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Abstract

This paper presents a distributed object model called MOIDE (multi-threading object-

oriented infrastructure on distributed environment) for solving irregularly structured prob-

lems. The model creates an adaptive computing infrastructure for developing and executing

irregular applications on distributed systems. The infrastructure allows dynamic reconfigura-

tion to match the evolution of irregular computation and available system resources. A unified

communication mechanism is built to integrate different communication paths on heteroge-

neous systems to support efficient communication. Autonomous load scheduling approach

is proposed for dynamic load balancing. A runtime system is developed to implement

MOIDE-based computing. Applications including N -body problem, ray tracing, and conju-

gate gradient are developed to demonstrate the advantages of the model.
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1. Introduction

Irregularly structured problems are the applications whose computation and com-
munication patterns are input-dependent, unstructured, and evolving during compu-

tation [10,21,26]. Many applications in scientific and engineering computing fields
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such as astrophysics, fluid dynamics, sparse matrix computation, system modeling

and simulation, computer graphics, etc. can be classified as irregularly structured

problems.

Irregularly structured problems possess different irregularities. In general, the ir-

regular and dynamically evolving data distribution in these problems results in non-

predetermined computation pattern and workload. The high data-dependency in some

of the problems even complicates the task decomposition in parallel and distributed

computing. The irregular data distribution and computation also produce irregular

communication pattern, especially on distributed systems. The irregular communica-

tion produces high overhead that severely impairs the performance of computation.

These irregularities need different approaches to tackle, such as special data struc-

ture, dynamic task decomposition and load balancing, and efficient communication

mechanism.
With the rapid advance of high-performance computers and networking techno-

logies, distributed systems have been providing cost-effective environment for the

parallel and distributed computing of large-scale applications. As a powerful meth-

odology, distributed object computing integrates the object-oriented technique with

networking [15,29]. Flexible computing infrastructure can be built based on distri-

buted objects to support efficient computing for irregularly structured problems.

Various methods can be designed and integrated on the object-based infrastructure

to resolve the irregularities in different applications. The methods include runtime
system reconfiguration, dynamic task scheduling, efficient intra- and inter-object

communication mechanism. The polymorphism of distributed objects allows the

infrastructure adaptive to irregular computation pattern and distributed system

architecture.

This paper presents a distributed object model called MOIDE (multi-threading

object-oriented infrastructure on distributed environment) for solving irregularly

structured problems. The MOIDE model creates an adaptive computing infrastruc-

ture called hierarchical collaborative system (HiCS) by distributed objects and multi-
threads for developing and executing applications on distributed heterogeneous

systems. The MOIDE also provides a uniform programming model that is indepen-

dent of particular system architecture for developing applications. In the past, the

researches on irregularly structured problems concentrated on designing the algo-

rithms for specific problems. Differently, our MOIDE model aims to establish a

generic computing infrastructure for solving irregularly structured problems efficiently

on any distributed system. Based on the model, varied mechanisms and approaches

can be developed and integrated for different applications.
Dynamic reconfiguration can be performed on the HiCS at runtime in response to

the evolution of computation pattern and available system resources to enhance the

computing capability of the infrastructure. A unified communication mechanism is

built to seamlessly integrate the local data sharing and remote messaging (i.e., the

remote method invocation between distributed objects) to implement efficient com-

munication on heterogeneous systems. Autonomous load scheduling is proposed as an

approach for the dynamic load balancing in irregular computation.
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Three irregularly structured applications are developed to demonstrate the utiliza-

tion and advantages of the MOIDE model. The N-body method gives a concrete

example of designing data structures and algorithms for irregularly structured prob-

lems based on the model. The ray tracing method adopts the autonomous load

scheduling to achieve high parallelism in computation. The conjugate gradient meth-
od implements efficient vector communication by means of the unified communica-

tion mechanism.

The rest of the paper is organized as follows. Section 2 introduces the irregularly

structured problems. Section 3 describes the MOIDE model and the implementation.

Section 4 presents the N -body method. Section 5 presents the ray tracing method.

Section 6 presents the conjugate gradient method. Section 7 discusses the related

work and Section 8 concludes the paper.
2. Irregularly structured problems

Irregularly structured problems exist in different fields. These problems have dif-

ferent irregularities. However, they have a common characteristic of irregular data

distribution that in turn generates irregular computation and communication pat-

terns [10,21,27]. Generally, irregularly structured problems can be defined as follow-

ing.

Definition 1. An irregularly structured problem is an application whose computation

and communication patterns are input-dependent, unstructured, and evolving during

computation.

Usually, these problems are large-scale, compute-intensive and/or communica-

tion-intensive applications [10,22,25,26,34]. The main features of the problems are:

• unstructured and dynamically evolving data distribution,

• non-predetermined computational workload,

• unstructured and high communication requirement.

These irregular features result in difficulties to the development of high-perfor-

mance parallel and distributed algorithms for the problems. Different approaches

can be devised to resolve the irregular computation and communication. For exam-

ple, complicated data structures such as special forms of trees and graphs can be
employed to represent the unstructured and evolving data distribution and inter-

relationship [1,6,17]. The data structures should be flexible to perform task decom-

position and support data sharing in distributed computing.

The non-predetermined computational workload requires dynamic load balancing
for the computation. A load balancing strategy is closely related to the computation

pattern of an application [9,33]. Global load redistribution is suitable for the
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applications with high data-dependency. Runtime task allocation is suitable for the

applications with low data-dependency.

