
State-On-Demand Execution for Adaptive Component-based Mobile Agent
Systems

Yuk Chow, Wenzhang Zhu, Cho-Li Wang, and Francis C.M. Lau
Department of Computer Science and Information Systems

The University of Hong Kong
Pokfulam, Hong Kong�

ychow,wzzhu,clwang,fcmlau � @csis.hku.hk

Abstract

The introduction of mobile code in the pervasive comput-
ing environment provides a good opportunity for research in
ways to enhance execution flexibility. We note that current
mobile code is too heavyweight and not adaptive enough to
be used in pervasive computing where devices are resource-
limited and heterogeneity is the norm. In this paper, we pro-
pose a new lightweight, component-based mobile agent sys-
tem that can adapt to diverse devices and features resource
saving as one of its aims. The system supports strong mobil-
ity of mobile code, which is a prerequisite for achieving sys-
tem flexibility and good performance. The system discretize
the transmission of code and execution states and relies on a
scheme called state-on-demand (SOD) for the execution of
the mobile code. We provide performance results to demon-
strate the effectiveness of the SOD scheme.

1. Introduction

Information appliances (e.g., PDA and mobile phones)
and many other ubiquitous devices will soon become an in-
dispensable part of our daily living. Many different types of
devices are taking advantage of wireless networks and the
Internet to provide services to users. We have come to an
age of pervasive computing [6], when people will be able
to carry out computation at anytime, anywhere on any de-
vice.

Mobile agent (MA) is a special type of mobile code char-
acterized by its peer-to-peer and autonomous nature [2].
It has been proved effective for supporting asynchronous
computation in the distributed computing environment, es-
pecially in the presence of volatile mobile networks. It is
therefore natural to exploit MA technologies in pervasive
computing environments for adaptive and flexible compu-
tation on diverse devices.

Nevertheless, the inherent nature of pervasive computing
environment has posed some serious challenges on the de-
sign of mobile agent systems (MASs). Some of these chal-
lenges stemmed from the resource constraints of these small
and highly heterogeneous devices; much attention should
be paid on conservation of resources such as network band-
width and memory.

Many commercial MASs, such as Aglets [7], Voyagers
[12], Grasshopper [1], etc., have been developed during the
last decade. However, most of them paid little attention to
issues such as lightweight execution and adaptiveness, the
key elements to reap the benefits of MA technologies be-
ing applied to the pervasive computing world. They usually
put their focus on application issues, such as usability of the
agent platforms and compliance to MA standards.

As ubiquitous devices are getting more popular, some re-
cent MASs are designed with a goal to run on these devices.
For example, the University of West Florida had a plan to
create a small mobile agent platform based on their previous
work on NOMADS MAS and Aroma VM [8]. JADE-LEAP
[3], a software framework for developing FIPA-compliant
mobile agents using the LEAP library, provides a MAS
that has a small memory footprint and is suitable for mo-
bile lightweight applications developed based on J2ME-
CLDC (Java 2 Platform Micro Edition-Connected Limited
Device Configuration). However, adaptiveness to heteroge-
neous and the changing environment remains to be a major
issue in these systems if they are to be deployed in the per-
vasive computing world.

In a pervasive computing environment, migration is an
essential system service which enables applications to fol-
low people wherever they move. Some projects have tried
to address this service. One of them is the one.world project
of the University of Washington [9]. It however provided
only weak mobility support. Executing tasks were not al-
lowed to migrate. This crippled the system’s ability to sup-
port pervasive computing, e.g., to delegate execution when
there are not enough resources on the device.

In this paper, we propose a new lightweight component-
based MAS that can adapt to diverse devices. Our system
aims at resource saving while supporting strong mobility
of mobile code. The system discretize the transmission of
code and execution state and relies on a scheme called state-
on-demand (SOD) to execute the mobile code. We address
three important issues in our system: adaptivity, resource
saving, and strong mobility.

The rest of the paper is organized as follows. Section 2
describes the design of our MAS. Section 3 presents the
implementation. Section 4 provides an in-depth evaluation
of the system’s performance. Section 5 studies the related
work. Finally, we conclude in Section 6.

