
Load Balancing in Distributed Web Server Systems with Partial Document
Replication*

 Ling Zhuo Cho-Li Wang Francis C. M. Lau
Department of Computer Science and Information Systems

The University of Hong Kong
{lzhuo, clwang, fcmlau}@csis.hku.hk

Abstract

How documents of a Web site are replicated and
where they are placed among the server nodes have an
important bearing on balance of load in a geographically
Distributed Web Server (DWS) system. The traffic
generated due to movements of documents at runtime
could also affect the performance of the DWS system. In
this paper, we prove that minimizing such traffic is NP-
hard. We propose a new document distribution scheme
that periodically performs partial replication of a site’s
documents at selected server locations to maintain load
balancing. Several approximation algorithms are used in
it to minimize traffic generated. The simulation results
show that this scheme can achieve better load balancing
than a dynamic scheme, while the internal traffic it causes
has a negligible effect on the system’s performance.

1. Introduction

The increasing popularity of the World Wide Web has

resulted in large bandwidth demands which translate into
high latencies perceived by Web users. To tackle this
latency problem, multiple copies of documents are
distributed geographically and placed in caches at optimal
locations.

Web caching attempts to reduce network latency by
storing the commonly requested documents as close to
clients as possible. Simple caches have no information on
users’ access pattern, and so they would habitually try to
keep a copy of any document just requested. This may
limit the performance of caches. For example, research in
[1] shows that the maximum cache hit rate achievable by
any caching algorithm is bounded under 40% to 50%

A proactive Web server on the other hand can decide
where to place copies of a document in a distributed Web

* This research was supported by CRCG Grant 10203944 and HKU
 2001/02 Large Items of Equipment Grants 10003.01/02/001

server (DWS) system where the server nodes are
distributed geographically. In most existing
geographically DWS systems, each server node keep the
entire set of Web documents managed by the system.
Incoming requests are distributed to the server nodes via
DNS servers [6,9,11]. Although such systems are simple
to implement, the caching of IP addresses on the client
side or in intermediate DNS servers could easily result in
uneven load among the server nodes. Moreover, the full
replication leads to much waste of disk space due to those
documents that are not frequently requested.

To achieve better load balancing as well as to avoid
disk wastage, one can replicate part of the documents on
multiple server nodes [5,12,14,15,18,19] and use content-
aware distributor software to redirect a client request to a
server node that has the requested document [16]. Some
rules are then needed in such a geographically DWS
system to determine each document’s number of replicas
and the distribution of these replicas. These rules
constitute what we call the document distribution scheme,
and they should achieve the following goals.

� Load Balancing: Since requests tend to target at a

small part of the entire collection of documents [3],
frequently requested documents should be replicated to
avoid bottlenecks. Documents and their replicas should
be placed in such a manner that most of the time the
load of the participating server nodes is equalized.

� Reduced Traffic: To adapt to users’ access patterns,
documents need to be re-duplicated and re-distributed
among the server nodes dynamically or periodically.
Communications caused by such actions should be
kept to the minimum so that the performance of the
geographically DWS system would not be adversely
affected.

Existing schemes mainly focus on balancing the load,

but not the traffic issues. In this paper, we propose a new
document distribution scheme that can improve load
balancing performance of geographically DWS systems,

while minimizing the communication cost needed. We
assume that each document has approximately the same
popularity in all the server locations. Therefore, we will
not consider network proximity to clients in replicating
and distributing the documents.

The performance of our scheme is evaluated through
simulation using real access log data. The results show
that this scheme can balance the load in the DWS system
during run-time efficiently, and the internal traffic
generated due to these algorithms is reasonably minimal.

The rest of the paper is organized as follows. Section 2
formulates the document distribution problem in the DWS
systems and gives a proof of its NP-hardness. Section 3
presents our document distribution algorithms. In Section
4, we describe our simulation methodology and present
the performance results. Section 5 surveys related work,
and Section 6 concludes the paper and discusses future
work.

2. Problem Formulation

In this section, we formulate the document distribution

problem in DWS systems. Chen [7] proved that
minimizing the maximum load over all server nodes is
NP-complete. We will prove that even when the load
balancing constraint is removed, the problem of
minimizing the communication cost of moving the
documents is NP-hard.

Suppose there are N documents and M server nodes in
the system. Each server node has storage capacity C. Each
document has size of si and number of replicas ci (In this
paper, if we don’t state otherwise, we assume i = 1,…N
and j = 1,…M).