In a distributed system, inter-process communication is usually accom-

plished through message passing with high communication latency. The high com-

munication overhead in irregularly structured problems severely constrains the
performance of computation. Efficient communication mechanism is required to im-

prove the communication efficiency [9,22]. The communication mechanism should

harness the flexible inter-object interaction methods and the architecture of a distri-

buted system to implement efficient communication. Communication-efficient algo-

rithms should also be designed to reduce the communication overhead in irregular

problems.

A distributed system usually contains heterogeneous nodes with different architec-

ture. A unified computing infrastructure is required to seamlessly integrate the system
resources and provide a uniform environment for the development and execution of

applications. The infrastructure should be able to adaptively map the applications

onto underlying systems [19] so as to fully utilize the system resources and implement

high-performance computing.

Irregularly structured problems include the applications in different fields. For ex-

ample, N-body problem studies the evolution of a physical system containing a great

number of particles (bodies) [5,26,27,31,32]. The bodies impose force influences on

each other that causes continuous body motion. Many physical systems exhibit such
a behavior in astrophysics, plasma physics, molecular dynamics, fluid dynamics, etc.

The irregularity of N -body problem exists in the non-uniform body distribution and

thus the non-predetermined workload in the complicated computation of force influ-

ences. A distributed N -body method should balance the workload among the pro-

cesses using a wise task decomposition strategy. The problem also produces heavy

communication overhead to propagate the information of the bodies. A communi-

cation strategy is needed to reduce the overhead.

Ray tracing is a graph rendering algorithm [8,25] that generates an image from the
description of the objects in a scene. Primary rays emitted from a viewpoint pass

through a screen and enter the scene. When hitting an object, a ray is reflected to

each light source to check if it is shielded from the light source. If not, the light con-

tribution is calculated from the light source to a pixel on the screen. The rays also

spawn new rays by the reflection on the objects. The rendering is recursively per-

formed on the new rays. This is an irregularly structured problem as the generation

of new rays is non-predetermined and the workload of rendering each pixel is highly

diverse.
Sparse matrix computation broadly exists in scientific and engineering computing

such as solving sparse linear systems and partial differential equations. Due to the

unstructured data density in sparse matrix, the computational workload is unbal-

anced in parallel computation. Unstructured vector communication is also included

in the computation. The conjugate gradient (CG) is an iterative method for solving

large sparse linear systems [14]. It includes vector reduction and transposition oper-

ations that incur high communication overhead. In this paper, the three irregular

applications are implemented based on the MOIDE model.
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3. MOIDE: a distributed object model

3.1. Adaptive computing infrastructure

3.1.1. System architecture

The fundamental structure of the MOIDE model is the Hierarchical Collaborative
System (HiCS). It is a runtime computing infrastructure constructed with distributed

objects and multi-threads on the hosts to run an application. Fig. 1 shows the struc-

ture of a hierarchical collaborative system built on four hosts. The HiCS consists of

four objects, one per host. The object on Host 0 is called compute coordinator that is
the first object created on the host where an application is launched for execution.

The compute coordinator acts as the system initiator and coordinator. It uses the

host selection mechanism to select other hosts available in the underlying distributed
system to run the application together. The criterion for the host selection takes into

account the computing power and the workload of a host. The host that can present

the highest performance will be selected first. The selection criterion is defined as:
performance ¼ poweri
workloadi
where poweri and workloadi denote the computing power and the current workload

on host i.
The compute coordinator instantiates an object called compute engine on each of

the selected hosts and allocates a computational task of the application to it. All

compute engines execute the tasks in parallel. The compute coordinator is responsible

for coordinating the computing procedure on the compute engines. It also executes a
computational task to participate in the collaborative computation.
Fig. 1. Hierarchical collaborative system (HiCS).
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If a host is a multi-processor, e.g., an SMP (symmetric multi-processing) node, the

object (referring to the compute coordinator or compute engine hereinafter) created on

the node will generate multi-threads (or called threads) inside in correspondence with

the multi-processors. Assume that in Fig. 1, Host 0 is a dual-processor node; Host 1
is a quad-processor node; Host 2 and Host 3 are single-processor nodes. Thus, the
compute coordinator spawns two threads. The compute engine 1 spawns four

threads. The multi-threads in an object are distributed to run on the multi-processors

in parallel. In the compute coordinator, the original thread (i.e., thread 0) acts as the
system initiator and coordinator. Other threads work in the identical way to receive

and process computational tasks. The registration mechanism records the references

to all objects and threads in the HiCS. The objects and threads can locate each other

through the references in the registration mechanism. The interaction mechanism
implements the inter-object and inter-thread communication.

3.1.2. Multi-threaded computing objects

Constructed with distributed objects and the associated threads, the hierarchical

collaborative system presents a two-level structure. The upper level contains the ob-

jects of compute coordinator and compute engines. The lower level is composed of

the threads in each of the objects. The HiCS is an adaptive infrastructure as the

threads are generated based on the architecture of the selected hosts. Threads are

the light-weight objects that consume less system resources in comparison with the
high-weight objects (i.e., the compute engines). Running multi-threads, instead of

multiple objects, on a multi-processor can improve the computational efficiency.