2. Design

In this section, we discuss our approaches to solving the
problems of adaptivity, strong mobility, and the resource
saving respectively in a MAS.

2.1. Adaptivity to devices

In a pervasive environment, mobile and stationary de-
vices will dynamically connect and collaborate to help users
to accomplish their tasks. In a pervasive computing environ-
ment, information flows more quickly and in more direc-
tions than traditional distributed computing. It is therefore
imperative for software systems and applications to be able
to adapt to changes in their execution environment on the
fly, in order to provide a suitable and relatively stable work-
ing environment for the users.

For this vision to become a reality, developers must build
applications that constantly adapt to a highly dynamic com-
puting environment. Context-aware computing refers to the
explicit ability of a software system to detect and respond to
changes in its environment. Various adaptation techniques
have been previously explored, from lower-level techniques
of dynamically changing routing information to changing
the fidelity (i.e. quality) of data. However, dynamically
changing the way an application carries out its functions—
functionality adaptation, is not well explored.

We propose to build a new MAS in Java with functional-
ity adaptation, to support context-aware pervasive comput-
ing. Instead of a monolithic chunk, an application is assem-
bled from disparate code components, called facets, which
are brought in from the network and can be dynamically
linked to the execution in accordance with the current con-
text (e.g., locality, resource constraints, user’s preference).
An ontology-based knowledge representation and reasoning
technique is used to specify the semantic features of facets
upon their creation, and to automate facet selection and ap-
plication construction. With functionality adaptation, a per-
vasive computing system is expected to be most flexible and

adaptive, and can significantly enhance the mobility of per-
vasive applications.

2.2. Strong mobility

Strong mobility support is the natural need of mobile
agents, which allows them to preserve the complete execu-
tion status after migration. Strong mobility enables execu-
tion delegation by migrating a task to computational servers
when the client device does not have enough resources to
carry out the execution.

In our system, the strong mobility support is realized by
using a source-code preprocessor, which inserts additional
code for state capturing and resuming. State capturing is to
checkpoint the current execution state of a mobile agent.
The execution state includes a series of Java frames, each
containing the Java class name, the method signature and
the activation record of the method. The activation record
consists of the bytecode program counter (PC) and the lo-
cal variables. The resuming process is to restore the execu-
tion state according to the captured state. This includes the
restoration of both the variables, the PC, as well as the call-
ing sequence in the execution state.

By “instrumenting” the application source code, the ex-
ecution state can be captured into a list of frame objects
through an exception-throwing mechanism, and resumed
when the list is sent to its destination. Our system is based
on the JavaGo software developed by the Tokyo Univer-
sity [10]. On top of JavaGo, we added some additional data
structures, assumptions and code instrumentation schemes
to support thread state migration. In the instrumentation
scheme, we assume that all the running threads already have
a reference to a commonly shared object. This shared object
is to manipulate all the states related to inter-thread com-
munications. Also, the activities of the threads are centrally
co-ordinated by this object. For example, if a thread wants
to trigger the migration event, it only needs to set a flag on
the shared object. Upon detecting this change of flag value,
all the threads would know that the migration is going to
take place.

2.3. Resource saving

Resource saving refers to the reduction of memory and
network bandwidth usage. We introduce and employ a tech-
nique called state-on-demand (SOD) execution.

During the execution of a MA in our MAS, only the facet
specifications describing the required functionalities, rather
than the actual facets, are stored in the container. The con-
tainer provides an application-like feeling to the end-user
who does not know how to program with container and facet
abstractions. In that case, the user can invoke the container
to bring up an interface. Based on the user’s input, the con-

(a)

time = t3

time = t2

time = t1

time = t3 + t

time = t3

time = t2

time = t1
From proxy

time = t2 + t

From proxy

From proxy

(b)

Figure 1. Migration model for (a) traditional
MA and MAS; (b) our lightweight MAS.

tainer will make an appropriate facet request, which is sent
to a proxy server for fetching the required facets. In this
way, the memory and network bandwidth usage is saved be-
cause unnecessary facets will not be brought in.

