
A Stack-On-Demand Execution Model for Elastic Computing 
 

Ricky K.K. Ma, King Tin Lam, Cho-Li Wang, Chenggang Zhang 
Department of Computer Science 

The University of Hong Kong 
Hong Kong 

{kkma, ktlam, clwang, cgzhang}@cs.hku.hk 
 
 

Abstract—Cloud computing is all the rage these days; its con-
fluence with mobile computing would bring an even more per-
vasive influence. Clouds per se are elastic computing infra-
structure where mobile applications can offload or draw tasks 
in an on-demand push-pull manner. Lightweight and portable 
task migration support enabling better resource utilization and 
data access locality is the key for success of mobile cloud com-
puting. Existing task migration mechanisms are however too 
coarse-grained and costly, offsetting the benefits from migra-
tion and hampering flexible task partitioning among the mo-
bile and cloud resources. We propose a new computation mi-
gration technique called stack-on-demand (SOD) that exports 
partial execution states of a stack machine to achieve agile mo-
bility, easing into small-capacity devices and flexible distrib-
uted execution in a multi-domain workflow style. Our design 
also couples SOD with a novel object faulting technique for 
efficient access to remote objects. We implement the SOD con-
cept into a middleware system for transparent execution mi-
gration of Java programs. It is shown that SOD migration cost 
is pretty low, comparing to several existing migration mecha-
nisms. We also conduct experiments with an iPhone handset to 
demonstrate the elasticity of SOD by which server-side heavy-
weight processes can run adaptively on the cell phone. 

Keywords-stack-on-demand; computation migration; mobile 
agents; strong mobility; cloud computing 

I.  INTRODUCTION 

The Cloud heralds a new era whereby the provision of 
computing infrastructure is shifted to the Internet. The para-
digm shift offers a scalable pool of resources, typically pre-
sented as pay-as-you-go utility services, for application de-
ployment, and enhances IT delivery’s efficiency and cost-
effectiveness. The ultimate form of cloud computing would 
be all the more impressive when the concept is continuing to 
make its way into the vast mobile world. The notion “mobile 
cloud computing” is ramping up at active pace [1]. Cloud 
computing is radically changing the development trend of 
mobile applications. By tapping into the Cloud’s enormous 
computing power and storage, we envision higher sophistica-
tion and a wider range of mobile applications. Business users, 
for example, will find a wide repertoire of mobile productiv-
ity kits for collaboration, document sharing, scheduling, and 
sales force management. Personal use cases include cloud-
enabled smart homes, mobile widgets that connect to cloud-
managed phone books and calendars, and social networking 
mashups for sharing photos and videos over cloud storage. 

One would ask what would be the best execution model 
to support these applications in mobile clouds. The model 
governs resource, code and computational components (e.g. 
threads), such as where and how to place computations, and 
whether mobility is supported and which parts (code, execu-
tion state and data space) of an executable should be made 
mobile. We are accustomed to the traditional client-server 
architecture for the Web till date (e.g. RPC, Servlet); and its 
component-based variant, namely distributed object, which 
allows a system to run computation on a remote system (e.g. 
DCOM, CORBA, RMI). They are however not designed for 
mobile applications: code just gets pinned at a site and call 
flow is unidirectional; only clients can call servers. 

Research on mobility support over the last decade would 
offer a better model to meet the challenge [2]. Mobile code 
paradigms like code shipping (remote evaluation) and code 
fetching (code-on-demand, e.g. Java applets) help reduce 
network traffic by moving the code towards the resource 
resident site for execution. Transporting merely the code 
alone without execution state, mainly the call stack and heap 
of the running program, are far from the best choice for most 
stateful applications. Distinctively, mobile agents (MAs) can 
capture state, either programmatically (weak mobility) or 
transparently (strong mobility) via the underlying runtime 
support, and migrate state along with the code autonomously 
at its chosen point of runtime. MA appears a more perfect 
mobility solution and gives applications several potential 
benefits: less susceptibility to network failures, reduced net-
work load, decentralization, and easier deployment scenarios. 
But the conventional MA paradigm is still not as so perfect 
as we see for agile and flexible mobile-cloud interfacing 
since a mobile agent itself is a combined unit of code and 
data that can be costly to migrate. Existing migration mecha-
nisms are either too coarse-grained or not portable. Classical 
process migration [3] and VM live migration [4, 5] emerged 
in recent years are too monolithic: moving the entire address 
space of a process or even the whole (guest) OS image is too 
expensive, and the transported data is too bulky to fit in low-
end mobile devices. Thread migration [6, 7] is relatively 
lightweight but is difficult to implement in a portable way 
while not significantly penalizing the execution. 

In this work, we propose a compact migration mecha-
nism called stack-on-demand (SOD) for stack-based virtual 
machines to support an elastic execution model. SOD mi-
grates the minimal portion of state to the destination site for 
continued execution. This is done by exploiting a stack ma-



chine’s characteristics, chopping the stack into segments of 
stack frames and exporting only the top segment. SOD dif-
fers from MA in that program code and state, stack and heap, 
and even frames within a stack can all be decoupled for fine-
grained migration purposes. Object misses after migration 
are handled transparently by on-demand fetching or some 
prefetching schemes, while the needed classes (program 
code) can be sent together with the captured frames or dy-
namically downloaded from the network. SOD paves the 
way for mobile cloud computing by the features below. 
1. Lightweight task migration: no matter how big the proc-

ess image is, SOD migrates only the required part of data 
to the destination site. This saves a lot of network band-
width and imposes lighter resource requirements on the 
target site, allowing a big task to fit into a small-capacity 
device in a discretized manner. Most importantly, with an 
extremely short freeze time, SOD enables quick access to 
non-local idle computing resources and efficient bidirec-
tional call flow between cloud and mobile entities. 

2. Distributed workflow style: SOD’s fine-grained migra-
tion mechanism allows different parts of the stack mi-
grate concurrently to different sites, forming a distributed 
workflow. Once the top segment finishes and pops, its re-
turn values can be sent to the next site for continued exe-
cution. Freeze time between multiple hops is fully or par-
tially hidden. The major benefits are enhanced locality 
and streamlined elastic task scheduling on cloud servers. 

3. Autonomous task roaming: SOD migration mimics the 
strong mobility feature of mobile agents, and is capable 
of adaptation to a new environment. A search process, for 
example, can roam across a set of information bases for 
best locality. SOD-driven roaming can be more agile and 
flexible than traditional MAs because SOD is down to 
granularity of a method instead of the whole process. 
By SOD, we contribute a lightweight and flexible mobil-

ity paradigm for mobile cloud computing. We show how 
SOD realizes elasticity with some motivating application 
scenarios in Section II. Another contribution of this paper is 
our co-design of a novel efficient object faulting mechanism 
using exception handling to bring remote objects to the local 
heap on demand. Our way of handling object misses avoids 
sending the entire heap along the migration and the need to 
inject per-object state checks as in usual object-based DSMs. 

We describe our implementation of the SOD concept in 
Section III. We make use of the Java Virtual Machine Tool 
Interface (JVMTI) [8], a standard API, to capture Java stack 
frames. This approach is very portable, avoiding the need of 
internal JVM changes and massive bytecode instrumentation 
for state capturing that imposes severe penalty on execution 
speed. Besides Java, our methodology is indeed applicable to 
all stack-based managed codes such as .NET. We evaluate 
SOD and compare it with live migration in Xen [5], process 
migration in G-JavaMPI [9] and thread migration in 
JESSICA2 [6] respectively (the later two are our previous 
work) in Section IV. Experimental results show the migra-
tion overhead of SOD is among the lowest while our object 
faulting can save up to 2 times of cost than using instru-
mented object checks. Related work is discussed in Section 
V; Section VI concludes and highlights our future work. 

