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Abstract—In the ever-changing pervasive computing paradigm,
applications, especially those running on resource-scarce mobile
devices, have to adapt to the runtime environment as the users
are roaming around. Various adaptation techniques, relying on
dynamic composition of components, have been proposed by a
number of researchers. Nevertheless, most existing approaches
only support component selection based on predefined rules
and strategies. Because of the limitation of pure rule-based
approach, context-awareness can not be well supported. In this
paper, we propose a software component selection framework for
mobile pervasive computing. Our approach adopts the case-based
reasoning technique to provide proactive component selection.
Context-awareness and personalization are embodied in the
reasoning and selection process. As a proof of concept, we
developed and evaluated a context-aware personal communicator
(CAPC) application using adaptive component selection, with
a synthesized execution trace obtained from real-life E-mail
softwares ported to CAPC. Our results show that the adaptive
component selection can reduce maximum memory consumption
by at least 20%, and the context-guided reasoning technique can
improve reasoning accuracy by nearly 10% within acceptable
reasoning time.

I. INTRODUCTION

Nowadays, more and more mobile devices, taking advan-

tage of the wide coverage of wireless networks, have been

connected to the Internet. The whole environment can be seen

as a large-scale ad-hoc distributed system with a multitude

of small devices moving from place to place. Due to the

unpredictable nature of the mobile computing environment, the

future programming infrastructure should provide the ability

for applications to adapt their functionality according to the

changing contexts. The component-based software architec-

tures, such as .NET, Enterprise JavaBeans, and CORBA, are

the most dominant engineering paradigms in current software

community and industry, as they allow services or applications

to be dynamically assembled at runtime through a process

known as late binding.

However, traditional component-based softwares do not

take context information into account. They require users’ or

programmers’ intervention to specify the components. Some

renowned pervasive computing middlewares, such as Gaia [1]

and PCOM [2], provide generic adaptation support via either
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static mapping or predefined rules and strategies. Such rule-

based approaches are based on triggering mechanism, where

certain context inputs will fire a set of associated rules. They

generally follow the “stimuli-response” paradigm, where a set

of event-condition-action rules are predefined to trigger actions

or code segments. For example, an “On event IF condition

THEN action” pattern is scattered in the application program

to change the execution logics in an ad-hoc manner. However,

all triggering conditions must be strictly satisfied or exactly

matched to activate the adaptation, which is less flexible

in the highly dynamic pervasive computing environment. A

pervasive computing system, that strives to be minimally

intrusive to end users, needs to be context-aware [3]. However,

to realize “deep” context awareness, we need to consider a

wide spectrum of context types, ranging from the low-level

physical context (e.g., available memory, battery power, and

CPU speed), to the high-level user context, including user’s

physiological and phycological status (e.g., body temperature,

emotions, behavioral pattern, and social relationships).

Designing a complete rule-based system concerning all

types of contextual parameters to realize true context aware-

ness is not feasible. The system designer can not foresee all

possible conditions to be encountered and pre-determine all

the rules. There could be still many factors that might influ-

ence end user’s expectations from the execution environment,

which can not be modeled at the design phase. Failure in

rule condition matching leads to malfunction of the whole

system, which in turn distracts user’s attentions. Recently case-

based reasoning (CBR) technique has gained interests and

adoption in the design of context-aware systems ([4], [5]) and

autonomic systems [6].

The CBR technique is capable to produce useful results

even with partial information that may not match the past case

exactly. Such properties make CBR possible to reason about

context and ambient situation, even in some ill-defined and

poorly structured domains.

In this paper, we propose a distributed component selection

framework for mobile devices in the pervasive computing

environment. We adopt the case-based reasoning technique

to provide proactive component selection. The framework

is built atop of our component-based software infrastructure

called Sparkle [7]. Applications are built from small compo-



nents, called facets, which can be downloaded, assembled and

even discarded on demand. Thus, dynamic adaptation can be

achieved via component composition and reconfiguration at

runtime. Context-awareness and personalization are embodied

in the reasoning and component selection process.

