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Abstract 
  

How documents of a Web site are replicated and 
where they are placed among the server nodes have an 
important bearing on balance of load in a geographically 
Distributed Web Server (DWS) system. The traffic 
generated due to movements of documents at runtime 
could also affect the performance of the DWS system. In 
this paper, we prove that minimizing such traffic is NP-
hard. We propose a new document distribution scheme 
that periodically performs partial replication of a site’s 
documents at selected server locations to maintain load 
balancing. Several approximation algorithms are used in 
it to minimize traffic generated. The simulation results 
show that this scheme can achieve better load balancing 
than a dynamic scheme, while the internal traffic it causes 
has a negligible effect on the system’s performance.  

 
 

1. Introduction 
 
The increasing popularity of the World Wide Web has 

resulted in large bandwidth demands which translate into 
high latencies perceived by Web users. To tackle this 
latency problem, multiple copies of documents are 
distributed geographically and placed in caches at optimal 
locations. 

Web caching attempts to reduce network latency by 
storing the commonly requested documents as close to 
clients as possible. Simple caches have no information on 
users’ access pattern, and so they would habitually try to 
keep a copy of any document just requested. This may 
limit the performance of caches. For example, research in 
[1] shows that the maximum cache hit rate achievable by 
any caching algorithm is bounded under 40% to 50%  

A proactive Web server on the other hand can decide 
where to place copies of a document in a distributed Web 
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server (DWS) system where the server nodes are 
distributed geographically. In most existing 
geographically DWS systems, each server node keep the 
entire set of Web documents managed by the system. 
Incoming requests are distributed to the server nodes via 
DNS servers [6,9,11]. Although such systems are simple 
to implement, the caching of IP addresses on the client 
side or in intermediate DNS servers could easily result in 
uneven load among the server nodes. Moreover, the full 
replication leads to much waste of disk space due to those 
documents that are not frequently requested. 

To achieve better load balancing as well as to avoid 
disk wastage, one can replicate part of the documents on 
multiple server nodes [5,12,14,15,18,19] and use content-
aware distributor software to redirect a client request to a 
server node that has the requested document [16]. Some 
rules are then needed in such a geographically DWS 
system to determine each document’s number of replicas 
and the distribution of these replicas. These rules 
constitute what we call the document distribution scheme, 
and they should achieve the following goals.  

 
� Load Balancing: Since requests tend to target at a 

small part of the entire collection of documents [3], 
frequently requested documents should be replicated to 
avoid bottlenecks. Documents and their replicas should 
be placed in such a manner that most of the time the 
load of the participating server nodes is equalized. 

� Reduced Traffic: To adapt to users’ access patterns, 
documents need to be re-duplicated and re-distributed 
among the server nodes dynamically or periodically. 
Communications caused by such actions should be 
kept to the minimum so that the performance of the 
geographically DWS system would not be adversely 
affected. 
 
Existing schemes mainly focus on balancing the load, 

but not the traffic issues. In this paper, we propose a new 
document distribution scheme that can improve load 
balancing performance of geographically DWS systems, 



while minimizing the communication cost needed. We 
assume that each document has approximately the same 
popularity in all the server locations. Therefore, we will 
not consider network proximity to clients in replicating 
and distributing the documents. 

The performance of our scheme is evaluated through 
simulation using real access log data. The results show 
that this scheme can balance the load in the DWS system 
during run-time efficiently, and the internal traffic 
generated due to these algorithms is reasonably minimal. 

The rest of the paper is organized as follows. Section 2 
formulates the document distribution problem in the DWS 
systems and gives a proof of its NP-hardness. Section 3 
presents our document distribution algorithms. In Section 
4, we describe our simulation methodology and present 
the performance results. Section 5 surveys related work, 
and Section 6 concludes the paper and discusses future 
work. 
 

2. Problem Formulation 
 
In this section, we formulate the document distribution 

problem in DWS systems. Chen [7] proved that 
minimizing the maximum load over all server nodes is 
NP-complete. We will prove that even when the load 
balancing constraint is removed, the problem of 
minimizing the communication cost of moving the 
documents is NP-hard. 