A “cost link” is constructed between each document
and each server: pij, associated with the number of bytes
to be transferred if document i is assigned to server j. We
also have variables tij

l (l = 1,…ci), which is 1 if lth replica
of ith document is placed on jth server; otherwise, it is 0.

The determination of ci is under the limitation of total

storage, i.e., ∑ .
1

() *
N

i i
i

s c M C
=

∗ ≤

After ci is determined, all the documents and their
replicas are placed on the server nodes under these
constraints: (1) each server can only hold replicas whose
total size does not exceed its disk space; (2) each server
can hold at most one replica of a document; (3) no
document is left unassigned to any server node; (4) load is
equalized among the server nodes.

As we stated at the beginning of the section, we won’t
include constraint (4) in the formulation. The replica
placement problem formulation is therefore as below:

minimize
1 1 1

cM N
l

ij ij
j i l

i

z t
= = =

= ∑∑∑

subject to (1)
1 1

icN
l

ij i
i l

t s C
= =

≤∑∑

1

1
ic

l

ij
l

t
=

≤∑ , (2)

p

c

c

1 1

icM
l

ij i
j l

t
= =

=∑∑ (3)

0 or 1, 1, ...l

ij it l= =
A replica placement that fulfills all the above

constraints is a “feasible placement.” Our discussion is
under the assumption that a feasible placement always
exists. We call this optimization problem the Replica
Placement Problem (RPP). When ci = 1, the problem is 0-
1 RPP.
Lemma 0-1 RPP is NP-hard
Proof: We reduce the bin-packing problem, which is NP-
hard [13], to the 0-1 RPP. For the bin-packing problem, si
denotes the size of object i and the bin’s size is C. We
assume that, in any feasible solution, the lowest indexed
bins are used. This means that if there are two bins with
the same available storage, the object will be placed in
the one with the lower index.

Given the bin-packing problem, we can construct a 0-1
RPP with costs pij as follows.

, 1

1, {1,... }, 1
()* 1, {1,... }, {2,... }ij

i j

i N j
p

p N i N j M−

∈ =
= + ∈ ∈

With such costs, the total cost of any set of replicas
assigned to {s1,…sj} is lower than the total cost of any set
of replicas assigned to {s1,…sj+1}. It is then obvious that
the bin-packing problem gets the minimal number of bins
used if and only if the 0-1 RPP gets the minimal total
communication cost.

Since the 0-1 RPP is a special case of the RPP, our
document placement problem is NP-hard.

3. Document Distribution Scheme

In this section, we propose our document distribution

scheme, which periodically re-replicates and re-distributes
the documents based on the access pattern in the past
period. We first describe an algorithm for determining the
number of replicas for each document. Next, we present
several heuristics that use available information in
different ways in order to achieve minimal
communication cost.

3.1. Density Algorithm

Intuitively, we should prefer to duplicate documents

that require more work on the part of the DWS system as

well as the small-size ones. We use the concept of
“density” to represent the workload per unit storage of the
document. The larger a document’s density is, the more
replicas it will have.

Figure 1. Density algorithm

Input: di, si, C, M, N,
Variables: S, total size of document

S_disk, available disk space
dmin, minimal density
temp_S, total size of temporary replicas
temp_ci, temporary number of replicas

Output: ci (i =1, …N)
1.compute S, S_disk = M * C - S
2.sort documents by decreasing density di,
 find dmin
3.for i = 1 to N {

temp_ci = di / dmin }
compute temp_S

4.for i = 1 to N {
 ci = temp_ci * S_disk / temp_S
 if (ci >= M-1){
 ci = M-1
 temp_S = temp_S – temp_ci * si

 S_disk = S_disk – ci * si }}
5.finally decide ci (i = 1,…N)

Figure 2. Greedy-cost algorithm

Input: ci, si, pij, C, M, N
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci)
1.sort (i, j) pairs by increasing cost, pij
2.for each (i, j) in the sorted list{
 if (ci > 0) {

allocate a replica to server j if it has
enough space and tij

l = 0 (l = 1,…ci).
ci = ci – 1 }} To compute a document’s density, we associate

document i with weight wi, which represents the workload
it brings to the server node holding it. In our algorithm, wi
is computed as si * ri, where si is the document’s size and
ri is its access rate in the past period. The density of a
document di, therefore, equals to wi / si. If a document is
duplicated, we assume that the workload is divided evenly
among its replicas (true if we assign requests to the
replicas in a round-robin manner). Therefore, a replica of
document i has weight of wi / ci and density of di / ci.