II. ELASTIC EXECUTION MODEL 

The salient features of dynamic scaling or on-demand re-
source provisioning let cloud computing more or less equate 
to elastic computing. Mobile clouds make up an even more 
elastic computing infrastructure where applications may lev-
erage device resources, cloud resources and also some tran-
sient surrogate (or cloudlet [10]) resources in between. This 
calls for a flexible execution model that supports partitioning, 
delegating and executing tasks of an application efficiently in 
the distributed runtime environment according to the demand 
and availability of resources. 

We propose a dynamic execution migration mechanism, 
namely stack-on-demand (SOD), to build this model. SOD is 
built for Java, inheriting its niceties of high portability and 
being the most popular programming language [11]. This 
approach provides applications with seamless and transpar-
ent use of non-local resources. It also allows a task to be ful-
filled using local resources before attempting a priced cloud 
service. SOD is a portable yet efficient computation migra-
tion mechanism. Such dynamic migration is more preferred 
than simple RPC or message passing for real-life application 
scenarios. Ultimately SOD could migrate computation to any 
device reachable on the Internet, so it is a potential enabling 
technique to extend the current cloud infrastructure. 

A. Stack-On-Demand Execution 

SOD is based on a stack machine, specifically JVM in 
our case. A traditional process is mainly composed of code, 
heap and stack areas. Each thread has its own stack made up 
of a pile of stack frames (a.k.a. activation records), each of 
which contains the state of a method invocation. Only one 
frame, the top frame for the executing method, is active at 
any point in a thread of control. When a thread invokes a 
method, the JVM pushes a new frame onto the thread’s stack. 
On method return, the JVM pops and discards the top frame; 
its execution result, if any, is passed back to the previous 
frame which is reinstated as the top frame. So the position in 
a stack is closely related to the execution flow. SOD exploits 
this observation to support partial state migration that is yet 
strong enough for the destination site to seamlessly resume 
execution. This is done by chopping the stack frames into 
segments and pushing only the topmost segment to remote 
while keeping the residual state at the local (home) site. One 
segment should logically map to one agglomerated task. 

Unlike traditional process migration which performs full-
rigged state migration (including code, stack, heap and pro-
gram counter), in SOD, only the top stack frame or segment 
of frames is needed to carry out the execution, while the re-
quired code and data could be brought in on demand subse-
quently. Upon receiving the migration message, the target 
site will spawn a worker JVM process, if not yet spawned, 
and restore into the JVM the captured partial stack. The 
worker process now starts to execute on behalf of the migrat-
ing node. By special bytecode instrumentation (Section 
III.C), we force the system to throw a null pointer exception 
when a non-local object is being accessed for the first time. 
The exception is caught, triggering communication with the 
home node for fetching a serialized copy of the object. When 
the migrated frame set finishes execution, i.e. the set’s last 



Node 2Node 1Node 3

 

 

 

 

 

1

2'

2

34

Node 2

te

 

Node 1

ts

Node 2Node 1

 

 

 

  

 
 

1

2

3

4

1

2'

2

3

4

Stack frame 1

Stack frame 2

Stack frame 3

Stack with stack 
frame 1, 2, 3

Legends:

 Execution flow

Migration

In execution

 

te

ts

te

ts

, tets Start and end time

(a)                                                             (b)                                                                 (c) 

Figure 1.  Elastic live migration with flexible execution paths based on SOD migration 

frame is about to pop out, return values and updated data will 
be sent back to the home node, reflected in its heap (the 
worker JVM will exit upon certain timeout after that). Then 
execution will resume on the home node, going on with the 
residual stack. In this way, stack frames representing portion 
of execution state are exported on demand, hence the name 
“stack on demand” of this technique. 

Indeed, the execution flow of SOD upon completion of a 
task at the destination site is not necessarily restricted to re-
turning to the home. By pushing the residual stack frames off 
the home in time, the execution can continue on the current 
site, or transferred to another site, realizing task roaming. Fig. 
1 illustrates three possible scenarios. There are initially three 
stack frames at Node 1. Fig 1a shows the simple case that the 
control returns to Node 1 after frame 1 is migrated to Node 2, 
executed and popped out there. In Fig 1b, after frame 1 is 
migrated and starts executing, frames 2 and 3 are concur-
rently pushed to Node 2 as well. The subsequent execution 
after frame 1 pops will become purely local, i.e. a total mi-
gration has happened. Fig. 1c corresponds to distribution of 
tasks in a multi-domain workflow style. Frame 1 is moved to 
Node 2 while the segment of frames 2 and 3 is moved to 
Node 3 in parallel. The control is transferred from Node 1 to 
Node 2, then to Node 3. With such flexible execution paths, 
SOD enables elastic exploitation of distributed resources. 

B. Key Benefits and Application Scenarios 

By SOD’s phased and thin state migration, memory pres-
sure on the target node is much reduced. SOD can hence 
migrate execution to a node with more restricted resources 
than the home node. SOD can also save the bandwidth con-
sumed by transfers of unnecessary bottommost frames, espe-
cially when the task needs to traverse multiple sites. 

The use of the SOD execution model is multifarious. We 
may describe some real-world application scenarios of it here. 
First, SOD-based task roaming can help speed up distributed 
information retrieval. Due to fine migration granularity, SOD 
leads to a more optimal task-to-node mapping. For instance, 
suppose a thread reaches a call depth of n frames (n > 3), and 
the top three frames correspond to methods intensively read-
ing data from three different data sources on the Internet. To 
attain locality or affinity to all the three data sources, tradi-
tional migration techniques for MAs dictate the need for mi-
grating the full stack for three rounds in a serial manner. 
Now with SOD (akin to Fig.1c), we can segment the stack 

and migrate only the top three frames concurrently to their 
respective data sources. Though the execution still needs to 
follow a sequential order, the migration latency of each of 
the later two rounds is effectively hidden by the on-site exe-
cution time of the last frame. Having state restored ahead of 
the passing of control and saving transfer time of (n-3) bot-
tommost frames, task roaming goes more agile than ever. 

Second, besides offloading to clouds, execution can also 
be migrated SOD-style in the reverse direction from clouds 
to mobile devices. This flexibility opens up innovative and 
streamlined ways for building distributed applications. Along 
with the POJO-based development trend [12], application 
codes are decoupling from heavyweight infrastructure frame-
works like EJBs and written as regular Java classes. With 
SOD’s partial stack execution model addressing the resource 
constraints, applications can run more readily on JVMs for 
mobile platforms. Then it is no longer necessary to write 
separately client code and server code for building a distrib-
uted application. Instead, we only need to make one version 
of code and use some migration middleware and policies to 
control the application behavior. For example, people who 
want to share their photos with others have to upload the 
files manually to some websites like Flickr.com. Now, it can 
be done “elastically”. When a user looks for a “beach” photo 
while the website does not have one, the web server may 
release some file search processes downstream by migrating 
a team of thread stack segments to all connected and trusted 
mobile clients to search for a beach photo. Finally if one is 
found, the migrant method returns to the server with the pho-
to data which is then forwarded to the requesting client. 

Similarly, many applications can delegate work appropri-
ately among server and client sides using SOD. Some inten-
sive processing like global search in database is performed 
on the Cloud; the search process can be migrated to a mobile 
device to let it perform localized search or sorting over the 
search results according to the interactive user options. The 
eventual SOD execution could work in a speculative manner. 
By wrapping all code in try-catch constructs via special 
bytecode preprocessing, if exceptions like ClassNotFoun-
dException or OutOfMemoryException are thrown, the 
exception handler will capture the execution state and rocket 
it into the Cloud that has wider library base and memory 
capacity for retrying the execution. This exception-driven 
migration would evolve the general cloud computing phi-
losophy for mobile platforms. 