We identified several new challenges while applying the

CBR technique to a component selection framework:

1) The component selection framework has to cope with

more complex context information (i.e. user context, lo-

cation context, device context and environment context)

than the existing recommendation systems [8]. Therefore

we must have a formal way to model the context and

reason about the context. It also leads to more complex

case structure in terms of the complexity in representing

context attributes.

2) The facet model enforces a tree structure representation

to show the calling dependencies among components.

Possible combinations on the selection of components

and unpredictable execution order with feedbacks may

lead to a large case size, which could hinder the perfor-

mance of the case-based reasoning process.

3) Compared with other case-based recommendation sys-

tems, what we recommend or provide is a software

component that can fulfill certain functionality. The

responsibility to find and return a component suitable

for the device configuration and current context should

not rest on the users. As users may not have much

knowledge or expertise on the component itself.

The rest of this paper is organized as follows: Section II

describes the related work. Section III gives an overview of the

system. Section IV - VI explain the details of how to model

the cases using OWL, how to realize adaptive component

selection. Reasoning accuracy and performance valuations are

reported in Section VII. Section VIII gives the conclusion and

future work.

II. RELATED WORK

A. Component models and platforms

Many existing works realize self-adaptation through dy-

namic composition and reconfiguration of components or

services. UIUC’s Gaia [1] is a programming environment

(active space) extending the model-view-controller pattern. It

was built based on OMG’s CORBA component model. When

a user moves from one active space to another, the system

uses two external mappings to achieve dynamic adaptation

based on non-functional parameters. Gaia adds a level of

indirection between I/O device and traditional application. The

system assumes a relatively static environment, only simple

reasoning mechanism was adopted. Compared with Gaia [1],

PCOM [2] provides better granularity by breaking apart atomic

application into components connected as a tree, where the

links show their calling dependencies. Automatic adaptation

is supported by selecting the optimal component at runtime.

In case multiple components fulfill the requirement, predefined

user preferences are adopted. StarCCM [9] proposed a policy-

based context-aware middleware support for component-based

applications in pervasive computing. It does not mention about

mobile scenarios and therefore the context is rather static.

Besides, it does not show what kind of context should be taken

into account and how to model the context. D. Ayed, et al. [10]

proposed a two-level rule-based adaptation approach for the

deployment of mobile component-based applications. Apart

from the target deployment environment, it suggests that the

user’s preferences, activities and physical environment should

also be considered. Nevertheless, it does not give any formal

guide on how to model the context and link the context model

with the adaptation process.

B. CBR in context-aware applications

It is commonly agreed that context-aware applications can

dynamically adapt to the environment whenever it changes.

Ander K. Petersen et al. [11] suggest that the case-based

reasoning supported by a rich knowledge model, is a promising

approach to assess situation by being context-aware. In [4],

Ma et al. showed how to use CBR as context-awareness

solution in smart home. CBR is used to adapt services of smart

home to user’s preferences. User’s preferences are captured in

the cases. Whether a proposed solution is correct or not is

justified by observing how a user interacts with the system.

Their approach however required a lot of sensors embedded

in the smart home environment to monitor the user’s behavior.

AmbieAgents [12] is a scalable infrastructure for mobile and

context-aware information services, which employed GREEK

[13], a case-based reasoning engine to determine the user

situation. A detailed account of the use of CBR in a multi-

agent system can be found in Ander K. Petersen et al. [14]. The

work discussed how to use a multi-agent system to offer user

with personalized and context-sensitive information. Ander K.

Petersen also discussed four challenges in the design of CBR

for achieving context awareness in ambient intelligent systems

in [11], which inspired some of our thoughts. Apart from

CBR’s intensive application in smart home and information

service applications, CBR technique also plays an important

role in various recommendation systems [8]. In [15], the

authors proposed a novel distributed service discovery and

selection framework in a pervasive service environment that

consists of service clustered servers (SCS). The working

mechanism of this work is very similar to that in the Sparkle

infrastructure. The service in SCS is mainly referred to media

service, web service and document service. When a service

is needed, the user request is forwarded to the local SCS for

processing, similar to the proxy in Sparkle. If local SCS can

not locate the service, the request is passed on to the domain

facilitators who have a better view of the entire domain. The

service selection is based on case-based reasoning technique.

