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Abstract

A distributed Java Virtual Machine supports transparent parallel
execution of multi-threaded Java programs on a cluster of computers.
It provides an alternative platform for high performance scientific com-
putations. In this paper, we present the design of a global object space
in distributed JVM, which virtualizes a single Java object heap across
machine boundaries to facilitate transparent object accesses. We lever-
age runtime object connectivity information to detect objects, called
distributed-shared objects, that are reachable from threads at different
nodes to address memory consistency issues in the distributed JVM.
With the detection of distributed-shared objects, we can reduce mem-
ory consistency maintenance overhead and provide efficient distributed
garbage collection.

We propose a framework to characterize object access patterns,
along three orthogonal dimensions. Under the framework, we propose
and apply three effective adaptations to the cache coherence protocol
to optimize several access patterns that frequently appear during ap-
plication execution, including an object home migration method that
adapts to the single-writer access pattern, synchronized method mi-
gration that allows the remote execution of a synchronized method at
the home node of its locked object, and object pushing that uses the
object connectivity information to adapt to the producer-consumer ac-
cess pattern.

Keywords: Java, cluster computing, Distributed JVM, Distributed
shared memory, Adaptive cache coherence protocol.

1 Introduction

The Java programming language [7] provides multi-threading support for
explicit parallelism in a program. Parallel programs in Java are generally
more portable than those using other parallel languages or runtime libraries
such as PVM, MPI, or software DSM. Recent advances in Java compiling
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and execution technology, such as just-in-time compiler and the hotspot
technology [35], are making Java an attractive tool for high performance
computing [14]. Some performance benchmark results even indicates that
Java can outperform the C programming language in some numerical com-
putation programs for scientific and engineering applications [30].

In recent years, cluster [17] [6] has gradually been accepted as a scalable
and affordable parallel computing platform by both academia and industry.
A lot of effort [24][36][39][2][23] has been devoted to supporting transpar-
ent and parallel execution of multi-threaded Java programs in a cluster of
computers. Among many such projects, the Hyperion [24] and Jackal [36]
systems compile multi-threaded Java programs directly into distributed ap-
plications in native code; Java/DSM [39], cJVM [2], and JESSICA [23] are
distributed JVMs that conform to the JVM specification [21] but runs on a
cluster of computers. As a middleware for the cluster, a distributed JVM
presents a single system image (SSI) to Java applications on top. With
ideal SSI, not only the Java threads created within one program can be
distributed to different cluster nodes to achieve a high degree of execution
parallelism, but cluster-wide resources such as memory, I/O, and network
bandwidth can be aggregated to solve large-size problems. Given that the
distributed JVM conforms to the JVM specification, any pure Java program
can run on the distributed JVM without any modification in both the Java
source code and the bytecode.

The above paradigm of parallel Java programming will boost program-
ming productivity. First, the steep learning curve does not exist in this
paradigm since the programmers do not need to learn a new language,
new libraries, or tools in order to develop parallel programs. Second, this
paradigm works in the convenient mode that programs can be developed in
a single machine, and then submitted to a parallel computer for execution.
Finally, many existing multi-threaded Java applications, especially server
applications, can be automatically parallelized with minimal effort.

In a distributed JVM, the shared memory characteristics of Java threads
call for a global object space (GOS) that “virtualizes” a single Java object
heap. The heap spans the whole cluster in order to facilitate transparent
object access. The GOS indeed is a distributed shared memory (DSM) ser-
vice in an object-oriented system. The memory consistency semantics of
the GOS are defined based on the Java memory model. The performance of
the distributed JVM hinges on the GOS’s ability to minimize the commu-
nication and coordination overheads in maintaining the single object heap
illusion.

Many distributed JVMs use a page-based DSM to build the GOS. This
is an easy approach because all the memory consistency and cache coher-
ence issues are handled by the page-based DSM. It however suffers from
problems due to the mismatch between the object-based memory model of
Java and the underlying page-based implementation. For instance, the false
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sharing problem occurs because of the incompatible sharing granularities
of the variable-sized Java objects and the fix-sized virtual memory pages.
This mismatch has also prevented further optimizations on the cache coher-
ence protocol that implements the Java memory model. A more effective
and efficient solution for object sharing among distributed Java threads is
needed.

In this paper, we propose a new global object space design for distributed
JVM. In our design, we use an object-based adaptive cache coherence pro-
tocol to implement the Java memory model. We believe that adaptive pro-
tocols are superior to non-adaptive ones due to their adaptability to appli-
cations’ object access patterns.

Many cache coherence protocols have been proposed in the field of soft-
ware distributed shared memory. Home-based protocols [18] assign a home
node to each shared data object from which all copies are derived. It is
widely believed that home-based protocols are more scalable than home-
less protocols [20], for the reason that the former kind has less memory
consumption and eliminates diff accumulation. The home in a home-based
protocol can be either fixed [18] or migratable [9]. There are also choices
for the coherence operations, such as that between a multiple-writer proto-
col or a single-writer protocol. The multiple-writer protocol introduced in
Munin [8] supports concurrent writes on different copies using the diff tech-
niques. It may however incur heavy diff overhead compared with conven-
tional single-writer protocol. Another choice is between the update protocol
(e.g., Orca [5]) and the invalidate protocol in many page-based DSM sys-
tems (e.g., [20][9]). The update protocol can do prefetching to make the data
available before the access, but it may send much unneeded data compared
with the invalidate protocol.

We found the performance of a coherence protocol to be often application-
dependent. That is, the particular memory access patterns in a application
determine which protocol is more efficient and therefore suitable. That mo-
tivated us to go after an adaptive protocol.

An adaptive cache coherence protocol is able to detect the current access
pattern and adjusts itself accordingly. Some DSMs (e.g., Munin [8]) support
multiple cache coherence protocols and allow the programmer to explicitly
associate a specific protocol with the shared data. This is not transparent
to the programmer and cannot dynamically switch between different pro-
tocols in response to changes in access pattern. Several page-based DSM
systems [1][26] support adaptive protocols that can automatically adapt to
the access pattern at runtime. However, the access pattern these systems
observe is the page-level approximation of the actual pattern. They may
not be effective if the page-level approximation is different from the actual
pattern, such as when the application has fine-grained sharing granularity.
An object-based adaptive protocol should be more flexible, which is what
we have designed and implemented.
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The challenges of designing an effective and efficient adaptive cache co-
herence protocol are: (1) whether we can determine those adaptations that
are able to optimize the access patterns in the context where the protocol
is applied, and (2) whether the runtime system can efficiently identify those
target access patterns and apply the corresponding adaptations.