JNI

Object manager

JNI

Object
manager

Migration managerMigration manager

JVMTI

Heap (Data)Heap (Data)

Thread 3

Thread 2

Thread 1

Java 
stack 

(

III. SYSTEM DESIGN I  AND MPLEMENTATION

odel into a Java distributed 
xecution Engine (SODEE). Fig. 2 

sho

 

rry 

execution results of mi-

ach does not depend on 
a s

andard debug-
gin

 

 a command 
line

he Java meth-
ods

ng mobility support is about transparent 
storation. The usual runtime data con-

stit

A. System Architecture 

We implemented the SOD m
runtime named the SOD E

ws our system architecture with the key modules below. 
1. Class preprocessor: for transforming the Java application 

bytecode before it is loaded into the JVM such that it is
able to migrate and run seamlessly on a remote node. 

2. Migration manager: for serving migration requests and 
communicating with other migration managers to ca
out the state and code migration. 

3. Object manager: for handling requests to fetch data from 
the heap of the home and writing 
grated frames back to the home. 
We adopted a highly portable design that all of them are 

working outside the JVM. This appro
pecific version of JVM, nor requires tricky hacking into 

the JVM kernel. So the middleware system will be directly 
compatible across future JVM releases without forklift up-
grades. Codes for distributed execution semantics are incor-
porated into the Java executable ahead of class loading time 
through the class preprocessor that employs a bytecode engi-
neering library, specifically BCEL [13] in our case, to do so. 
Class preprocessing is automatic, one-off and performed 
offline, needing no user intervention or source code modifi-
cation. During preprocessing, the bytecode is rearranged to 
facilitate safe migration and augmented with helper functions 
for state restoration and remote object access. 

Since execution state is totally inside the JVM, we use 
the JVM Tool Interface (JVMTI), the latest st

g interface, to expose them. Most modern JVMs support 
mixed-mode execution: program will run in interpreted mode,
experiencing degraded execution performance, if some de-
bugging functions are enabled; and while it is not the case, 
the program runs in Just-In-Time (JIT) mode. We disable all 
debugging functions before and after a migration event, so 
this approach is of reasonably slight overheads. 

Migration manager is implemented as a JVMTI agent in 
C and injected into the JVM at startup time as

 option. It interacts with the JVMTI layer to access the 
JVM internal runtime data for capturing the state, essentially 
part of the Java stack of the migrant thread. It manages code 
movement towards the destination as well. We assume a 
worker JVM is pre-started on the destination node for receiv-
ing the current class of the top frame. Subsequent classes are 
transferred and loaded on demand in an event-driven manner 
(JVMTI_EVENT_CLASS_FILE_LOAD_HOOK is being captured and 
its callback would bring the class from the home). After class 
loading, the agent invokes the method through the Java Na-
tive Interface (JNI). Execution then resumes at the last exe-
cution point restored by a special technique using the restora-
tion exception handler injected into the code. 

Object manager is implemented in both C and Java. On 
the destination side, object manager refers to t

 that handle sending of object requests and flushing of 
execution results to the home. On the source side, it refers to 
the agent thread that listens to object requests, retrieves ob-
ject references needed via JVMTI and invokes Java serializa-
tion via JNI to send the object to the requester. When the 
active frame encounters object misses, the execution will 
jump to the object fault handler for the frame (inserted dur-
ing preprocessing), calling the object manager for fetching 
the missed object from the source node. Upon reaching the 
last frame, its return value and updated objects are handed to 
the local JVMTI client which in turn sends them back to the 
home. The home JVMTI client will pop the outdated frame 
off the stack using the ForceEarlyReturn<type> functions, 
supplied with the received return value. Execution will then 
resume seamlessly on the residual stack. 

B. State Migration 

The nexus of stro
state capturing and re

uting execution state includes program counter (pc), stack, 
heap and static data. In Java, pc is managed per thread and 
refers to the bytecode index (bci) in the current method. Each 
frame has an array of local variables (including method ar-

State)

JVM

Transformed
bytecode

Transformed
bytecode

Class
files

Class
files

JVMTI 

Heap (Data)Heap (Data)

Thread 1 (proxy)

Class
loader

Class
loader

Partial stack 

Worker JVM

(Restored 
state)

PC

Key: State migration

Data fetching

Code migration

Source node Destination node

Class
preprocessor

Class
preprocessor

Method area
(Code)

Method area
(Code)

Constant 
pool

MethodsMethods Class
data

Class
data

Class
loader

Class
loader

Method area
(Code)

Method area
(Code)

Constant 
pool

Class
data

Class
data

MethodsMeth sod
PC

Captured
State

object fault

Serialize
ava objectsJ Deserialize

Java objects

object request

object data

breakpoint
capture stack, 
pc, class data

Figure 2.  Java-based SOD migration middleware system 

// save static fields of a class

// for a partial stack of nframe frames
while (depth < nframe){

// get class name and method name
jvmti->GetMethodDeclaringClass(method, &class);
jvmti->GetMethodName(method, &method_name);
// get program counter
jvmti->GetFrameLocation(thread, i, &method, &location);
// get local variable table
jvmti->GetLocalVariableTable(method, &nlocal, &locals);
for (int i=0; i<nlocal; i++) {

// get signature, slot no. and value of a variable
variable_signature = locals[i]->signature;
variable_slotno = locals[i]->slot;
jvmti->GetLocal<Type>(thread, depth, slot, &(value.i));
// for object type, set variable value to null

}
// save them all into a message buffer
depth++;

}

// send to destination node

Figure 3.  State capturing code using JVMTI functions 



public class Geometry {
  Random r = new Random();
  Point p = new Point();
  void displaceX() {
    p.x = r.nextInt() + (int) p.getX(); 
  }
}

void displaceX() {
    int tmp1, tmp2;
    try {
label1: tmp1 = r.nextInt();
label2: tmp2 = (int) p.getX();
label3: p.x = tmp1 + tmp2;
    } catch (InvalidStateException e) {
      tmp1 = saved value of tmp1
      tmp2 = saved value of tmp2
      // load saved pc register (last bci);
      // use lookupswitch to jump to last
      // bci where thread was suspended
    }
}

(original Java source code)

guments), an operand stack (storing intermediate computing 
results), a reference to the runtime constant pool of the cur-
rent class, and the return location back to the caller, i.e. last 
bci or pc. Our design regards the heap not as part of the state, 
leaves it and the lower part of stack behind, and fetches them 
on demand. We will further explain how our system captures 
and restores the state as follows. 

1) State Capturing via JVMTI 
Upon receiving a migration request, the migration man-

on and captures the top-
mo

ons to rees-
tab

 all 
d values by 

cal

ith set-
ting

ager suspends the program executi
st consecutive stack frames of the thread being migrated. 

Fig. 3 shows the core logics of the migration manager and 
the JVMTI functions it uses to capture each frame. First, the 
information and static fields of loaded classes are saved. For 
each frame, the current class name, method signature, pc and 
local variables (their signatures, slot ids, values) are serial-
ized, as a CapturedState object, and sent to the destination 
node whereas referenced objects are left behind. 