The multi-threads in an object can work in two modes: cooperative mode and in-
dependent mode depending on the computation pattern of an application. In cooper-

ative mode, the compute coordinator allocates one computational task per compute

engine based on the computing power of the host. If a host is a multi-processor, its

computing power is the total power of all processors. The threads in an object col-

laboratively process a computational task. The cooperative mode is suitable to run
the applications with high data-dependency such as the N -body problem (see Section

4). This mode can maintain high data locality in a multi-threaded object and reduce

the inter-object communication.

In independent mode, the multi-threads in an object work independently. Each

thread runs as a compute engine and processes an individual computational task.

The computational tasks are allocated to each of the threads based on the computing

power of the associated processor. Nevertheless, the threads in an object still occupy

fewer resources than multiple compute engines. The independent mode is suitable for
the applications with low data-dependency in which low communication is required

between the threads. The threads can execute the computational tasks in parallel.

The ray tracing method in Section 5 adopts the independent mode.

3.1.3. Unified communication mechanism

The two-level structure of HiCS provides two communication paths. Shared-data
access is the efficient way through local memory for the communication between the

threads within an object. Remote messaging is the way for the communication
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between distributed objects. The MOIDE model integrates these two paths into a uni-
fied communication mechanism. The mechanism can choose one of the paths to com-

plete the communication with respect to the locations of the communication peers.

The unified communication mechanism is transparent to the applications. The

applications do not need to distinguish the different paths when invoking communi-
cation operations in the programs. A uniform communication interface is built atop

the unified communication mechanism. It provides a library of communication primi-

tives. The applications can call the primitives in identical format, regardless of the

potential communication paths. In the primitives, the sender and receiver are speci-

fied by the logical identifiers (IDs) without any indication of the locations. A logical

ID is assigned to an object or a thread on creation. The logical ID is registered in the

registration mechanism along with the reference of the object or thread. When exe-

cuting a communication primitive, the unified communication mechanism finds the
locations of the communication peers according to the references of them. The proper

communication path can be determined based on the locations. The unified communi-

cation mechanism and interface are included in the interaction mechanism of the

HiCS.

Fig. 2 depicts the unified communication mechanism and interface built on the

HiCS in Fig. 1. Each thread is identified with a logical ID (ID0–ID7). All threads

can call the uniform communication interface. For example, a pair of threads can

call the primitive exchIntArrayðÞ to exchange array of integers:
exchIntArrayðint send ID; int recv ID; int ½� send buf ; int ½� recv buf ;

int send len; int recv len; int statusÞ
send ID logical ID of sender

recv ID logical ID of receiver

send_buf & recv_buf send buffer and receive buffer
Fig. 2. Unified communication mechanism.
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send_len & recv_len amount of data in send buffer and receive buffer

status status of communication

The unified communication mechanism integrates the memory and buffers in each

host and the system-wide network to form a two-level communication structure. As-
sume that in Fig. 2, the thread ID2 is the sender that calls a communication primi-

tive. If the receiver ID given in the primitive refers to a thread in the same compute

engine (i.e., ID3–ID5), the unified communication mechanism will complete the

communication locally by shared-data access. If the receiver is a thread in another

object, the communication will be fulfilled by remote messaging through the net-

work. The unified communication mechanism can improve the communication effi-

ciency on the two-level structure of the HiCS.

3.1.4. Dynamic reconfiguration

A HiCS is built on the selected hosts that are predicated to provide the best per-

formance. However, the hosts can be simultaneously occupied by many users and

applications. The real performance of the hosts is variable at runtime due to the oc-

currence of other users and applications. Moreover, the workload of irregular com-

putation may evolve during the execution. In response to the changes in the

computational workload and the available resources, the HiCS can perform dynamic

reconfiguration to alter its structure or the selected hosts to enhance the performance
in computation.

As an object-oriented and multi-threaded infrastructure, the HiCS has the poly-

morphism to support dynamic reconfiguration. It can conduct system expansion to

incorporate additional compute engine that is created on a new host to handle the

excessive workload appeared at runtime. The system expansion can be made in

two directions: horizontal and vertical. The horizontal expansion is performed by

the compute coordinator that adds a new compute engine to the HiCS. The new

compute engine works in the same way as the existing compute engines to execute
the computational task assigned by the compute coordinator. The vertical expansion
is performed by an overloaded compute engine. If a compute engine is highly over-

loaded to be a bottleneck in the collaborative computation, it can decide by itself to

attach an additional compute engine to share its workload. The additional compute

engine is created on a new host. It works under the control of the overloaded one.

The new compute engine is invisible to the compute coordinator and other compute

engines. The logical structure of the HiCS is unchanged but the computing power

has been improved. In Fig. 3, the new engine on Host 5 represents a horizontal ex-
pansion. The assistant engine on Host 6 is attached to the compute engine 3 as a re-

sult of vertical expansion.

A host may also become overloaded due to the simultaneous occupation by other

users and applications. In this case, the compute coordinator can perform host re-
placement to replace the overloaded host with a new host and transfer the computa-

tional task from the overloaded host to the new one. The compute coordinator

selects a spare or least loaded host in the underlying system and creates a new com-

pute engine on it. Then, the computational task being executed by the compute
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engine on the overloaded host is transferred to the new compute engine on the new

host. The old compute engine is then terminated and removed from the HiCS. In

Fig. 3, the new engine 4 on Host 7 replaces the old compute engine 4 on Host 4 by

host replacement.

The registration mechanism of the HiCS should be updated accordingly in dy-

namic configuration. In horizontal expansion, the reference of the new compute en-
gine is added to the registration mechanism. In vertical expansion, no change should

be made to the registration. In host replacement, the reference of the old compute

engine is replaced by the reference of the new compute engine.

