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Abstract. Ontology provides a formal, explicit specification of a shared 
conceptualization of a domain. It enables knowledge sharing in open and 
dynamic distributed systems. Using ontology, devices can understand the 
messages without prior knowledge about the format or content of the messages. 
It also allows devices not expressly designed to work together to interoperate. 
In this paper, we propose an online ontology mapping mechanism for facing up 
to new challenges in ontology mapping in pervasive computing environment. 
Our proposed design takes similarities of the names, properties and 
relationships of concepts into consideration during mapping. It outperforms the 
previous source-based and instance-based approaches in terms of efficiency as 
it does not require finding a one-to-one corresponding mapping of concepts 
between two ontologies. It can also use history records to store the information 
about the instances instead of storing all the instances which is more space 
efficient than traditional instance-based ontology mapping.  

1 Introduction 

Pervasive computing environment is an environment saturated with computing and 
communication capability, yet so gracefully integrated with users that it becomes a 
“technology that disappears” [1]. With the prevalence of mobile network 
technologies, users can move from place to place to get their tasks done. They need 
computing services in all places where a different knowledge domain may be 
embodied in each smart space. The ad hoc, spontaneous, and dynamic nature of the 
pervasive computing environment would require the systems to provide instant 
knowledge reasoning for efficiently mapping between user queries and domain 
knowledge.  

Ontology has been introduced for bridging the knowledge gaps between different 
domains [11]. Ontology represents the semantics of different concepts. It provides a 
formal, explicit specification of a shared conceptualization of a domain that can be 
communicated between people and heterogeneous and widely spread application 
systems [2]. It is a formal explicit description of concepts (also called classes) in a 
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domain of discourse, properties of each concept describing various features and 
attributes of the concept (also called slot) and restrictions on concepts [3]. Using 
ontology, devices can understand the messages without prior knowledge about the 
format or the content of the messages. This enables knowledge sharing in open and 
dynamic distributed systems. It also allows devices and agents not expressly designed 
to work together to interoperate. Ontology and its data instances are separated, 
therefore providing a means for intelligent agents to reason about contextual 
information. 

Ontology techniques have been adopted in several pervasive computing projects 
such as CoBrA [4] and GAIA [5]. Context Broker Architecture (CoBrA) defines a set 
of OWL ontologies for context information. Agents use these ontologies to acquire, 
reason about and share context knowledge. GAIA is a middleware to enable active 
spaces. It also defines a set of ontologies about the active spaces such as entity and 
context information. Devices in GAIA use these ontologies to communicate with each 
other. In both cases, ontologies were used in a very restricted way. Ontologies for 
their applications are defined in the stationary environment. As thus, devices could 
only communicate using the same ontologies. Researchers in pervasive computing 
have put their efforts in defining different ontologies used in their projects [4,5]. 
Ontology mapping has also been widely researched in semantic web [6-10].  

We identify four new challenges for ontology mapping in pervasive computing 
environment:  (1) online mapping (when two devices are communicating), (2) 
efficiency in mapping, (3) space limitation of devices, and (4) knowledge propagation 
to support user mobility.  

Existing ontology mapping tools are used to help ontology designers to design new 
ontologies. They provide a merged ontology or a set of related concepts with some 
certainty factor associated with each pair. In pervasive computing environment, a 
device may communicate with many different devices. It is difficult for the ontology 
designers to merge all the possible ontologies with which the device is going to 
communicate because it is hard to predict such communications. Even if the ontology 
designers can merge the possible ontologies, the merged ontology cannot reflect any 
modifications in the original ontologies unless the ontology designers also change the 
merged ontology. In order to avoid merging all possible ontologies and to handle the 
ontology versioning problem, ontology mapping should be done at the time when two 
devices communicate (called online ontology mapping). Efficiency and space 
limitation are important factors for designing online ontology mapping. It is not 
possible for memory limited devices such as handheld and wearable devices to store a 
set of data instances of the ontologies that they use for communication. High user 
mobility in pervasive computing environment enables sharing of users’ 
communication history. Knowledge sharing of history records can help devices to 
communicate in different places. 

