
1

Load Balancing in
Distributed Web Server Systems

With Partial Document Replication

Ling Zhuo, Cho-Li Wang and Francis C. M. Lau
Department of Computer Science and Information Systems

The University of Hong Kong
Presented by: Cho-Li Wang

2

Outline
♦ Introduction

– Extensible Distributed Web Server (EDWS)
♦Document Distribution in DWS
♦Three Algorithms

– Greedy-cost
– Greedy-load/cost
– Greedy-penalty

♦Performance Evaluation
♦Conclusion & Future Work

3

The Challenges
♦ 1996: Netscape Web site (November):

– 120M hits per day
♦ 1998: Olympic Winter Games (Japan):

– 634.7M (16 days), peak day 57M.
♦ 1999: Winbledon,

– 942 M hits (14 days), peak day 125M, (> 7K
hits/sec)

♦ 2000: Olympic Games 2000 :
– peak day 502.6 M, peak 10K/s

4

The Challenges
♦ More people are getting online

– How many online: 407 million in November 2000 to 544
million in February 2002.

– More broadband users: 57% of the workers in U.S
access Internet via broadband in office. The figure will
be more than 90% by 2005. Home broadband user will
also increase from less than 9M 2001 to over 55M by
2005 [IDG report]

The increasing popularity of the World Wide Web
has resulted in large bandwidth demands which
translate into high latencies (response time)
perceived by Web users.

5

Ways To Reduce Response Time

♦ Web Proxy Caching
– Web Proxy (e.g., Squid)

♦ More Powerful Web Server
– A monolithic Web Server

• advance hardware support (E.g., SMP, faster
backbone network) and optimized server software
(E.g., JAWS, Flash,…)

– A Cluster Web Server :
• With high-speed load balancing switch (Layer 7/4

dispatching), Cooperative Caching,..
• E.g., SWEB, LARD, LVS+Apache, and HKU’s p-

Jigsaw and Cyclone.

6

Extensible Distributed Web Server
(EDWS)

Server
node

Server
node

Internet

client

client

Central server
node

Server
node

Client

Request
redirection
(1st time)

client
Master Request

Redirector Allow new server nodes
to be added

7

Extensible Distributed Web Server

♦ Main Features of EDWS
– Traffic/Load is distributed over multiple server

nodes
– Allow servers to be added or removed.
– No full mirroring of Web site documents
– Using standard HTTP Redirection protocol for

routing the Web requests
– Periodically replicate and re-distribute

documentations among servers based on
access record of last period and the current
configuration to achieve load balancing.

8

Document Distribution Scheme

♦Document distribution scheme:
– Rules that determine how documents

are replicated and placed in a DWS
♦Performance Issues

– Load balancing
– Communication cost of document

redistribution

9

Existing Schemes
♦ Full replication : NCSA server

– Waste of storage resources
– DNS-based dispatching : Partial control on incoming

requests
♦ Non replication : DCWS, SWEB

– Content-aware routing : Bottleneck in the central
dispatcher

– Load balancing through Document Migration; can not
deal with “hot” documents.

♦ Partial replication :
– Content-based routing
– Load balancing through statically or dynamically

replication and redistribution of documents based on
current global load status

10

Existing Partial-replication Schemes

♦ Dynamic Approaches
– Documents are dynamically replicated based on

current global load status
– E.g., DC-Apache (Univ. of Arizona), P-Jigsaw Parallel

Web Server (HKU), WhizzTech’s WhizzBee.
♦ Static Approaches

– Documents are replicated and placed statically based
on past access pattern

– E.g., RobustWeb
♦ Disadvantage

– Cannot achieve good load balancing
– Traffic caused by updating the document replication

and distribution is rarely discussed

11

Overview of Document
Distribution Scheme in EDWS

♦ Main Steps :
– Analyzing the access log files, and computing

the weight of each document
w = access rate in the last period * size

• representing the predicted workload a document to
bring to the EDWS

– Apply the density algorithm to compute the
replica number of each document with the
consideration of disk space limit