To understand more the first challenge and to subsequently overcome it,
we propose the access pattern space as a framework to characterize object
access behavior. This space has three dimensions—number of writers, syn-
chronization, and repetition. We identify some basic access patterns along
each dimension: multiple-writers, single-writer, and read-only for the dimen-
sion of number of writers; mutual exclusion and condition for the dimension
of synchronization; and patterns with different number of consecutive rep-
etitions for the dimension of repetition. The combination of different basic
patterns then portrays an actual access pattern. This access pattern space
serves as a systematic foundation on which we can identify those significant
object access patterns existing in distributed JVM. We can then choose the
right adaptations to match with and optimize these access patterns.

To meet the second challenge, we take advantage of the fact that our GOS
is implemented by modifying the heap subsystem of JVM. Our adaptive
protocol can leverage all runtime object types and access information to
efficiently and accurately identify the access patterns we are interested in.

We leverage runtime object connectivity information to detect objects we
call distributed-shared objects (DSO). DSOs are defined to be those reachable
from at least two threads located at different cluster nodes in the distributed
JVM. The distinction of DSOs allows us to more efficiently address the mem-
ory consistency issue. In Java, synchronization primitives are not only used
to protect critical sections but also to maintain memory consistency. We
show that only locks on DSOs need to trigger distributed memory consis-
tency maintenance. The detection of DSOs cuts down on the frequency of
distributed consistency maintenance. Since only DSOs that may be repli-
cated on multiple nodes need to be involved in consistency maintenance, the
detection of DSOs therefore leads to a more efficient consistency protocol.

We apply three different protocol adaptations to the basic home-based
multiple writer cache coherence protocol in three different situations respec-
tively in the access pattern space: (1) object home migration which optimizes
the single writer access pattern by adapting the object’s home to the writ-
ing node according to the access history; (2) synchronized method migration
which chooses between default object shipping and method shipping in or-
der to optimize the execution of critical section methods according to some
a priori knowledge; (3) object pushing which adapts the transfer unit to op-
timize producer-consumer access pattern according to object connectivity
information.

The rest of the paper is organized as follows. Section 2 introduces the
access pattern space. Section 3 defines DSO, and explains the lightweight
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DSO detection scheme as well as how we use the concept of DSO to address
both the memory consistency issue and the memory management issue in
the GOS. Section 4 presents the adaptive cache coherence protocol. We
conducted experiments to measure the performance of the prototype based
on our design, which we report in Section 5. In section 6, related work is
discussed and compared with our GOS. The final section gives the conclusion
and presents a possible agenda for future work.

2 Access Pattern Specification

In this section, we first introduce the Java memory model since the memory
model influences memory behavior, and then propose the access pattern
space for specifying object access behavior in Java. Although we discuss
access patterns in the context of Java, the access pattern space should be
applicable to other shared memory systems.

2.1 Java Memory Model

The Java memory model (JMM) defines memory consistency semantics of
multi-threaded Java programs. There is a lock associated with each object in
Java. The Java language provides the synchronized keyword, used in either
a synchronized method or a synchronized statement, for synchronization.
Entering into and exiting from a synchronized block correspond to acquiring
and releasing the lock of the corresponding object respectively. In Java,
synchronization is used not only to protect critical sections, but also to
maintain memory consistency among threads.

Our GOS follows the JMM proposed in [25]. When a thread T1 acquires
a lock that was most recently released by another thread T2, all writes that
were visible to T2 at the time of releasing the lock become visible to T1. This
is the release consistency [19].

We follow the operations defined in the JVM specification to implement
this memory model. Before a thread releases a lock, it must copy all assigned
values in its private working memory back to the main memory shared by
all threads. Before a thread acquires a lock, it must flush (throw away) all
variables in its working memory, and therefore later uses will load the values
from the main memory.

2.2 Access Pattern Space

An object’s access behavior can be described as a set of reads and writes
performed on the object, interleaved with synchronization actions such as
locks and unlocks. These reads and writes as well as locks and unlocks may
be issued concurrently by multiple threads. The locks and unlocks may not
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be invoked on that particular object, but they will still influence the ob-
ject’s accesses according to the JMM. Locks and unlocks on the same object
are executed sequentially. Among all the accesses from different threads, a
partial order is established by the synchronization actions.

Three orthogonal dimensions defining the characteristics of object access
behavior can be observed: number of writers, synchronization, and repeti-
tion. We therefore propose a 3-dimensional access pattern space based on
these three characteristics, as shown in Fig. 1.

Number of writers characterizes how many nodes there are in which
a thread can be writing to the object. We distinguish three cases:

• Multiple writers: the object is written by multiple nodes.

• Single writer : the object is written by a single node. Exclusive access
is a special case in single writer pattern, where the object is accessed
by only one node.

• Read only : no node writes to the object.

Synchronization characterizes the execution order of accesses from dif-
ferent threads. When the object is accessed by multiple threads and at least
one thread is a writer, the threads must be well synchronized to avoid data
race. We distinguish three cases:

• Accumulator : the object accesses are mutually exclusive. The object
is updated by multiple threads concurrently, and therefore all the up-
dating should happen in a critical section. That is, the read/write
should be preceded by a lock and followed by an unlock. Notice that
although Java implements the monitor concept, it does not require
that the lock protecting the critical section should belong to the ob-
ject accessed inside.

• Assignment : the object accesses obey the precedence constraint. The
object is used to safely transfer a value from one thread to another
thread. The source thread writes to the object first, followed by the
destination thread reading it. Synchronization actions should be used
to enforce that the write happens before the read according to the
memory model. Java provides the wait and notify methods in the
Object class to help implement the assignment pattern.

• No synchronization: synchronization is unnecessary.