In this paper, we propose an online ontology mapping mechanism to tackle these 
new challenges in pervasive computing environment. This paper is structured in 5 
sections. The next section is about the related research. Section 3 introduces the 
philosophy of our mapping mechanism. Section 4 gives the evaluation result and 
Section 5 is the conclusion and presents the future work. 
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2 Related Research 

Ontology mapping has been widely researched in semantic web. Most ontology 
mapping tools developed are to find a one-to-one corresponding mapping between 
concepts in two ontologies [6-10]. These mapping tools can be classified into two 
types: source-based and instance-based. 

Source-based mapping tools compare the similarity of the concepts based on the 
properties of the concepts and the structure of the ontology defined in the source 
ontologies. Examples of source based mapping tools are PROMPT [6], Chimaera [7], 
and ONION [8]. PROMPT and Chimaera merge two source ontologies into a new 
ontology that includes concepts from both sources. They compare similarity of 
concept names to generate a match list of concepts. Users decide which concepts 
should be mapped based on the match list. ONION results in a set of mappings 
(articulation rules using their terms) between two ontologies. It transforms source 
ontologies into graphs. The nodes and the edges of the graph are used to match two 
graphs. Nodes are matched based on their names and a set of user-defined synonyms 
words. PROMPT, Chimaera and ONION use similarity between concept names for 
mapping. They work well for ontologies having a specialized terminology like 
medical ontology where each concept is a disease and each disease has a unique 
name. Their matching accuracy decreases when mapping ontologies with more 
general terminologies. 

Instance-based ontology mapping tools compare the similarity of the concepts 
based on the source ontologies and their data instances. Examples of instance-based 
ontology mapping tools are FCA-Merge [9] and GLUE [10]. FCA-Merge merges two 
source ontologies into a new ontology. FCA-Merge generates a pruned concept lattice 
by analyzing the frequencies of usage of concepts. Merging decisions are made based 
on the pruned concept lattice. FCA-Merge suits best the mapping of text documents: 
it requires a set of common instances for the mapping ontologies. For example, the 
instances are in the form of documents or homepages. GLUE gives a set of pairs of 
related concepts with some certainty factor associated with each pair. It analyzes the 
distributions of the concepts in data instances of the source ontologies and uses joint 
probability distribution to calculate the similarity between two concepts. GLUE, 
however, does not consider the structure of the ontologies (i.e., the relationships 
between concepts) during mapping. 

Our proposed design makes use of both the source ontologies and their instances. It 
takes the similarities of the concept names, properties of the concepts and their 
relationships into consideration during mapping. It works for many different types of 
ontologies since it can assign a different weighting to each similarity. Compared with 
those mapping tools that find a one-to-one corresponding mapping of concepts 
between two ontologies, our mechanism is more efficient since it is not one-to-one 
mapping. Compared with traditional instance-based ontology mapping tools, our 
mechanism is more space efficient since it uses history records to store the 
information about the instances instead of storing all the instances. 



4      C. Y. Kong, C. L. Wang, F. C. M. Lau 

3 Proposed Design 

In our proposed design, we assume a proxy exists in every smart place, where a smart 
space is an environment saturated with users and devices such as a meeting room, a 
department office or a university campus. A proxy coordinates all the resources and 
functions of devices in its smart space. It helps devices to allocate resources and 
functions and to obtain contextual information of the smart space. As mentioned in 
the pervious section, online ontology mapping needs to be reasonably efficient, which 
can be achieved by reducing the number of concepts to be mapped between two 
ontologies. A device submits a request which is an instance I1 of an ontology O1. The 
proxy tries to find a function in the smart place that satisfies the request where the 
function is described by ontology O2. Our proposed matching mechanism maps all the 
concepts used in I1 to O2 instead of finding a one-to-one corresponding mapping for 
all the concepts in O1 and those in O2 as is done in traditional semantic web ontology 
mapping. 