3.2. Uniform programming model

Upon the adaptive computing infrastructure, the MOIDE model provides a

uniform programming model for user to develop applications. An application devel-
oped on the model is independent of any specific system architecture. Nevertheless, it

can be mapped to the system at runtime by creating a HiCS based on the system ar-

chitecture. Fig. 4 shows the composition of the uniform programming model. The

main components are two classes specified for the compute coordinator and compute

engine. Codr is the class of compute coordinator. It calls the class StartEngine at first
that performs host selection and creates the compute engines and the HiCS on the

selected hosts. Then, it instantiates the class of the application code Appl to run
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the computational task. When the execution of an application is completed, the com-

pute coordinator calls the ceaseEngine () method to terminate the compute engines

and finalize the collaborative computation on the HiCS.

The compute engine is an object that is remotely created on another host by the
compute coordinator. According to the convention of distributed object program-

ming, the compute engine is defined as an interface Engine and the implementation

of the interface EngineImpl. The interface declares the methods involved in remote

method invocation. The implementation specifies the attributes of a compute engine

and the code of the methods declared in the interface. The compute coordinator re-

motely invokes the construction method in EngineImpl to instantiate a compute en-

gine. When running on a multi-processor node, the object of compute coordinator or

compute engine will generate a group of threads inside. Then, each compute engine
or thread (if existent) instantiates the application class Appl and runs the code to

execute the computational task.

3.3. Implementation

A runtime system called MOIDE runtime is developed to implement the MOIDE-

based computation on distributed systems. The MOIDE runtime provides the fun-

damental classes and mechanisms specified by the MOIDE model. The runtime is
implemented in Java and RMI [12]. It provides a platform-independent environment

on heterogeneous systems.

Fig. 5 shows the components of the MOIDE runtime. The runtime specifies the

templates of the classes Codr, Engine, EngineImpl, and StartEngine. With the prede-
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fined templates, a programmer only needs to write the application code, i.e., the class

Appl, and let it be called in the compute coordinator and compute engine. The multi-

threads are created in an object as native threads [18] that can be distributed to run

on the multi-processors in parallel with the support of operating systems. The Start-
Engine obtains the resource information from a cluster monitoring tool called Clus-
terProbe [16], which is running on a server to detect the available hosts in the

underlying system and report the parameters such as the number of processors,
memory space, and current workload of the hosts.

The MOIDE runtime implements the unified communication mechanism and the

uniform communication interface. The interface provides a library of communica-

tion primitives, called CommLib. The following primitives are provided in the lib-

rary:

send() send data to an object or a thread

receive() receive data from an object or a thread

broadcast() broadcast data to all objects and threads
exchIntArray() exchange array of integers between two objects or threads

exchDoubleArray() exchange array of doubles between two objects or threads

scatter() scatter data to all objects and threads

allReduce() all-to-all reduction on data among all objects and threads

Synchronization is required to coordinate the computing procedure on distributed

objects and threads. The MOIDE runtime provides two synchronization methods:

(1) the local synchronization method barrier() synchronizes the threads within an ob-
ject; (2) the global synchronization method remoteBarrier() imposes system-wide

synchronization on all objects and threads. The local synchronization is imple-

mented by an integral barrier manipulated by the threads in an object. The threads

exclusively increment the value of the barrier when calling barrier(). Local synchro-
nization is achieved when each thread has incremented the barrier once. The global

synchronization includes the synchronizations on two levels. On the thread level, a

local synchronization barrier() is performed by the threads in each object. Then, each

object enters a locally synchronized state and waits for the invocation from the
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compute coordinator. On the object level, the compute coordinator iteratively polls

the state of each compute engine. If all compute engines have reached the locally

synchronized state, the global synchronization is accomplished. Then, the compute

coordinator signals all compute engines to continue the computation after the syn-

chronization point.
The MOIDE runtime provides the classes for dynamic reconfiguration. The class

ExpandEngine implements system expansion including horizontal expansion and

vertical expansion. The class RecfgEngine implements host replacement. To perform

any kind of system reconfiguration, an object (compute coordinator or compute en-

gine) executes the operations of host selection and object creation as what the com-

pute coordinator did in the creation of the HiCS. The object calls StartEngine to

select a new host and calls the construction method in EngineImpl to create a com-

pute engine on the host. The new compute engine takes part in the computation by
calling the class Appl.

In system expansion, the main methods for horizontal and vertical expansions are

the same. In horizontal expansion, however, the compute coordinator needs to reg-

ister the reference of the new compute engine to the registration mechanism and in-

forms other compute engines of the existence of the new member. In vertical

expansion, the reference of the new compute engine will not be registered but the

compute engine that creates the new engine should inform the compute coordinator

about the enhancement of its computing power. The compute coordinator will allo-
cate a computational task to that compute engine later on according to the enhanced

computing power. In the RecfgEngine, the compute coordinator calls the cease-
Engine() method to terminate the old compute engine and replaces the reference

of the old compute engine with the new one in the registration mechanism.

The MOIDE runtime supports autonomous load scheduling that can evenly distri-

bute the non-predetermined workload of an irregular application to all objects

and threads. The autonomous load scheduling does not require a dedicated task

scheduler. All computational tasks are maintained in a task pool on the side of
the compute coordinator. Each object or thread autonomously fetches a task from

the pool on demand. By the autonomous task fetching, the computational workload

can be gradually distributed to the objects and threads during the execution and

the workload can be automatically balanced on them without load balancing oper-

ation.