The Density Algorithm is shown in Figure 1. First, the
space equal to the total size of documents is reserved to
guarantee that each document has at least one copy in the
system. Step 2 sorts the documents by their densities
decreasingly. In Step 3, each document gets a temporary
replica number. The densities of the temporary replicas
are nearly equal to the minimal density. Step 4 adjusts the
temporary replica numbers under the storage limitation.
Replica numbers are computed according to the ratio
between available disk space and the total size of the
temporary replicas, thus the resulting replicas still
maintain similar densities. In Step 5, each replica number
is finally decided as an integer not larger than M.

This algorithm replicates the documents according to
their densities under the storage limitation. The time
complexity of it is Θ . From Step 4, we
know that for any two documents u and v, if 1 < c

(log)N N N+

u, cv ≤ M
and du > dv, du / (cu – 1) ≈ dv / (cv – 1). Thus, we can
assume if du > dv, du / cu > dv / cv, for any two documents
u and v.

Since we have proved that the minimization problem
of communication cost is NP-hard, in the rest of this
section, several approximation algorithms for distributing
the replicas to the server nodes are proposed. Before we
begin the discussion, we need to introduce a new variable,
Wj. It denotes the weight of server j and is computed as
the sum of the weights of all replicas allocated to it. Also,
in the following discussion, we call document i and its
replicas “replica set i".

3.2. Greedy-cost Algorithm

Greedy-cost algorithm aims to minimize traffic by
keeping as many as documents as they are in the system,
without caring if the load of the servers is balanced.

This algorithm is shown in Figure 2. To minimize the
cost, it first sorts the (document, server) pairs by the
communication cost between the document and the server
increasingly. Then in this order, a replica of document i is
allocated to server j if it has enough storage space and has
not been assigned the same replica in this period. The
total time complexity is . (log)MN MN MNΘ +

3.3. Greedy-load/cost Algorithm

Unlike Greedy-cost algorithm, Greedy-load/cost

algorithm considers balancing the load among the server
nodes as well as minimizing the cost caused in
distributing the documents.

Input: ci, pij, si, C, M, N
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci)
Variables: fj, penalty for document i (i = 1,…N)

while there are unassigned replica sets {
for each unassigned replica set i{

if only ci server nodes have enough
storage to hold document i{

allocate replica set i
goto while }

else {
sort servers by increasing cost with
document i, pij.

 compute fi }}
sort replica sets in decreasing penalty, fi
allocate the replica set with minimal fi in its
best placement}

Input: ci, si, pij, C, M, N
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci)
Variable: Dj, density of server j (j = 1,…M)

1.sort replica sets by increasing density, di / ci
2.for i = 1 to N {

sort servers by increasing communication
cost, pij. Servers having the same pij are
sorted by decreasing density, Dj
allocate replica set i
update Dj (j = 1,…M) }

Figure 3. Greedy-load / cost algorithm
To achieve load balancing, we expect seeing that after

document distribution, the weights of the server nodes are
approximately the same. Since the density of a server
node Dj equals to Wj / (amount of used disk space in
server j), in a homogeneous DWS system, this means that
after document distribution, the server nodes have similar
densities. Therefore, in Greedy-load/cost algorithm, the
replica sets are sorted by decreasing density and are
allocated in this order. When choosing server nodes for
replica set i, the server nodes are sorted by increasing
communication cost pij. If two server nodes have the same
cost, the one with the larger density Dj is chosen.

Figure 4. Greedy-penalty algorithm

The time complexity of Greedy-load algorithm is
. To simplify it, we can use the

sorting result of the Density algorithm, based on the
assumption that if d

(log log)N N NM MΘ +

(NMΘ
u > dv, du / cu > dv / cv. Thus the

algorithm only takes time. log)M

3.4. Greedy-penalty Algorithm

It is possible that allocating a document at different

times generates different traffic. For example, if we
allocate document i immediately, we can assign it to
server x with pix = 0; if we delay allocating it for a while,
however, server x may have become full and the
document has to be placed on server y with piy = si. In this
case, we say we are punished and use fi to refer to the
value of penalty. A penalty-based algorithm hopes to
decrease cost by placing documents in certain order. It has
been used to solve the General Assignment Problem [13].