– Distributing the documents and their replicas
to the server nodes

12

Storage Limit vs. Load Balancing

Each Document

size

Each Server

Storage Limitation Weight
Limitation

size
weight

weight

13

Density Algorithm
♦ A document’s “density” represents the

predicted workload per unit storage of a
document brings to a server (You can
view it as “popularity”).

d = w / size of the document
♦ Number of replicas proportional to density

– Duplicate more copies for frequently requested
documents (“hot pages”) -- More effective for
load balancing

♦ Maximize storage utilization:
– Replicating as many documents as the storage

capacity allows

14

Density Algorithm
Input: di, si, C, M, N, Output: ci (i =1, …N)
Variables: S, total size of document

S_disk, available disk space;
dmin, minimal density
temp_S, total size of temporary replicas
temp_ci, temporary number of replicas

Main Steps:
1.compute S, S_disk = M * C - S
2.sort documents by decreasing density di,and find dmin
3.for i = 1 to N {temp_ci = di / dmin }

compute temp_S
4.for i = 1 to N {

ci = temp_ci * S_disk / temp_S /* scaling */
if (ci >= M-1){

ci = M-1, temp_S = temp_S – temp_ci * si
S_disk = S_disk – ci * si }}

5.finally decide ci (i = 1,…N) /* ++ci */

15

Distributing the Replicas
♦ Main goals

– Balancing the load among the server nodes
– Minimizing document redistribution traffic

♦ Method:
– A “cost link” is constructed between each

document and each server
– cost link (redistribution cost) =

• 0 (if local) or
• the size of the document (if remote)

♦ Optimization Problem:
– NP-hard, see a brief proof in the paper

16

Problem Formulation
♦ N documents, M servers
♦ Each document has size of si and number of

replicas ci , i = 1,…N.
♦ “cost link” pij : the number of bytes to be

transferred if document i is assigned to server j;
for i = 1,…N and j = 1,…M

♦ Replica assignment: tij
l (l = 1,…ci),

– 1 if lth replica of ith document is placed on jth server;
otherwise 0.

♦ The determination of ci is under the limitation of
total storage, i.e., .

1

() *
N

i i
i

s c M C
=

∗ ≤∑

17

Cost Link : An Example

C

Server 2

B

C
Server 1

A

A

0
Size of A

PA1 = 0
PA2 = size of A

N documents, M servers. Each document has size of
si and number of replicas ci , i = 1,…N.
“cost link” pij : the number of bytes to be transferred

if document i is assigned to server j; for i = 1,…N
and j = 1,…M

18

Cost Link
B

0 Size of B

B

C
Server 1

A C

Server 2

PB1 = 0
PB2 = size of B

19

Cost Link
C

0 0

B

C
Server 1

A C

Server 2

PC1 = 0
PC2 =0

20

Algorithm 1 : Greedy-cost (GC)
♦ Basic idea:

– Minimizing redistribution cost by keeping as
many documents as where they are located

– No consideration of load balancing
– No guarantee hot pages are fully duplicated

♦ How ?
– Sort the pairs (document, server node) by the

value of “cost link” (pij) between them,
increasingly, and distribute the documents in
this order

♦ Possible Disadvantages:
– Cannot adapt to the change of access pattern

quickly

21

Algorithm 1 : Greedy-cost (GC)
Input: ci, si, pij, C, M, N
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci)
1.sort (i, j) pairs by increasing cost, pij

2.for each (i, j) in the sorted list{
if (ci > 0) {
allocate a replica to server j if it has
enough space and tij

l = 0 (l = 1,…ci).
ci = ci – 1 }}

22

Algorithm 2 : Greedy-load/cost
♦ Basic idea:

– Mainly consider the load balancing
– Enforce popular Web pages being fully duplicated
– Also consider the redistribution cost

♦ How ?
– Sort the documents by their densities decreasingly and

distribute the documents in this order -- process
popular web pages first .

– For each document i, sort the cost link pij increasingly,
and select the top ci servers in this order.

– If same cost link value, select the server assigned with
least workload at that time (enhance load balancing).