Moreover, the structure and the First-In-Last-Out nature
of the execution stack allow for further reduction in resource
consumption. If we have a way to get rid of the “temporar-
ily useless” execution states at the bottom of the stack and
migrate/restore them only when they are required during ex-
ecution, further reduction in bandwidth consumption is pos-
sible. This forms the basis of our SOD scheme.

Figure 1 illustrates the difference between a tradi-
tional MAS and our lightweight MAS. For most tra-
ditional MASs, all code and execution states are car-
ried by the agent throughout their whole itinerary. As
such, much bandwidth is wasted in migrating the un-
used bottom stack frames and the non-adaptive code. By
contrast, our SOD scheme migrates only a portion of re-
quired stack frames for later resumption of the execution.
This saves bandwidth consumption due to unneces-
sary transfers, especially when the mobile agent needs to
traverse multiple hops. Furthermore, since only the top-

Startup routine &

UI descriptions

Shared facets
data states

Container
Execution states

Stack states
Thread states

and managements

Plug-in facets
specifications

Java Virtual Machine (JVM)

LMA

Plug-in facets
specifications

Central Manager Lightweight Mobile Code System

Client System
Network / Discovery module Facet cache

(9)

(1)

(2) (3)
(4, 7)

(6)

(5, 8) (4, 7)
(4, 7)

Figure 2. The system architecture.

most segment is needed in order to carry out the execution,
and the required codes are brought in on demand, the mem-
ory usage in the target device is much reduced.

3. Implementation

We have implemented the Lightweight Mobile Agent
System (LMAS) in Java (Sun Java SDK 1.3.1), and a source
code instrumentation engine in Standard ML (SML/NJ)
for supporting strong mobility and lightweight execution,
which is derived by modifying the JavaGo source code pre-
processor.

3.1. System architecture

Figure 2 shows the architecture of the LMAS. The sys-
tem consists of a middleware system and two major kinds
of entities. The Lightweight Mobile Code System (LMCS)
is a middleware sitting on top of a native OS or virtual
machine to handle the activities of the mobile agents it
hosts, including creation, migration, and destruction of the
agents. During execution, LMCS communicates with the
central manager of the system in order to exercise the poli-
cies that govern the agents. Strong mobility and state-on-
demand are supported in the LMCS. The two kinds of en-
tities, Lightweight Mobile Agent (LMA) and the container,
can be hosted in the LMCS. These two entities cooperate
to function like a traditional mobile agent roaming from
LMCS to LMCS.

Figure 2 also demonstrates the interactions among the
various entities in our system. When a migration signal is
raised, the execution state is captured by the LMCS and

stored inside the container (1). The LMCS then assigns an
LMA to the container with its destination properly set (2,
3). At this time, the facets needed for carrying out basic
agent operations are also fetched on demand (4, 5). The
agents are then sent to the destination site. At the receiv-
ing end, the container is extracted and set to a “restoring
state”. With new threads created and re-registered (6), exe-
cution can be resumed by fetching suitable facets for their
corresponding execution states (7, 8, 9). Since the capturing
and resuming of states are totally done on demand at appli-
cation level, our LMCS essentially supports strong mobility
without affecting the portability of the system.

3.2. Facet

In the proposed software system, a functionality is em-
bodied in a facet. A functionality can be considered a sin-
gle well-defined task in an application. Essentially, func-
tionality can be seen as a contract defining what should be
done. The contract includes (1) input specification; (2) out-
put specification; (3) description of what is carried out, i.e.
what are valid outputs for a set of inputs; (4) pre-conditions:
the ranges of input data size supported; (5) post-conditions:
which values are nullified, error conditions; and (6) side ef-
fects: the requirement of I/O. The contract defines the func-
tionality to be achieved, but not how it should be achieved.
Implementations can use different algorithms, each with
different performance characteristics or resource require-
ments, as long as they stick to the contract. Indeed, func-
tionality defines the interface for interaction and is indepen-
dent of the implementation.