The system adopts two-level similarity measurements, namely

local and global. However, only the similarities of service

attributes or service related contexts (i.e. type, location, cost

and bandwidth) were computed. More high-level user context

information was not taken into account.



III. SYSTEM OVERVIEW

To provide more personalization and context-awareness, we

present a distributed component selection framework for mo-

bile context-aware applications based on case-based reasoning

technique. Our framework is built atop of the Sparkle software

infrastructure [7], where application program can be assembled

by components or modules. Sparkle consists of a client system

embedded in the mobile device and an intelligent proxy

server that can be connected to the Internet. The existence of

component providers and context providers is a premise for

our framework. We leverage the OWL/RDF from semantic

web community to model the context and domain knowledge.

We believe that the component-based software model assisted

by CBR is a promising way to achieve personalization and

context-awareness in the pervasive computing environment.

Traditionally, applications are programmed in a monolithic

way. These softwares become too big to fit into the small

devices with limited resources. Functionalities that could be

provided by a device are therefore restricted by its configura-

tion. In Sparkle, applications are built from small components,

called facet. To fulfill the same functionality, there could be

multiple candidate facets. These components are downloaded

from the network at run-time, and could be cached for future

use or thrown away after use. Thus, applications can be

dynamically composed. Resource adaptation can be achieved

since every component is small and can be thrown away. Only

those frequently used facets are cached to reduce the memory

consumption. Functionality adaptation could be possible as we

have the flexibility to retrieve necessary software components

to carry out some unplanned functions/services according to

the current context (e.g., location, friend nearby). To support

the above adaptations, the facets are made up of two parts.

More detailed discussions can be found in [7].

• Shadow: A RDF/OWL description of properties of the

component including vendor, version, the functionality it

fulfills, its dependencies and its resource requirements.

The Sparkle proxy server will locate and select the

appropriate facets on behalf of the requesting device

according to the wanted functionality.

• Code segment: This is the body of the executable code,

which implements the functionality. It follows the con-

tract described in its shadow.

Figure 1 shows an example of facet dependency and a

runtime snapshot of the facet execution tree formed by a

calling sequence from T0, T1 to T10. The dotted ellipse

represents functionalities that compose a certain application.

Each functionality has one or multiple black/white circles

representing compatible facet implementations of the same

functionality. Each functionality is associated with a con-

text vector CV =< Ci1, Ci2, .., Cin > at calling sequence

ID i, where Cin means a context attribute relevant to this

application. Note that facets of the same functionality may

have different facet dependencies. For example, facet i of

functionality A requires functionality D and E, while facet

k requires functionality F and G. The tree formed by black
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Fig. 1. Illustration of Facet Dependency with Calling Sequence and Facet
Execution Tree

circles is the facet execution tree. Since the facet selected for

each functionality may vary according to various contexts, the

facet execution tree may be quite different for each user, under

different circumstances.

In a pervasive computing environment, there could be a

large number of components for different device configura-

tions. Even for a specific device model, it is possible to

use different versions of components to carry out the same

functionality. For example, functionality A in Figure 1 has

three compatible facet implementations (i, j, k). Thus, it is

not possible for developers to create components that are

suitable for all devices due to the large variety of com-

ponents for different device configurations. Therefore, the

responsibility to find and return a component suitable for the

device configuration should not rest on the users. The network

itself has to have some intelligence in returning a suitable

component for the client. The network should be able to tailor-

make its response according to the particular user needs and

preferences. The response should also be efficient to support

the high mobile nature of users. Thus, an intelligent proxy

server is required, which will accept clients’ requests, and

respond to them efficiently according to the available runtime

context information.