In this paper, O1 denotes the ontology used by the device requesting resources or 
functions. O2 denotes the ontology that describes the resources or functions with 
which the proxy would try to match the request. In is an instance of ontology On and 
Cn is a concept in ontology On. wi is a weight. Sim(A,B) is the similarity between item 
A and item B. 

3.1 Extraction of concepts to be compared with concept C1 

To compare two ontologies O1 and O2, we have to map a concept C1 in O1 to a 
concept C2 in O2. To increase the efficiency of mapping, we filter the highly related 
concepts and generate a set of possible candidates of C2 in O2. For each pair of 
concepts between C (in O1) and C’ (in O2), we calculate the similarity of their concept 
names where N(string) is the number of characters in the string. 
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In ontology mapping, a concept in O1 may be split into two concepts in the same 
way as a concept “name” being split into two concepts, “first name” and “last name”. 
To handle the splitting problem, our proposed mechanism merges concepts with their 
neighborhood concepts. Merging concepts C’1 and C’2 of the same ontology is done 
by merging their concept names, attributes and relationships. To resolve naming 
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conflict of attributes and relationships, attributes and relationships are renamed as 
C’1.attribute name and C’2.attribute name and C’1.relationship name and 
C’2.relationship name respectively. Duplicated relationships are removed during 
merging. A relationship between C’1 and C’2 is converted as attribute with the name 
of the relationship as the attribute name. 

3.2 Comparison between Two Concepts C1 and C2 

For each candidate in the candidates set generated in the previous section, we 
compare the similarity between two concepts. In similarity research, similarity is 
commonly defined as: 
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From the project GLUE, ( )21,CCP  is defined as equation (2) where U1 and U2 are 
the instance set of O1 and O2 respectively, N (U1

C1,C2) is the number of instances of O1 
that contain concept C1 and concept C2, N (U2

C1,C2) is the number of instances of O2 
that contain concept C1 and concept C2, N (U1) and N (U2) are the number of 
instances of O1 and the number of instances of O2 respectively. 

( ) ( ) ( )
( ) ( )21

2,1
2

2,1
1

21,
UNUN
UNUN

CCP
CCCC

+
+

=  
(2) 

In our proposed matching mechanism, we use these formulae when comparing 
between concepts C1 and C2. To calculate P(C1, C2), we should have two instance sets 
U1 and U2. As discussed in the above section, it is not space efficient for the devices 
and the proxies to store these sets of instances. Instead, we use history records to 
determine the instance sets U1 and U2. The proxy counts the number of concepts 
appearing in each mapping instance. For example, an ontology OA contains concepts 
Ca, Cb, Cc and Cd. A request instance contains concepts Ca and Cb. The number of 
instances that contain Ca and Cb are incremented by 1, the number of instances that 
contain Cc and Cd remains unchanged, and the total number of instances of OA is also 
incremented by 1. N(U1) and N(U2), therefore, are found. In pervasive computing 
environment, we assume that there exists at least one instance from each ontology. 
One is the request instance and the other is the resource/function instance. To get 
N(U1

C1,C2), we have to estimate the number of instances of O1 that contain concept C1 
and concept C2. The number of instances of O1 that contain concept C1 can be found 
from the history records. We estimate the number of concepts that contain both 
concept C1 and concept C2 by calculating the similarity degree of the properties and 
relationships of concept C1 and concept C2. If the properties and relationships of the 
concepts are similar, it is likely that the instance of concept C1 is an instance of 
concept C2. For property such as memory size which is a numerical type, it is 
important that there is mapping to another concept whose property contains also a 
numerical value; otherwise, it is difficult to satisfy functionality requests like 
“memory size less than 10k”. Weights, therefore, are needed when calculating 
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property similarity. Besides, using properties and relationships of the concepts, the 
proposed mechanism also matches instances when comparing two concepts. When a 
concept of the request instance matches a concept of the resource or function instance, 
it is likely that two concepts are matched. The proxy uses all the present instances of 
O1 and O2 in its smart space to compare with the request instance. 

