
Ontology Mapping in Pervasive Computing
Environment1

C. Y. Kong, C. L. Wang, F. C. M. Lau

Department of Computer Science
The University of Hong Kong

{cykong, clwang, fcmlau}@cs.hku.hk

Abstract. Ontology provides a formal, explicit specification of a shared
conceptualization of a domain. It enables knowledge sharing in open and
dynamic distributed systems. Using ontology, devices can understand the
messages without prior knowledge about the format or content of the messages.
It also allows devices not expressly designed to work together to interoperate.
In this paper, we propose an online ontology mapping mechanism for facing up
to new challenges in ontology mapping in pervasive computing environment.
Our proposed design takes similarities of the names, properties and
relationships of concepts into consideration during mapping. It outperforms the
previous source-based and instance-based approaches in terms of efficiency as
it does not require finding a one-to-one corresponding mapping of concepts
between two ontologies. It can also use history records to store the information
about the instances instead of storing all the instances which is more space
efficient than traditional instance-based ontology mapping.

1 Introduction

Pervasive computing environment is an environment saturated with computing and
communication capability, yet so gracefully integrated with users that it becomes a
“technology that disappears” [1]. With the prevalence of mobile network
technologies, users can move from place to place to get their tasks done. They need
computing services in all places where a different knowledge domain may be
embodied in each smart space. The ad hoc, spontaneous, and dynamic nature of the
pervasive computing environment would require the systems to provide instant
knowledge reasoning for efficiently mapping between user queries and domain
knowledge.

Ontology has been introduced for bridging the knowledge gaps between different
domains [11]. Ontology represents the semantics of different concepts. It provides a
formal, explicit specification of a shared conceptualization of a domain that can be
communicated between people and heterogeneous and widely spread application
systems [2]. It is a formal explicit description of concepts (also called classes) in a

1 This research is partly supported by HKU Large Equipment Grant 01021001 and Hong Kong

RGC Grant HKU-7519/03E.

2 C. Y. Kong, C. L. Wang, F. C. M. Lau

domain of discourse, properties of each concept describing various features and
attributes of the concept (also called slot) and restrictions on concepts [3]. Using
ontology, devices can understand the messages without prior knowledge about the
format or the content of the messages. This enables knowledge sharing in open and
dynamic distributed systems. It also allows devices and agents not expressly designed
to work together to interoperate. Ontology and its data instances are separated,
therefore providing a means for intelligent agents to reason about contextual
information.

Ontology techniques have been adopted in several pervasive computing projects
such as CoBrA [4] and GAIA [5]. Context Broker Architecture (CoBrA) defines a set
of OWL ontologies for context information. Agents use these ontologies to acquire,
reason about and share context knowledge. GAIA is a middleware to enable active
spaces. It also defines a set of ontologies about the active spaces such as entity and
context information. Devices in GAIA use these ontologies to communicate with each
other. In both cases, ontologies were used in a very restricted way. Ontologies for
their applications are defined in the stationary environment. As thus, devices could
only communicate using the same ontologies. Researchers in pervasive computing
have put their efforts in defining different ontologies used in their projects [4,5].
Ontology mapping has also been widely researched in semantic web [6-10].

We identify four new challenges for ontology mapping in pervasive computing
environment: (1) online mapping (when two devices are communicating), (2)
efficiency in mapping, (3) space limitation of devices, and (4) knowledge propagation
to support user mobility.

Existing ontology mapping tools are used to help ontology designers to design new
ontologies. They provide a merged ontology or a set of related concepts with some
certainty factor associated with each pair. In pervasive computing environment, a
device may communicate with many different devices. It is difficult for the ontology
designers to merge all the possible ontologies with which the device is going to
communicate because it is hard to predict such communications. Even if the ontology
designers can merge the possible ontologies, the merged ontology cannot reflect any
modifications in the original ontologies unless the ontology designers also change the
merged ontology. In order to avoid merging all possible ontologies and to handle the
ontology versioning problem, ontology mapping should be done at the time when two
devices communicate (called online ontology mapping). Efficiency and space
limitation are important factors for designing online ontology mapping. It is not
possible for memory limited devices such as handheld and wearable devices to store a
set of data instances of the ontologies that they use for communication. High user
mobility in pervasive computing environment enables sharing of users’
communication history. Knowledge sharing of history records can help devices to
communicate in different places.