Suppose there are N documents and M server nodes in 
the system. Each server node has storage capacity C. Each 
document has size of si and number of replicas ci (In this 
paper, if we don’t state otherwise, we assume i = 1,…N 
and j = 1,…M).  

A “cost link” is constructed between each document 
and each server: pij, associated with the number of bytes 
to be transferred if document i is assigned to server j. We 
also have variables tij

l (l = 1,…ci), which is 1 if lth replica 
of ith document is placed on jth server; otherwise, it is 0.  

The determination of ci is under the limitation of total 
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After ci is determined, all the documents and their 
replicas are placed on the server nodes under these 
constraints: (1) each server can only hold replicas whose 
total size does not exceed its disk space; (2) each server 
can hold at most one replica of a document; (3) no 
document is left unassigned to any server node; (4) load is 
equalized among the server nodes.  

As we stated at the beginning of the section, we won’t 
include constraint (4) in the formulation. The replica 
placement problem formulation is therefore as below: 
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A replica placement that fulfills all the above 

constraints is a “feasible placement.” Our discussion is 
under the assumption that a feasible placement always 
exists. We call this optimization problem the Replica 
Placement Problem (RPP). When ci = 1, the problem is 0-
1 RPP. 
Lemma 0-1 RPP is NP-hard 
Proof: We reduce the bin-packing problem, which is NP-
hard [13], to the 0-1 RPP. For the bin-packing problem, si 
denotes the size of object i and the bin’s size is C. We 
assume that, in any feasible solution, the lowest indexed 
bins are used. This means that if there are two bins with 
the same available storage, the object will be placed in 
the one with the lower index.  

Given the bin-packing problem, we can construct a 0-1 
RPP with costs pij as follows.  
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With such costs, the total cost of any set of replicas 
assigned to {s1,…sj} is lower than the total cost of any set 
of replicas assigned to {s1,…sj+1}. It is then obvious that 
the bin-packing problem gets the minimal number of bins 
used if and only if the 0-1 RPP gets the minimal total 
communication cost. 

Since the 0-1 RPP is a special case of the RPP, our 
document placement problem is NP-hard.  
 

3. Document Distribution Scheme 
 
In this section, we propose our document distribution 

scheme, which periodically re-replicates and re-distributes 
the documents based on the access pattern in the past 
period. We first describe an algorithm for determining the 
number of replicas for each document. Next, we present 
several heuristics that use available information in 
different ways in order to achieve minimal 
communication cost. 

 
3.1. Density Algorithm 

 
Intuitively, we should prefer to duplicate documents 

that require more work on the part of the DWS system as 



well as the small-size ones. We use the concept of 
“density” to represent the workload per unit storage of the 
document. The larger a document’s density is, the more 
replicas it will have.  

Figure 1. Density algorithm 

Input: di, si, C, M, N,  
Variables: S, total size of document  

S_disk, available disk space 
dmin, minimal density 
temp_S, total size of temporary replicas 
temp_ci, temporary number of replicas 

Output: ci  (i =1, …N) 
1.compute S, S_disk = M * C - S  
2.sort documents by decreasing density di,  
   find dmin 
3.for i = 1 to N { 

temp_ci = di / dmin } 
compute temp_S 

4.for i = 1 to N { 
 ci = temp_ci * S_disk / temp_S 
 if (ci >= M-1){ 
  ci = M-1  
  temp_S = temp_S – temp_ci * si 

 S_disk = S_disk – ci * si }} 
5.finally decide ci (i = 1,…N) 

Figure 2. Greedy-cost algorithm 

Input: ci, si, pij, C, M, N 
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci) 
1.sort (i, j) pairs by increasing cost, pij  
2.for each (i, j) in the sorted list{ 
 if (ci > 0) { 

allocate a replica to server j if it has 
enough space and tij

l = 0 (l = 1,…ci). 
ci = ci – 1 }} To compute a document’s density, we associate 

document i with weight wi, which represents the workload 
it brings to the server node holding it. In our algorithm, wi 
is computed as si * ri, where si is the document’s size and 
ri is its access rate in the past period. The density of a 
document di, therefore, equals to wi / si. If a document is 
duplicated, we assume that the workload is divided evenly 
among its replicas (true if we assign requests to the 
replicas in a round-robin manner). Therefore, a replica of 
document i has weight of wi / ci and density of di / ci.  