For each pair of instance sets U1 and U2, 
1. Partition U1 into two sets. One set contains concept C1 (U1

C1) while the other set 
does not contain concept C1 (U1

~C1) based on the history record. 
2. Partition U2 into two sets. One set contains concept C2 (U2

C2) while the other set 
does not contain concept C2 (U2

~C2) based on the history record. 
3. Estimate the similarity between O1 and O2 with equation (3) where N(O1) and 

N(O2) are the total numbers of concepts in O1 and O2 respectively. For each 
concept in O1, find the maximum concept name similarity with O2 based on result 
calculated in the previous section. If the maximum concept name similarity is 
larger than the threshold, increment the total number of similar concepts. 
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For each pair of property/attribute in C1 (denoted by PC1) and property/attribute in 
C2 (denoted by PC2), compute their property similarity using equation (5). 
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Property instance similarity is calculated by counting the number of instances of C2 
whose property has similar content as the corresponding property of the instances 
of C1. The property instance similarity is calculated when the properties are using 
text description. 

( )
( )

( ) ( )21 tantan

2tan1tan

ce of Onsproperty iNce of Onsproperty iN
bstringlongest suN 

ceof ins, content ce  inscontent ofSim

+
=

 
(6) 

( )
2

2

1
5Pr

ty in C of proper to numberfor i
n * Equatioty i in Cof properifrequency silarity, poperty sim

=
∏=

 
(7) 

( ) ( ) ( ) ( )7** 1
1

1
1

2,1
1 EquationUNpsUNUN CCCC ==  

( ) ( ) ( )2,1
1

1
1

2~,1
1

CCCCC UNUNUN −=  

( ) ( ) ( )2,1
1

2,1~
1 4 CCCC UNEquationUN −=  



Ontology Mapping in Pervasive Computing Environment      7 

5. Similarly, calculate N(U2
C1,C2), N(U2

C1,~C2) and N(U2
~C1,C2). 

6. Compute P(C1,C2), P(C1,~C2) and P(~C1,C2) using equation (2). 
7. Compute the similarity degree using equation (1). This similarity degree is called 

instance similarity degree as we use instances to calculate. 
8. For each relationship between C1 and C2, compute similarity between relationship 

RC1 and RC2. 
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9. Calculate Relationship Similarity Degree.  
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3.3 Comparison between Two Ontologies O1 and O2 

Below is the methodology to compare two ontologies; OntologyMapping() is our 
mapping function and NewMapping() is a procedure call that is invoked when 
mapping is performed from scratch.  

 
 

NewMapping()  
{ 
   Extract the candidate concepts as Section 3.1. 
   For each candidate found in section 3.1 

      Computer 
( )
( )21

21

CCP
CCP
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 as Section 3.2 

   If the highest similarity degree > threshold, 
      Mapping is found. 
   Else 
      Mapping is failed. 
} 
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4 Evaluation 

This section gives the implementation details and the evaluation of the proposed 
online ontology mapping mechanism. The matching mechanism has been 
implemented using Java language. It takes two ontologies, the instances of the two 
ontologies and the request instance as inputs. A configuration file is used by users to 
define the weights and thresholds. The concepts presented in the request instance are 
matched with the second ontology. The first ontology defines the concepts used in the 
request instance. A matching table with the concepts in the request instance and the 
concepts in the second ontology are outputted. We used Semantic Web Research 
Community (SWRC) ontology [12] as the first ontology for our mapping experiment. 
Based on the SWRC ontology, we manually created the second ontology, the 

Ontology Mapping (Ontology O1, Ontology O2) 
{ 
   Search history mapping record. 
   If O1 and O2 have been mapped, 
      If O1 and O2 have the same last modified date 
         (version number) as the history record, 
         For each concept Ci in the instance,  
            If O2 is mapped to Ci in the record, 
               Mapping is found. 
            Else  
               Invoke NewMapping(). 
      Else 
         For each concept Ci in the instance, 
            If O2 is mapped to Ci in the record, 