Repetition characterizes the number of consecutive repetitions of an
access pattern. It is desirable that the access pattern will repeat for a
considerable number of times so that the GOS will be able to detect the
pattern using the history and to apply some adaptation to optimize the
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pattern’s reoccurrence. Such a pattern will appear on the right side of
the adapting point along the repetition axis. The adapting point is an
internal threshold in the GOS. When the pattern repeats for more times
than the adapting point, the corresponding adaptation will be automatically
performed. For instance, the single writer pattern can be optimized using
this approach.

However, there are some significant access patterns that repeat only
once, such as the producer-consumer pattern. Similar to the assignment
pattern, the producer-consumer pattern obeys the precedence constraint.
The write must happen before the read. However, in the producer-consumer
pattern, after the object is created, it is written and read only once, and then
turned into garbage. Therefore, producer-consumer is single-assignment.
The detection of the producer-consumer pattern therefore cannot depend
on access history information, and other information and heuristics should
be used instead.

3 Distributed-shared Object

In this section, we define distributed-shared object (DSO), and discuss the
benefits of distinguishing between DSOs and NLOs (node-local objects), as
well as the detection of DSOs. We then present our basic cache coherence
protocol and the distributed garbage collection scheme in the GOS.

3.1 Definition

In JVM, connectivity exists between two Java objects if one object contains a
reference to another. Therefore, we can conceive the whole picture of object
heap to be a connectivity graph, where the vertices represent objects and the
edges represent references. Reachability describes the transitive referential
relationship between a Java thread and an object based on the connectivity
graph. An object is reachable from a thread if (1) its reference resides in
the thread’s stack, or (2) there is some path existing in connectivity graph
between it and some known reachable object.

If an object is reachable from only one thread, it is called thread-local ob-
ject. The opposite is a thread-escaping object, which is reachable from mul-
tiple threads. Thread-local objects can be separated from thread-escaping
objects at compile time using some escape analysis technique [11].

In a distributed JVM, Java threads are distributed to different nodes,
and so we need to extend the concepts of thread-local object and thread-
escaping object. We define distributed-shared object and node-local object,
as follows.

Node-local object is an object reachable from thread(s) in the same node.
It is either a thread-local object or a thread-escaping object.
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Distributed-shared object is an object reachable from at least two threads
located at different nodes.

3.2 Benefits from detection of DSOs

The detection of DSOs can help reduce the memory consistency maintenance
overhead. According to the JVM specification, there are two memory consis-
tency problems in a distributed JVM. The first one, local consistency, exists
among threads’ working memories and the main memory inside one node.
The second one, distributed consistency, exists among multiple main memo-
ries of different nodes. The issue of local consistency should be addressed by
any JVM implementation. The issue of distributed consistency only emerges
in distributed JVM. The cost to maintain distributed consistency is much
more than that of its local counterpart due to the communication incurred.
As we have mentioned before, synchronization in Java is used not only to
protect critical sections but also to enforce memory consistency. However,
synchronization actions on NLO do not need to trigger distributed consis-
tency maintenance, because all threads able to acquire or release the lock
of an NLO must reside in the same node and therefore do not experience
distributed inconsistency throughout.

Only DSOs are involved in distributed consistency maintenance since
they have multiple copies in different nodes. With the detection of DSOs,
only DSOs need to be visited to make sure they are in the consistent state
in distributed consistency maintenance.

According to the JVM specification, one vital responsibility of the GOS is
to perform automatic memory management in the distributed environment—
distributed garbage collection (DGC) [29]. The detection of DSO also helps
improve the memory management in the GOS in this regard. Being aware
of the existence of DSOs, local garbage collectors can perform asynchronous
collection on garbage. The detection of DSOs enables independent mem-
ory management on each node. The memory management and distributed
garbage collection will be discussed in Section 3.5.

3.3 Lightweight Detection

In distributed JVM, whether an object is a DSO or NLO is determined by
the relative locations of the object and the threads reaching it. The locations
of objects and threads can only be determined at runtime. We propose a
runtime lightweight DSO detection scheme which leverages on Java’s type
information which is available at runtime.

Java is a strongly typed language. Each variable, either object field that
is in the heap or thread-local variable in some Java thread stack, has a type.
The type is either a reference type or a primitive type such as integer, char,
or float. The type information is known at compile time and written into
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class files generated by the compiler. At runtime, the class subsystem builds
up type information from the class files. Thus, by looking up runtime type
information, we can identify those variables that are of the reference type.
Therefore, the object connectivity graph is available at runtime. The graph
is dynamic since connectivity between objects may change from time to time
through the reassignment of objects fields.

The DSO detection is performed when there are some JVM runtime
data to be transmitted across node boundary, which are either thread stack
context for thread relocation or object content for remote object access. On
both the sending and the receiving side, these data are examined to identify
object references contained within. A transmitted object reference indicates
the object is a DSO since it is reachable from threads located at different
nodes. On the sending side, if the object has not been marked as a DSO, it
is marked at this moment. On the receiving side, when a received remote
reference first emerges, an empty object of its type will be created to be
associated with it, so that the reference will not become a dangling pointer.
The object’s access state will be set to invalid. When it is accessed later,
its up-to-date content will be faulted-in. In this scheme, only those objects
whose references appear in multiple nodes will be detected as DSOs.

We detect DSO in a lazy fashion. Since it is still unknown whether an
object will be accessed by its reaching thread in the future or not, we choose
to postpone the detection to as close to the actual access as possible, thus
making the detection scheme lightweight.

3.4 Basic Cache Coherence Protocol

Fig.2 illustrates the lifecycle of an object in our GOS from its creation
to possible collection. If an object is a DSO, after it is detected, it will
be replicated in multiple nodes and suffer from the consistency problem.
This subsection discusses our basic cache coherence protocol to handle the
consistency problem. The garbage collection of both NLOs and DSOs will
be discussed in the next subsection.