The Density Algorithm is shown in Figure 1. First, the 
space equal to the total size of documents is reserved to 
guarantee that each document has at least one copy in the 
system. Step 2 sorts the documents by their densities 
decreasingly. In Step 3, each document gets a temporary 
replica number. The densities of the temporary replicas 
are nearly equal to the minimal density. Step 4 adjusts the 
temporary replica numbers under the storage limitation. 
Replica numbers are computed according to the ratio 
between available disk space and the total size of the 
temporary replicas, thus the resulting replicas still 
maintain similar densities. In Step 5, each replica number 
is finally decided as an integer not larger than M.  

This algorithm replicates the documents according to 
their densities under the storage limitation. The time 
complexity of it is Θ . From Step 4, we 
know that for any two documents u and v, if 1 < c

( log )N N N+

u, cv ≤ M 
and du > dv, du / (cu – 1) ≈ dv / (cv – 1). Thus, we can 
assume if du > dv, du / cu > dv / cv, for any two documents 
u and v.  

Since we have proved that the minimization problem 
of communication cost is NP-hard, in the rest of this 
section, several approximation algorithms for distributing 
the replicas to the server nodes are proposed. Before we 
begin the discussion, we need to introduce a new variable, 
Wj. It denotes the weight of server j and is computed as 
the sum of the weights of all replicas allocated to it. Also, 
in the following discussion, we call document i and its 
replicas “replica set i".  

 
3.2. Greedy-cost Algorithm 

 

Greedy-cost algorithm aims to minimize traffic by 
keeping as many as documents as they are in the system, 
without caring if the load of the servers is balanced.  

This algorithm is shown in Figure 2. To minimize the 
cost, it first sorts the (document, server) pairs by the 
communication cost between the document and the server 
increasingly. Then in this order, a replica of document i is 
allocated to server j if it has enough storage space and has 
not been assigned the same replica in this period. The 
total time complexity is .  ( log )MN MN MNΘ +

 
3.3. Greedy-load/cost Algorithm 

 
Unlike Greedy-cost algorithm, Greedy-load/cost 

algorithm considers balancing the load among the server 
nodes as well as minimizing the cost caused in 
distributing the documents.  



Input: ci, pij, si, C, M, N 
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci) 
Variables: fj, penalty for document i (i = 1,…N) 

while there are unassigned replica sets { 
for each unassigned replica set i{ 

if only ci server nodes have enough 
storage to hold document i{ 

allocate replica set i  
goto while } 

else { 
sort servers by increasing cost with 
document i, pij. 

  compute fi }} 
sort replica sets in decreasing penalty, fi 
allocate the replica set with minimal fi in its 
best placement} 

Input: ci, si, pij, C, M, N 
Output: tij

l (i = 1,…N, j = 1,…M, l = 1,…ci) 
Variable: Dj, density of server j (j = 1,…M) 

1.sort replica sets by increasing density, di / ci  
2.for i = 1 to N { 

sort servers by increasing communication
cost, pij. Servers having the same pij are
sorted by decreasing density, Dj 
allocate replica set i  
update Dj (j = 1,…M) } 

Figure 3. Greedy-load / cost algorithm 
To achieve load balancing, we expect seeing that after 

document distribution, the weights of the server nodes are 
approximately the same. Since the density of a server 
node Dj equals to Wj / (amount of used disk space in 
server j), in a homogeneous DWS system, this means that 
after document distribution, the server nodes have similar 
densities. Therefore, in Greedy-load/cost algorithm, the 
replica sets are sorted by decreasing density and are 
allocated in this order. When choosing server nodes for 
replica set i, the server nodes are sorted by increasing 
communication cost pij. If two server nodes have the same 
cost, the one with the larger density Dj is chosen.  