In this paper, we propose an online ontology mapping mechanism to tackle these
new challenges in pervasive computing environment. This paper is structured in 5
sections. The next section is about the related research. Section 3 introduces the
philosophy of our mapping mechanism. Section 4 gives the evaluation result and
Section 5 is the conclusion and presents the future work.

Ontology Mapping in Pervasive Computing Environment 3

2 Related Research

Ontology mapping has been widely researched in semantic web. Most ontology
mapping tools developed are to find a one-to-one corresponding mapping between
concepts in two ontologies [6-10]. These mapping tools can be classified into two
types: source-based and instance-based.

Source-based mapping tools compare the similarity of the concepts based on the
properties of the concepts and the structure of the ontology defined in the source
ontologies. Examples of source based mapping tools are PROMPT [6], Chimaera [7],
and ONION [8]. PROMPT and Chimaera merge two source ontologies into a new
ontology that includes concepts from both sources. They compare similarity of
concept names to generate a match list of concepts. Users decide which concepts
should be mapped based on the match list. ONION results in a set of mappings
(articulation rules using their terms) between two ontologies. It transforms source
ontologies into graphs. The nodes and the edges of the graph are used to match two
graphs. Nodes are matched based on their names and a set of user-defined synonyms
words. PROMPT, Chimaera and ONION use similarity between concept names for
mapping. They work well for ontologies having a specialized terminology like
medical ontology where each concept is a disease and each disease has a unique
name. Their matching accuracy decreases when mapping ontologies with more
general terminologies.

Instance-based ontology mapping tools compare the similarity of the concepts
based on the source ontologies and their data instances. Examples of instance-based
ontology mapping tools are FCA-Merge [9] and GLUE [10]. FCA-Merge merges two
source ontologies into a new ontology. FCA-Merge generates a pruned concept lattice
by analyzing the frequencies of usage of concepts. Merging decisions are made based
on the pruned concept lattice. FCA-Merge suits best the mapping of text documents:
it requires a set of common instances for the mapping ontologies. For example, the
instances are in the form of documents or homepages. GLUE gives a set of pairs of
related concepts with some certainty factor associated with each pair. It analyzes the
distributions of the concepts in data instances of the source ontologies and uses joint
probability distribution to calculate the similarity between two concepts. GLUE,
however, does not consider the structure of the ontologies (i.e., the relationships
between concepts) during mapping.

Our proposed design makes use of both the source ontologies and their instances. It
takes the similarities of the concept names, properties of the concepts and their
relationships into consideration during mapping. It works for many different types of
ontologies since it can assign a different weighting to each similarity. Compared with
those mapping tools that find a one-to-one corresponding mapping of concepts
between two ontologies, our mechanism is more efficient since it is not one-to-one
mapping. Compared with traditional instance-based ontology mapping tools, our
mechanism is more space efficient since it uses history records to store the
information about the instances instead of storing all the instances.

4 C. Y. Kong, C. L. Wang, F. C. M. Lau

3 Proposed Design

In our proposed design, we assume a proxy exists in every smart place, where a smart
space is an environment saturated with users and devices such as a meeting room, a
department office or a university campus. A proxy coordinates all the resources and
functions of devices in its smart space. It helps devices to allocate resources and
functions and to obtain contextual information of the smart space. As mentioned in
the pervious section, online ontology mapping needs to be reasonably efficient, which
can be achieved by reducing the number of concepts to be mapped between two
ontologies. A device submits a request which is an instance I1 of an ontology O1. The
proxy tries to find a function in the smart place that satisfies the request where the
function is described by ontology O2. Our proposed matching mechanism maps all the
concepts used in I1 to O2 instead of finding a one-to-one corresponding mapping for
all the concepts in O1 and those in O2 as is done in traditional semantic web ontology
mapping.