We say a placement is “better” if it incurs less
communication cost. In Greedy-penalty algorithm, fi is
computed as the difference in the costs of replica set i's
best and second best placements, according to the current
status of the server nodes. This algorithm iteratively
places the replica sets until they are all allocated. Each
time it computes fi for all unassigned replica sets, and the
one yielding the largest penalty are placed with its best
placement. The time complexity of this algorithm is

. 2(log logN N NM MΘ +

If there are only ci server nodes having enough storage
to hold document i, we need to allocate replica set i
immediately. Otherwise, we might leave a replica
unassigned and violate constraint (3). In this case, we set
fi to . If there are multiple replica sets with infinite
penalty, they are placed in the order of decreasing
densities. To do this, we can use the sorting results of the
Density algorithm.

∞

4. Simulation Results

4.1. Experimental Setup

We use the CSIM 18 package [21] for our simulation.

In our simulation model, requests are redirected to the
server nodes that have the requested documents using
HTTP redirection. When a document has copies in
multiple server nodes, the requests for it are assigned in
round-robin fashion. Initially, Web documents are
randomly placed on the server nodes without replication.
Afterwards, documents are replicated and distributed
among the server nodes every 3 hours.

In our simulation, processing a web request comprises
(1) redirection (if necessary), (2) waiting in the queue of
the serving server node, (3) reading the file from disk.
The connection establishment time and teardown time is
neglected. The round-trip time of redirection is 100 ms
[16]. The disk access time is about 19 ms and the disk
transfer time about 21 MB/s [22]. We use two real traces
of Web access. One is from a website mainly used for
hosting personal homepages, called Data Set 1. Another,
called Data Set 2, is obtained from The Internet Traffic
Archive [20]. For simplicity, the documents in the same
directory are grouped and these groups are used as basic
units of replication and distribution.

)

1

1.5

2

2.5

3

1/16 1/8 1/4 1/2 1
C / S

LB
M

GL/C

GC

GP

DC

1

2

3

4

5

1/16 1/8 1/4 1/2 1

C / S

LB
M

GL/C

GC

GP

DC

1

2

3

4

5

16 32 64 128 256
no. of servers

LB
M

GL/C

GC

GP

1

1.5

2

2.5

3

16 32 64 128 256
no. of servers

LB
M

GL/C

GC

GP

Figure 8. Load balancing performance with
Data Set 2 (C / S = 1 / 8)

Figure 5. Load balancing performance with
Data Set 1 (16 server nodes)

Figure 7. Load balancing performance with
Data Set 1 (C / S = 1/8)

Figure 6. Load balancing performance with
Data Set 2 (16 server nodes)

We simulated the algorithms presented in Section 3.
Density algorithm is combined with Greedy-cost (GC),
Greedy-load/cost (GL/C), Greedy-penalty (GP)
respectively. For the purpose of comparison, we added a
Dynamic scheme (DS). In this scheme, each server node
owns a part of documents. Dynamically it examines the
other servers’ load and determines if they are under-
loaded or overloaded or. It then replicates one of its
documents to the under-loaded node or revokes one
replica of its documents from the overloaded node. This
scheme is similar to the one used in DC-Apache. In our
simulation, the servers check load status every 10 minutes.

4.2. Load Balancing Analyses

The Load Balance Metric (LMB) [4] is used as a

performance metric for measuring load balancing results.
We record the peak-to-mean ratio of server utilization
every sampling period (10 minutes) during the simulation.
The LBM value is obtained by calculating the weighted
average of the peak-to-mean ratios measured, using the
total server utilization at the sampling point as the weight.
A smaller LBM value indicates better load balancing
performance.

Figure 5 and Figure 6 present the load balancing
performance of our scheme when the number of servers is

fixed as 16. The y-axis is LBM value. The x-axis is C / S,
where C is the storage capacity of each server node and S
is the total size of the documents. We can see that DS
doesn’t improve load balancing much as the storage
capacity increases. This is because in DS, each server
node can only replicate one document once a time so that
the available disk space is not utilized efficiently to
remove hot spots. On the contrary, the load balancing
performance of our scheme increases as storage capacity
increases because the Density Algorithm fully utilizes the
disk space. Among the document distribution algorithms,
GC performs worst in load balancing while GL/C and
GP’s performance is similar.