Figure 2 depicts the architecture of the component selection

framework on Sparkle proxy server. It consists of seven

entities. The component agent forwards the incoming request

to the facet manager, which will do adaptive facet selection

to find the most appropriate components. It is also responsible

for updating the corresponding client’s facet cache, so that

the facet keep/drop instructions can be formed on behalf of

clients. The reasoning engine in our design is embodied in

the adaptive facet selection process, where the case-based

reasoning techniques are applied to match similar situations

when select a component for client application. The context

manager collects all available context information relevant to

the request to assist reasoning process. Peer coordinator is

responsible for finding other proxy servers that are capable

for locating the required components and context information
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Fig. 2. Architecture of Intelligent Proxy Server in Sparkle

TABLE I
CONTEXT CATEGORIES USED FOR FACET/COMPONENT SELECTION

Category Description Example

Physical level information about computing memory size,

context resources and environment network bandwidth

Application level data format and QoS image resolution

context requirement

User level context physio and phycological emotion, age, location

information of user

if necessary. Knowledge model and knowledge base contain

domain knowledge and cases for the reasoning process.

IV. KNOWLEDGE REPRESENTATION

Web Ontology Language (OWL) enables the definition of

domain concept and sharing domain vocabularies. The struc-

ture of a domain is described through classes and properties. In

our component selection framework, domain knowledge and

case structure are represented using OWL/RDF. We follow the

methods discussed in CONON [16] for modeling context and

supporting logic-based context reasoning. We have identified

three categories of contexts that are taken into account for

component selection in Table I.

We prototyped the context-aware personal communicator

(CAPC) application. Its physical level context includes CPU,

memory, network status. For application level context, it

includes component cache status, data format requirement. For

user level context, it includes user identity, age, occupation, so-

cial relationship, activity, location, mood. The case is not only

used for knowledge storage but also for knowledge reasoning.

The case representation is essential for every case-based

reasoning system, especially for systems that are targeting

to achieve context-awareness. All relevant contexts should be

covered by the case representation. In our system, a “case” is

defined as triple Case = (Context, Solution, Result), where

Context is a description of current situation, represented as

a context vector < c1, c2, ..ci, ..cn >, where ci describes a

context attribute which is relevant to the application. Solution

is a suggested facet (i.e., facet ID of the selected component)

returned by the intelligent proxy using our CBR engine.

The Result is the feedback of application execution from the

client. The selection is done automatically as users may not

have the expertise to select the right components. This also

avoids the unnecessary conversations between applications and

users to minimize intrusiveness. Thus, feedback from user

and system is essential for the CBR system to ensure its

selection accuracy and be able to evolve. We consider the

system feedback by monitoring the component cache usage

patterns and facet execution status. In the current design, a

<size rdf:about = "#S1">
   <has_static>2055</has_static> 

   <has_dynamic>20567</has_dynamic>

   <has_guarantee>24543</has_guarantee>
   <has_unit>byte</has_uit> 

</size> 

                                                           

<facet_case rdf:about = "#I1">

    <has_id rdf:datatype="&xsd;string">1</has_id>  

    <has_time rdr:datatype="&xsd;dateTime">
                 5/12/2008 10:30:52AM</has_time>  

    <has_solutions ref:resource="#Solution1"/> 
    <has_functionality rdf:datatype="&xsd;string">
                "Func1"</has_functionality> 

    <has_location rdf:resource="#L1"/>

    <has_network rdf:resource="N1"/> 

    <has_user rdf:resource="#P1"/>
    <has_dependency rdf:resource="#D1"/> 
    <has_size rdf:resource="#S1"/>

    <has_device rdf:resource="#DVC1"/>
    <has_memoryuse rdf:resource="#MEMUS1"/> 

 </facet_case>
<device rdf:about = "#DVC1">

    <has_id>1</has_id> 
    <has_cpu ref:resource="#CPU1"/>

    <has_mem ref:resource="#MEM1"/>
</device>

<solutions rdf:about="#Solution1">

    <rdf:Bag>

        <rdf:li>#Facet1</rdf:li>
        <rdf:li>#Used1</rdf:li>

    </rdf:Bag>
< /concurrence>

<dependency rdf:about="#D1">

     <rdf:Bag>
         <rdf:li>#FacetLevel2</rdf:li>
         <rdf:li>#Used5</rdf:li>

     </rdf:Bag>
</dependency>

Fig. 3. An RDF Presentation of a “Case”

case is represented as an OWL/RDF instance as shown in

Figure 3. We store case instances into the relational database.