The autonomous load scheduling can be implemented by making use of the single-
sided feature of remote method invocation. The inter-object communication can be

activated on one side of the sender or the receiver without the communication oper-
ation issued on the other side. By the single-sided feature, a compute engine or a

thread can take a task from the task pool by itself without the direct involvement

of the compute coordinator. As a result, the computations are carried out asynchro-

nously on all objects and threads so that the highest parallelism can be realized in the

computation.

The MOIDE runtime provides the getTask() method for an object or a thread to

fetch a task from global task pool and the getSubtask() method for a thread to get a

subtask from local subtask queue in a compute engine. The autonomous load sched-



Y. Sun, C.-L. Wang / Parallel Computing 29 (2003) 1539–1562 1551
uling is suitable for the applications with low data-dependency. For more informa-

tion about the implementation of the MOIDE runtime, please refer to [30].
4. Distributed N-body method

A distributed N -body method is developed based on the MOIDE model. N -body

is a compute-intensive and communication-intensive problem that includes high

data-dependency. The straightforward method for N -body problem computes

pair-wide force influence that produces a high computational complexity as

OðN 2Þ. To reduce the complexity, hierarchical methods are designed to compute

the approximated force influence based on the fact that a body requires gradually

less data, in less precision, from the bodies that are farther away [26,27]. The
Barnes–Hut method [5] is a hierarchical approach using a tree structure to represent

the body distribution in a space.

Parallel N -body methods can be designed based on the sequential Barnes–Hut

method. Singh proposed a parallel N -body method based on shared-address-space

model in [26,27]. In this method, concurrent processes collaboratively build a

Barnes–Hut tree (BH tree in short) in shared memory and each process computes

the force influences on a subset of bodies by concurrently traversing on the tree. This

method is only suitable for the shared-memory systems like SMP machines. Another
example is Salmon and Warren’s method designed for distributed-memory system

[32]. This method recursively divides a space into domains. A local essential tree is

built for each domain. As each body needs a fraction of the BH tree in the computa-

tion of force influences, the local essential tree is the union of the tree fractions re-

quired by all bodies in a domain. The method uses data keys and hash table to

map the cells of local essential trees to the memory locations. Each cell is assigned

with a key that is generated from the coordinate of its location in the space.

The key is translated to a memory location through the hash table. The construction
of local essential trees and the search in the hash table are time-consuming opera-

tions.

Our distributed N -body method on the MOIDE model is derived from the

Barnes–Hut method. The method is featured with a distributed tree structure. The
task decomposition, force computation, and dynamic load balancing are all imple-

mented based on the distributed tree structure. The first step of the method is decom-

posing a space into domains. Each domain is assigned to an object that is responsible

for computing the force influences on the bodies in the domain. The space decompo-
sition is realized by partitioning the BH tree. According to the specification of the

BH tree, a body is inserted to the tree according to its location in the space so that

the bodies in neighbor are inserted to the leaves adjacent in the tree. With such a

structure, the BH tree assures the Peano–Hilbert ordering of the bodies on the path

of depth-first traversal [26,27]. The partitioning of the tree divides the leaves into

subsets. The Peano–Hilbert ordering can guarantee that the tree partition by a

depth-first traversal can assign the neighboring bodies (on the leaves) to the same

subset of leaves. The subsets of leaves correspond to the domains in the space.
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The number of bodies in a subset is proportional to the computing power of the tar-

get host.

Fig. 6(a) shows an N -body problem in 2D space. To run this problem on four

hosts (e.g., two quad-processor nodes and two dual-processor nodes), the compute

coordinator builds the BH tree and makes the tree partition as shown in Fig. 6(b).
The leaves are partitioned into four subsets (subset A–D). The order of the leaves

in the depth-first traversal is from the left-most leaf to the right-most leaf, which

is equivalent to the Peano–Hilbert ordering of the bodies in the space as shown in

Fig. 6(a) from the start point to the end. The subsets A–D correspond to the four

domains A–D in the space. As there are totally 48 bodies in the space, a domain al-

located to a quad-processor node contains 16 bodies and a domain to a dual-proces-

sor node contains 8 bodies.

After the space decomposition, the compute coordinator allocates one domain per
compute engine. Each compute engine builds a subtree for the domain assigned to it

using the same approach of building a BH tree and computes the force influences on

the bodies of the domain. All subtrees form a distributed tree structure as shown in

Fig. 6(c). On a SMP node, the multi-threads work in the cooperative mode. They col-

laboratively build a subtree and each thread computes the force influences on a por-

tion of the bodies.