In the dimension of number of writers in the access pattern space, the
multiple-writers pattern can be considered the generalized form of all pat-
terns. Both the single-writer pattern and the read-only pattern are special
cases of the multiple-writers pattern, but with some dumb writers. There-
fore, our basic cache coherence protocol is a home-based multiple-writer
cache coherence protocol. Its state transition graph is included in Fig. 2.
The object is the unit of coherence. When a DSO is detected, the node
where the object is first created is made its home node. The home copy of
a DSO is always valid. A non-home copy of a DSO can be in one of three
possible access states: invalid, read (read-only), or write (writable). Ac-
cesses to invalid copies of DSOs will fault-in the contents from their home
node. Upon releasing a lock of a DSO, all updated values to non-home
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copies of DSOs should be written to their corresponding home nodes. Upon
acquiring a lock, a flush action is required to set the access state of the
non-home copies of DSOs invalid, which guarantees the up-to-date contents
will be faulted in from the home nodes when they are accessed later. Before
the flush, all updated values to non-home copies of DSOs should be written
to the corresponding home nodes. In this way, a thread is able to see the
up-to-date contents of the DSOs after it acquires the proper lock.

Since a lock can be considered a special field of an object, all the op-
erations on a lock, including acquire, release, as well as wait and notify
that are the methods of the Object class, are executed at the object’s home
node. Thus, the object’s home node acts as the object’s lock manager.

A multiple writer protocol permits concurrent writing to the copies of a
DSO, which is implemented using the twin and diff technique [20]. On the
first write to a non-home copy of the DSO, a twin will be created, which is
an exact copy of the object. On lock acquiring and releasing, the diff, i.e.
the modified portion of the object, is created by comparing the twin with
the current object content word by word, and sent to the home node.

Due to the availability of object type information, it is possible to invoke
different coherence protocols according to the type of the objects. For exam-
ple, immutable objects, such as the instances of class String, Integer, and
Float, can be simply replicated and treated as an NLO afterwards. Some ob-
jects are considered node-dependent resources, such as the instances of class
File. When node-dependent objects are detected as DSOs, object replica-
tion should be denied. Instead, accesses to them should be transparently
redirected to their home nodes. This is an important issue in guaranteeing
complete single system image to Java applications.

3.5 Distributed Garbage Collection

Unlike other GOS approaches [23][39][36], we do not assume among the
nodes a shared virtual memory address space where the copies of an ob-
ject occupy the same virtual memory addresses in all the nodes. Instead,
we make use of Java’s runtime type information to unambiguously identify
pointers, i.e. object references in Java context. By that we are able to do
pointer translation across node boundary and relocate objects to different
addresses in different nodes. In this way, the heap management of each
node is totally decoupled, and all the nodes are coordinated to present a
huge virtual heap.

A DGC algorithm, Indirect Reference Listing [28], is adopted to collect
DSOs that have turned into garbage. We use an indirect reference listing
(IRL) algorithm to maintain a distributed reference diffusion tree for each
DSO. Each copy of a DSO would maintain two lists, an import list recording
where its reference comes from, and an export list recording where its refer-
ence is sent to. In a DSO’s reference diffusion tree, every vertex represents a
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node possessing one of its copies. The root of the tree is its home node. An
edge in the tree represents that the reference is transmitted from one node
to another node. The sending node adds the receiving node into its export
list, while the receiving node adds the sending node into its import list. If
the node to be added is already in the list, the addition has no effect.

When a non-home copy of a DSO meets the following two conditions, it
can be reclaimed locally and a garbage notice will be sent to its parent in
the diffusion tree: (1) its export list is empty; and (2) it is not reachable
from the local root set, which can be determined by the local collector. If
one node receives a garbage notice of a DSO, it will remove the sending
node from the DSO’s export list. When the export list of the home copy
of a DSO becomes empty, it is converted to an NLO. IRL cannot collect a
cycle of garbage DSOs whose home nodes are different. However, this is not
a serious problem in the GOS.

The transmission path of a DSO reference may form some cycle among
the nodes. The export list in every node in the cycle is non-empty and all
the copies will be put into the local root sets. The result is that this DSO
will never be reclaimed even it is not reachable from anywhere. In order to
avoid such cycles polluting the structure of the diffusion tree, we make sure
that each node can only have one valid parent in the tree. If a DSO reference
arrives from a node different from the current parent, the sender will not be
added into the import list. Instead, the receiver prepares a pseudo garbage
notice for the sender, since the sender has already added the receiver into
the export list. Having received the pseudo garbage notice, the sender can
remove the receiver from its export list.

The major overheads of the IRL are due to maintaining import and
export lists for every DSO as well as sending garbage notices. The list
maintenence coexists with the reference transmission. Compared with the
transmission, the maintenence overhead is negligible. The garbage notices
can be buffered and piggybacked on coherence messages. So the IRL will
not contribute significant overhead to the GOS.

With the IRL in place, each node independently garbage-collects its local
heap using a mark-sweep collector [38]. All the DSO copies with non-empty
export list would be put into the root set. All the non-home copies of DSOs
that are inconsistent with their home copies, i.e. in write state, would also
be put into the root set [13] to tolerate the inconsistency.

4 An adaptive Cache Coherence Protocol

Only DSOs would suffer from consistency problems since they are replicated
in multiple nodes. In the last section, we have presented the home-based
multiple writer cache coherence protocol for handling the consistency issues.
However, as we explained before, the non-adaptive protocol can never be
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optimal in all circumstances with different access patterns. The adaptive
protocols are superior to non-adaptive ones due to their adaptability to
applications’ access patterns. In this section, we discuss the adaptations we
apply to the basic protocol within the framework of the pattern space.

4.1 Object Home Migration

With a home-based cache coherence protocol, each DSO has a home node to
which all writes are propagated and from which all copies are derived. There-
fore, the home node of a DSO plays a special role among all nodes holding a
copy. Accesses happening in the non-home nodes will incur communication
with the home node, while accesses in the home node can proceed in full
speed.

In the GOS, a runtime mechanism is applied to determine the optimal
home of a DSO and to perform object home migration automatically, which
is to reselect a node as the home node.

We only apply object home migration to those DSOs exhibiting the
single-writer access pattern. If the DSO exhibits the multiple-writer pattern,
all the non-home nodes will communicate with the home node in order to
obtain the up-to-date copy and propagate the writes. Therefore, it does
not matter which is the home node as long as the home node is one of the
writing nodes. Moreover, object home migration may have negative impacts
on performance. In order to notify a node not aware that the object home
has already been migrated to a new home, a redirection message should be
sent. Improper migration will lead to a lot of redirection overhead.