Other advanced persistent storage can be deployed for storing

the case instances. For example, D. Jeong et al. [17] provided

a new persistent storage to efficiently manage OWL Web

ontologies.

V. SIMILARITY MEASUREMENT

The core of a CBR system is the similarity measurement.

We define a similarity function to find k past cases which are

similar to the new case. The similarity between a new case N

and a past case P can be calculated using Equation (1):

Similarity(
−→
N,

−→
P ) =

∑n

i=1
Sim(Ni, Pi) × Wi
∑n

i=1
Wi

(1)

where Ni is the ith attribute of the new case N, Pi the

ith attribute of the past case P, and n the number of at-

tributes (relevant context) in the case. Sim(Ni,Pi) is the

local similarity measurement between two attribute values.

The Similarity(
−→
N,

−→
P ) is the global similarity measurement



between the two cases, which is a weighted sum of all local

similarity values. The weight Wi is in the range of [0,1]. The

domain knowledge will be used to adjust the weight dynam-

ically based on the inference rules stored in the knowledge

base. We identify three types of similarity functions:

• Numerical similarity. Range similarity is applicable to

numerical attributes (e.g. location, network). The simi-

larity of two numerical attributes is defined as Equation

(2):

Sim(Ni, Pi) = 1 −
|Ni − Pi|

interval
(2)

where interval is a predefined threshold, when |Ni −
Pi| > interval, Sim(Ni,Pi)=0, and therefore the range

of Sim(Ni,Pi) is also [0,1].

• Literal similarity. Boolean similarity is applicable to

literal attributes (e.g. gender, identity). The boolean sim-

ilarity is defined as Equation (3):

Sim(Ni, Pi) =

{

1 Ni = Pi

0 otherwise
(3)

• Ontological similarity. Ontological similarity is appli-

cable to the individuals of concept (e.g. occupation,

activity). The closer are the two concepts in the concept

hierarchy, the higher their similarity will be. We adopt

the solution from jCOLIBRI2 [18], which provides four

different functions for computing the concept-based sim-

ilarity that depends on the location of the individuals in

the ontology.

To enhance accuracy and personalization with context-

awareness, we proposed a mechanism named context-guided

reasoning. Currently we adopt a weight-assignment approach,

in which the weight of context attributes in similarity mea-

surement evolves along with the growth of the case base. We

use the Equation (4) to generate the weight Wk for the kth

context attribute which has discrete or enumerate values.

Wk =
∑

p(cj
k) × max(p(si|c

j
k)) (4)

p
(

c
j
k

)

is the probability when the kth context’s value is c
j
k,

p
(

si|c
j
k

)

is the probability when the solution value is si with

c
j
k as the kth context’s value. We take the equation to measure

how much the kth context will impact the solution. For context

with continuous value, we do clustering operations on its value

before we use the equation. To improve the reasoning speed, a

context-guided filtering function was added. This mechanism

can further reduce the number of candidate cases for similarity

measurement. User’s situation was estimated and only those

cases under similar situation were fetched for reasoning.

VI. ADAPTIVE FACET SELECTION

Core to realize context-awareness in Sparkle is to achieve

adaptive facet selection collectively by proxy, client, and

their interaction. The proxy server’s component agent will

run Algorithm 1 to selectively choose facets to be sug-

gested to clients. A mobile client will also have an adaptive

execution environment (a.k.a. extended facet manager) that

will send/update context and application feedback to proxy

server and get proxy’s suggested facets and their keep/drop

instructions. We extended our previous facet execution tree

Algorithm 1 Case-based Facet Selection

Input: facet function ID funcID, context vector
−−→
CV ,

context filter cf , context weighted preference vector
−→
W

1: create a temporary context filter temp to match cases, whose contexts
are associated with current facet execution tree T

2: if Match(funcId,
−−→
CV , temp,

−→
W ) ! = null then

3: Facet f ⇐ the matched facet in T ;
4: else
5: Facet f ⇐ Match(funcId,

−−→
CV , cf ,

−→
W )