Figure 4. Greedy-penalty algorithm 

The time complexity of Greedy-load algorithm is 
. To simplify it, we can use the 

sorting result of the Density algorithm, based on the 
assumption that if d

( log log )N N NM MΘ +

(NMΘ
u > dv, du / cu > dv / cv. Thus the 

algorithm only takes time. log )M
 

3.4. Greedy-penalty Algorithm 
 
It is possible that allocating a document at different 

times generates different traffic. For example, if we 
allocate document i immediately, we can assign it to 
server x with pix = 0; if we delay allocating it for a while, 
however, server x may have become full and the 
document has to be placed on server y with piy = si. In this 
case, we say we are punished and use fi to refer to the 
value of penalty. A penalty-based algorithm hopes to 
decrease cost by placing documents in certain order. It has 
been used to solve the General Assignment Problem [13].  

We say a placement is “better” if it incurs less 
communication cost. In Greedy-penalty algorithm, fi is 
computed as the difference in the costs of replica set i's 
best and second best placements, according to the current 
status of the server nodes. This algorithm iteratively 
places the replica sets until they are all allocated. Each 
time it computes fi for all unassigned replica sets, and the 
one yielding the largest penalty are placed with its best 
placement. The time complexity of this algorithm is 

. 2( log logN N NM MΘ +

If there are only ci server nodes having enough storage 
to hold document i, we need to allocate replica set i 
immediately. Otherwise, we might leave a replica 
unassigned and violate constraint (3). In this case, we set 
fi to . If there are multiple replica sets with infinite 
penalty, they are placed in the order of decreasing 
densities. To do this, we can use the sorting results of the 
Density algorithm.  

∞

 

4. Simulation Results 
 

4.1. Experimental Setup 
 
We use the CSIM 18 package [21] for our simulation. 

In our simulation model, requests are redirected to the 
server nodes that have the requested documents using 
HTTP redirection. When a document has copies in 
multiple server nodes, the requests for it are assigned in 
round-robin fashion. Initially, Web documents are 
randomly placed on the server nodes without replication. 
Afterwards, documents are replicated and distributed 
among the server nodes every 3 hours.  

In our simulation, processing a web request comprises 
(1) redirection (if necessary), (2) waiting in the queue of 
the serving server node, (3) reading the file from disk. 
The connection establishment time and teardown time is 
neglected. The round-trip time of redirection is 100 ms 
[16]. The disk access time is about 19 ms and the disk 
transfer time about 21 MB/s [22]. We use two real traces 
of Web access. One is from a website mainly used for 
hosting personal homepages, called Data Set 1. Another, 
called Data Set 2, is obtained from The Internet Traffic 
Archive [20]. For simplicity, the documents in the same 
directory are grouped and these groups are used as basic 
units of replication and distribution. 

)
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Figure 8. Load balancing performance with 
Data Set 2 (C / S = 1 / 8) 

Figure 5. Load balancing performance with 
Data Set 1 (16 server nodes) 

Figure 7. Load balancing performance with 
Data Set 1 (C / S  = 1/8) 

Figure 6. Load balancing performance with 
Data Set 2 (16 server nodes) 

We simulated the algorithms presented in Section 3. 
Density algorithm is combined with Greedy-cost (GC), 
Greedy-load/cost (GL/C), Greedy-penalty (GP) 
respectively. For the purpose of comparison, we added a 
Dynamic scheme (DS). In this scheme, each server node 
owns a part of documents. Dynamically it examines the 
other servers’ load and determines if they are under-
loaded or overloaded or. It then replicates one of its 
documents to the under-loaded node or revokes one 
replica of its documents from the overloaded node. This 
scheme is similar to the one used in DC-Apache. In our 
simulation, the servers check load status every 10 minutes.  

 
4.2. Load Balancing Analyses 

 
The Load Balance Metric (LMB) [4] is used as a 

performance metric for measuring load balancing results. 
We record the peak-to-mean ratio of server utilization 
every sampling period (10 minutes) during the simulation. 
The LBM value is obtained by calculating the weighted 
average of the peak-to-mean ratios measured, using the 
total server utilization at the sampling point as the weight. 
A smaller LBM value indicates better load balancing 
performance. 