Next, we fix the storage capacity, and increase the
number of server nodes from 16 to 256. The results are
shown in Figure 7 and Figure 8. We notice that GL/C’s
and GP’s performance is still close when the node number
is not very large. When there are more than 128 nodes,
however, GL/C appears to deteriorate faster than GP.

4.3. Traffic Analyses

We record the total number of bytes transferred inside

the system each period (except the first period, as
documents are randomly distributed without duplication
initially). At the end of the simulation, the ratio between

���� ����
����
����

����
����
����

�����
�����
�����
�����
�����
��������� �����

����
����

�����
�����
�����
�����

����
����
����
����
����
����
����
����

0
2
4
6
8

10
12
14
16

16 32 64 128 256
no. of servers

Av
er

ag
e

Tr
af

fic
 /

S GL/C
���
��� GC
���

GP

����
����

����
����

����
����
����

����
����
����
����
����
����
����
����

����
����

���
���

����
����
����

����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

����
����

0

1

2

3

4

5

1/8 1/4 1/2 5/8 15/16
C / S

Av
er

ag
e

Tr
af

fic
 /

S

GL/C����
���� GC����
���� GP

DC ����
����

����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����

����
����

����
����

����
����
����
����
����

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����

0

0.3

0.6

0.9

1.2

1.5

1/8 1/4 1/2 5/8 15/16
C / S

Av
er

ag
e

Tr
af

fic
 /

S GL/C
����

GC����
GP
DC

����� �����
����
����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
��������� �����

�����
�����

����
����
����
����

����
����
����
����
����
����
����
����

0
1
2
3
4
5
6
7
8

16 32 64 128 256
no. of servers

Av
er

ag
e

Tr
af

fic
 /

S GL/C����
���� GC
����

GP

Figure 9. Average traffic with Data Set 1
(16 server nodes)

Figure 11. Average traffic with Data Set 2
(16 server nodes)

Figure 10. Average traffic with Data Set 1
(C / S = 1/8)

Figure 12. Average traffic with Data Set 2
(C / S = 1/8)

the average traffic each period and total size of Web
documents S is computed. In the figures, y-axis represents
this ratio.

We can see from Figure 9 and Figure 10 that when
number of server nodes is fixed, the traffic caused by the
algorithms first increases as the storage capacity C
increases, and then decreases. This is because when there
is more available disk space, more documents are
replicated and the numbers of replicas of popular
documents are larger. Once the access pattern changes,
therefore, more replicas of the past period are revoked and
more new replicas of this period need to be distributed. It
is easy to understand that GC, which cares most about
communication cost, incurs the least cost. We find that
when the storage capacity is large, the traffic caused by
GL/C and GP is almost the same.

As the number of nodes increases, the total storage
space increases, therefore, the traffic in the system
increases. From Figure 10 and Figure 11, we can see that
GC still causes least traffic, and the traffic caused by
GL/C and GP get closer as the number of nodes increases.

The actual time needed to move the documents
total bytes /(*)t B M≈

where M is the number of servers and B is the bandwidth
between any two server nodes. Therefore, if we assume
that the bandwidth is 1 MB/s and total size of the

documents is 1G, moving documents would take no more
than several minutes. Since during this period, the DWS
system can continue to serve requests with documents not
in the move, its performance would not be substantially
affected.

In the figures, DS’s average traffic may be smaller
than that of our scheme. But since its period is much
shorter, its total traffic is actually larger than ours. This
may be because that it frequently replicates a document
and then revokes it.

From the simulation results, we see that our document
distribution scheme can achieve better load balancing in a
geographically DWS system and generate less traffic than
the dynamic scheme. Among the document distribution
algorithms, GC’s load balancing performance is not as
good as that of GP and GL/C. However, GC generates the
least internal traffic. GL/C needs shortest computing time.
Its load balancing performance is best in most cases and
only generates a little more traffic than GP. When the
number of server nodes is large, however, GL/C performs
much worse than GP. GP balances the load well but it
requires more computation than the others. A suitable
algorithm can be chosen according to the practical
situation of a geographically DWS system.

5. Related Work

Much research work has been done on ways to keep a

balanced load in geographically DWS systems.
Various DNS based scheduling techniques have been

proposed. The NCSA scalable web server depends on
round-robin DNS to dispatch requests [11], while [9]
found that the DNS policies combined with a simple
feedback alarm mechanism could effectively avoid
overloading the server nodes. Adaptive TTL algorithm [8]
was proposed to address the uneven client request
distribution and heterogeneity of server capacities. The
main problem with these techniques is that DNS only has
a limited control on the requests reaching the Web servers,
due to the caching of IP address in intermediate DNS
servers and client caches.