6: end if

7: NeededFacets ⇐ the list of facet to prefetch in the facet manager of
client

8: Add f to NeededFacets
9: NonDrop ⇐ the list of facet to keep in facet manager of client

10: Get the shadow file of f
11: for each funcId in the shadow’s dependency do
12: if funcId is a pre-requisite or used in execution tree T then

13: the dependent facet df ⇐ Match(funcId,
−−→
CV , cf ,

−→
W )

14: else
15: relax

−→
W to consider only user level context

16: the dependent facet df ⇐ Match(funcId,
−−→
CV , cf ,

−→
W )

17: end if
18: if some facet of funcId is in client’s facet cache then

19: add df to NonDrop
20: else
21: add df to NeededFacets
22: end if

23: end for

with an auxiliary data structure to store contexts as shown in

Figure 1. Whenever the proxy server receives a facet request

from client, its component agent will do case-based reasoning

to find the most appropriate facet according to client’s current

reported contexts (Line 1 - 6). It also explores one more

level of facet dependency (Line 10 - 23) to prefetch some

facets to avoid future communications, which has a better user

perceived experience than pure on-demand facet execution of

applications. To accurately prefetch more relevant facets to be

used in future, we set the context weighted preference vector

to only include user level contexts (Line 15). Algorithm 2

will be mainly used to retrieve the most relevant cases in the

knowledge base with a context filer to speed up searching

performance. So far we implemented context filer as simple

regular expressions on certain context attribute, whose value is

usually known as a priori for an application in the knowledge

base. In Algorithm 2, we use the k-Nearest Neighbors (KNN)

algorithm to get most similar cases matched the given context.

We select the solution with highest similarity value and the

wanted function ID from these cases.

The mobile client counterpart in Sparkle has an ex-

tended facet manager to run Algorithm 3 that interacts with

Sparkle proxy servers during facet execution, by sending

physical-level, application-level and user-level contexts to

proxy servers. A typical process flow in client’s runtime

execution environment is as follows: the application on mobile



Algorithm 2 Match(funcId, ~CV , cf , ~W )

Input: facet function ID funcID, context vector
−−→
CV ,

context filter cf , context weighted preference vector
−→
W

1: for each context Ci of context vector
−−→
CV do

2: determine similarity measurement equation to be applied to Ci

according to its attribute type (numerical, literal, ontological)

3: if context Ci is included in
−→
W then

4: set the Wi to be the weight of Ci

5: else

6: use Equation (4) as weight of Ci

7: end if

8: end for

9: Base ⇐ cases in CBR engine by context-guided filtering with cf
10: for each Casei in Base do

11: calculate global similarity Similarity(
−−→
CV , Casei.context)

12: end for

13: apply KNN algorithm to get the top 5 most similar cases
14: return the facet with function ID = funcID and its facet ID = solution

of the most similar case among the 5 cases.

client will search a facet, which is triggered by user interaction

or facet dependency; the adaptive facet manager will intercept

application’s facet request and search its local facet cache; if

local facet cache does not have the facet with needed function

ID, it will send a facet request with current contexts to proxy

server’s component agent; the component agent will return

a facet list (for current on-demand execution or prefetching

of dependent facets with one more level) and their keep/drop

instructions. Upon receiving these information, the client will

update its facet cache and keep/drop instructions, then continue

its normal execution. If the client’s system memory is below

certain threshold, it will start to drop some facets in its

facet cache, according to keep/drop instructions and the Least

Recent Used (LRU) policy. Depending on whether exceptions

happened in the facet execution tree rooted at current facet,

a positive/negative feedback will be sent to proxy and a new

case will be added into knowledge base of proxy server.