JVMTI does not provide interfaces to access the operand 
stack of each frame, nor does it ship with functi

lish execution contexts such as the pc. Moreover, when 
the execution point lies inside a native method, the local data 
in the frame are machine-dependent. These factors make it 
difficult to capture and restore the complete state and destroy 
the system’s portability. Our solution is to restrict migrations 
to happen only at specific points where the operand stacks of 
all frames are empty and the execution is right outside a na-
tive method. These so-called migration-safe points (MSPs) 
are essentially located at the first bytecode instruction of a 
source code line where the operand stack is always empty. If 
the execution is suspended at locations other than a MSP, it 
will be resumed immediately until hitting an upcoming one. 
MSPs are defined for the current frame only. To make sure 
operand stacks of other frames are all empty upon migration, 
bytecode rearrangement is needed at the preprocessing stage. 
For example, in the original Java code snippet shown in Fig. 
4a, the only MSP is at bci 0. While evaluating p.getX(), the 
return value of r.nextInt() is still on the operand stack of 

the frame for displaceX(). If migration takes place at this 
moment, we have no ways to capture this operand. To avoid 
this trouble, we add extra local variables tmp1 and tmp2 to 
store the intermediate values and rearrange the bytecode into 
three statements. After such preprocessing, now it is safe to 
migrate at the beginning of all the three statements (i.e. bci 0, 
8, 17) and at the MSPs inside the body of p.getX() as well 
because all operand stacks are just empty at these points. 

2) State Restoring by Restoration Handlers 
For the state restoration, the migration manager loads

the received classes and restores their static fiel
ling several JNI functions like SetStatic<Type>Field(). 

Restoring the captured stack frames relies on a concerted use 
of the breakpoint facility of the debugger and the restoration 
handlers inserted for each method at preprocessing time. Fig. 
4a shows an example of restoration handler, the catch block 
in grey area. The handler code will be activated if a specific 
exception (InvalidStateException) is thrown. It will un-
wrap the CapturedState object through its read<Type> calls, 
reset the local variables (tmp1 and tmp2) to their captured 
values (at bci 29-38), push the saved pc onto the operand 
stack (at bci 39-40), and use a lookupswitch instruction to 
jump to the bci where the execution was suspended. 

Fig. 4b outlines the procedure of reestablishing the stack 
frames one by one. The migration manager begins w

 a breakpoint at the start of the top frame, i.e. bci 0 of 
method1. The breakpoint is reached immediately just after 
entering the method; the breakpoint event is captured, pass-
ing the control to the callback function, cbBreakpoint (1). 
The migration manager then sets another breakpoint at the 
start of the next invoked method (frame) if there is any. Next, 
it throws an InvalidStateException in the current method. 
The exception is caught immediately, jumping to the restora-
tion handler (2). The local variables and pc of the current 
method are then restored. The control jumps to the suspen-
sion point (3); it then invokes the next method, i.e. method2, 
creating the second frame (4). The above steps of restoration 
are repeated until the last frame gets restored (5) (6) (7). 

frame restoration handler
extra variables added

rearranged 
bytecode

Preprocessing

(Java source akin to rewritten bc)

(instrumented bytecode)0: aload_0
1: getfield #52; //r:Ljava/util/Random;
4: invokevirtual #27;//java/util/Random.nextInt:()I
7: istore_
8: aload_0
9: getfield #22; //p:Ljava/awt/Point;

12: invokevirtual #9; //java/awt/Point.getX:()D
15: d2i
16: istore_
17: aload_0
18: getfield #22; //p:Ljava/awt/Point;
21: iload_1
22: iload_2
23: iadd
24: putfield #34; //java/awt/Point.x:I
27: return
28: pop
29: iconst_1
30: invokestatic #40; //CapturedState.readInt:(I)I
33: istore_1
34: iconst_2
35: invokestatic #40; //CapturedState.readInt:(I)I
38: istore_2
39: iconst_3
40: invokestatic #40; //CapturedState.readInt:(I)I
43: lookupswitch{ //3

0: 0; //label1  8: 8; //label2  17: 17; //label3
default: 0 }

Exception table:
from to target type

0  27 28 Class InvalidStateException

1

2

restore program counter

restore tmp1

extra code due to bc rearrangment

restore tmp2

extra code due to bc rearrangment

extra code due to bc rearrangment

migration manager JVMTI agent {
load received classes via JNI;
restore class (static) data via JNI;
set breakpoint at 1st line of top method;
// Callback for JVMTI_EVENT_BREAKPOINT
cbBreakpoint(…, thread, method, location) {

set breakpoint at 1st line of next method;
throw InvalidStateException;
resume execution;

}
}

method1 {
try {

// first source l ine
…
// last execution point
…
method2(…);
…

} catch(InvalidState-
Exception e) {
restore local variables;
…
lookupswitch;

}
}

method1 {
try {

// first source line
…
// last execution point
…
method2(…);
…

} catch(InvalidState-
Exception e) {
restore local variables;
…
lookupswitch;

}
}

method2 {
try {

// first source line
…
// last execution point
…

} catch(InvalidState-
Exception e) {
restore local variables;
…

lookupswitch;
}

}

method2 {
try {

// first source line
…
// last execution point
…

} catch(InvalidState-
Exception e) {
restore local variables;
…

lookupswitch;
}

}

exception 
caught

breakpoint 
reached

jump to 
saved pc

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 4.  (a) Bytecode instrumentation for adding restoration handlers                                                    (b)  Per-frame restoration flow 



public class Geometry {
   Random r = new Random();
   Point p = new Point();
   void displaceX() {
     p.x = r.nextInt() + (int) p.getX(); 
} }

public class Geometry {
   Random r = new Random();
   Point p = new Point();
   void displaceX() {
      int tmp1, tmp2;
      try {
label1: tmp1 = r.nextInt(); }
      catch (NullPointerException e) {
         r = (Random) ObjMan.bringObj(this, "r");
         // goto label1; }
      try {
label2: tmp2 = (int) p.getX(); }
      catch (NullPointerException e) {
         p = (Point) ObjMan.bringObj(this, "p");
         // goto label2; }
      try {
label3: p.x = tmp1 + tmp2; }
      catch (NullPointerException e) {
         p = (Point) ObjMan.bringObj(this, "p");
         // goto label3; }
} }

0: aload_0
1: getfield #57; //r:Ljava/util/Random;
4: invokevirtual #27; //Random.nextInt:()I
7: istore_1
...

28: pop
29: aload_0
30: aload_0
31: ldc #2; //String r
33: invokestatic #36; //ObjMan.bringObj
36: checkcast #7; //class java/util/Random
39: putfield #57; //r:Ljava/util/Random;
42: goto 0
Exception table:
fr to target type
0 8   28  Class NullPointerException

...
16: aload_0
17: getfield #43; //r:L_Random;
20: dup
21: getfield #30; //_Random.state:I
24: iconst_0
25: if_icmpne 32
28: dup
29: invokestatic #24; //ObjMan.bringObj
32: invokevirtual #32; //_Random.nextInt:()I
...

public class _Geometry {
   _Random r = new _Random();
   _Point p = new _Point();
   int state = 0;
   void displaceX() {
     if (r.state == 0)
        ObjMan.bringObj(r);
     if (p.state == 0)
        ObjMan.bringObj(p);
     p.x = r.nextInt() + (int) p.getX();
} }

C. On-demand Data Fetching 

In SOD, as in many distributed r
objects are brought to the desti

untime systems [6, 14], 
nation only when they are 

bei

s 
into

 Java code. Its byte-
cod

nderscore pre-
fix 

e 
can

ng accessed so as to minimize transfer of unwanted data. 
As execution proceeds, the destination JVM will bring in 
objects and cache them as local objects, while the rest kept in 
the home JVM are seen as remote objects. Cached objects 
may turn stale too. So, prior to using any field of an object, a 
mechanism is needed to detect whether it is a remote or a 
local object that is valid for use. One common approach, as 
adopted in most object-based software DSMs, is to augment 
all objects with status flags and inject object status checking 
code at every read and write. This approach would however 
impose severe penalty on the execution speed since the over-
head scales linearly with the access count, even if the objects 
have been cached locally, e.g. in the case of JavaSplit [14]. 