In this paper, O1 denotes the ontology used by the device requesting resources or
functions. O2 denotes the ontology that describes the resources or functions with
which the proxy would try to match the request. In is an instance of ontology On and
Cn is a concept in ontology On. wi is a weight. Sim(A,B) is the similarity between item
A and item B.

3.1 Extraction of concepts to be compared with concept C1

To compare two ontologies O1 and O2, we have to map a concept C1 in O1 to a
concept C2 in O2. To increase the efficiency of mapping, we filter the highly related
concepts and generate a set of possible candidates of C2 in O2. For each pair of
concepts between C (in O1) and C’ (in O2), we calculate the similarity of their concept
names where N(string) is the number of characters in the string.

() ()
() ()C'nameNC nameN

bstringlongest suN
 nameC name, C'Sim

+
=

For the first k concepts with the highest similarity degree denoted by C1..k, we find
the possible candidates set to be compared with C by:





























∪

∪

∪

∪

=

..kof C concepts ub-class)chidren (s
..kof C concepts er class)parent (

ighbor of its ne with each..kcepts of Cmerged con
..k with Clationshiphat has reconcepts t

..kC

 et andidate sPossible c

1

1sup
1

1

1

In ontology mapping, a concept in O1 may be split into two concepts in the same
way as a concept “name” being split into two concepts, “first name” and “last name”.
To handle the splitting problem, our proposed mechanism merges concepts with their
neighborhood concepts. Merging concepts C’1 and C’2 of the same ontology is done
by merging their concept names, attributes and relationships. To resolve naming

Ontology Mapping in Pervasive Computing Environment 5

conflict of attributes and relationships, attributes and relationships are renamed as
C’1.attribute name and C’2.attribute name and C’1.relationship name and
C’2.relationship name respectively. Duplicated relationships are removed during
merging. A relationship between C’1 and C’2 is converted as attribute with the name
of the relationship as the attribute name.

3.2 Comparison between Two Concepts C1 and C2

For each candidate in the candidates set generated in the previous section, we
compare the similarity between two concepts. In similarity research, similarity is
commonly defined as:

()
()

()
() () ()212121

21

21

21

,~~,,
,

CCPCCPCCP
CCP

CCP
CCP

++
=

∪
∩

(1)

From the project GLUE, ()21,CCP is defined as equation (2) where U1 and U2 are
the instance set of O1 and O2 respectively, N (U1

C1,C2) is the number of instances of O1
that contain concept C1 and concept C2, N (U2

C1,C2) is the number of instances of O2
that contain concept C1 and concept C2, N (U1) and N (U2) are the number of
instances of O1 and the number of instances of O2 respectively.

() () ()
() ()21

2,1
2

2,1
1

21,
UNUN
UNUN

CCP
CCCC

+
+

=
(2)

In our proposed matching mechanism, we use these formulae when comparing
between concepts C1 and C2. To calculate P(C1, C2), we should have two instance sets
U1 and U2. As discussed in the above section, it is not space efficient for the devices
and the proxies to store these sets of instances. Instead, we use history records to
determine the instance sets U1 and U2. The proxy counts the number of concepts
appearing in each mapping instance. For example, an ontology OA contains concepts
Ca, Cb, Cc and Cd. A request instance contains concepts Ca and Cb. The number of
instances that contain Ca and Cb are incremented by 1, the number of instances that
contain Cc and Cd remains unchanged, and the total number of instances of OA is also
incremented by 1. N(U1) and N(U2), therefore, are found. In pervasive computing
environment, we assume that there exists at least one instance from each ontology.
One is the request instance and the other is the resource/function instance. To get
N(U1