Algorithm 3 Execution Flow of Extended Facet Manager

1: if need to run next level facet then

2: get current context
−−→
CV of all categories

3: send a facet request to proxy with current
−−→
CV

4: List Nondrop = the returned list of facets to keep in facet cache

from proxy
5: List Neededfacets = the returned list of prefetched facets from

proxy
6: Facet f = Neededfacets.first /*the first one is for current execu-

tion*/
7: end if
8: f .Execute();
9: result ⇐ True

10: if Any exception is thrown during execution rooted at f then

11: result ⇐ False
12: get current context

−−→
CV of all categories

13: Case ⇐ (
−−→
CV , f, result)

14: notifyProxy(Case)
15: end if

16: if system memory is below threshold s then

17: drop facet f that is least recently used (LRU) and is not in Nondrop
18: end if

VII. EVALUATION

We implemented a prototype of the proposed distributed

component selection framework in Sparkle proxy to prove

feasibility and performance of using the case-based reasoning

technique in component selection of mobile context-aware

applications. We developed a client-side application, called

context-aware personal communicator (CAPC) on an HP

iPAQ H5500 PDA device with Pocket PC 2003. The Mysaifu

JVM installed in the PDA supports Java serialization and

reflection in a Windows Mobile environment. The intelligent

proxy server was deployed on a desktop PC (OS: Windows

Vista, CPU: Intel Core 2 Duo 3.0GHz). Current functions

supported by the personal communicator are shown in Table

II. Memory requirement of the personal communicator and

more information about current facet implementation are given

in Table III. To evaluate in a practical component-selection

scenario, we analyzed the calling dependencies among func-

tional components of an E-mail software used in the per-

sonal communicator with a Java code analysis tool [19]. For

each functionality of this software, we implemented candidate

facets by converting Java code from three E-mail packages:

JavaMail [20], Mail4ME [21] and Tiger Jmail [22] to fulfill the

requested functionality. Figure 4 shows part of the dependency

relationships among several frequently used Java components

in the E-mail program.

TABLE II
MAJOR FUNCTIONS OF PERSONAL COMMUNICATOR

First-level Functional Units Internal Functional Units

Online/offline message sending Jabber message parser

E-mail Roster list builder

Real-time chatting File breaker

File delivering File composer

Roster list adding/dropping Roster entry finder

Regist/Unregist Presence modifier

TABLE III
IMPLEMENTATION DETAILS OF PERSONAL COMMUNICATOR

Total no. of functions 70

Average no. of facets per function 5-6

Average size of a facet 3.6 KB

Total code size on client (w/ CAPC) 657 KB

Code size of Sparkle client 333 KB

MailClient

Session

Client_sun

javax.mail.Session

Client_De

readmail_De

POP3Client SMTPTranspot

com_store gnu_store de_client com_smtp gnu_smtp de_smtp

Connection ConnectionPOP3Folder OutStream

com_folder gnu_folder

com_message

com_str gnu_str

de_pop3message

Implementation

Dependency

Funtionaltiy

Facet

gnu_pop3message

Fig. 4. Dependency Graph of Components Used in CAPC’s E-mail Program
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Fig. 5. Performance of the CBR Engine

A. Evaluation of the reasoning engine

Currently, there are 26 context attributes used to describe

all categories of contexts. Simulations were carried out with

different case-base sizes (1000, 3000 and 5000) and we

implemented the match function described in Algorithm 2 with

jCOLIBRI2 [18] NNretrieval similarity functions to reason and

select solutions. We use a two-fold cross-validation method

[23] to evaluate the accuracy of the reasoner. Based on Figure

4, we create an execution trace to simulate the component

selection process under various contexts. To obtain enough

cases under many different contexts, users’ behaviors (i.e.,

functions required under certain situations) were artificially

produced by a set of pre-defined rules. Results and analysis

of the simulation are discussed as follows. The measured

response time did not include network latency as we only

concern the speed of the reasoning engine and the result

accuracy.

Figure 5 (a) shows the accuracy improvement with respect

to the case base size. Whether the context-guided mechanism

is applied or not, accuracy in both cases is satisfactory (at

least 83%). The context-guided reasoning can further improve

accuracy about 10%, as the dynamically assigned weight for

context attribute can help find out more relevance cases.