♦ Possible Disadvantages:
– May not effectively reduce redistribution cost based on

the above process order as it proposes.

23

“Penalty” due to different processing order :

At time t1 At time t2

Server 2

0

Size of B

D

Server 1

Server 2

Server 1
0

Size of B

A

D

Delay distributing B until time t2, server 1 may
already be almost full. Penalty = size of B – 0

C

A

C BB

24

Algorithm 3 : Greedy-penalty
♦ Basic idea:

– Reduce the total traffic by determining a certain
documents distribution order -- General Assignment
Problem

♦ How ?
– Sort the documents by their densities decreasingly
– At each loop, for each remaining replica set i, we

compute penalty, fi as the difference in the costs of its
best and second best placements that incurs less
communication cost.

– Select and process the replica set with least penalty
(favor smaller page) and distribute it and its replicas.

♦ Disadvantage:
– More computation needed: each loop we need to find

the document with least penalty.

25

Algorithm 3 : Greedy-penalty
Input: ci, pij, si, C, M, N
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci)
Variables: fj, penalty for document i (i = 1,…N)
while there are unassigned replica sets {
for each unassigned replica set i{

if only ci server nodes have enough storage to
hold document i{ allocate replica set i

goto while /* completed */}
else { sort servers by increasing cost with

document i, pij.
compute fi }}

Sort replica sets in decreasing penalty, fi
Allocate the replica set with minimal fi in its
best placement}

26

Time Complexity
♦ Greedy-cost

♦ Greedy-load/cost

♦ Greedy-penalty

(log)MN MN MNΘ +

(log)NM MΘ

2(log log)N N NM MΘ +

27

Experiment Setup
♦ Use the CSIM 18 package
♦ Homogeneous server nodes
♦ Disk seek time : 19 ms
♦ Disk transfer rate : 21 MB/s
♦ Initially, Web documents are randomly

placed on the server nodes without
replication.

♦ Documents distribution activated every 3
hours.

28

Dynamic Scheme
♦For comparison, we simulate the DC-

Apache (DC):
– Periodically (every 10 minutes), check

global load status
– Replicate documents from overloaded

server (load is 50% higher than average
load)

– Revoke documents from under-loaded
server (load is lower than average load)

29

Metrics
♦Load Balancing Metric (LBM):

– Record the peak-to-mean ratio of server
utilization every sampling period (10
minutes)

– Smaller LBM better load balancing
♦Average total traffic per period

30

Data Sets
♦ Two real traces of Web access

– Data Set 1 : a website used for hosting
personal home pages,

– Data Set 2 : The Internet Traffic Archive.
♦ Documents in the same directory are

grouped and these groups are used as
basic units of replication and distribution

♦ Duration of dataset: one day

31

Load Balancing vs. Disk Capacity
C : the storage capacity of each server node
S : the total size of the documents

1

2

3

4

5

1/16 1/8 1/4 1/2 1

C / S
LB

M

GL/C

GC

GP

DC

1

1.5

2

2.5

3

1/16 1/8 1/4 1/2 1

C / S

LB
M

GL/C

GC

GP

DC

Data Set 1 (16 server nodes) Data Set 2 (16 server nodes)

GL/C and GP are better than GC. DS is the worst -- doesn’t
fully utilize the available disk space.

32

Load Balancing vs. No. of Servers
Fixed storage capacity (C = 1/8 S)
Scale the no. of servers : M= 16 ~256

1

2

3

4

5

16 32 64 128 256

no. of servers

LB
M

GL/C

GC

GP

1

1.5

2

2.5

16 32 64 128 256
no. of servers

LB
M

GL/C

GC

GP

3

Data Set 1 (C / S = 1/8) Data Set 2 (C / S = 1/8)

GL/C and GP are still close when the node number is not very large.
When more than 128 nodes, GL/C appears to deteriorate faster than GP.

33

Average Traffic vs. Disk Capacity

• GC incurs the least cost.
• GP is better than GL/C, but when the storage capacity is

large, the traffic caused by GL/C and GP is almost the same.