The content-aware requests distribution strategy
LARD [16] makes it possible to balance the load among
the server nodes through partitioning the Web documents
among the server nodes, with or without replication.
DCWS [5] makes use of a graph-based Web document-
partitioning algorithm. Each document resides on its
home server at first and can be migrated to a co-op server
for load balancing reason. To redirect client requests from
the home server to the co-op server, all hyperlinks
pointing to the document are modified. However, if the
system happens to contain many hot spots (i.e., popular
Web pages with extremely high request rates), to equalize
the load is absolutely non-trivial.

DC-Apache [12] is similar to DCWS, except that
documents are replicated instead of migrated among the
server nodes. Each document has a home server that
keeps its original copy. Every time the number or
locations of copies of a document change, the document’s
home server needs to regenerate all the hyperlinks
pointing to this document based on global load
information. This operation requires substantial
computation.

Riska et. al. observed that directing tasks of similar
size to the same server reduces the slowdown in a web
server and proposed a load balancing policy
ADAPTLOAD [18] which partitions the documents
among the server nodes according to their sizes. How to
effectively choose parameters of the policy still needs
more work.

In RobustWeb [14], each document has the same
number of replicas. The replicas are placed on the server
nodes based on past access pattern to equalize the servers
load. Multiple copies of a document may have different
weights of redirection, and the requests are assigned to
them in a weighted round-robin way. Instead of moving
documents like we do, in RobustWeb, only the weights of
the copies are computed periodically. When the access
pattern change dramatically, however, it’s difficult to
maintain load balancing using this method.

Ng at el. [15] included the prefetching feature in their
EWS system. In this system, documents that are always
accessed together are grouped and placed on the same
server node. Only the first request of a session has to go
through the redirection server, thus cutting down on the
redirection overhead. Load balancing is achieved by using
a revised document placement algorithm of the one used
in RobustWeb. Our work can be considered a derivative
from theirs by taking disk utilization and communication
cost into account. The algorithms we propose in this
paper can be deployed in EWS.

Recently there has been an increase in interest in
replica placement in Content Delivery Networks (CDN)
that offer hosting services to Web content providers
[2,10,17]. Although the problem formulation in CDN is
very similar to ours, it mainly focuses on minimizing
clients’ latency or total bandwidth consumption, and not
balancing the load among the servers.

6. Conclusion and Future Work

In this paper, we study how to replicate and distribute

the documents in a geographically DWS system to
achieve load balancing. In contrast with existing work, we
also take the communication cost caused by distributing
the replicas into consideration. We prove that even
without load balancing constraint, minimizing this cost in
homogeneous DWS systems is NP-hard.

We propose a document distribution scheme which
periodically replicates the documents and distributes the
replicas. In this scheme, we utilize the concept of
“density” of a document to decide number of replicas for
each document. Several distribution algorithms are
proposed and they use the available information from
different perspectives to reduce internal traffic of the
geographically DWS system. Our scheme is compared
with a dynamic scheme using real log files. The results
show that our scheme could balance the load in a DWS
system more efficiently during run-time and causes less
traffic. We also discuss the difference between the
distribution algorithms and the situations for which they
are suitable.

Our next step is to incorporate geographical
information into our document distribution scheme. We
aim at a geographically DWS system which would
automatically copy a document to a location where it is in
most demand, while maintaining load balancing and
minimizing communication cost. Such a geographically
DWS system would reduce access latencies and be most
suitable for Web sites where different parts of the content
are of interest to people from different geographical
locations.

References

[1] M. Abrams, C.R. Standridge, G. Abdulla, S. Williams, and

E.A. Fox, “Caching Proxies: Limitations and Potentials”. In
Proc. of 4th International World Wide Web Conference,
Boston, USA, December 1995, pp 119-133.

[2] A. Aggarwal and M. Rabinovich, “Performance of
Dynamic Replication Schemes for an Internet Hosting
Service”. Technical Report, AT&T Labs, October 1998.

[3] M.F. Arlitt, and C.L. Williamson, “Web Server Workload
Characterization: The Search for Invariants”. In Proc. of the
1996 SIGMETRICS Conference on Measurement &
Modeling of Computer Systems, Philadelphia, USA, May
1996, pp.160 – 169.