If a DSO exhibits the single-writer pattern and its home is made the only
writing node, the diff creation and application overhead can be eliminated.
If the DSO further exhibits an exclusive access pattern, all the accesses will
happen in the home node, and therefore no communication will be incurred.

In order to detect the single-writer access pattern, the GOS monitors all
home accesses as well as non-home accesses at the home node. With the
cache coherence protocol, the object request can be considered a remote read
and the diff received on synchronization points a remote write. To monitor
the home accesses, the access state of the home copy will be set to invalid
on acquiring a lock and to read on releasing a lock. Therefore, the home
access faults can be trapped and a return can be made after the access is
recorded.

To minimize the overhead in detecting the single-writer pattern, the
GOS records consecutive writes that are from the same remote node. The
number of consecutive writes is the number of synchronization during which
the object was only updated by that node. We follow a heuristic that an
object is in the single-writer pattern if the number of consecutive writes
exceeds a predefined threshold.

If the single-writer pattern is detected, the object home is migrated to
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the writing node. A forwarding pointer is left in the original home node to
refer to the new home.

4.2 Synchronized Method Migration

Synchronized method migration is not meant to directly optimize synchro-
nization related access patterns such as assignment and accumulator. In-
stead, it optimizes the execution of the synchronized method itself, which
can be a building block of those access patterns.

Java’s synchronization primitives, including synchronized block, as well
as the wait and notify methods of Object class, are originally designed for
thread synchronization in a shared memory environment. The synchroniza-
tion constructs built from them are inefficient in a distributed JVM that is
implemented on a distributed memory architecture like clusters.

Fig. 3 shows the skeleton of a Java implementation of the barrier func-
tion. The execution can not continue until all the threads invoke the barrier
method. We suppose the instance object is a DSO and the node invoking
barrier is not its home node. On entering and exiting the synchronized
barrier method, the invoking node will acquire and then release the lock of
the barrier object, as well as maintain distributed consistency. In line 8,
barrier object will be faulted-in. It is a common behavior that the locked
object’s fields will be accessed in synchronized method. In line 9 or line 11,
another synchronization request, either wait or notifyAll, will be issued.
The wait method will also trigger the operation to maintain distributed con-
sistency according to the JMM1. Therefore, there are four synchronization or
object requests sent to the home node and multiple distributed consistency
maintaining operations involved.

Migrating a synchronized method of a DSO to its home node for exe-
cution will combine multiple message roundtrips into one and reduce the
overhead to maintain distributed consistency. While object shipping is the
default behavior in the GOS, we apply method shipping particularly to the
execution of synchronized methods of DSOs. With the detection of DSOs,
this adaptation is feasible in our GOS.

The method shipping will cause the workload to redistribute among the
nodes. However, the synchronized methods are usually short in terms of the
execution time and can only be sequentially executed by multiple threads,
therefore, synchronized method migration will not affect the load distribu-
tion in distributed JVM.

4.3 Object Pushing

The producer-consumer pattern, which is single assignment, is a significant
access pattern in Java programs. Usually, in a producer-consumer pattern,

1According to JMM, wait acts as if the lock is released first and acquired later.
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1    class Barrier { 
2     int count;               // the number of threads to barrier 
3 private int arrived; // initial value equals to 0 
4   
5 public synchronized void barrier() { 
6         try { 
8  if (++arrived < count)  
9        wait(); 
10  else { 
11       notifyAll(); 
12       arrived = 0; 
13  } 
14        } catch (Exception e) { } 
15  } 
16    } 
 

Figure 3: Barrier class

one thread prepares an object tree, and notifies another thread to access
the tree. In distributed JVM, the performance suffers from the consum-
ing thread requesting objects in the tree one by one from the node where
the producing thread resides. Because the producer-consumer pattern only
repeats once, we can not do prediction according to the history.

We use object pushing to optimize the producer-consumer pattern. Ob-
ject pushing speculates on future accesses according to runtime object con-
nectivity information instead of the access history. We follow the heuristic
that after an object is accessed by a remote thread, all its reachable objects
in the connectivity graph may be “consumed” by that thread afterwards.
Therefore, upon requested for a DSO, the home node pushes all the ob-
jects that are reachable from it to the requesting node. Essentially, object
pushing is a prefetching strategy which takes advantage of the reference lo-
cality existing in Java program execution to achieve an aggregation effect
on communication.

Object pushing is better than pull-based prefetching which relies on
the requesting node to specify explicitly which objects to be pulled accord-
ing to the object connectivity information. A fatal drawback of pull-based
prefetching is that the connectivity information contained in an invalid ob-
ject may be obsolete. Therefore, the prefetching accuracy is not guaranteed.
Some unneeded objects, even garbage objects, may be prefetched, which
will result in wastage of communication bandwidth. On the contrary, ob-
ject pushing provides more accurate prefetching since the home node has
the up-to-date copies of the objects and the connectivity information at the
home node is always valid.

In the implementation, we rely on an optimal message length, which is
the preferred aggregation size of objects to be carried to the requesting node.
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Reachable objects rooted from the requested object will be selected to copy
to the message buffer until the current message length is larger than the
optimal message length. We use a breadth-first search algorithm to select
the objects to be pushed. If these pushed objects are not DSOs yet, they
will be detected. In this way, DSOs are eagerly detected in object pushing.

Since object connectivity information does not guarantee that future ac-
cesses are bound to happen, object pushing risks sending unneeded objects.
To reduce the negative impact of pushing unneeded objects, the GOS will
not push large-size objects. The GOS will also not perform object push-
ing upon request of arrays of reference type, e.g. multi-dimension arrays,
since arrays of reference type usually represent some workload shared among
threads.

5 Performance Evaluation

In this section, we study the performance of the GOS as well as the effects
of the adaptations discussed in Section 4.

Our distributed JVM implementation is based on the Kaffe JVM [37]
which is an open source JVM. The GOS is integrated with the bytecode
execution engine which is in interpreter mode. In multi-threaded Java ap-
plications, when a Java thread is started, it can be automatically dispatched
to some underloaded cluster node to achieve maximum parallelism and load
balance.