The facet consists of two parts:

� Shadow. This is the place where the contract of the
facet are defined. It includes information about the
facet, for example, the facet id (facetID), the funcID of
the functionality it achieves, input and output specifi-
cation, vendor and versioning information, its resource
requirements (such as the size of the working mem-
ory) and its functionality dependencies, and the charg-
ing scheme for the use of facets. Basically, the shadow
provides the meta-information about the facet. It is
a text section of semantic description of the facet. It
will be represented in a human and machine readable
form using the OTDL (Ontology-based Task Descrip-
tion Language) and thus can be accessed by develop-
ers, users and machines alike. The OTDL is extended
from W3C’s OWL.

� Code Segment. This is the body of the executable code
which implements the functionality. To ensure porta-
bility, the code segment will be written in Java. The
code segment may contain several Java classes, but
only one of them contains the publicly-callable method

corresponding to the functionality contract. Function-
ality adaptation involves changing the way an appli-
cation carries out its functionality. Particularly, it in-
volves changing the execution of the application: (1)
using different sequence of actions or different algo-
rithms, (2) using code enhanced for certain platforms,
(3) tradeoff between memory space and execution time
efficiency (i.e. using less memory but more processing
time to carry out a task), or (4) partitioning the task
so that it is partially executed on a server or a nearby
peer device rather than completely locally. The work-
flow of how we achieve the functionality adaptation is
explained in the next section.

Intuitively, the facet is like a function called by name
and the runtime constraints. The matching of the name and
runtime constraints of the function provides the adaptivity.
Facets are hosted on facet servers. A facet can be discarded
from the run-time as soon as it is used. If it is required again,
another compatible facet can be brought in from the net-
work and used. Clients request for facets from the proxy
servers, which recommend suitable facets to clients tak-
ing into account their device configuration, the surround-
ing execution environment and the user preferences. Be-
cause facets are brought in at run-time to compose the re-
quired application, applications can dynamically adapt to
the client devices and be made context-aware. If there were
two facets of same functionality, the facet which is more
suitable to the client device would be brought in. With such
mobile and adaptive features, users can perform the same
functionality on different devices wherever they go.

In our system, a facet is not a stand-alone application.
Every application is associated with a container. It contains
a UI which interacts with the user and a set of functionali-
ties that the application can offer. These functionalities are
stored in the container as facet specifications which include
funcIDs. The UI provides a means for users to access the
functionalities offered by the container. When a particular
functionality is required, the corresponding facet is brought
in from the facet servers according to its specification from
the facet servers, in turn starting off the execution of a whole
tree of facets. The container also keeps track of state infor-
mation so that we can restore execution when it moves to
another device.

Figure 3 shows an example application of using facets in
Java. A facet is invoked by filling in a FacetRequest with
specifications, initializing a Facet object and invoking exe-
cute on it.

3.3. State-on-demand execution scheme

In our system, the LMCS migrates a mobile agent by
chopping the execution state into segments and pushing the
top segment to the remote site while keeping the residual

// Filling in a facet request

FacetRequest fr = new FacetRequest();

fr.addCriteria(�functionality_id�, �200007�);

fr.addCriteria(�vendor�, �SRG.CSIS.HKU�);

// Initializing a facet

FacetInterface fBlur = (FacetInterface) new Facet(this, fr, fcontainer);

// Invoking a facet
Object[] input = null, output = null; output = fBlur.execute(input);

Figure 3. Program using facets.

state at the local site. The target site, upon receiving the
segment, will try to restore the partial stack with the bottom
frame pointing to a handler for fetching the next frame seg-
ment when the current segment is consumed. The size of the
execution stack of the running agent is therefore kept small
during execution, which results in memory saving.

S1

Site A

1

S2

S3

S3

2

Site B

3

5

S3�
4

S1

Site A

S2

S2

Site B

Figure 4. An illustration of the SOD mecha-
nism.