Figure 5 and Figure 6 present the load balancing 
performance of our scheme when the number of servers is 

fixed as 16. The y-axis is LBM value. The x-axis is C / S, 
where C is the storage capacity of each server node and S 
is the total size of the documents. We can see that DS 
doesn’t improve load balancing much as the storage 
capacity increases. This is because in DS, each server 
node can only replicate one document once a time so that 
the available disk space is not utilized efficiently to 
remove hot spots. On the contrary, the load balancing 
performance of our scheme increases as storage capacity 
increases because the Density Algorithm fully utilizes the 
disk space. Among the document distribution algorithms, 
GC performs worst in load balancing while GL/C and 
GP’s performance is similar. 

Next, we fix the storage capacity, and increase the 
number of server nodes from 16 to 256. The results are 
shown in Figure 7 and Figure 8. We notice that GL/C’s 
and GP’s performance is still close when the node number 
is not very large. When there are more than 128 nodes, 
however, GL/C appears to deteriorate faster than GP. 

 
4.3. Traffic Analyses 

 
We record the total number of bytes transferred inside 

the system each period (except the first period, as 
documents are randomly distributed without duplication 
initially). At the end of the simulation, the ratio between 
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Figure 9. Average traffic with Data Set 1 
(16 server nodes) 

Figure 11. Average traffic with Data Set 2 
(16 server nodes) 

Figure 10. Average traffic with Data Set 1 
(C / S = 1/8) 

Figure 12. Average traffic with Data Set 2 
(C / S = 1/8) 

the average traffic each period and total size of Web 
documents S is computed. In the figures, y-axis represents 
this ratio. 

We can see from Figure 9 and Figure 10 that when 
number of server nodes is fixed, the traffic caused by the 
algorithms first increases as the storage capacity C 
increases, and then decreases. This is because when there 
is more available disk space, more documents are 
replicated and the numbers of replicas of popular 
documents are larger. Once the access pattern changes, 
therefore, more replicas of the past period are revoked and 
more new replicas of this period need to be distributed. It 
is easy to understand that GC, which cares most about 
communication cost, incurs the least cost. We find that 
when the storage capacity is large, the traffic caused by 
GL/C and GP is almost the same.  

As the number of nodes increases, the total storage 
space increases, therefore, the traffic in the system 
increases. From Figure 10 and Figure 11, we can see that 
GC still causes least traffic, and the traffic caused by 
GL/C and GP get closer as the number of nodes increases. 

The actual time needed to move the documents  
total bytes /( * )t B M≈  

where M is the number of servers and B is the bandwidth 
between any two server nodes. Therefore, if we assume 
that the bandwidth is 1 MB/s and total size of the 

documents is 1G, moving documents would take no more 
than several minutes. Since during this period, the DWS 
system can continue to serve requests with documents not 
in the move, its performance would not be substantially 
affected. 

In the figures, DS’s average traffic may be smaller 
than that of our scheme. But since its period is much 
shorter, its total traffic is actually larger than ours. This 
may be because that it frequently replicates a document 
and then revokes it. 

From the simulation results, we see that our document 
distribution scheme can achieve better load balancing in a 
geographically DWS system and generate less traffic than 
the dynamic scheme. Among the document distribution 
algorithms, GC’s load balancing performance is not as 
good as that of GP and GL/C. However, GC generates the 
least internal traffic. GL/C needs shortest computing time. 
Its load balancing performance is best in most cases and 
only generates a little more traffic than GP. When the 
number of server nodes is large, however, GL/C performs 
much worse than GP. GP balances the load well but it 
requires more computation than the others. A suitable 
algorithm can be chosen according to the practical 
situation of a geographically DWS system.  

