time of parallel Java applications
is not affected at all by the presence of M-JavaMPI. The
migration layer did not introduce any noticeable overhead
in the execution of the tested Java applications.

 7

Time used (sec) in
environment without
M-JavaMPI

Time used (sec) in
environment with M-
JavaMPI

Overhead
introduced by M-
JavaMPI (in %)

Problem
size
(no. of
integers) Total Comp Comm Total Comp Comm Total Comm
Class S:
65536

0.023 0.009 0.014 0.026 0.009 0.017 13% 21%

Class
W:1048576

0.393 0.182 0.212 0.424 0.182 0.242 7.8% 14%

Class A:
8388608

3.206 1.545 1.66 3.387 1.546 1.840 5.6% 11%

Table 1. Time spent in NAS program in different environments

Table 1. shows the comparison of the performance of
the NAS program with M-JavaMPI enabled and disabled.
Two nodes were used for this test.

From the breakdown of the execution time, it can be
seen that there is no noticeable overhead introduced in the
computation part; while in the communication part, an
overhead of about 10-20% was induced.

Execution time of SOR

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9
no. of nodes

ex
ec

ut
io

n
tim

e
(s

ec
)

SOR (w/o migration layer) SOR (w/ migration layer)

Fig. 8. Time spent in executing SOR using different numbers of

nodes with and without migration layer

Fig.8 shows the time spent in executing the SOR
application using different numbers of nodes with and
without the migration layer respectively. The two curves
showing the time spent in SOR with and without the
migration layer nearly overlap exactly with each other.
This shows that the migration layer does not introduce
any noticeable overhead.

5.3.2. Cost of Migration

Applications
Average migration

time

PI 2

Ray-tracing 3

NAS 2
SOR 3

Table 2. Time spent in migration for different applications.

Table 2 shows the time spent in migration for different

applications. A large part of the migration time was spent
in starting the JVM and loading the program in the
destination node.

Take the SOR program as an example. The execution
of the program was repeated using six nodes in an
unevenly loaded environment with one of the nodes
executing a computationally intensive program. With no
migration, the execution time of the program was 319s.
The execution of the program was repeated then in the
same environment. This time, however, shortly after the
program had started, the process in the heavily loaded
node was migrated to an idle node. The execution time
came out to be 180s. This shows that considerable
performance gain can be achieved by using the migration
facility of our system.

6. Related Work

There are systems, such as JESSICA [1], Ara [6], and
among others [5,7], that provide state-capturing and
restoring of Java programs. These systems, however, need
to modify the JVM. This makes the system not portable
across existing Java platforms.

Some work [4,23] has been done to allow state-
capturing and restoring via pre-processing of bytecode.
Our approach is different from theirs in that M-JavaMPI
uses pre-processing only to add code for state-restoring
but not for capturing execution state. Besides, in their
approaches, code is added to change the original program
flow in order to do state-capturing and restoring. This
could translate into considerable amount of overhead
during runtime. In our approach, code is inserted as
exception handlers which will only be executed during
restoring. Some researchers have used exception throwing
facility [3,8]. Their approach is to use exception handlers
to capture process states whereas we use them for state-
restoring.

For providing Java bindings for MPI, several research
projects [9,10,11,12,13,14] have been conducted in the
past. All of them however did not provide any restorable
message-passing communication to the applications.
Among them, mpiJava [11] and JavaMPI [9] use direct
binding of Java programs and MPI library. We use a
client-server redirection model instead to avoid the
instability of such a binding due to conflicts on the use of
system resources. Moreover, our Java-MPI layer is “MPI-
implementation-independent,” which makes our system
more portable.

7. Conclusion

We presented the design and implementation of a

middleware for parallel computing using Java with

 8

process migration and post-migration message redirection.
With process migration, parallel processes can be
migrated between machines for load-balancing. Execution
states are captured by using JVMDI and restored using
exception handlers. A restorable MPI component is
introduced to provide restorable message-passing
communication for migrated processes.

As JVMDI is a standard interface, our approach is
potentially more portable and suitable for a heterogeneous
environment. The implementation is less complex since
there is no need to modify the JVM. Pre-processing is
done to allow exceptions to be used to restore processes
with no significant penalty inflicted on normal executions
that require no migration.

The JVMDI-based approach is very handy in capturing
execution contexts, which allows the migration
mechanism to be implemented as middleware without any
modification of the JVM. Various performance tests have
been conducted, with results showing that our
middleware approach to support dynamic Java process
migration is practical.

Message-passing program differ from other shared-
memory programs in that each process typically has one
thread, whereas in a shared-memory program, each
process can have more than one thread. Therefore, in our
current implementation, only processes with one thread
are considered. Work is now underway to extend the
mechanism to support processes with multiple threads.

Our future plan is to incorporate our cluster
monitoring system, called ClusterProbe [25], with M-
JavaMPI to support runtime workload detection. A load
balancing module will be developed to assist M-JavaMPI
in achieving dynamic load balancing. A similar approach
to that used in supporting message redirection in M-
JavaMPI can be used in the future for handling post-
migration I/O operations.