C1,C2), we have to estimate the number of instances of O1 that contain concept C1
and concept C2. The number of instances of O1 that contain concept C1 can be found
from the history records. We estimate the number of concepts that contain both
concept C1 and concept C2 by calculating the similarity degree of the properties and
relationships of concept C1 and concept C2. If the properties and relationships of the
concepts are similar, it is likely that the instance of concept C1 is an instance of
concept C2. For property such as memory size which is a numerical type, it is
important that there is mapping to another concept whose property contains also a
numerical value; otherwise, it is difficult to satisfy functionality requests like
“memory size less than 10k”. Weights, therefore, are needed when calculating

6 C. Y. Kong, C. L. Wang, F. C. M. Lau

property similarity. Besides, using properties and relationships of the concepts, the
proposed mechanism also matches instances when comparing two concepts. When a
concept of the request instance matches a concept of the resource or function instance,
it is likely that two concepts are matched. The proxy uses all the present instances of
O1 and O2 in its smart space to compare with the request instance.

For each pair of instance sets U1 and U2,
1. Partition U1 into two sets. One set contains concept C1 (U1

C1) while the other set
does not contain concept C1 (U1

~C1) based on the history record.
2. Partition U2 into two sets. One set contains concept C2 (U2

C2) while the other set
does not contain concept C2 (U2

~C2) based on the history record.
3. Estimate the similarity between O1 and O2 with equation (3) where N(O1) and

N(O2) are the total numbers of concepts in O1 and O2 respectively. For each
concept in O1, find the maximum concept name similarity with O2 based on result
calculated in the previous section. If the maximum concept name similarity is
larger than the threshold, increment the total number of similar concepts.

() () ()21
21,

ONON
tslar conceper of simitotal numbOOSim

+
=

(3)

4. Find N (U1
C1,C2).

()2
221 3tan CU)*NEquation(pt Cains conce that contce in UinsNumber of = (4)

For each pair of property/attribute in C1 (denoted by PC1) and property/attribute in
C2 (denoted by PC2), compute their property similarity using equation (5).

()
() ()

()64213

212211

21

Equationw) data type Pdata type,Sim(P w
 ycardinality,PcardinalitP*Simwnamename,PP*Simw

,PPSim

CC

CCCC

CC

+
++=

(5)

Property instance similarity is calculated by counting the number of instances of C2
whose property has similar content as the corresponding property of the instances
of C1. The property instance similarity is calculated when the properties are using
text description.

()
()

() ()21 tantan

2tan1tan

ce of Onsproperty iNce of Onsproperty iN
bstringlongest suN

ceof ins, content ce inscontent ofSim

+
=

(6)

()
2

2

1
5Pr

ty in C of proper to numberfor i
n * Equatioty i in Cof properifrequency silarity, poperty sim

=
∏=

(7)

() () () ()7** 1
1

1
1

2,1
1 EquationUNpsUNUN CCCC ==

() () ()2,1
1

1
1

2~,1
1

CCCCC UNUNUN −=

() () ()2,1
1

2,1~
1 4 CCCC UNEquationUN −=

Ontology Mapping in Pervasive Computing Environment 7

5. Similarly, calculate N(U2
C1,C2), N(U2

C1,~C2) and N(U2
~C1,C2).

6. Compute P(C1,C2), P(C1,~C2) and P(~C1,C2) using equation (2).
7. Compute the similarity degree using equation (1). This similarity degree is called

instance similarity degree as we use instances to calculate.
8. For each relationship between C1 and C2, compute similarity between relationship

RC1 and RC2.
()

()
()typeRtypeR*Simw

ycardinalitRycardinalitR*SimwnameRnameR*Simw
RRSim

CC

CCCC

CC

213

212211

21

,
),(,

,
++=

9. Calculate Relationship Similarity Degree.

2

21

1

degRe

 Conships in of relati to number for i
 and CCn concept onship i i of relatisimilarity

reey similaritlationship

=
∏=

10.Calculate the similarity between C1 and C2.
() reerity hip simila*relationswreeity ce similar*insw,CCSim degdegtan 2121 +=

3.3 Comparison between Two Ontologies O1 and O2

Below is the methodology to compare two ontologies; OntologyMapping() is our
mapping function and NewMapping() is a procedure call that is invoked when
mapping is performed from scratch.