������
������

������
������

������

������
������

������
������

������

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

������
������

������

�����
�����

������
������

������

������
������

������
������

������

������
������

������
������

������
������

������
������

������
������

������
������

������

������
������

������

0

1

2

3

4

5

1/8 1/4 1/2 5/8 15/16

C / S

Av
er

ag
e

Tr
af

fic
 /

S GL/C

�����

GC

�����
����� GP

DC

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������

������
������

������
������

������

�����
�����

�����
�����

�����
�����

�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

0

0.3

0.6

0.9

1.2

1.5

1/8 1/4 1/2 5/8 15/16

C / S

Av
er

ag
e

Tr
af

fic
 /

S GL/C

�����
����� GC

�����

GP

DC

Data Set 1 (16 nodes)

Data Set 2 (16 nodes)

34

Average Traffic vs. No. of Servers

������

�������
�������

�������
�������

�������

�������
�������

�������
�������

�������
�������

������
������

������
������

������
������

������
������

������
�������������

�������
�������

�������
�������

�������

��������
��������

��������
��������

��������
��������

��������

��������
��������

��������
��������

��������
��������

��������
��������

��������
��������

��������
��������

��������

0
2
4
6
8

10
12
14
16

16 32 64 128 256
no. of servers

A
ve

ra
g

e
 T

ra
ffi

c
/ S

GL/C

������

GC

������

GP

������

�������
�������

�������
�������

�������

�������
�������

�������
�������

�������
�������

������
������

������
������

������
������

������
������

������
������

�������������

�������
�������

������
������

������

�������
�������

�������
�������

�������
�������

�������
�������

�������
�������

�������
�������

�������
�������

�������
�������

�������
�������0

1
2
3
4
5
6
7
8

16 32 64 128 256
no. of servers

A
ve

ra
g

e
 T

ra
ffi

c
/ S

GL/C

������
������ GC

������

GP

Data Set 1 (C / S = 1/8)

Data Set 2 (C / S = 1/8)

GC still causes least traffic, and the traffic caused by GL/C
and GP get closer as the number of nodes increases.

35

Conclusions
♦Compared with the dynamic scheme,

our document distribution scheme
can
– Achieve better load balancing
– Generate less internal traffic
– Provide better Web service

36

Conclusions
♦Greedy-cost

– Generally, worst load balancing and
least internal traffic

– Easiest to be affected by initial
placement of documents

♦Greedy-load/cost
– Generally, best load balancing
– More traffic than Greedy-penalty
– Least computation

37

Conclusions
♦Greedy-penalty

– Most stable load balancing performance
– Most computation

♦A suitable algorithm can be chosen
according to the practical situation of
a EDWS system

38

Future Work
♦An on-line algorithm

– Achieve similar load balancing
– Further reduce internal traffic

♦Proximity-aware algorithm
– Achieve both network proximity and

load balancing
♦Document distribution scheme for

heterogeneous EDWS systems

	Load Balancing in Distributed Web Server Systems With Partial Document Replication
	Outline
	The Challenges
	The Challenges
	Ways To Reduce Response Time
	Extensible Distributed Web Server (EDWS)
	Extensible Distributed Web Server
	Document Distribution Scheme
	Existing Schemes
	Existing Partial-replication Schemes
	Overview of Document Distribution Scheme in EDWS
	Storage Limit vs. Load Balancing
	Density Algorithm
	Density Algorithm
	Distributing the Replicas
	Problem Formulation
	Cost Link : An Example
	Cost Link
	Cost Link
	Algorithm 1 : Greedy-cost (GC)
	Algorithm 1 : Greedy-cost (GC)
	Algorithm 2 : Greedy-load/cost
	“Penalty” due to different processing order :
	Algorithm 3 : Greedy-penalty
	Algorithm 3 : Greedy-penalty
	Time Complexity
	Experiment Setup
	Dynamic Scheme
	Metrics
	Data Sets
	Load Balancing vs. No. of Servers
	Average Traffic vs. Disk Capacity
	Conclusions
	Conclusions
	Conclusions
	Future Work