We conducted the performance evaluation on the HKU Gideon 300 clus-
ter [12], which is a cluster of PCs with Intel 2GHz P4 CPU, running Linux
kernel 2.4.18, connected by a fast ethernet.

Our application suite consists of four multi-threaded Java programs: (1)
ASP, to calculate the shortest path between any pair of nodes in a graph us-
ing a parallel version of Floyd’s algorithm; we ran ASP to solve a 1024-node
graph; (2) SOR, which performs red-black successive over-relaxation on a
2-D matrix for a number of iterations; we ran SOR to solve a 2048 by 2048
matrix; (3) Nbody, to simulate the motion of particles due to gravitational
forces between each other over a number of simulation steps; the program
uses the algorithm of Barnes & Hut; we ran Nbody to simulate 2048 parti-
cles’ motion; (4) TSP, to solve the Traveling Salesman Problem by finding
the cheapest way of visiting all the cities and returning to the starting point
with a parallel branch-and-bound algorithm; we ran TSP to solve a 12-city
problem.

5.1 Application Performance

Fig. 4 shows the efficiency curves for each application. The sequential perfor-
mance is measured using the original Kaffe JVM when computing efficiency.
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Figure 4: Efficiency

Fig. 5 shows the average percentage of normalized execution time break-
down against number of processors for the four applications. In the legend,
Comp denotes the computation time; Obj denotes the time to request an
up-to-date copy of an invalid object; Syn denotes the time spent on syn-
chronization operations, such as lock, unlock, wait, and notify; GC is the
garbage collection overhead. Notice that not every application requires the
GC. The Obj and Syn portions are the GOS overhead to maintain a global
view of a virtual object heap shared by physically distributed threads. The
Obj and Syn portions not only include the necessary processing and the
time spent on the wire, but also the possible waiting on the requested node.
For example, if the requested node is busy with other operations, or the
request cannot be fulfilled immediately (e.g., a lock request for a lock held
by others), the request has to suspend. The DSO detection overhead as well
as the overhead to translate object reference across node boundary are al-
ways present with the communication. They are however insignificant when
compared with the communication cost.

ASP requires n iterations to solve an n-nodes graph problem. The graph
is represented by the distance matrix. The workload is distributed equally
among the threads row wise. At iteration k, all threads need the value
of the kth row of the distance matrix. There is a barrier at the end of
each iteration, which requires all threads’ participation. The Java language
does not directly provide any barrier operation among threads, and so the
barrier should be implemented using synchronized primitives, as shown in
Fig. 3. We can see in Fig. 5 that the Syn portion increases faster than
the number of processors. The efficiency of synchronization, especially the
barrier operation, for the case of large number of processors is critical to the
performance of the distributed JVM.
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Figure 5: Normalized execution time breakdown against number of proces-
sors

SOR performs red-black successive over-relaxation on a 2-D matrix for
a number of iterations. The workload is distributed equally among all the
threads row wise. There are two barriers in each iteration. The situation
of SOR is similar to that of ASP. The Syn operation contributes a signif-
icant percentage to the execution time when scaled to a large number of
processors.

Nbody also involves synchronization in each simulation step. Moreover,
in Nbody, the construction of the quadtree in each simulation step cannot
be parallelized. When the main thread conducts the construction, all other
threads are waiting. The efficiency decreases while the number of processors
increases. This is another factor affecting the efficiency curve of Nbody. As
Nbody is scaled up to more processors, the GC portion scales down due to
larger aggregated heap size.

TSP prunes large parts of the search space by ignoring partial routes
already longer than the current best solution. The program divides the
whole search tree into many small ones to build up a job queue in the
beginning. Every thread will get jobs from this queue until the queue is
empty. TSP is a computation intensive program when compared with the
other applications. Therefore, it is able to achieve an almost horizontal
efficiency curve even for a relatively small problem size.

5.2 Effects of Adaptations

In the experiments, we incrementally enable the planned adaptations. All
adaptations are disabled initially. Then object home migration is enabled,
followed by synchronized method migration which is enabled while object
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Figure 6: Effects of adaptations w.r.t. the message number
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Figure 7: Effects of adaptations w.r.t. the communication data volume

20



             (a) ASP             (b) SOR  

           (c) Nbody            (d) TSP 
 

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

2 4 8 16 32
Number of processors

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

H
M

   
   

 

S
M

M
   

  

P
us

h 
   

 

2 4 8 16 32
Number of processors

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t

-5%

0%

5%

10%

15%

20%

25%

H
M

   
   

   
   

S
M

M
   

   
   

 

P
us

h 
   

   
  

H
M

   
   

   
   

S
M

M
   

   
   

 

P
us

h 
   

   
  

H
M

   
   

   
   

S
M

M
   

   
   

 

P
us

h 
   

   
  

H
M

   
   

   
   

S
M

M
   

   
   

 

P
us

h 
   

   
  

H
M

   
   

   
   

S
M

M
   

   
   

 

P
us

h 
   

   
  

2 4 8 16 32

Number of processors

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t

-5%

0%

5%

10%

15%

20%

25%

H
M

   
   

   
  

S
M

M
   

   
   

P
us

h 
   

   
  

H
M

   
   

   
  

S
M

M
   

   
   

P
us

h 
   

   
  

H
M

   
   

   
  

S
M

M
   

   
   

P
us

h 
   

   
  

H
M

   
   

   
  

S
M

M
   

   
   

P
us

h 
   

   
  

H
M

   
   

   
  

S
M

M
   

   
   

P
us

h 
   

   
  

2 4 8 16 32

Number of processors

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t

Figure 8: Relative performance improvement of adaptations

home migration is in effect. Finally, we enable object pushing, and all
adaptations are in effect. In the legend, No denotes no adaptive protocol
enabled, HM denotes object home migration, SMM denotes synchronized
method migration, and Push denotes object pushing.

Fig. 6 and 7 respectively show the effects of adaptations on the number of
messages and the communication data volume. We present the data against
the number of processors.