Figure 5 (b) shows the reasoning time with or without the

filtering function. Without the filtering function, the reasoning

time could grow as large as 4 seconds when the case base

has 5000 candidates. The filtering function could effectively

reduce the processing time. A short response time of 1.5

seconds could be achieved in the same case. This method can

obtain significant speed-up on reasoning process. However, the

filtering method might put side-effect on accuracy. Figure 5 (c)

shows the comparison of accuracy achieved in two reasoning

processes. From the figure, we suspect the filtering method

might ignore some useful cases, which caused accuracy to

decline. This was due to our filtering rules that are too static.

Yet we have saved about 65% reasoning time in the case

of large case size (e.g. at 5000) at a loss of less than 10%

accuracy. In future work, we should further investigate the

filtering mechanism to make it more reliable.

B. Evaluation of the system performance

To show how the case-based component selection frame-

work can actually improve applications’ performance, we

measured system performances during a user’s interaction

with the E-mail program. We simulated various contexts with

limited computation resources. The framework selected most

suitable components according to the circumstances to achieve

most economical memory usage, shortest execution time of

user actions and to avoid execution failures. The parameter

settings of the evaluation are given in Table IV.

TABLE IV
PARAMETER SETTINGS OF EXPERIMENT

Total no. of emails to read 50

Average size of an email to read 0.7 MB

Total no. of emails to send 25

Average size of an email to send 1.4 MB (with file attachment)

JVM memory limit 3072 KB - 6144 KB

Network bandwidth 20 KBps

Total no. of facets 15

We first recorded a typical execution sequence of a user,

then executed the same sequence on four different schemes: (1)

pure JavaMail implementation; (2) pure Mail4ME implemen-

tation; (3) pure Tiger Jmail implementation; (4) our component

selection. We adopted java soft reference to clear useless

facets. The memory consumption of each implementation at

each execution step is shown as Figure 6. The result of our

approach is best in memory usage. Its maximum memory con-

sumption is reduced by more than 20%, since only facets with

smallest memory consumption were selected during reasoning

process.

Table V compares the execution time of various E-mail

schemes at different stages of execution. The proposed solution

can speedup the application initialization and message read-

ing/sending operations. Though our implementation can not

outperform stand-alone E-mail programs in some performance

metrics, its total execution time is the shortest.

Overall, we have demonstrated the flexibility of our com-

ponent selection framework in adapting the context changes,

including user-level functional requirements and low-level

memory and network availability. The integration of the case-

based reasoning solution and the dynamic component-based
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TABLE V
PERFORMANCE COMPARISONS WITH JAVAMAIL, MAIL4ME AND TIGER

Performance Item JavaMail Mail4ME Tiger Jmail Our Solution

Time of initializing 48 s 9 s 50 s 10 s

and opening mailbox

Average message 156 ms 235 ms 328 ms 240 ms

reading time

Average message 29 s 41 s 30 s 30 s

sending time (failed)

Total execution time: 789 s 1286 s 832 s 776 s

50 emails read, 25 sent

Maximum memory 5.8 5.9 6.0 4.5

consumption (in MB)

composition mechanism made it possible to achieve light-

weight context-aware computing in a small device. Potentially,

unlimited functionalities can be supported at runtime to meet

users’ needs.

VIII. CONCLUSION AND FUTURE WORK

The proliferation of pervasive computing is fostering the

need for applications to provide more personalization and

context-awareness. In this work, we presented the main con-

cept behind our distributed component selection framework.

We use a case-based reasoning technique to provide proactive

component selection based on context information. Context-

awareness and personalization are embodied in the reasoning

and selection process.Resource adaptation and functionality

adaptation are enabled as the component selection could be

done according to the current context. Various experiments

have been conducted to show the feasibility of using case-

based reasoning technique in mobile context-aware applica-

tions. In our future work, various optimizations will be studied

to further improve the system performance. For example, using

index with context, reasoning efficiency could be improved;

clustering similar cases could shrink the case base size; and

seed case selection could help to generate typical cases.

Besides, we will refine our context-guided reasoning and

filtering mechanism to provide more rational and reliable func-

tionalities. To serve users proactively, user’s intention model

is needed to consolidate our knowledge-intensive reasoning.
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