Figure 4 illustrates the SOD scheme. The frames are
chopped into three segments. The last segment ��� is first
migrated to the destination site and executed. Just before ���
finishes executing (i.e., hitting the return point of a method),
the instrumented code of � � checks to see if it is the bot-
tommost frame in the transferred segment. If so, it throws
an ReachBottomException, and its execution state is
again captured and stored into a frame ���� . Upon being no-
tified of the exception, the LMCS contacts the site where
the following segment �	� resides, and retrieves the segment
and inserts it before �
�� . The execution of ��� then restarts.
The whole process repeats until all available execution seg-
ments finish their execution.

The implementation of SOD relies on a data structure
called StackFrame, which is an abstract object used in the
instrumented code to assemble the real Java frames in the
execution stack. When migration is triggered, a Notify-
Gone exception would be raised. An exception handler in
the instrumented code then puts the values of the local vari-
ables and the PC into a StackFrame, and appends the Stack-
Frame to a stack list. The process is repeated until all the
frames are captured. After that, the list of StackFrames is
segmented according to the resource requirement of the tar-

get site. The segments are then serialized and sent to the tar-
get.

When a frame segment is received at the destination
MCS, the state of the execution stack is re-established by in-
voking a restore method in the bottommost StackFrame ob-
ject of the segment. Execution states stored in StackFrame
objects of the segments (and thus the execution) are then re-
stored sequentially with the properly-instrumented codes.
At this stage, facets are lazily fetched and loaded to avoid
bringing in unnecessary or already-cached code, thereby re-
ducing redundant bandwidth consumption. After some ex-
ecution and when all the available frames (and their corre-
sponding methods) in the segment are exhausted, the under-
lying agent system would contact its previous hosting agent
system to ask for the next segment, and the process contin-
ues until all segments are consumed.

The amount of bandwidth saved by our SOD scheme is
best expressed by the concept of lazy-frame. We define lazy
frames as the frames (or objects) that are not migrated af-
ter two or more transfers under the SOD scheme. A bottom
frame is always lazier than a top frame. If the bottom frame
segment is only needed at the ���� hop during the execution
of the agent, the bandwidth of transferring the segment will
be saved in the first ��������� �� hops. Under this definition,
the percentage of total bandwidth saved can be roughly ex-
pressed as the ratio of the total size of lazy frames to the to-
tal size of frames that should be migrated by the normal mo-
bile agents, because lazy frames are the frames that would
be migrated in normal cases but not in our SOD scheme.
Therefore, increasing the lazy-frame-to-non-lazy-frame ra-
tio can help to optimize bandwidth usage with our SOD
scheme. In addition, the use of non-uniform segmentation
scheme, where the potential non-lazy frames are put into
larger segments, can further reduce the overhead of the seg-
mentation.

4. Evaluation of our system

The resulting system was tested on two standard PCs
equipped with an Intel Pentium III 650MHz processor and
128M memory running Sun JVM on Linux 2.4.18 with
JIT compilation enabled. We used three simple recursive
applications, which exhibit different execution behaviours,
to evaluate our SOD: the Fibonacci program (Fib), the
quicksort program (QSort), and the N-Queen program
(NQueen). We conducted two experiments to analyze the
memory and bandwidth consumption of our scheme when
the agent performed single-hop or multi-hop migrations.
The results are evaluated based on the overall behavior of
our SOD scheme.

NQueen(10)

NQueen(9)

AddQueen

NQueen(10)

NQueen(9)

AddQueen �

AddQueen_S

Smaller top frame Grows as solution
space becomes large

NQueen-1 NQueen-2

Figure 5. The status of runtime stack of
NQueen application

4.1. Migration under single hop scenario

In the first experiment, we aimed at a general idea of how
memory is consumed when an agent migrates from one host
to another (the single-hop scenario). We used the Fib pro-
gram in this experiment. With the SOD scheme, a stack of
17 frames formed by executing Fib(35) was uniformly
segmented, so that each of the resulting segments contained
two stack frames. The experiment result shows that with
SOD, we only needed to use 529 bytes of memory on av-
erage to migrate the execution, which was much lower than
that needed in a typical execution without SOD (which re-
quired 2211 bytes). This shows that SOD allows a migration
to be done in a memory-limited environment. However, be-
cause there is certain overhead in transferring a segment,
bandwidth was not saved in this single-hop scenario. Nev-
ertheless, the overhead can be balanced out by the band-
width saved when the LMA hopped across multiple hosts,
as illustrated by the results in the next experiment.