               Compute 
( )
( )21

21

CCP
CCP

∪
∩

 as Section 3.2 for 

               Ci and the mapped concept in O2. 
               If similarity degree > threshold, 
                  Existing mapping is reused. 
               Else 
                  Invoke NewMapping(). 
            Else 
                  Invoke NewMapping(). 
   Else 
      Invoke NewMapping(). 
   Update number of instances and concepts  
   encountered. 
   For each new mapping found, 
      Add <concept in O1, concept in O2, similarity 
      degree,instance count> in history record. 
} 
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instances of the two ontologies and the request instances. The accuracy of the 
mapping is defined as the percentage of the mappings from using our matching 
mechanism that match the manual mappings. 

We have divided the evaluation into two parts. The first experiment is to compare 
our online ontology mapping mechanism with the source based mapping mechanism. 
We manually created the second ontology with the concepts and their properties 
having names similar to the SWRC ontology. Source based mapping mechanism has 
an accuracy of over 90% while our matching mechanism has an accuracy of about 
80%. Our matching mechanism is less accurate due to some of the instances having 
totally different content, for example, the information about a person. However, our 
matching mechanism is faster than the source based mapping mechanism. The source 
based mapping mechanism uses 10 seconds to find a one-to-one corresponding 
mapping between the concepts in the two ontologies. If we do not take instances into 
consideration in our matching mechanism (by setting the weights of similarity of 
instance to zero), our solution needs just 6 seconds to map the request instance with 
the second ontology, where the request instance contains 6-8 concepts out of 24 
concepts in the SWRC ontology. If we take instances into consideration, it uses about 
20 seconds to map the request instance with the second ontology. 

The second experiment is to compare our online ontology mapping mechanism 
with the instance-based ontology mapping mechanism. We manually created similar 
content of the instances of the two source ontologies with most of the names of the 
concepts and the attributes being different. We found that our matching mechanism is 
much faster than instance-based ontology mapping with similar accuracy (about 
70%). We also created content of the instances that are highly different. Our match 
mechanism has about 40% accuracy which is two times more accurate than the 
instance-based ontology mapping mechanism as we have also considered the names 
of the concepts, attributes and the relationships of the concept. 

Our matching mechanism can perform faster than source based ontology mapping, 
while achieving the same level of accuracy. The accuracy of our matching mechanism 
for the first experiment can be further improved (>85%) by increasing the weightings 
of the similarity of the names of the concepts and the attributes. Our matching 
mechanism is more accurate and more efficient than instance based ontology 
mapping. Our solution can achieve better space efficiency. Based on the experiments 
we have done, we use about 2K memory to store 10 instances of a concept. Instance 
based ontology mapping needs to use at least 30 instances in order to achieve a high 
accuracy [10]. That means instance-based ontology mapping should use at least 144K 
for storing 30 instances for each concept in the SWRC ontology. Our matching 
mechanism does not require storing the instances. We use a history record that stores 
the total number of instances and concepts that have been mapped, which takes up 
only a few K’s of memory. 

5 Conclusion and Future Work 

In this paper, we have identified four challenges of ontology mapping in pervasive 
computing environment. They are online mapping, efficiency, space limitation and 
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knowledge propagation. We have proposed an online mapping mechanism to respond 
to these challenges. The proposed mechanism takes similarities of concept names, and 
properties of concepts and their relationships into consideration during mapping. It 
attaches a weighting to each similarity to suit different types of ontologies. The 
mechanism does not require finding a one-to-one corresponding mapping of concepts 
between two ontologies, which helps increase the efficiency. To be space efficient, it 
uses history records to store the information about the instances instead of storing all 
the instances. The history records can be propagated to other places for knowledge 
propagation. More experiments are required to prove the space efficiency for our 
matching mechanism. 
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