NewMapping()
{
 Extract the candidate concepts as Section 3.1.
 For each candidate found in section 3.1

 Computer
()
()21

21

CCP
CCP

∪
∩

 as Section 3.2

 If the highest similarity degree > threshold,
 Mapping is found.
 Else
 Mapping is failed.
}

8 C. Y. Kong, C. L. Wang, F. C. M. Lau

4 Evaluation

This section gives the implementation details and the evaluation of the proposed
online ontology mapping mechanism. The matching mechanism has been
implemented using Java language. It takes two ontologies, the instances of the two
ontologies and the request instance as inputs. A configuration file is used by users to
define the weights and thresholds. The concepts presented in the request instance are
matched with the second ontology. The first ontology defines the concepts used in the
request instance. A matching table with the concepts in the request instance and the
concepts in the second ontology are outputted. We used Semantic Web Research
Community (SWRC) ontology [12] as the first ontology for our mapping experiment.
Based on the SWRC ontology, we manually created the second ontology, the

Ontology Mapping (Ontology O1, Ontology O2)
{
 Search history mapping record.
 If O1 and O2 have been mapped,
 If O1 and O2 have the same last modified date
 (version number) as the history record,
 For each concept Ci in the instance,
 If O2 is mapped to Ci in the record,
 Mapping is found.
 Else
 Invoke NewMapping().
 Else
 For each concept Ci in the instance,
 If O2 is mapped to Ci in the record,

 Compute
()
()21

21

CCP
CCP

∪
∩

 as Section 3.2 for

 Ci and the mapped concept in O2.
 If similarity degree > threshold,
 Existing mapping is reused.
 Else
 Invoke NewMapping().
 Else
 Invoke NewMapping().
 Else
 Invoke NewMapping().
 Update number of instances and concepts
 encountered.
 For each new mapping found,
 Add <concept in O1, concept in O2, similarity
 degree,instance count> in history record.
}

Ontology Mapping in Pervasive Computing Environment 9

instances of the two ontologies and the request instances. The accuracy of the
mapping is defined as the percentage of the mappings from using our matching
mechanism that match the manual mappings.

We have divided the evaluation into two parts. The first experiment is to compare
our online ontology mapping mechanism with the source based mapping mechanism.
We manually created the second ontology with the concepts and their properties
having names similar to the SWRC ontology. Source based mapping mechanism has
an accuracy of over 90% while our matching mechanism has an accuracy of about
80%. Our matching mechanism is less accurate due to some of the instances having
totally different content, for example, the information about a person. However, our
matching mechanism is faster than the source based mapping mechanism. The source
based mapping mechanism uses 10 seconds to find a one-to-one corresponding
mapping between the concepts in the two ontologies. If we do not take instances into
consideration in our matching mechanism (by setting the weights of similarity of
instance to zero), our solution needs just 6 seconds to map the request instance with
the second ontology, where the request instance contains 6-8 concepts out of 24
concepts in the SWRC ontology. If we take instances into consideration, it uses about
20 seconds to map the request instance with the second ontology.

The second experiment is to compare our online ontology mapping mechanism
with the instance-based ontology mapping mechanism. We manually created similar
content of the instances of the two source ontologies with most of the names of the
concepts and the attributes being different. We found that our matching mechanism is
much faster than instance-based ontology mapping with similar accuracy (about
70%). We also created content of the instances that are highly different. Our match
mechanism has about 40% accuracy which is two times more accurate than the
instance-based ontology mapping mechanism as we have also considered the names
of the concepts, attributes and the relationships of the concept.

