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Outline
♦ Introduction

– Extensible Distributed Web Server (EDWS)
♦Document Distribution in DWS
♦Three Algorithms

– Greedy-cost
– Greedy-load/cost
– Greedy-penalty

♦Performance Evaluation
♦Conclusion & Future Work
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The Challenges
♦ 1996: Netscape Web site (November): 

– 120M hits per day
♦ 1998: Olympic Winter Games (Japan):

– 634.7M (16 days), peak day 57M.
♦ 1999: Winbledon, 

– 942 M hits (14 days), peak day 125M,  (> 7K 
hits/sec)

♦ 2000: Olympic Games 2000 : 
– peak day 502.6 M, peak 10K/s
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The Challenges
♦ More people are getting online

– How many online: 407 million in November 2000  to 544  
million in February 2002. 

– More broadband users: 57% of the workers in U.S 
access Internet via broadband in office. The figure will 
be more than 90% by 2005. Home broadband user will 
also increase from less than 9M 2001 to over 55M by 
2005 [IDG report]

The increasing popularity of the World Wide Web 
has resulted in large bandwidth demands which 
translate into high latencies (response time) 
perceived by Web users. 
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Ways To Reduce Response Time

♦ Web Proxy Caching
– Web Proxy (e.g., Squid)

♦ More Powerful Web Server
– A monolithic Web Server 

• advance hardware support (E.g., SMP, faster 
backbone network) and optimized server software 
(E.g., JAWS, Flash,…)

– A Cluster Web Server : 
• With high-speed load balancing switch (Layer 7/4 

dispatching), Cooperative Caching,..
• E.g., SWEB, LARD, LVS+Apache, and HKU’s p-

Jigsaw and Cyclone. 
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Extensible Distributed Web Server

♦ Main Features of EDWS 
– Traffic/Load is distributed over multiple server 

nodes
– Allow servers to be added or removed.
– No full mirroring of Web site documents
– Using standard HTTP Redirection protocol for 

routing the Web requests
– Periodically replicate and re-distribute 

documentations among servers based on 
access record of last period and the current 
configuration to achieve load balancing.



8

Document Distribution Scheme

♦Document distribution scheme: 
– Rules that determine how documents 

are replicated and placed in a DWS
♦Performance Issues

– Load balancing 
– Communication cost of document 

redistribution
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Existing Schemes
♦ Full replication : NCSA server

– Waste of storage resources
– DNS-based dispatching : Partial control on incoming 

requests
♦ Non replication : DCWS, SWEB

– Content-aware routing : Bottleneck in the central 
dispatcher

– Load balancing through Document Migration; can not 
deal with “hot” documents.

♦ Partial replication :
– Content-based routing
– Load balancing through statically or dynamically 

replication and redistribution of documents based on 
current global load status
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Existing Partial-replication Schemes

♦ Dynamic Approaches
– Documents are dynamically replicated based on 

current global load status
– E.g., DC-Apache (Univ. of Arizona), P-Jigsaw Parallel 

Web Server  (HKU), WhizzTech’s WhizzBee.
♦ Static Approaches

– Documents are replicated and placed statically based 
on past access pattern 

– E.g., RobustWeb
♦ Disadvantage

– Cannot achieve good load balancing
– Traffic caused by updating the document replication 

and distribution is rarely discussed
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Overview of Document 
Distribution Scheme in EDWS

♦ Main Steps :
– Analyzing the access log files, and computing 

the weight of each document
w = access rate in the last period * size 

• representing the predicted workload  a document to 
bring to the EDWS

– Apply the density algorithm to compute the 
replica number of each document with the 
consideration of disk space limit

– Distributing the documents and their replicas 
to the server nodes 
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Storage Limit vs. Load Balancing

Each Document 

size

Each Server

Storage Limitation Weight
Limitation

size
weight

weight



13

Density Algorithm
♦ A document’s “density” represents the 

predicted workload per unit storage of a 
document brings  to a server (You can 
view it as “popularity”). 

d = w / size of the document
♦ Number of replicas proportional to density

– Duplicate more copies for frequently requested 
documents (“hot pages”) -- More effective for 
load balancing

♦ Maximize storage utilization: 
– Replicating as many documents as the storage 

capacity allows
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Density Algorithm
Input: di, si, C, M, N, Output: ci (i =1, …N)
Variables: S, total size of document 

S_disk, available disk space;
dmin, minimal density
temp_S, total size of temporary replicas
temp_ci, temporary number of replicas

Main Steps:
1.compute S, S_disk = M * C - S
2.sort documents by decreasing density di,and find dmin
3.for i = 1 to N {temp_ci = di / dmin }

compute temp_S
4.for i = 1 to N { 

ci = temp_ci * S_disk / temp_S  /* scaling */
if (ci >= M-1){

ci = M-1, temp_S = temp_S – temp_ci * si
S_disk = S_disk – ci * si }}

5.finally decide ci (i = 1,…N)    /* ++ci */ 



15

Distributing the Replicas
♦ Main goals

– Balancing the load among the server nodes
– Minimizing document redistribution traffic

♦ Method:
– A “cost link” is constructed between each 

document and each server
– cost link (redistribution cost) = 

• 0  (if local) or 
• the size of the document (if remote)

♦ Optimization Problem: 
– NP-hard, see a brief proof in the paper
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Problem Formulation
♦ N documents, M servers 
♦ Each document has size of si and number of 

replicas ci ,  i = 1,…N.
♦ “cost link” pij : the number of bytes to be 

transferred if document i is assigned to server j; 
for i = 1,…N and j = 1,…M

♦ Replica assignment: tij
l (l = 1,…ci), 

– 1 if lth replica of ith document is placed on jth server; 
otherwise 0. 