We exploit Java’s inherent exception safety to deliver a 
new efficient solution. The key idea is to inject helper code

 the executable as try-catch blocks that detect and handle 
null pointer exceptions (java.lang.NullPointerException) 
at the preprocessing stage. During state capturing, we do not 
capture instance fields but set them to null during restoration. 
So every instance field access will in effect translate into a 
null pointer exception which will be caught by our injected 
catch blocks. The exception handling is to invoke the object 
manager for bringing the missed object to the local heap and 
rebuilding the object reference being accessed. Such excep-
tion handlers that we call object fault handlers are able to 
jump back to the last execution point after handling the ex-
ceptions thrown. Technically, the handler realizes this by a 
goto instruction jumping to where the null pointer exception 
just occurs. Execution then resumes as if no exception has 
occurred. Bytecode rearrangement with extra local variables 
introduced in Section III.A.1 has ensured the operand stacks 
are evacuated to avoid state inconsistency when performing 
the goto instruction. The target of the jump is always at the 
location corresponding to the start of a source code line. To 
help rebuilding the missed object reference, the preprocessor 
looks for aload instructions in the program to spot all access 
to local variables, and creates an object fault handler for each 
instance variable with its slot id (or field name) being hard-
coded inside the code of the handler. The handler provides 

this id for the call of object manager so that the home object 
can be located via JVMTI. The home object is then serialized 
and shipped to the destination. The null reference is set ac-
cordingly, pointing to the deserialized object. To differenti-
ate a regular null pointer exception due to application pro-
gram bug, if a null reference is found at home by the object 
manager, the handler will throw another null pointer excep-
tion to indicate that this exception truly comes from the ap-
plication level. During normal execution, only the try blocks 
would be executed. As Java per se has anyway to pay the 
overheads of exception safety checks, we take this free ride 
to realize an object faulting mechanism, analogous to page 
faults in OS. The execution speed won’t be affected, except a 
slight side effect of increased code size. 

Fig.5 depicts the comparison of the two object miss de-
tection approaches. J0 shows the original

e is instrumented and becomes B1 (traditional object 
checking) or B2 (our object faulting). The equivalent Java 
codes (J1, J2) are shown for easier interpretation but do not 
exactly match the instrumented bytecode due to the regime 
of Java compiler. The shadowed region represents the extra 
code added (codes marked in pale shadow will be run in 
normal execution while those in dark shadow are being run 
only if the object is missed in the local heap). 

In the traditional approach, each class needs to be aug-
mented with an extra status field (we add an u

to the class name of all rewritten classes). We see from 
B1 that before the program can use the object r (calling r’s 
nextInt method at bci 32), four extra codes (bci 20-25) are 
needed to check the object status: dup and getfield for 
loading the status field followed by a branch-if operation. If 
the test fails, bci 28-29 will be executed, calling the object 
manager, ObjMan.bringObj(), to bring in the home object. 
The overhead of the four extra instructions is associated with 
every field access no matter if the object is local or remote. 

In contrast, our object faulting method does not introduce 
checking overhead to the original flow of execution as w

 see in B2 that the object r can be used (at bci 0-4) di-
rectly with no code added prior to it. The only overhead is an 
extra local store (istore_1 at bci 7) due to bytecode rear-
rangement. In normal execution where most missed objects 
have been handled, the direct slowdown induced and indirect 
slowdown due to increased code size are both negligible. In 

extra store to tmp1 due 
to bc rearrangement

extra field load and 
branch for status check

bring in the missing object from home 
through the object manager

(J0) Original Java code
Class file size = 501 bytes

(J1) Java code with status checks

Class file size = 902 bytesClass file size = 667 bytes

(J2) Java code with object fault handlers 

(B1) Bytecode added with status checks (B2) Bytecode added with object fault handlers

added object 
fault handler

 
Figure 5.  Comparison of object checking and object faulting approaches 



term of space overhead, the file sizes of the original class, 
instrumented classes with status checks and with object fault 
handlers are 501 bytes, 667 bytes and 902 bytes respectively. 
Our approach pays 35% more space overhead than the tradi-
tional approach to trade for best normal execution speed. 

IV. PERFORMANCE EVALUATION 

TABLE I.  PROGRAM CHARACTERISTICS 

App Description n h F (byte)
Fib Calculate the n-th Fibonacci number recursively 46 46 < 10 
NQ Solve the n-queens problem recursively 14 16 < 10 
FFT Compute an n-point 2D Fast Fourier Transform 256 4 > 64M
TSP Solve the traveling salesman problem of n cities 12 4 ~ 2500

In this section, we evaluate SODEE with seve
ns. The evaluations were conducted on a cluste

ral applica-
tio r of node
inte

s to characterize the overhead 
it compares with other systems. We 

use

h) of Java stacks 
and

n Table II. 
Th

ugger inter-
fac

ing a mi-
grat

s 
rconnected by a Gigabit Ethernet network. Each node 

consists of 2 × Intel E5540 Quad-core Xeon 2.53GHz CPUs, 
32GB 1066MHz DDR3 RAM and SAS/RAID-1 drives. The 
OS is Fedora 11 x86_64 except for those nodes running Xen 
with live migration for comparison purpose. As only certain 
modified OS versions support Xen, we installed CentOS 5.4 
x86_64 on those nodes and configured each VM instance to 
have 2GB RAM. All nodes mounted the home directory on 
Network File System (NFS) to ease experiments with shared 
file access. The tested JVM version is Sun JDK 1.6 (64-bit). 

A. Overhead Analysis 

This part of evaluation aim
of SODEE and see how 

 the term migration overhead to denote the total cost of a 
migration that is measured by the difference of execution 
time with and without activating migration. For SODEE, we 
focus on several components of the migration overhead: (C1) 
cost of passing through the JVMTI layer, (C2) stack frame 
capturing, transfer and restoration, (C3) object faulting. We 
measured C1 by the difference in execution time taken with 
and without bringing up the JVMTI agent at JVM startup. C2 
marks essentially how long the execution gets frozen and we 
will give a breakdown of this figure. By microbenchmarking, 
we evaluate C3 separately in Subsection B. 

Table I lists our benchmark programs used in this part 
with the problem size (n), maximum height (

 accumulated size (F) of all local and static fields. These 
programs belong to a rather compute-intensive kind. Besides 
SODEE, we also ran each program atop the following run-
times with migration support: G-JavaMPI, JESSICA2 and 
Xen. SODEE, G-JavaMPI and Xen all need an underlying 
JVM; they used the same version, Sun JDK 1.6, as specified. 
G-JavaMPI uses an earlier generation of JVM debugger in-
terface to perform eager-copy process migration. JESSICA2 
performs Java thread migration in JIT mode; its mobility 
support is implemented at the JVM level by modifying the 
Kaffe JVM [15]. Xen performs OS live migration; the im-
plementation is at VM level (embedded in Xen). 

We recorded the execution time of each benchmark on all 
systems with and without migration, as shown i

e 2nd column (“JDK”) refers to the original execution time 
taken on Sun JDK. The columns headed “mig” and “no mig” 
refer to the execution time taken on the migration systems 
with and without migration triggered. The “no mig” readings 
of SODEE and G-JavaMPI are about the same because they 
ride on a similar debugger interface. The raw execution time 
of JESSICA2 is longest for this system was developed based 
on a rather old version of Kaffe JVM whose JIT compiler is 
not as optimized as Sun JDK. Execution in Xen also sees a 

time penalty. However, in order to use hypervisors, Xen was 
executed on a modified host OS. So it is not appropriate to 
conclude that Xen caused a two times slowdown by compar-
ing the “JDK” and “Xen (no mig)” columns. 