To compute the force influences, an object needs the data of the subtrees on other

objects. If all subtrees are broadcasted among the objects, high communication over-
head will be incurred. In order to share the information of the subtrees at low com-

munication cost, a partial subtree scheme is designed based on the property of the
subset A

subset B subset C

subset D

A

B
C

Dstart
end

(a) (b)

subtree A subtree B subtree C subtree D

(c)

Fig. 6. Space decomposition and distributed tree structure: (a) space decomposition; (b) tree partitioning;

(c) distributed tree structure.
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BH tree. In the tree, a cell (not leaf) is the center of mass in a subspace. The center of

mass can represent the accumulative force influence to a remote body from all bodies

in the subspace (i.e., the leaves beneath it) provided that the distance from the center

of mass to the remote body satisfies the condition: l=d < h, where l is the width of

the subspace; d is the distance from the center of mass to the remote body; h is a user-
defined accuracy parameter (between 0 and 1.0). That means if a body is far enough

from the center of mass, the force influences imposed on the body from all bodies in

a subspace can be approximated by the force influence from the center of mass. This

feature can be harnessed to reduce the data propagation. Instead of a complete sub-

tree from another object, an object requires only a fraction, called partial subtree, of
the subtree. In fact, each object requires different fraction of a subtree, depending on

the distance between two corresponding domains. Thus, an object needs to construct

different partial subtrees from its own subtree and distribute them to other objects.
A partial subtree usually contains fewer cells if the distance between two corre-

sponding domains are far from each other. As the partial subtrees are built based

on the same distance condition as in the force computation, they can provide other

objects with most of the data required in the force computation. However, if an ob-

ject needs more data than a partial subtree supplies, it has to access the complete

subtree in another object by remote method invocation. Even so, the partial subtree

scheme can still reduce the overall communication overhead [30]. The partial sub-

tree scheme is an improvement of our previous scheme in [31], where a partial sub-
tree was simply a duplication of the top levels of a subtree and it was irrelevant to the

distance condition. The modified partial subtree scheme presented here can undoubt-

edly provide more essential data to the objects and reduce the remote subtree access.

Although the idea of the partial subtree scheme is similar to the local essential tree

in Salmon and Warren’s method, our scheme is more suitable for distributed-mem-

ory systems. The scheme of local essential tree needs to examine the distance between

each pair of the bodies between two domains. The construction of local essential tree

should be more time-consuming than the partial subtree. These costs might not be a
significant problem in their method because it was implemented on supercomputers.

On the other hand, our N -body method aims to run on distributed systems where the

communication cost is a decisive factor to the overall performance. The partial sub-

tree scheme can effectively reduce the communication overhead. Moreover, the mo-

tivation of using keys and hash table in their method came from the difficulty in

representing a distributed tree using the pointers in traditional languages such as

FORTRAN 90 and HPF, especially when referring to the cells in a separate memory

space on anther processor. Differently, our method is based on the object-oriented
paradigm and implemented in Java. The distributed tree structure can be readily

constructed by object references. The transmission of partial subtrees can be easily

implemented by remote method invocation.

The N -body method simulates the evolution of a physical system by the iterative

computation of force influences and the resultant body motion. Although the bodies

move forward in small pace, the body motion will eventually lead to imbalanced

body distribution and therefore imbalanced computational workload in the do-

mains. Our N -body method adopts a load balancing strategy that re-decomposes
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the space to generate new domains with balanced workload. The workload in a do-

main is measured in the amount of the computational operations performed for the

bodies in the domain. The compute coordinator periodically examines the workload

in each domain. If the workload in some domain exceeds a predefined ratio of the

average workload, the compute coordinator will perform space re-decomposition

using the same approach as the space decomposition shown in Fig. 6. The new do-

mains are allocated to the compute engines. The force computation will continue
based on the new domains.

The distributed N -body method has been tested on a cluster of four SMP nodes

installed with the MOIDE runtime system. The SMPs are quad-processor nodes

linked by Fast Ethernet switch. Fig. 7 shows the execution time breakdowns with

10K to 100K bodies. In the cases of one to four processors, one SMP node is used

with one object and a certain number of threads on it. The threads share a BH tree

and no partial subtree will be built. Therefore, there is not communication cost in

these cases. Apparent communication overhead emerges when more than one
SMP node is involved. The objects on the SMP nodes need to propagate partial sub-

trees and perform remote subtree access when required. As Fig. 7 shows, the com-

munication time remains at a low level in the total execution time. No significant

growth of the communication time occurs when increasing the number of processors

and the number of bodies. The proportion of the communication time in the total

execution time even decreases when the number of bodies increases. The results man-

ifest that the distributed tree structure with the partial subtree scheme provides a

communication-efficient data structure for the distributed N -body method.
5. Ray tracing

Ray tracing is a graph rendering algorithm that generates an image from the de-

scription of the objects in a scene. Parallel ray tracing methods usually partition the
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image into blocks and render them in parallel. Dynamic load balancing is required as

the workload of rendering each block is non-predetermined and highly diverse.

Parallel ray tracing methods are generally based on the message passing paradigm

such as the methods in [8,24]. These methods use the master/slave scheduling to

allocate the blocks. A master process acts as a dedicated load scheduler. It keeps on
detecting the requests for block allocation from other processes and allocates one-

block-a-time to them. So, its execution time is mostly spent in waiting. Some task

allocation schemes allow the master process to perform the block rendering as well

and check the incoming requests at specified moments. In this approach, the requests

from other processes may not get immediate response and those processes have to

wait in idle.

The ray tracing method based on the MOIDE model can use the autonomous

load scheduling for block allocation so that all objects and threads can be devoted
to the rendering operations. The multi-threads work in the independent mode. As

the rendering of a block is independent from other blocks, a compute engine or a

thread can autonomously fetch a new block from the global task pool once it has

finished the rendering of the previous block. With the autonomous block fetching

and independent rendering, the computation and communication are conducted

asynchronously on all objects and threads. Hence, dynamic load balancing can be

automatically realized and the parallelism in the computation can be fully exploited.