Fig. 8 shows the relative performance improvement in terms of decreased
execution time for all adaptations against the number of processors. In the
figure, a column presents the percentage of decrease in execution time when
the corresponding adaptation is enabled against the execution time before
it was enabled. The negative column indicates that the execution time
increases when the adaptation is enabled.

As seen from the figures, object home migration greatly improves the
performance of ASP and SOR. In ASP and SOR, the data are represented
by 2-D matrices that are shared by all threads. In Java, a 2-D matrix is im-
plemented as an array object whose elements are also array objects. Many
of those array objects exhibit the single-writer access pattern after they are
initialized. However, their original homes are not the writing nodes. Object
home migration automatically makes the writing node the home node in
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order to reduce communication traffic. We can see that object home migra-
tion dramatically reduces the number of messages and the communication
volume, as well as the execution time. In Nbody, the single-writer access
pattern is insignificant, and therefore the effect of object home migration
cannot be observed. In TSP, all threads have the chance to update the DSO
storing the current minimal tour. However, a certain thread may update
it for several times consecutively. In that situation, we can say that the
multiple-writer object dynamically changes its pattern to single-writer for
a short while, and then changes back to multiple-writer. Future accesses
will not gain any performance improvement if they will not exhibit such a
pattern after home migration, but may experience some performance loss
because some overhead to locate the new home will be incurred. TSP is one
case showing the possible negative impact of home migration. This negative
impact cannot be totally avoided due to our heuristics. But as can be seen
in Fig. 8(d), the negative impact is quite limited, less than two percent in
TSP.

Synchronized method migration optimizes the execution of a synchro-
nized method of a non-home DSO. Although it does not reduce the commu-
nication data volume, it reduces the number of messages significantly, as seen
in the ASP and SOR cases. As shown in Fig. 8(b), synchronized method
migration improves SOR’s overall performance to some extent. However,
the decrease in execution time due to synchronized method migration is
not clear in ASP. As seen from Fig. 8(a), synchronized method migration
may either increase or decrease the execution time. We may attribute this
to ASP’s heavy synchronization operations. ASP requires n barriers for all
threads in order to solve an n-node graph. As we mentioned before, the syn-
chronization overhead comprises not only the processing and transmission
time, but also the waiting time. Sometimes, the synchronization overhead is
dominated by the waiting time, which cancels the benefit from synchronized
method migration. Nbody’s synchronization uses synchronized block instead
of synchronized method, and so synchronized method migration should have
no effect on it. TSP has very limited communication and synchronization.
Synchronized method migration also improves TSP’s performance a little.

Object pushing optimizes the producer-consumer access pattern and im-
proves reference locality by aggregating small object messages. Nbody is a
typical application of the producer-consumer pattern. In Nbody, a quadtree
is constructed by one thread and then accessed by all other threads in each
iteration. The quadtree consists of a lot of small size objects. We can
see that object pushing greatly reduces the number of messages for Nbody.
Since object pushing may push unneeded objects as well, the communication
amount increases a little. The gain of object pushing in terms of decrease in
execution time is also very obvious in Nbody, as seen from Fig. 8(a). When
Nbody is scaled up to more processors, the communication effort due to the
producer-consumer pattern increases proportionally. Therefore, the effect
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of object pushing is amplified. Object pushing also improves access locality
for objects with referential relationship. Notice that the effort of commu-
nication is relatively small in TSP. Although the adaptations decreases the
communication time, the total execution time decrease due to adaptations
is still limited. Compared with Nbody and TSP, most DSOs in ASP and
SOR are array objects, and object pushing is not performed on them to
reduce the impact of pushing unneeded objects. Object pushing has a little
positive effect on ASP and a little negative effect on SOR.

6 Related Work

Java’s popularity and ever-advancing performance make Java a promis-
ing candidate for high performance computing. There are many research
projects [22] targeting at high performance Java computing in distributed
or parallel environments. Some extend the Java language grammar to meet
this challenge. For example, JavaParty [27] requires programmers to explic-
itly add the remote keyword in front of all distributed shared objects in Java
source code. Then a specialized preprocessor will translate the source code
to a distributed application using RMI [34]. Many others are aware of the
inadequacy of Java classes to support distributed computing. They tried to
invent new classes to fix the problem. For example, mpiJava [4] implements a
Java interface for the native MPI library. However, all the above approaches
are not transparent to the Java programmer. They require the programmer
to handle issues related to the distributed environment explicitly. On the
contrary, a distributed JVM transparently exploits multi-threading inherent
in Java programs to implement high performance parallel computing in dis-
tributed environments. One of the core components of a distributed JVM
is the GOS which virtualizes a single object heap.

In a related effort, we implemented the JESSICA system [23] which lever-
ages a page-based DSM, JUMP [9], to build the GOS. All objects are allo-
cated in the distributed shared memory. Each node manages a segment of
shared memory and creates new objects in its own segment without interac-
tion with others. The copies of an object reside at the same virtual memory
address in each node. Although this approach greatly alleviates the burden
of constructing GOS because all the cache coherence issues, such as object
addressing, faulting, replication, and transmission, can be managed by page-
based DSM, it suffers from many problems. First, false sharing problem is
serious due to the incompatible sharing granularity of Java and that of the
page-based DSM. In comparison, the GOS described in this paper can be
considered an object-based DSM. False sharing therefore is not a significant
issue. Second, due to the multi-threading nature, Java’s synchronization
primitives may not be mappable to those provided by the page-based DSM
if the page-based DSM does not support multi-threading. Moreover, as a
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low-level support layer, the page-based DSM is not aware of the runtime
information in JVM, which makes it difficult to look for opportunities to
improve the performance of the GOS as we have done in this paper. The
detailed analysis of various factors contributing to the efficiency of using a
page-based DSM to build the GOS can be found in [10]. Java/DSM [39] has
also built its GOS on top of a page-based DSM.

cJVM [2] uses a master-proxy object model and a method shipping ap-
proach to implement the GOS. Method invocation of and field accessing
to the proxy object are shipped to the node where the master object re-
sides. Several optimization techniques were applied to reduce the amount
of such shipping [3]. This approach is appropriate for the sequential consis-
tency memory model. However, under the proposed Java memory model,
i.e. release consistency, this approach is not efficient since every object ac-
cess and method invocation may require communication. A more aggressive
object caching mechanism, like that in our GOS, should be adopted. Since
the method shipping approach may forward the execution flow to the node
where the master object reside, the workload distribution is determined by
the distribution of master objects in cJVM. Load balance may be difficult
to achieve without an effective strategy enforced by either the programmer
or some runtime mechanism.