Note that even with no migration, there is a slight penalty 
on SODEE and G-JavaMPI execution due to deb

e and side effect of code instrumentation. The portion due 
to the side effect (C0) can be obtained by comparing the exe-
cution time of the original and preprocessed classes. C0 was 
found to be a negligible cost of 0.1% to 1.45%. By subtract-
ing the values of “JDK” and C0 from “SODEE (no mig)” 
column-wise, we obtain C1 which ranges from 0.1% to 3.2%. 
We can see C1 is also a minuscule overhead. Based on Table 
II, we derive Table III showing the migration overhead in 
each test case (note: slight discrepancy between the two ta-
bles exists due to round-off errors). From Table III, we see 
that SODEE induces the least migration overhead among 
most of the applications except TSP. In TSP, almost all ob-
ject fields need be used frequently. There is no benefit for 
SODEE to reap by deferring heap data transfer through on-
demand object fault-in. G-JavaMPI, on the contrary, induced 
the least migration overhead in this case for it is most effi-
cient to use process migration to bring in all objects by a 
single transfer. In other applications, as not all of the objects 
need to be used by the migrated frame, SODEE sees the low-
est migration overhead. We observe the largest overhead at 
Xen because live migration transfers the entire OS that needs 
at least several seconds to complete the migration. 

For further analysis over C2, we refer to C2 as migration 
latency which means the time gap between receiv

ion request and getting the execution resumed at the des-
tination. C2 could be further broken down into three parts. 
Capture time means the interval between a migration request 
being received and the state data being ready to transfer. 

TABLE II.  EXECUTION TIME TAKEN ON DIFFERENT SYSTEMS 

Execution Time (sec) 
SODEE G-JavaMPI JESSICA2 Xen 

App JDK no mig mig no mig mig no mig mig no mig mig
Fib 12.10 12.13 12.19 12.03 12.19 49.57 49.69 26.65 30.35
NQ 6.26 6.38 6.41 6.27 6.58 38.20 38.40 13.85 18.76
FFT 12.39 12.60 12.71 12.48 15.02 255.3 257.8 16.52 23.68
TSP 2.92 3.04 3.22 3.09 3.23 20.93 21.85 7.01 13.46

TABLE III.  MIGRATION OVERHEAD OF DIFFERENT SYSTEMS 

Migration Overhead (ms) a 
 

SODEE G-JavaMPI JESSICA2 Xen 
Fib 52 (0.43%) 156 (1.30%) 123 (0.25%) 3695 (13.86%) 
NQ 32 (0.51%) 307 (4.89%) 195 (0.51% 4906 (35.42%) 
FFT 105 (0.83%) 2544 (20.39%) 2494 (0.98%) 7160 (43.34%) 
TSP 178 (5.86%) 142 (4.59%) 922 (4.41%) 6450 (91.99%) 

a. Inside bracket is the % overhead w.r.t. execution time w/o migration



Transfer time is the time needed for the state data, upon be-
ing ready for transfer, to reach the destination. Restore time 
counts from the moment of state data being available at the 
destination to the point of execution resumption. Besides the 
state, code needs to be shipped as well. The time needed to 
transfer application classes and to load them into the destina-
tion JVM would be counted under the restore time. The state 
data for different systems may be defined differently. For 
SODEE and JESSICA2, it covers mostly the stack areas; for 
G-JavaMPI, it includes also the heap; for Xen, it means the 
entire OS image. For SODEE, G-JavaMPI and JESSICA2, 
migration latency is equivalent to freeze time during which 
the current execution is frozen. But for Xen, they are unequal 
for it starts capturing and pre-copying dirty pages to the des-
tination well ahead of execution stoppage. Though its freeze 
time can be short (usually in hundreds ms range), its migra-
tion latency is long, so it is not considered as lightweight 
migration and excluded from the comparison here. 

The results are shown in Table IV. In this evaluation, 
JESSICA2 achieved shortest migration latency among most 
of 

e was captured 
and

n due to object fault 
proach of injecting 

obj

 
y. Due 

to d

the applications except FFT; SODEE was the runner-up. 
Capture time and restore time are minimal for NQ and TSP 
on JESSICA2 and Fib on SOD. Since thread migration in 
JESSICA2 is built into the JVM, state information can be 
retrieved directly from the JVM kernel. SODEE retrieves 
state data indirectly by calling JVMTI functions; this is not 
as efficient as JESSICA2. Most of the JVMTI functions, e.g. 
GetFrameLocation(), used in state capturing can be exe-
cuted efficiently and finish within 1us. However, some func-
tions take much longer time (e.g. GetLocalInt() take about 
30us). As SODEE uses GetLocal<type>() functions to cap-
ture values of local variables in a stack frame, the capturing 
time per frame is larger than that of JESSICA2. However, 
the use of JVMTI allows a much more portable implementa-
tion than JESSICA2. State restoration in SODEE mainly 
relies on the exception handlers injected to each Java method.
On the other hand, JESSICA2 sees a much longer migration 
latency in FFT in which restore time is the major component. 
This is related to the way that JESSICA2 handles static data. 
JESSICA2 always allocates space for static arrays at class 
loading rather than at access time. As a big static array of 
64MB is used in FFT, a significant portion of time was spent 
on array allocation, leading to extensive restore time in 
JESSICA2. The large array also increased the capture, trans-
fer and restore time of G-JavaMPI considerably. In SODEE, 
migration was placed at the method which did not need to 

operate on the array. As a result, its timings were not af-
fected by the size of the array. If migrations were taken place 
at the methods that need to use the array, then the migration 
overhead would still be comparatively large. However, this 
demonstrates a special feature of SOD, which allows a proc-
ess of large footprint to migrate partial computation that 
could fit into a resource-constrained device. 

Migration latency of SODEE is much shorter than that of 
G-JavaMPI. By SOD, only the top stack fram

TABLE IV.  MIGRATION LATENCY IN DIFFERENT SYSTEMS 

SOD G-JavaMPI JESSICA2 
Mig. latency (ms) Mig. latency (ms) Mig. latency (ms) App 

Capture Transfer Restore Capture Transfer Restore Capture Transfer Restore

14.66 132.15 11.37 
Fib 

0.35 7.49 6.82 60.17 8.74 63.24 0.39 2.62 8.36
12.42 91.44 9.06 

NQ 
0.50 4.73 7.19 38.44 8.11 44.89 0.18 2.14 6.74

12.33  2470.15 74.08 
FFT 

0.54 4.75 7.04 457.45 1053.57 959.13 0.11 2.26 71.71
15.23 95.98 9.90 

TSP 
0.42 4.50 10.31 36.23 8.32 51.43 0.06 2.30 7.54

 In

 restored. As heap data was not transferred during migra-
tion, the data size does not affect SOD migration latency. 
While in G-JavaMPI, the whole process data is captured with 
eager-copy, and worse still, all objects are exported using 
Java serialization. For Fib and NQ, G-JavaMPI needs to deal 
with around 46 and 16 stack frames (see Table I) respec-
tively, due to recursive calls. For FFT, the total object size is 
larger than 64MB. As a result, G-JavaMPI sees much longer 
capture time and restore time than SODEE in all cases. 