Acknowledgement

This research was supported in part by a Hong Kong

RGC grant with code HKU 7030/97E.

References

[1] M.J.M. Ma, C.L. Wang, F.C.M. Lau, ``JESSICA :

Java-Enabled Single-System-Image Computing
Architecture,” Journal of Parallel and Distributed
Computing, Vol. 60, No. 10, October 2000, pp.
1194-1222

[2] T. Lindholm and F. Yellin. “The Java Virtual
Machine Specification”. Addison-Wesley, 1996.

[3] S. Funfrocken. “Transparent Migration of Java-
based Mobile Agents (Capturing and Reestablishing
the State of Java Programs)”. Proceedings of the

Second International Workshop on Mobile Agents
(MA’98), pp.26-37

[4] M. Dahm. “Byte Code Engineering”. Proceedings
JIT’99, 1999.

[5] M.Ranganthan, A. Acharya, S. D. Sharma and J
Saltz. “Network-aware Mobile programs”.
Proceedings of the USENIX Annual Technical
Conference, Anaheim, California, 1997.

[6] H. Peine and T. Stolpmann. “The architecture of the
Ara platform for mobile agents”. Proceedings of the
Second International Workshop of Mobile Agents
(MA’97), 1997.

[7] S. Bouchenak. “Pickling threads state in the Java
system”. Proceedings of the third European
Research Seminar on Advances in Distributed
Systems (ERSADS’99), 1999.

[8] T. Sekiguchi, H. Masuhara, and A. Yonezawa. “A
simple Extension of Java Language for Controllable
Transparent Migration and its Portable
Implementation”. Coordination Languages and
Models, Volume 1594 of LNCS, pages 211-226,
Springer-Verlag, April, 1999

[9] S. Mintchev. “Writing Programs in JavaMPI”. TR
MAN-CSPE-02, Univ. of Westminster, London, UK,
1997

[10] Sava Mintchev and Vladimir Getov. “Towards
portable message passing in Java: Binding MPI”
Technical Report TR-CSPE-07”. University of
Westminster, School of Computer Science, Harrow
Campus, July 1997.

[11] M. Bake. “mpiJava: A Java interface to MPI”. 1st UK
Workshop on Java for HKCN, 1998.

[12] B. Carpenter, V. Getov, G. Judd, T. Skjellum, G. Fox.
“MPI for Java”. TR JGF-TR-03, Java Grande Forum,
1998.

[13] Tong WeiQin, Ye Hua, Yao WenSheng. “PJMPI:
pure Java implementation of MPI”. Proceedings of
the 4th International Conference on High
Performance Computing in the Asia-Pacific Region,
2000.

[14] K. Dincer. “A ubiquitous message passing interface
implementation in Java: jmpi”. Proceedings of 13th
International and 10th Symposium on Parallel and
Distributed Processing, 1999.

[15] L.M. Silva, V. Batista, P. Martins, G. Soares. “Using
mobile agents for parallel processing”. Proceedings
of the International Symposium on Distributed
Objects and Applications, 1999.

[16] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine,
Richard Wheeler, Songnian Zhou. “Process
Migration”. HP Labs, AT &T Labs-Research, TOG
Research Institut, EMC, University of Toronto and
Platform Computing.

[17] Danny B. Lange and Daniel T. Chang. “IBM Aglets
Workbench: A White Paper”. IBM Corporation.

 9

[18] “Voyager Core Package Technical Overview”
ObjectSpace Inc. 1997

[19] Javasoft. “Java Virtual Machine Debugger Interface”.
http://java.sun.com/j2se/1.3/docs/guide/jpda/jvmdi-
spec.html

[20] Javasoft. “Java Object Serialization”.
http://java.sun.com/j2se/1.3/docs/guide/serialization/
index.html

[21] M. Straber, J.Baumann and F. Hohl. “Mole – A Java
based Mobile Agent system”. Special Issues in
Object Oriented Programming, pp.301-308, 1997

[22] Danny Lange and Mitsuru Oshima. “Programming
and Deploying Java Mobile Agents with Aglets”.
Addison-Wesley, 1998

[23] Eddy Truyen, Bert Robben, Bart Vanhaute, Tim
Coninx, Wouter Joosen and Pierre Verbaeten.
"Portable Support for Transparent Thread Migration
in Java". In Proceedings of International Symposium
on Agent Systems and Applications/Mobile Agents
(ASA/MA'2000), September 2000, Zurich, Suisse.

[24] Jon Howell. “Straightforward Java Persistence
Through Checkpointing”. Proceedings of the 3rd
International Workshop on Persistence and Java,
1998, pp.322-334.

[25] Zhengyu Liang, Yudong Sun, and Cho-Li Wang,
"ClusterProbe: An Open, Flexible and Scalable
Cluster Monitoring Tool," The First International
Workshop on Cluster Computing (IWCC’99), pp.
261-268, Dec. 2-3, 1999.