Some other approaches reply on compiler techniques to transparently
run multi-threaded Java applications on a cluster. They compile a multi-
threaded Java program to distributed native code. In these systems, JVM is
not involved in the execution while a software DSM is employed to provide
the GOS service.

Jackal [36] directly compiles Java source code to native code. Similar
to JESSICA, all nodes share a virtual memory address space in Jackal, and
each node manages a segment of the address space. Different from JESSICA,
Jackal uses a fine-grain DSM to build the GOS. The coherence unit is a fixed-
size region of 256 bytes. Most of the effort to improve performance is done at
compile time. Jackal’s compiler performs two optimizations: object-graph
aggregation and automatic computation migration, whose aims are similar
to those of our object pushing and synchronized method migration. Object-
graph aggregation uses a heap approximation algorithm [15] to identify those
related objects. However, the heap approximation algorithm cannot distin-
guish between different objects that are created at the same allocation site.
Thus this approach is effective only for the situation when the related objects
are from different allocation sites. In contrast, our object pushing is a run-
time approach and has no such drawback. Similar to Jackal, Hyperion [24]
compiles Java bytecode to C source code, and then to native code.

Orca [5] and Jade [31] are object-oriented parallel programming lan-
guages. With distributed JVM as the executing platform, Java can also
be considered a parallel programming language. Java’s popularity makes it
more promising to be acceptable by the parallel computing community than
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Orca and Jade.
Munin [8] and SAM [33] are object-based DSMs with supports to opti-

mize some object access patterns. However, they require the programmer to
explicitly annotate the object with some pattern declaration. Compared to
our GOS, their approach is neither transparent to the programmer nor flex-
ible in a dynamic situation. Munin enumerates five access pattern declara-
tions: conventional, read-only, migratory, write-shared, and synchronization.
Each pattern has its own protocol. Among them, read-only, conventional
and write-shared correspond to the three patterns along the dimension of the
number of writers in our access pattern space, while migratory corresponds
to the accumulator pattern. Synchronization is actually the declaration for
synchronization variables. SAM enumerates two patterns, values with a
single-assignment semantics and accumulator. The former corresponds to
the producer-consumer pattern in the access pattern space.

Several page-based DSM systems [1][26] implement adaptive coherence
protocols for a per-page access pattern at runtime. In the context of page-
based DSMs, accesses to different objects residing at the same page are min-
gled at the page level. It is difficult to detect access patterns in applications
of fine-grain sharing. In our GOS, on the other hand, accesses to differ-
ent objects can be distinguished. Furthermore, the object type information
is available at runtime. Therefore, object access patterns can be detected
more precisely and efficiently. Similar to our access pattern space, sharing
pattern categorization is proposed to specify access patterns in ADSM [26].
However, sharing pattern categorization is only based on the association
between locks and the data they protect. Hence, it corresponds to the syn-
chronization dimension in our access pattern space. The producer-consumer
pattern in ADSM is different from ours in definition. In fact theirs should
be single-writer, multiple-readers, and multiple-assignment according to our
access pattern space. Comparatively, our definition of producer-consumer
pattern gives restriction on its repetition.

DOSA [16] implements a fine-grain DSM support for typed language
such as Java. Its aim is to keep sharing granularity at the object level but
still rely on the virtual memory mechanism to check the access state as in
a page-based DSM. It introduces a level of indirection on object accessing.
Accesses to objects will go through a handle table to locate an object’s
actual address. Although software access check is not involved, this approach
adds an additional indirection overhead to object accesses and impairs cache
locality.

7 Conclusion and Future Work

This paper presents the design of a global object space for distributed JVM.
With the help of runtime object connectivity information, distributed-shared
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objects are separated from node-local objects to facilitate efficient memory
consistency maintenance and distributed garbage collection.

We propose the access pattern space as a framework to characterize
object access patterns. Given the framework, we were able to apply three
adaptations to the cache coherence protocol to optimize some significant
patterns, including an object home migration method that adapts to the
single-writer access pattern, synchronized method migration that allows the
remote execution of a synchronized method at the home node of its locked
object, and object pushing that uses the object connectivity information to
adapt to the producer-consumer access pattern. After all these adaptations
are enabled, considerable performance improvements have been observed.

In our future work, we plan to investigate more on optimization opportu-
nities in terms of adaptations to object access patterns under the framework
of the access pattern space. For example, read only access patterns can be
detected using the method similar to that for detecting the single-writer
pattern. We can disable the flush operation on read-only distributed-shared
objects on synchronization until further notification. Having observed the
fixed relationship between object access and synchronization, we can per-
form prefetching to be triggered by synchronization. Therefore, distributed-
shared objects presenting the accumulator pattern should be prefetched on
acquiring the corresponding lock, and those showing the assignment pattern
should be prefetched on releasing the corresponding lock.

In the current implementation, the GOS is integrated with the bytecode
execution engine in interpreter mode. We plan to integrate the GOS with a
bytecode execution engine in JIT mode. In JIT mode, the software check of
object access state will become a significant overhead. However, this check
overhead can be greatly reduced by the JIT compiler. For example, access
checks on elements of an array or fields of an object can be batched. Such
techniques have already been demonstrated in some software DSM, such as
Shasta [32]. The JIT compiler may provide more optimization opportuni-
ties. For example, the objects that will be accessed in one method can be
identified during JIT compilation and prefetched if demanded at the later
execution.

The GOS’s current DGC algorithm is based on indirect reference listing.
Each distributed-shared object should maintain a list of the nodes that im-
port its reference. This is a potential problem that hinders the scalability
of GOS. In the future, we plan to adopt indirect reference counting, where
each distributed-shared object only needs to remember how many times its
reference is transmitted to other nodes. Compared with indirect reference
listing, indirect reference counting requires a smaller memory footprint when
the GOS is scaled to larger-size cluster.
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