B. Detection of Remote Object Access 

In this part, we compare the slowdow
handlers with that of the traditional ap

ect status checking codes to detect remote object access. 
We measured the time needed to read and write an instance 
field and static field using a micro-benchmark program. As 
shown in Table V, our object faulting approach introduces 
2.12% to 7.69% overhead, while status checking causes a 
slowdown of 21.62% to 253.85%. The exceptionally large 
slowdown happens to static write access because an addi-
tional static “status” field read imposes an extra latency up to 
0.37ns on the relatively short time of a static field write. 
Since the status of the object needs to be checked before 
every field access, an additional field read (for the object 
status), a comparison and a branching instruction are re-
quired. These actions penalize the execution time even if the 
objects are available in the local heap. In contrast, the over-
head induced by object fault handlers is nearly negligible. 

C. Effectiveness of Different Migration Techniques 

 this part, we compare the effectiveness of different
migration techniques for improving data access localit

ifferent levels of implementation, it is not fair to compare 
their execution time directly, so we compare the performance 
gain due to migration. We used a full-text document search 
application for this evaluation. In this application, files are 
read locally if the files are located in the current node, or 
otherwise, through NFS, followed by searching for a string 
over the buffers read. We did the test with three large data 
files (600MB each). Locality of file access can be improved 
by migrating the execution to the nodes which host the files. 

TABLE V.  COMPARISON OF OBJECT FAULTING METHODS 

Access time (ns) Slowdown 
Access Type

Original
Object 

faulting 
Object 

checking 
Object 

faulting 
Object 

checking 
Field Read 2.60 2.68 3.87 3.08% 48.85% 
Field Write 5.67 5.79 7.13 2.12% 25.75% 
Static Read 0.37 0.38 0.45 2.70% 21.62% 
Static Write 0.13 0.14 0.46 7.69% 253.85%



TABLE VI.  PERFORMANCE GAIN ON MIGRATION SYSTEMS 

System 
Exe. time w/o 

mig. (sec) 
Exe. time w/ 

mig. (sec) 
Exe. time on NFS 

server (sec) 
Performance 

gain 
JESSICA2 358.10 348.08 343.31 2.88% 

Xen 57.72 57.29 50.71 0.75% 
SODEE 23.25 18.81 16.01 23.60% 

The execution was repeated three times on each system. 
For the first run, the program was initiated and executed on 
the

y
JES

eeded 
stat

ob 
ate 

exp

”). 

d and published as 

s 

tive

allowing a 
big

 

Zhang et al. propose an elastic application model [17] to 
support partitioning a single application into multiple com-

 NFS client node till the end with no migration. For the 
second run, after the program was started on NFS client and 
before reading any files, we triggered migration to move the 
execution to the NFS server. For the third run, the program 
was run locally on NFS server. The OS buffer cache was 
cleared prior to each run to isolate the locality effect. 

Table VI shows the results obtained. SODEE delivers the 
best performance gain, 23.60%, among the three s

TABLE VII.  MIGRATION LATENCY VS. AVAILABLE BANDWIDTH 

Transfer time (ms) 
Bandwidth 

(kbps) 

Capture 
time (ms)

t1 
State data 

t2 
Class file  

t3 

Restore 
time (ms)

t4 

Migration 
latency (ms)

(t1+t2+t3+t4)

50 14.05 766.00 908.33 40.33 1728.72 
128 13.16 796.67 398.67 50.00 1040.33 
384 14.37 321.67 407.33 28.67 772.04 
764a 13.50 280.00 392.50 30.50 716.50 

a. Case of unlimited bandwidth (764 kpbs measured) 

stems. 4. After searching finished, the task returns to the original 
web server with the list of photos founSICA2 obtains a slight gain of 2.88% only. We suspect 

some bottlenecks exist in the I/O library of the JVM imple-
mentation. So even if the file data are available locally, it 
does not help speed up the file reading. Xen attains a negli-
gible gain of 0.75% only for most of the locality benefit has 
been offset by the relatively large migration overhead. 

We further studied the autonomous task roaming feature 
of SOD. A roaming process only needs to ship the n

e from one node to another. We simulated a WAN-
connected Grid environment where ten NFS servers were 
used to host ten data files of about 300MB. The program was 
initiated on a node. Then it retrieved the ten files, one from 
each server, and performed a text search for a string. If there 
was no migration, the whole file data would need to be trans-
ferred from the server to the executing node over NFS. But 
with migrations, access locality could be exploited by bring-
ing the task to the server, and doing the search locally there. 
The maximum performance gain was attained by activating 
ten rounds of SOD migrations, pushing the task to each NFS 
server. The execution time dropped from 124.3 sec to 36.71 
sec, giving a speedup of 3.39 over the case of no migration. 

D. SOD for Devices in Bandwidth-limited Environment 

To testify that SOD can help a resource-demanding j
execute on a resource-poor device, we performed a separ

eriment on a bandwidth-limited network using an iPhone 
3G handset with a 412MHz ARM CPU, 128MB RAM, and 
16GB storage. The iPhone was installed with JamVM 1.5.1 
b2-3 (JVM) and GNU Classpath 0.96.1-3 (Java class library). 
It was connected through Wi-Fi connection to the cluster 
network whose bandwidth was deliberately controlled by the 
bandwidth control service of a router. We developed an ap-
plication mimicking the scenario mentioned in Section II.B. 
The application is a web server program for photo sharing. 
When the program receives requests from client browsers, it 
searches for images in specific directories, generates HTML 
pages with links to the photos found, and sends them back to 
the clients. Clients can then view the photos by following the 
links. SOD migration is used to allow the photos stored on 
the iPhone to be shared with the server and hence with other 
clients without the need of installing any web or FTP servers 
on the iPhone beforehand. This is done as follows: 

1. The server calls the method to search over some device-
specific directory (e.g. “/User/Media/DCIM/100APPLE

2. Just before the search is carried out, the task (the method 
frame) is migrated to iPhone using SOD migration. 

3. The resumed task then searches for photos available in 
the specified directory on the device. 

web pages for clients to view the list of links to photos. 
5. When a client clicks on a specific link, the server pushes 

a new task to iPhone by SOD again. The task then return
to the server node with the requested photo data. The 
server will send back the photo to the client for viewing. 
Among the various migration techniques, only SOD can 

support this application. Since the web server maintains ac-
 connections to the outside world, process migration as in 

G-JavaMPI is not allowed. SOD addressed this issue by pin-
ning down the frames that hold the socket connections. Table 
VII shows the migration latencies obtained under different 
bandwidth constraints. The transfer time of state accounts for 
the major part in the latency, i.e. the smaller the bandwidth, 
the longer the migration latency. However, the capture time 
and restore time are not affected by network bandwidth. 
Compared with migration to a cluster node, the capture time 
and restore time of migration to the iPhone are much longer. 
This is because JVMTI is not available in JamVM, so we 
used Java serialization to save captured data in a portable 
format so that it is restorable without JVMTI on the device 
side. We retrofitted the migration manager as a pure Java 
worker program that uses Java reflection to load classes of 
the application and call its methods for restoring stack 
frames. Carrying out restoration at Java code level with 
rather low processing power of the device makes the restore 
time much longer than that taken on a cluster node. While 
this was the case, the use of Java serialization and migration 
manager retrofitting will no longer be necessary when more 
mobile JVMs go for implementing JVMTI; as we recently 
see, phoneME [16] has done so as of this writing. 

This application demonstrated that SOD can be used to 
increase mobility and flexibility of execution by 

 job to partially run on mobile devices, and hunt for on-
device resources such as files. Originally, without installing 
specific server software that is clearly unfit to mobile devices,
the file resources can hardly be shared with the external enti-
ties. Now, this can be achieved easily using SOD execution. 