4.2. Migration under multi-hop scenario

In the second experiment, we evaluated the effective-
ness of the SOD scheme in terms of memory and band-
width saved by arranging the three testing applications to
have different traveling patterns across multiple sites (the
multi-hop scenario). We used two different ways to im-
plement the NQueen application to visualize the impact
of different execution behaviors with our SOD scheme.
The first one (NQueen-1) was implemented in the nor-
mal recursive manner, while the second one (NQueen-
2) was implemented with some optimization using the
lazy frame concept (Figure 5). The function ADDQUEEN

in NQueen-1, which contained a large iterative struc-
ture to generate the solution set, was replaced by two
functions ADDQUEEN S and ADDQUEEN’ in NQueen-2.
ADDQUEEN S had a smaller iterative structure, and AD-

DQUEEN’ contained an additional loop to iteratively call
ADDQUEEN S. With this modification, although the two
functions behave the same as ADDQUEEN, the top frame for
NQueen-2 (ADDQUEEN S) became smaller, as a smaller
solution set was generated by a smaller iterative struc-
ture. Also, it was still fair to make comparisons between
NQueen-1 and NQueen-2, because in NQueen-2 only
the program structure on how to manipulate the available
states was changed, and that did not increase the total size
of execution states.

The setup of the experiment was simple: agents (which
carried the testing applications) were forced to migrate ev-
ery 15 seconds after they arrived at a host. For agents that
adopted the SOD scheme, non-uniform segmentation was
applied to the execution stack: more frames were put in-
side a segment toward the top of the stack so as to reduce
the overheads that were caused by excessive transfers. The
corresponding number of hops, bandwidth and memory us-
age of the agents in the experiments were shown in Ta-
ble 1. It was found that while Fib and NQueen-1 obtained
relatively small bandwidth gain (��� ��� � and ���"!�!#� respec-
tively), QSort and NQueen-2 could get high bandwidth
gain (����� $#� and $%�&� ' � respectively).

Besides bandwidth saving, all the above experiments il-
lustrated the low memory usage under the SOD scheme. De-
pending on the execution behavior of the application and
the segmentation scheme, we needed on average only !(�)�
of memory for SOD agents to carry the applications when
compared with normal agents (who have to carry all the ex-
ecution states). This suggests that applications can be run
using little memory under SOD, making them more favor-
able in the pervasive computing environment.

4.3. Discussions

The experimental results can be best explained using the
lazy frame concept. For Fib, the frames are small and sim-
ilar in size. Since only simple computations are involved in
each recursive call, the frames on the stack are quickly con-
sumed. Also, due to the recursive fan-out, top frames are
consumed at a faster rate than bottom frames. All these in-
dicated that many non-lazy top frames were created (*+!&$
during each agent transfer). Therefore, although we saved
the bandwidth of 3 to 4 lazy frames per agent transfer, the
saving was insignificant when there were frequent transfers
of non-lazy frames. Adding the effects of overheads intro-
duced in segmenting the frames, the percentage of band-
width saved per site for Fib was small, and so was the total
bandwidth saved.

The case for the QSort program is totally different. For
QSort, the frame size grows exponentially (roughly) due
to its divide-and-conquer algorithm, but at the same time
the frames are consumed at a much slower speed than Fib

Testing application Fib (35) QSort (5000) NQueen-1 (10) NQueen-2 (10)

Number of agent hops 12 12 40 40

Total bandwidth used (normal) 327088 1715062 33600410 33932825

Total bandwidth used (with SOD) 315197 574655 32183569 16365801

Total % bandwidth saved by SOD 3.64% 66.5% 4.22% 51.8%

Avg. normal agent size 27257 142922 767997 848320

Avg. initial mem. usage with SOD 5974 15773 685827 259733

because of the iterations on swapping values and the effect
of recursive fanout. These execution behaviours altogether
led to creation of large lazy frames, thereby diluting the im-
pact of the overheads introduced by non-lazy frames, and
yielding a high percentage of bandwidth saved.