The autonomous load scheduling is also different from the task-stealing method in
[25]. The task-stealing method includes an initial task allocation to the processes.

When a process runs out of the initial tasks, it inquires other processes to obtain

extra tasks. Differently, the autonomous load scheduling does not require any initial

task allocation, neither task reallocation. The computation can start and proceed

completely in asynchrony on all objects and threads. So, the autonomous load sched-

uling can generate higher parallelism than the task-stealing method.

The ray tracing method has been tested on the cluster of four quad-processor

SMP nodes. The autonomous load scheduling is compared with the master/slave
scheduling. Fig. 8(a) shows that the autonomous load scheduling results in lower

execution time than the master/slave scheduling method.

To analyze the performance of the autonomous load scheduling in detail, Fig. 8(b)

shows the execution time breakdowns associated with each of the threads.When P ¼ 4

(four processors in one SMP node), the four threads exist in the same object. In this

case, no communication is required and the computational workload is automatically

balanced on all threads.When P ¼ 8, two SMP nodes are used with four threads each.

The four threads on the left reside in the compute coordinator. These threads can fetch
the blocks locally. No communication is needed for them. The four threads on the

right belong to the compute engine on another SMP node. They need to perform re-

mote communication to send a rendered block back and fetch a new block from the

global task pool. So, the communication time occurs on them.

The difference in the communication times between the threads in different objects

is also the result of the single-sided feature and the implementation of the remote

method invocation mechanism RMI. Distributed objects do not interact with each

other directly but through their agents––the skeleton on the compute coordinator
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and the stub on a compute engine. The operation of block fetching from the compute

engines does not produce direct interference to the computation on the compute co-

ordinator. Consequently, the communication time is negligible on the compute coor-

dinator when P ¼ 8. However, the interaction between the skeleton and the stub

does affect the computation on the compute coordinator. The compute coordinator

has to preempt a processor to the skeleton for it to process the block fetching. The

processing time of the skeleton is counted as the communication time of the compute
coordinator. As a result, obvious communication time appears on the threads in the

compute coordinator when P ¼ 12 and 16. These threads need to preempt the pro-

cessors more frequently to the skeleton to process the block fetching from the

threads in remote compute engines. Nevertheless, the total communication time

on the side of the compute coordinator remains lower than the total communication

time on all compute engines. Fig. 8(b) also shows that the execution time is almost

balanced on all threads. This phenomenon reflects the automatic load balancing

achieved by the autonomous load scheduling.
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6. Conjugate gradient

The conjugate gradient (CG) is an iterative method for solving large sparse linear

system Ax ¼ b [14]. It computes the approximated solution x by the iteration:
xk ¼ xk�1 þ akpk
where ak is a scalar step size and pk is the direction vector.

Parallel CG method contains vector communication operations such as vector re-

duction and transposition. The performance of the method is determined by the

communication efficiency. We implement a CG method based on the MOIDE model

to utilize the unified communication mechanism. The CG method is modified from

the CG code in the NAS Parallel Benchmarks (NPB) [4]. In our method, all threads

work in the independent mode. They call the vector communication primitives pro-

vided by the uniform communication interface. The unified communication mecha-
nism in turn implements the communication.

The CG method has been tested on the cluster of four quad-processor SMP

nodes. Fig. 9(a) shows the execution time breakdowns with the matrix size n� n.
The communication time increases along with the increase of the number of proces-

sors, especially when more than one SMP node is involved, due to the remote mes-

saging. However, the unified communication mechanism can accelerate the vector

communication and therefore reduce the overall execution time with the increase

of the processors. Fig. 9(b) shows the speedups calculated from the execution time.
High speedup can be achieved on large matrix size.

As a comparison, we use a single-threaded CG method to demonstrate the disad-

vantage of sole remote messaging communication. Instead of creating a multi-

threaded compute engine, the single-threaded method creates multiple compute

engines (i.e., high-weight objects) on a SMP node. All communications between

the compute engines on the same or different SMP nodes are implemented through

remote messaging. Fig. 10(a) shows the execution time breakdowns of the single-

threaded method on two quad-processor SMP nodes. Compared with the results
in Fig. 9(a), the single-threaded method incurs excessive communication overhead

that leads to high execution time. The execution time on eight processors (two

SMP nodes) is even worse than that on four processors (one SMP node). The speed-

ups in Fig. 10(b) also show the poor performance of the single-threaded method.
7. Related work

The wide use of distributed systems for high-performance computing has been at-

tracting remarkable research efforts in developing computing infrastructures and en-

vironments on them. The related work includes the generic programming paradigms

for distributed computing and the specific methodologies for solving irregularly

structured problems.

AppLeS (Application Level Scheduler) project [28] provides the mechanisms and

paradigms for the resource configuration and load scheduling of the applications on
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(b) speedups.
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distributed heterogeneous system. The application-level scheduling agents are the

mechanisms for scheduling individual applications based on their static and dynamic

information and the available resources. A parallel ray tracing application is imple-
mented based on the master/slave scheduling to study the application scheduling poli-

cies [24]. As a comparison, the focus of our MOIDE model is on the development of

an adaptive computing infrastructure on heterogeneous systems. The applications

developed on the MOIDE model can be adaptively mapped to the hosts at runtime

to utilize the architectural features. Unlike the master/slave scheduling approach in