V. RELATED WORK 



ponents cal tation of webl

nting the 

[1] 

[2] A. Fuggetta , G. P. Picco and G. Vigna. “Understanding Code 
Mobility.” IEEE Tran are Engineering, v.24 n.5, 

avaSplit: a Runtime for 

 HK, China, Dec 2003 

nternational ICST Conference 
s, and 

Mobile Agents, Atlanta, Georgia, USA, Dec 2001 

led weblets, and dynamic adap et 

stack of a running thread, SOD enables lightweight partial 
state migration. The use of SOD is versatile: it can facilitate 
offloading tasks of a mobile application to the Cloud, or con-
versely, streaming a process of large footprint down to a re-
source-poor device in a discretized manner. SOD can also 
support advanced features like autonomous task roaming and 
distributed execution flow without carrying needless data 
throughout the migration itinerary. For the best SOD-based 
performance, we design an object faulting mechanism based 
on exception handling to detect remote object access. While 
dynamically bringing in remote objects is nothing new, our 
object faulting technique accomplishes “heap-on-demand” 

much more efficiently. Experiments show that SOD induces 
less overhead than other migration systems for most of the 
benchmarks. The SOD concept can be further explored in 
terms of migration, prefetching and task distribution policies. 

ACKNOWLEDGMENT 

This research is supported by Hong Kong RGC grant 
HKU 7179/09E and China 863 grant 2006AA01A111. 

execution configuration. A weblet is location transparent. It 
can be run on mobile devices or migrated to the Cloud. How-
ever, application developers need to follow their specific 
framework and programming model. Our SOD model how-
ever allows a general application to be partitioned transpar-
ently by the runtime. Cloudlet [10] is a transiently custom-
ized computing infrastructure where mobile devices leverage 
resources of a nearby cloudlet by VM migration. Their mi-
gration approach is rather coarse-grained while ours can mi-
grate tasks at much finer granularity within very short time. 

Existing work on mobile agent systems (MASs), such as 
Aglets, Voyagers, etc, focuses on mobility alone and pays 
little attention to resource constraints and lightweight migra-
tion. All codes and execution states are carried throughout 
the whole migration itinerary. This wastes much bandwidth. 
Comparatively, SOD saves the transfer of unnecessary exe-
cution contexts (the lowermost stack frames). Our previous 
work [18] tackled the execution problem of mobile agents in 
resource-limited pervasive computing environments. Codes 
and states are segmented and retrieved from the source site 
on demand for execution. That work focused on adaptation 
of execution in pervasive devices while this work focuses on 
lightweight migrations in mobile cloud environments. 

CIA project [19] relies on Java Platform Debugger Ar-
chitecture (JPDA) and bytecode instrumentation to achieve 
transparent migration. Branching and other instructions are 
inserted to each method’s beginning. This affects the normal 
execution speed even when there is no migration. Our ap-
proach adds restoring codes as exception handlers and im-
poses no penalty on normal execution. G-JavaMPI, our pre-
vious work, adopted a similar state capturing and restoring 
approach as in SOD. Their flexibility however differs a lot: 
G-JavaMPI can migrate the whole process to a single node 
only while SOD divides a process into segments being mi-
grated concurrently to different cloud or mobile entities. 

JavaSplit is a distributed shared memory (DSM) runtime. 
It employs bytecode instrumentation to insert status checking 
codes before each object access. These codes induced slow-
down of multiple times to all object reads and writes. On the 
contrary, our object faulting approach saves this heavy pen-
alty by trading more code space for the best execution time. 

VI. CONCLUSION AND FUTURE WORK 

The paper proposes a stack-on-demand (SOD) execution
model with a compact migration technique to realize elastic 

 
Clus

computing in mobile cloud environments. By segme

REFERENCES 
"Report: Mobile Cloud Computing A $5 Billion Opportunity" 
Internet: www.crn.com/mobile/222300633 

sactions on Softw
p.342-361, May 1998 

[3] D. S. Milojicic, F. Doublis, Y. Paindaveine, R. Wheller, and S. Zhou. 
“Process Migraiton,” ACM Computing, 2000 

[4] “VMware VMotion for Live Migration of Virtual Machines.” Internet: 
www.vmware.com/products/vmotion/ 

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. 
Pratt, and A. Warfield. “Live Migration of Virtual Machines,” In 
Proc of the 2nd Symposium on Networked Systems Design and 
Implementation, p.273-286, 2005 

[6] W. Zhu, C. L. Wang, and F. C. M. Lau. “JESSICA2: A Distributed 
Java Virtual Machine with Transparent Thread Migration Support,” 
In Proc. of the IEEE 4th International Conference on Cluster 
Computing (CLUSTER 2002), p.381-388, Chicago, USA, Sep 2002 

[7] R. Quitadamo, G. Cabri, and L. Leonardi. "Mobile JikesRVM: A 
framework to support transparent Java thread migration," Science of 
Computer Programming, 70(2-3):221-240, 2008 

[8] “JVM Tool Interface (JVMTI) Version 1.1.” Internet: java.sun.com/ 
javase/6/docs/platform/jvmti/jvmti.html 

[9] L. Chen, T. C. Ma, C. L. Wang, F. C. M. Lau, and S. P. Li. “G-
JavaMPI: A Grid Middleware for Transparent MPI Task Migration,” 
Chapter 20, Engineering the Grid: Status and Perspective, Nova 
Science Publisher, Jan 2006 

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. “The Case 
for VM-based Cloudlets in Mobile Computing,” IEEE Pervasive 
Computing, 8(4), 2009 

[11] “TIOBE Programming Community Index” Internet: www.tiobe.com/ 
index.php/content/paperinfo/tpci/index.html 

[12] “The Rise of the POJO” Internet: www.oracle.com/technology/tech/ 
java/newsletter/articles/rise_of_the_pojo.html 

[13] “BCEL” Internet: jakarta.apache.org/bcel/ 

[14] M. Factor, A. Schuster, and K. Shagin. “J
Execution of Monolithic Java Programs on Heterogenous Collections 
of Commodity Workstations,” In Proc of the 5th IEEE Intl. Conf. on 

ter Computing (CLUSTER’03), p.110-117,

[15] “Kaffe JVM” Internet: www.kaffe.org 

[16] “phoneME Java ME” Internet: https://phoneme.dev.java.net/ 

[17] X. Zhang, S. Jeong, S. Gibbs, and A. Kunjithapatham. “Towards an 
Elastic Application Model for Augmenting Computing Capabilities of 
Mobile Platforms,” In Proc. of the 3rd I
on Mobile Wireless Middleware, Operating System
Applications (MobileWare), Chicago, USA, Jul 2010 

[18] Y. Chow, W. Zhu, C. L. Wang, and F. C. M. Lau. "The State-On-
Demand Execution for Adaptive Component-based Mobile Agent 
Systems," In proc. of the Tenth International Conference on Parallel 
and Distributed Systems (ICPADS 2004), p.46-53, Newport Beach, 
California, USA, Jul 2004 

[19] T. Illmann, T. Krueger, F. Kargl, and M. Weber. "Transparent 
Migration of Mobile Agents Using the Java Platform Debugger 
Architecture, " In Proc. of the 5th International Conference on 


	I.  Introduction
	II. ELASTIC Execution Model
	A. Stack-On-Demand Execution
	B. Key Benefits and Application Scenarios

	III. System Design and Implementation
	A. System Architecture
	B. State Migration
	1) State Capturing via JVMTI
	2) State Restoring by Restoration Handlers

	C. On-demand Data Fetching

	IV. Performance Evaluation
	A. Overhead Analysis
	B. Detection of Remote Object Access
	C. Effectiveness of Different Migration Techniques
	D. SOD for Devices in Bandwidth-limited Environment

	V. Related Work
	VI. Conclusion and Future Work
	Acknowledgment
	References