The concept of lazy frame can be further reinforced by
the NQueen experiment. In executing NQueen-1 (normal
implementation of NQueen), a large amount of computa-
tion time is spent on an iteration in the topmost frame AD-
DQUEEN (finding a safe position for queen), where a large
execution state (solution sets) resides. As there is no re-
cursive fanout and no computation prior to the recursive
call, the small bottom (lazy) frames therefore do not con-
tribute much to bandwidth saving. Comparatively, although
NQueen-2 exhibits similar facet-invoking behavior, its top
frame, ADDQUEEN S, has smaller execution states (solu-
tion sets). Also, since ADDQUEEN’, which invoked AD-
DQUEEN S, accumulates the solution sets returned from
ADDQUEEN S and the time for executing ADDQUEEN S
is long, larger lazy frames and smaller non-lazy frames are
produced, which results in significant bandwidth savings.

From the above discussions, we find that traditional
agent applications, which traverse multiple hops by the
agent itinerary, can benefit from SOD in terms of mem-
ory and bandwidth reduction. One may then think that SOD
is not beneficial to agents that make relatively few hops,
such as agents that carry end-user applications. In fact, for
these applications, SOD can still give reasonable reduction
on bandwidth usage. In addition, SOD can help to cut down
their memory footprint, thereby making it possible to run
these applications in small-memory devices.

5. Related work

There are currently many MAS implementations avail-
able (a good survey of mobile agent systems can be found
in [4]). Since the use of mobile agents has to address the is-
sue of platform heterogeneity, these systems are usually im-
plemented using platform-independent programming lan-
guages. We can classify them into two types. One type is
implemented based on some research interpreted languages
like Tcl, Scheme, Oblique and Rosette [5]. Example of
these MASs include Telescript by General Magic, the first
commercial mobile agent platform as it claims to be, Agent
TCL, TACOMA and ARA, etc. Since the time when Java

was launched, dozens of Java based MAS have been devel-
oped, which represent the second type of MAS. In fact, the
class-loading feature of the Java Virtual Machine, coupled
with techniques such as object serialization, RMI, multi-
threading and reflection, have made the building of MASs
much simpler.

Aglet is a commercial MAS developed by Tokyo Re-
search Laboratory of IBM, which was made open-source
recently. It is one of the most widely used MASs for devel-
oping mobile agent applications, and has definitely received
the most coverage in the literature [5]. It uses typical Java
features such as object serialization and RMI, and provides
a graphical Aglet control interface called Tahiti [7]. It sup-
ports only weak mobility, which implies that in order to de-
ploy the full power of the mobile agents, programmers need
to maintain the relevant execution states themselves, which
is error-prone and makes the resulting code not maintain-
able. Our mobile code system has a similar architecture to
that of Aglet. But our system supports strong mobility, so
that the agent can migrate at any point during its execution.
This allows the power of the mobile agent to be fully ex-
ploited. Since Aglet does not seem to have a plan to work
in the pervasive computing environment, it has not focused
on making the mobile agents lightweight.

James MAS [11] is a research-based MAS that was co-
developed by the University of Coimbra and Siemens, and
was mainly oriented for telecommunications and network
management, with performance being an important issue.
They suggested (but not implemented) that a special type
of agents called elastic agents could be used: these agents
can drop some code when they do not need the code, or
load some new code when needed. This approach is simi-
lar to our design of LMA. But our scheme pushes the idea
one step further: instead of using the code components, we
use our facets which themselves can be adaptive to the en-
vironment. The overall network bandwidth can therefore be
further reduced.

The Nomads MAS [13] supports strong mobility of mo-
bile agent through using the Aroma VM. The Aroma VM
implemented a state-capturing mechanism in the JVM ker-
nel. Instead of using the VM modification method to im-
plement strong mobility, our mobile code system uses the
source code instrumentation method via a preprocessor or
compiler that adds state-saving code inside the agent code.
The main benefit of our approach is that the resulting agent

programs can be readily executed on heterogeneous plat-
forms having the standard JVM.