 



5. Related Work 
 
Much research work has been done on ways to keep a 

balanced load in geographically DWS systems.  
Various DNS based scheduling techniques have been 

proposed. The NCSA scalable web server depends on 
round-robin DNS to dispatch requests [11], while [9] 
found that the DNS policies combined with a simple 
feedback alarm mechanism could effectively avoid 
overloading the server nodes. Adaptive TTL algorithm [8] 
was proposed to address the uneven client request 
distribution and heterogeneity of server capacities. The 
main problem with these techniques is that DNS only has 
a limited control on the requests reaching the Web servers, 
due to the caching of IP address in intermediate DNS 
servers and client caches.  

The content-aware requests distribution strategy 
LARD [16] makes it possible to balance the load among 
the server nodes through partitioning the Web documents 
among the server nodes, with or without replication. 
DCWS [5] makes use of a graph-based Web document-
partitioning algorithm. Each document resides on its 
home server at first and can be migrated to a co-op server 
for load balancing reason. To redirect client requests from 
the home server to the co-op server, all hyperlinks 
pointing to the document are modified. However, if the 
system happens to contain many hot spots (i.e., popular 
Web pages with extremely high request rates), to equalize 
the load is absolutely non-trivial. 

DC-Apache [12] is similar to DCWS, except that 
documents are replicated instead of migrated among the 
server nodes. Each document has a home server that 
keeps its original copy. Every time the number or 
locations of copies of a document change, the document’s 
home server needs to regenerate all the hyperlinks 
pointing to this document based on global load 
information. This operation requires substantial 
computation. 

Riska et. al. observed that directing tasks of similar 
size to the same server reduces the slowdown in a web 
server and proposed a load balancing policy 
ADAPTLOAD [18] which partitions the documents 
among the server nodes according to their sizes. How to 
effectively choose parameters of the policy still needs 
more work.  

In RobustWeb [14], each document has the same 
number of replicas. The replicas are placed on the server 
nodes based on past access pattern to equalize the servers 
load. Multiple copies of a document may have different 
weights of redirection, and the requests are assigned to 
them in a weighted round-robin way. Instead of moving 
documents like we do, in RobustWeb, only the weights of 
the copies are computed periodically. When the access 
pattern change dramatically, however, it’s difficult to 
maintain load balancing using this method.  

Ng at el. [15] included the prefetching feature in their 
EWS system. In this system, documents that are always 
accessed together are grouped and placed on the same 
server node. Only the first request of a session has to go 
through the redirection server, thus cutting down on the 
redirection overhead. Load balancing is achieved by using 
a revised document placement algorithm of the one used 
in RobustWeb. Our work can be considered a derivative 
from theirs by taking disk utilization and communication 
cost into account. The algorithms we propose in this 
paper can be deployed in EWS. 

Recently there has been an increase in interest in 
replica placement in Content Delivery Networks (CDN) 
that offer hosting services to Web content providers 
[2,10,17]. Although the problem formulation in CDN is 
very similar to ours, it mainly focuses on minimizing 
clients’ latency or total bandwidth consumption, and not 
balancing the load among the servers.  

 

6. Conclusion and Future Work 
 
In this paper, we study how to replicate and distribute 

the documents in a geographically DWS system to 
achieve load balancing. In contrast with existing work, we 
also take the communication cost caused by distributing 
the replicas into consideration. We prove that even 
without load balancing constraint, minimizing this cost in 
homogeneous DWS systems is NP-hard.  

We propose a document distribution scheme which 
periodically replicates the documents and distributes the 
replicas. In this scheme, we utilize the concept of 
“density” of a document to decide number of replicas for 
each document. Several distribution algorithms are 
proposed and they use the available information from 
different perspectives to reduce internal traffic of the 
geographically DWS system. Our scheme is compared 
with a dynamic scheme using real log files. The results 
show that our scheme could balance the load in a DWS 
system more efficiently during run-time and causes less 
traffic. We also discuss the difference between the 
distribution algorithms and the situations for which they 
are suitable.  

Our next step is to incorporate geographical 
information into our document distribution scheme. We 
aim at a geographically DWS system which would 
automatically copy a document to a location where it is in 
most demand, while maintaining load balancing and 
minimizing communication cost. Such a geographically 
DWS system would reduce access latencies and be most 
suitable for Web sites where different parts of the content 
are of interest to people from different geographical 
locations.  
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