♦ The determination of ci is under the limitation of 
total storage, i.e., . 

1

( ) *
N

i i
i

s c M C
=

∗ ≤∑
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Cost Link : An Example
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Cost Link
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Algorithm 1 : Greedy-cost (GC)
♦ Basic idea: 

– Minimizing redistribution cost by keeping as 
many documents as where they are located

– No consideration of load balancing
– No guarantee hot pages are fully duplicated

♦ How ?
– Sort the pairs (document, server node) by the 

value of “cost link” ( pij ) between them, 
increasingly, and distribute the documents in 
this order

♦ Possible Disadvantages: 
– Cannot adapt to the change of access pattern 

quickly
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Algorithm 1 : Greedy-cost (GC)
Input: ci, si, pij, C, M, N
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci)
1.sort (i, j) pairs by increasing cost, pij

2.for each (i, j) in the sorted list{
if (ci > 0) { 
allocate a replica to server j if it has 
enough space and tij

l = 0 (l = 1,…ci).
ci = ci – 1 }}
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Algorithm 2 : Greedy-load/cost
♦ Basic idea: 

– Mainly consider the load balancing
– Enforce popular Web pages being fully duplicated
– Also consider the redistribution cost

♦ How ?
– Sort the documents by their densities decreasingly and 

distribute the documents in this order -- process 
popular web pages first .

– For each document i, sort the cost link pij increasingly, 
and select the top ci servers in this order.

– If same cost link value, select the server assigned with 
least workload at that time (enhance load balancing).  

♦ Possible Disadvantages:
– May not effectively reduce redistribution cost based on 

the above process order as it proposes.



23

“Penalty” due to different processing order :
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Algorithm 3 : Greedy-penalty
♦ Basic idea: 

– Reduce the total traffic by determining a certain 
documents distribution order -- General Assignment 
Problem

♦ How ? 
– Sort the documents by their densities decreasingly 
– At each loop, for each remaining replica set i, we 

compute penalty, fi as the difference in the costs of its 
best and second best placements that incurs less 
communication cost.  

– Select and process the  replica set with least penalty
(favor smaller page) and distribute it and its replicas.

♦ Disadvantage:
– More computation needed: each loop we need to find 

the document with least penalty. 
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Algorithm 3 : Greedy-penalty
Input: ci, pij, si, C, M, N
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci)
Variables: fj, penalty for document i (i = 1,…N)
while there are unassigned replica sets {
for each unassigned replica set i{

if only ci server nodes have enough storage to 
hold document i{ allocate replica set i

goto while /* completed */}
else { sort servers by increasing cost with 

document i, pij.
compute fi }}

Sort replica sets in decreasing penalty, fi
Allocate the replica set with minimal fi in its 
best placement}
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Time Complexity
♦ Greedy-cost

♦ Greedy-load/cost

♦ Greedy-penalty

( log )MN MN MNΘ +

( log )NM MΘ

2( log log )N N NM MΘ +
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Experiment Setup
♦ Use the CSIM 18 package
♦ Homogeneous server nodes
♦ Disk seek time : 19 ms
♦ Disk transfer rate : 21 MB/s
♦ Initially, Web documents are randomly 

placed on the server nodes without 
replication. 

♦ Documents  distribution activated every 3 
hours. 
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Dynamic Scheme 
♦For comparison, we simulate the DC-

Apache  (DC):
– Periodically (every 10 minutes), check 

global load status
– Replicate documents from overloaded 

server (load is 50% higher than average 
load)

– Revoke documents from under-loaded 
server (load is lower than average load)
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Metrics
♦Load Balancing Metric (LBM): 

– Record the peak-to-mean ratio of server 
utilization every sampling period (10 
minutes) 

– Smaller LBM better load balancing 
♦Average total traffic per period
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Data Sets
♦ Two real traces of Web access

– Data Set 1 : a website used for hosting 
personal home pages, 

– Data Set 2 : The Internet Traffic Archive. 
♦ Documents in the same directory are 

grouped and these groups are used as 
basic units of replication and distribution

♦ Duration of dataset: one day
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Load Balancing vs. Disk Capacity
C : the storage capacity of each server node 
S : the total size of the documents
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GL/C and GP are better than GC. DS is the worst -- doesn’t 
fully utilize the available disk space. 
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Load Balancing vs.  No. of Servers
Fixed storage capacity (C = 1/8 S)  
Scale the no. of servers : M= 16 ~256
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GL/C and GP are still close when the node number is not very large. 
When more than 128 nodes, GL/C appears to deteriorate faster than GP. 
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Average Traffic vs. Disk Capacity

• GC incurs the least cost. 
• GP is better than GL/C, but when the storage capacity is 

large, the traffic caused by GL/C and GP is almost the same. 
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Average Traffic vs. No. of Servers
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GC still causes least traffic, and the traffic caused by GL/C 
and GP get closer as the number of nodes increases.
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Conclusions
♦Compared with the dynamic scheme, 

our document distribution scheme 
can
– Achieve better load balancing
– Generate less internal traffic
– Provide better Web service
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Conclusions
♦Greedy-cost

– Generally, worst load balancing and 
least internal traffic

– Easiest to be affected by initial 
placement of documents

♦Greedy-load/cost
– Generally, best load balancing
– More traffic than Greedy-penalty
– Least computation
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Conclusions
♦Greedy-penalty

– Most stable load balancing performance
– Most computation

♦A suitable algorithm can be chosen 
according to the practical situation of 
a EDWS system
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Future Work
♦An on-line algorithm

– Achieve similar load balancing
– Further reduce internal traffic

♦Proximity-aware algorithm
– Achieve both network proximity and 

load balancing
♦Document distribution scheme for 

heterogeneous EDWS systems
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