6. Conclusion

In this paper, we describe ways to provide lightweight
and flexible computations to the pervasive computing
world. To reduce the usage of memory and network band-
width, which are the two most valuable resources in a per-
vasive computing environment, we have devised the
State-On-Demand (SOD) scheme to bring in code and as-
sociate execution states of an application dynamically after
a migration. The effect is that the scheme enhances the flex-
ibility and adaptability of the system.

To prove our concepts, we have implemented a sim-
ple working prototype for our mobile code system in Java,
which incorporates some instrumentation strategies for sup-
porting the SOD execution scheme. The experiments have
shown that SOD can in fact help reduce the bandwidth and
resource usage in the target system through the use of facets
and LMAs. However, further research is needed to cre-
ate quantitative models to evaluate and strategies to opti-
mize the bandwidth and resource consumption in a perva-
sive computing environment.

We believe that our work has made an initial yet critical
step in providing a mobile computing framework for perva-
sive computing environments. It lays a foundation for the
creation of lightweight and flexible computations that meet
the need of mobile and nomadic users. Our research shares
some common goals with other hot related research areas,
including grid computing and peer-to-peer computing.

References

[1] C. Bäumer, M. Breugst, S. Choy, and T. Magedanz.
Grasshopper: a universal agent platform based on OMG
MASIF and FIPA standards. Technical report, IKV++
GmbH, 2000.

[2] Danny B. Lange and Mitsuru Oshima. Seven Good Reasons
for Mobile Agents. Communication of the ACM, 42(3):88–
89, March 1999.

[3] G. Vitaglione, F. Quarta, and E. Cortese. Scalability and Per-
formance of JADE Message Transport System. In AAMAS
Workshop, Bologna, 2002.

[4] Fritz Hohl. The Mobile Agent List. URL
http://mole.informatik.uni-stuttgart.
de/mal/mal.html.

[5] Joseph Kiniry and Daniel Zimmerman. Special Feature: A
Hands-On Look at Java Mobile Agents. IEEE Internet Com-
puting, 1(4), July 1997.

[6] Krishna Akella and Akio Yamashita. Application
Framework for e-business: Pervasive computing. URL
http://www-106.ibm.com/developerworks/
library/pvc/index.html.

[7] D. Lange and M. Oshima. Programming and Deploying Java
Mobile Agents with Aglets. Addison-Wesley, 1998.

[8] Niranjan Suri, Marco Carvalho, Robert Bradshaw, and Jef-
frey M. Bradshaw. Small Mobile Agent Platforms. In
Workshop on Autonomous agents and Multiagent systems,
Bologna, 2002.

[9] Robert Grimm, Janet Davis, Eric Lemar, Adam MacBeth,
Steven Swanson, Tom Anderson, Brian Bershad, Gaetano
Borriello, Steven Gribble, and David Wetherall. Program-
ming for pervasive computing environments. Technical Re-
port UW-CSE 01-06-01, University of Washington, Depart-
ment of Computer Science and Engineering, Seattle, June
2001.

[10] Tatsurou Sekiguchi. A Study on Mobile Language Systems.
PhD thesis, The University of Tokyo, 1999.

[11] L. Silva, P. Simões, G. Soares, P. Martins, V. Batista, C. Re-
nato, L. Almeida, and N. Stohr. JAMES: A Platform of Mo-
bile Agents for the Management of Telecommunication Net-
works. In 3rd International Workshop on Intelligent Agents
for Telecommunication Applications, Stockholm, Sweden,
August 1999.

[12] Object Space. Voyager core package technical overview.
Technical report, Object Space, March 1997.

[13] N. Suri, J. Bradshaw, M. Breedy, P. Groth, G. Hill, and R. Jef-
fers. Strong Mobility and Fine-Grained Resource Control in
NOMADS. In Second International Symposium on Agent
Systems and Applications and Fourth International Sympo-
sium on Mobile Agents, ASA/MA 2000, pages 2–15, Zurich,
Switzerland, September 2000. Springer-Verlag.