Our matching mechanism can perform faster than source based ontology mapping,
while achieving the same level of accuracy. The accuracy of our matching mechanism
for the first experiment can be further improved (>85%) by increasing the weightings
of the similarity of the names of the concepts and the attributes. Our matching
mechanism is more accurate and more efficient than instance based ontology
mapping. Our solution can achieve better space efficiency. Based on the experiments
we have done, we use about 2K memory to store 10 instances of a concept. Instance
based ontology mapping needs to use at least 30 instances in order to achieve a high
accuracy [10]. That means instance-based ontology mapping should use at least 144K
for storing 30 instances for each concept in the SWRC ontology. Our matching
mechanism does not require storing the instances. We use a history record that stores
the total number of instances and concepts that have been mapped, which takes up
only a few K’s of memory.

5 Conclusion and Future Work

In this paper, we have identified four challenges of ontology mapping in pervasive
computing environment. They are online mapping, efficiency, space limitation and

10 C. Y. Kong, C. L. Wang, F. C. M. Lau

knowledge propagation. We have proposed an online mapping mechanism to respond
to these challenges. The proposed mechanism takes similarities of concept names, and
properties of concepts and their relationships into consideration during mapping. It
attaches a weighting to each similarity to suit different types of ontologies. The
mechanism does not require finding a one-to-one corresponding mapping of concepts
between two ontologies, which helps increase the efficiency. To be space efficient, it
uses history records to store the information about the instances instead of storing all
the instances. The history records can be propagated to other places for knowledge
propagation. More experiments are required to prove the space efficiency for our
matching mechanism.

References

1. M. Satyanarayanan. Pervasive computing: Vision and Challenges. IEEE Personal
Communications, p.10-17. August, 2001.

2. T. R. Gruber. A translation approach to portable ontology specifications. Knowledge
Aceuisition 5, p.199-220.

3. N. F. Noy and D. L. McGunness. Ontology Development 101: A Guide to Creating Your
First Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05
and Standard Medical Informatics Technical Report SMI-2001-0880. March, 2001.

4. H. Chen, T. Finin and A. Joshi. Using OWL in a Pervasive Computing Broker. In
Proceedings of Workshop on Ontologies in Agents Systems, held in conjunction with the
2nd International Joint Conference on Autonomous Agents and Multi-Agent Systems.
July, 2003.

5. M. Roman, C.Hess, R. Cerqueira, A. Ranganathan, RH Campbell, K. Nahrstedt. Gaia: A
Middleware Infrastructure for Active Spaces. IEEE Pervasive Computing Vol. 1, No. 4,
p. 74-83. October – December, 2002.

6. N. F. Noy and M. A. Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. In 17th National Conferences on Artificial Intelligence (AAAI-
2000). 2000.

7. D. L. McGuinness, R. Fikes, J. Rice and S. Wilder. An environment for merging and
testing large ontologies. In A. G. Cohn, F. Giunchiglia and B. Selman, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the 17th International
Conference (KR2000). 2000.

8. P. Mitra, G. Wiederhold and M. Kersten. A graph-oriented model for articulation of
ontology interdependencies. In Proceedings Conferences on Extending Database
Technology 2000 (EDBT’2000). 2000.

9. G. Stumme and A. Mädche. FCA-Merge: Bottom-up merging of ontologies. In 7th
International Conference on Artificial Intelligence (IJCAI’01), p. 225-230. 2001.

10. Doan, J. Madhavan, P. Domingos and A. Halevy. Learning to map between ontologies
on the semantic web. In 11th International WWW Conference. 2002

11. Jeff Heflin. Web Ontology Language (OWL) Use Cases and Requirements. February,
2004. (http://www.w3.org/TR/2004/REC-webont-req-20040210/).

12. Web Research Community (SWRC) http://ontobroker.semanticweb.org/ontologies/swrc-
onto-2001-12-11.daml/.