[4] R.B. Bung, D.L. Eager, G.M. Oster, and C.L. Williamson,
“Achieving Load Balance and Effective Caching in
Clustered Web Servers”. In Proc. of 4th International Web
Caching Workshop, San Diego, USA, March 1999, pp. 159-
169.

[5] S.M. Baker, and B. Moon, “Scalable Web Server Design for
Distributed Data Management”. In Proc. of 15th
International Conference on Data Engineering, Sydney,
Australia, March 1999, pp. 96.

[6] V. Cardellini, M. Colajanni and P.S. Yu, “Dynamic Load
Balancing on Web-Server Systems”. In IEEE Internet
Computing, vol. 3, No. 3, May/June 1999, pp 28-39.

[7] L.C. Chen and H.A. Choi, “Approximation Algorithms for
Data Distribution with Load Balancing of Web Servers”. In
Proc. of the 3rd IEEE International Conference on Cluster
Computing (CLUSTER’01), Newport Beach, USA, October
2001.

[8] M. Colajanni and P.S. Yu, “Adaptive TTL Schemes for
Load Balancing of Distributed Web Servers”. In ACM
Sigmetrics Performance Evaluation Review, 25(2):36--42,
September 1997.

[9] M. Colajanni, P.S. Yu, and D.M. Dias, “Analysis of Task
Assignment Policies in Scalable Distributed Web-Server
Systems”. In IEEE Trans. Parallel and Distributed Systems,
vol. 9, No. 6, June 1998, pp. 585-600.

[10] J. Kangasharju, J. Roberts, and K.W. Ross, “Object
Replication Strategies in Content Distribution Networks”.
In Proc. of Web Caching and Content Distribution
Workshop (WCW’01), Boston, USA, June 2001.

[11] T.T. Kwan, R.E. McGrath, and D.A. Reed, “NCSA's World
Wide Web Server: Design and Performance”. In IEEE
Computer, vol. 28, No. 11, November 1995, pp. 68-74.

[12] Q.Z. Li, and B. Moon, “Distributed Cooperative Apache
Web Server”. In Proc. of 10th International World Wide Web
Conference, Hong Kong, May 2001.

[13] S. Martello and P. Toth, Knapsack Problems: algorithms
and computer implementation, John Wiley & Sons Ltd,
1990.

[14] B. Narendran, S. Rangarajan, and S. Yajnjk, “Data
Distribution Algorithms for Load Balanced Fault Tolerant
Web Access”. In Proc. of 16th Symposium on IEEE Reliable
Distributed Systems, Durham, USA, October 1997, pp. 97-
106.

[15] C.P. Ng and C.L. Wang, “Document Distribution Algorithm
for Load Balancing on an Extensible Web Server
Architecture”. In Proc. of 1st IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid
2001), Brisbane, Australia, May 2001.

[16] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.
Zwaenepoel, and E. Nahum, “Locality-Aware Request
Distribution in Cluster-based Network Servers”. In Proc. of
8th International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose,
USA, October 1998, pp. 205-216.

[17] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On the
Placement of Web Server Replicas”. In Proc. of 20th IEEE
INFOCOM, Anchorage, USA, April 2001.

[18] A. Riska, W. Sun, E. Smirni, and G. Ciardo,
“ADATPTLOAD: effective balancing in clustered web
servers under transient load conditions”. In Proc. of 22nd
International Conference on Distributed Computing
Systems (ICDCS 2002), Vienna, Austria, July 2002.

[19] C.S. Yang and M.Y. Luo, “A Content Placement and
Management System for Distributed Web-Server Systems”.
In Proc. of 20th International Conference on Distributed
Computing Systems (ICDCS 2000), Taipei, Taiwan, April
2000.

[20] ClarkNet-HTTP,
 http://ita.ee.lbl.gov/contrib/ClarkNet-HTTP.html
[21] CSIM18, http://www.mesquite.com/htmls/csim18.htm
[22] Seagate ST360020A, http://www.seagate.com

http://www.mesquite.com/htmls/csim18.htm
http://www.seagate.com/

	Introduction
	Problem Formulation
	Document Distribution Scheme
	Density Algorithm
	Greedy-cost Algorithm
	Greedy-load/cost Algorithm
	Greedy-penalty Algorithm

	Simulation Results
	Experimental Setup
	Load Balancing Analyses
	Traffic Analyses

	Related Work
	Conclusion and Future Work
	References