AppLeS, our autonomous load scheduling approach can realize dynamic load bal-

ancing and exploit high parallelism in irregular computation without any dedicated

task scheduler and load balancing operation.
KeLP (Kernel Lattice Parallelism) [2] is a programming model for implementing

portable scientific applications on distributed-memory computers. It provides a set

of programming abstractions to represent the data layout and data motion patterns

in block-structured scientific computing on SMP clusters. The KeLP run-time system

is implemented as a C++ library to support the general blocked data decompositions

and manage the low-level implementation details such as message-passing, processes,

threads, synchronization, and memory allocation. On contrary, the MOIDE model
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is a general-purpose model that provides the mechanisms such as the hierarchical

collaborative system and the unified communication mechanism for solving irregu-

larly structured applications and other applications on distributed heterogeneous

systems. The model provides the flexibility for the developers to implement varied

approaches on it for different applications.
SIMPLE model [3] develops the methodology for high-performance program-

ming on clusters of SMP nodes. The methodology is based on a small kernel of col-

lective communication primitives that makes use of the hybrid shared-memory on a

SMP node and the message passing paradigms. The communication primitives are

provided in three modules: (1) the Internode Communication Library (ICL) provides

an MPI-like small kernel for inter-node communication; (2) the SMP Node Library

contains the communication primitives for SMP node; (3) the SIMPLE Communi-

cation Library is built upon the ICL and SMP Node Libraries. Differently, our
MOIDE model builds a unified communication mechanism on heterogeneous sys-

tems at runtime based on the architecture of the hosts. Applications can identically

call the communicate primitives that will be efficiently accomplished by the unified

communication mechanism.

JavaParty [13,20] is a programming layer on top of Java and RMI for easy port-

ing of multi-threaded Java programs to distributed environments such as clusters of

workstations. It extends Java with a new class modifier remote by which remote

classes and instances can be created and accessed in uniform way on any node in
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distributed environment. It supports automatic object distribution for load balanc-

ing and supports object migration to reduce communication. Irregular applications

such as a geophysical method Veltran are implemented to demonstrate the perfor-

mance of JavaParty [11]. The objective of JavaParty is to improve the reusability

and portability of Java code. Although the idea of the MOIDE model is similar
to JavaParty, our model aims at creating an adaptive computing infrastructure on

distributed heterogeneous system. The applications developed on the model can be

adaptively mapped to the architecture of underlying system to achieve efficient com-

putation and communication on the system. The MOIDE model provides the mech-

anisms such as dynamic reconfiguration, unified communication mechanism, and

autonomous load scheduling to support the high-performance solutions for irregu-

larly structured problems as well as other applications. The MOIDE runtime system

is also a portable environment. It provides the reusable templates, communication
library, and implementations for the development and execution of the applications

on varied systems.

The IPA (Irregular Parallel Algorithms) project proposes nested data parallelism
to express the irregular computations and investigates the incorporation of nested

data parallelism in the programming languages such as FORTRAN 95/HPF and

Java [7,21]. Two approaches are used to cope with the load imbalance in the compu-

tations: (1) using fine-grained threads and thread migration to balance the load; (2)

flattening nested parallelism through compilation techniques to create an unnested
data-parallel computation to perform the correct amount of work. A runtime sup-

port library based on FORTRAN intrinsic functions and HPFLIB routines supports

the data-parallel computations on supercomputers. Our MOIDE model is a more

flexible object-oriented computing infrastructure on distributed systems. Various al-

gorithms can be developed to exploit the parallelism in irregular computation and

enhance the communication efficiency based on both the computation pattern and

the system architecture.

The Scandal [23] project develops a portable, interactive environment for pro-
gramming a wide range of supercomputers. It proposes a parallel language NESL
as a portable interface for programming a variety of parallel and vector supercom-

puters and as a basis for designing data-parallel algorithms. It also develops fast im-

plementations of parallel algorithms for various irregular problems on different

parallel machines to study the methods for mapping the algorithms onto existing

parallel machines and communication topologies as well as the efficient implementa-

tions. Compared with Scandal, the MOIDE model also possesses architecture-

independence and adaptability. Furthermore, the object-oriented features make
the MOIDE model more powerful to adaptively implement high-performance com-

putation on heterogeneous system.
8. Conclusions

MOIDE is a distributed object model for solving irregularly structured problems.

It creates an adaptive computing infrastructure and provides a uniform program-
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ming model on distributed heterogeneous systems. Applications can be developed on

the uniform model and adaptively mapped to the system architecture at runtime. The

computing infrastructure supports dynamic reconfiguration to meet the evolution of

computational requirement and available resources. The unified communication

mechanism integrates shared-data access and remote messaging to support the effi-
cient communication on heterogeneous systems. Autonomous load scheduling is

proposed as an approach for dynamic load balancing to exploit high parallelism

in irregular computation. A runtime system provides a platform-independent envi-

ronment to implement MOIDE-based computing.

In the future work, we will extend the MOIDE model to wide-area environment.

The research will concentrate on improving the scalability of the model on hundreds

to thousands of computer nodes across geographically distributed sites. To coordi-

nate the collaborative computations on them, the model should be expanded to a
multi-level hierarchy in order to organize the autonomous computing in distributed

domains. The system coordination and communication mechanisms should be mod-

ified to efficiently support the interactions between the domains. New task scheduling

strategies should be designed to support the load balancing on wide-area environ-

ment, which should take into account the remote data access and long-latency com-

munication as well as the varied performance of the resources. New programming

methodologies, algorithms, and data structures should be developed for the applica-

tions in wide-area environment.
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